JP6554896B2 - 角度検出装置、モータ駆動制御装置、及びモータ装置 - Google Patents

角度検出装置、モータ駆動制御装置、及びモータ装置 Download PDF

Info

Publication number
JP6554896B2
JP6554896B2 JP2015086679A JP2015086679A JP6554896B2 JP 6554896 B2 JP6554896 B2 JP 6554896B2 JP 2015086679 A JP2015086679 A JP 2015086679A JP 2015086679 A JP2015086679 A JP 2015086679A JP 6554896 B2 JP6554896 B2 JP 6554896B2
Authority
JP
Japan
Prior art keywords
signal
phase
level
intersection
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015086679A
Other languages
English (en)
Other versions
JP2015215344A (ja
Inventor
小島 眞一
眞一 小島
勝久 古瀬
勝久 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015086679A priority Critical patent/JP6554896B2/ja
Publication of JP2015215344A publication Critical patent/JP2015215344A/ja
Application granted granted Critical
Publication of JP6554896B2 publication Critical patent/JP6554896B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/024Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation for range change; Arrangements for substituting one sensing member by another
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/247Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using time shifts of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

本発明は、例えばブラシレスDC(直流)モータなどの回転子の位相を検出する角度検出装置、それを備えたモータ駆動制御装置、及びそれを備えたモータ装置に関する。
ブラシレスDCモータの停止制御など、モータの回転位置を制御する場合、回転子の回転角度を検出する必要がある。ロータリーエンコーダ方式では、一般に回転軸にロータリーエンコーダを接続して、回転角度に応じて変化する1/4周期の位相差を有する2相パルス信号を出力し、そのエッジ検出と2相のハイ/ロウ状態から相対的な回転角度を検出する。
特許文献1には、多くの位相検出を行う目的で、モータの回転子の回転位置に応じた信号レベルを有する複数のセンサ信号に基づいて位相情報信号を発生してモータを駆動制御するモータ駆動制御装置が開示されている。特許文献1においては、複数のセンサ信号を所定の複数のしきい値レベルと比較して位相を検出し、検出した位相を示す第1の位相情報信号を出力し、複数のセンサ信号どうしを比較して位相を検出し、検出した位相を示す第2の位相情報信号を出力する。さらに、検出された位相を所定の複数の位相区間に分け、所定の複数の位相区間において複数のセンサ信号の中の一つを選択し、選択されたセンサ信号のレベルが回転子の所定の位相に応じた所定のしきい値レベルに到達したことを検出する構成が開示されている。
ここで、所定の複数の位相区間に分けるための検出器には、ノイズによる誤動作防止のためにヒステリシス幅をつけた比較器を用いる必要がある。しかしながら、従来のモータ制御技術では、検出器のヒステリシスによって、選択されたセンサ信号の各位相区間の波形にひずみが生じてしまう。そのため、所定のしきい値レベルに到達したことを検出するのに検出誤差が発生するという問題があった。
本発明の目的は、従来技術と比較して、モータの回転子の回転位置を高精度に検出することができる角度検出装置を提供することにある。
本発明に係る角度検出装置は、
複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する角度検出装置において、
上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、
上記各1対の信号の信号レベルが一致した後で上記各1対の信号の信号レベル差が第1のヒステリシス幅だけ離れたときの位相を上記各一対の信号の交点の位相として、それぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
上記交点レベル信号と上記第1のヒステリシス幅に基づいて上記しきい値レベルを調整するしきい値レベル調整手段とを備えたことを特徴とする。
本発明に係る角度検出装置によれば、従来技術と比較して、モータの回転子の回転位置を高精度に検出することができる。
本発明の実施形態1に係る角度検出装置1の構成を、モータM1及びセンサ回路2とともに示すブロック図である。 図1の交点位相検出部10における各センサ信号U1,V1,W1の比較結果の交点位相検出信号UV,VW,WUを示す表である。 図1の信号選択部20の信号選択条件を示す表である。 (a)は、図1の各センサ信号U1,V1,W1の時間tに対する信号レベルの変化を示す波形図であり、(b)は、図1の交点位相検出部10によって(a)のセンサ信号U1,V1,W1の各交点の位相を検出した交点位相検出信号UV,VW,WUを示すタイミングチャートであり、(c)は、(a)のセンサ信号U1,V1,W1から(b)の交点位相検出信号UV,VW,W1に基づいて選択された選択信号Xを示す波形図であり、(d)は、(c)の選択信号Xのヒステリシス幅Vhys1に対応して調整されたしきい値レベルLth1,Lth2を示す波形図であり、(e)は、(d)の選択信号Xとしきい値レベルLth1,Lth2との比較結果の位相検出情報信号Psynを示すタイミングチャートである。 図1の信号選択部20からの選択信号Xの電気角と振幅割合との関係を示す表である。 本発明の実施形態1の変形例に係る角度検出装置1Aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 本発明の実施形態2に係る角度検出装置1Bの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 (a)は、図7の各センサ信号U1,V1,W1の時間tに対する信号レベルの変化を示す波形図であり、(b)は、図7の交点位相検出部10によって(a)のセンサ信号U1,V1,W1の各交点の位相を検出した交点位相検出信号UV,VW,WUを示すタイミングチャートであり、(c)は、(a)のセンサ信号U1,V1,W1から(b)の交点位相検出信号UV,VW,W1に基づいて選択された選択信号Xを示す波形図であり、(d)は、(c)の選択信号Xを信号増幅した選択信号Yを示す波形図であり、(e)は、(d)の選択信号Yとしきい値レベルLth3,Lth4との比較結果の位相検出情報信号Psynを示すタイミングチャートである。 本発明の実施形態3に係る角度検出装置1Cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 図9のゼロクロス位相検出部70の構成を示すブロック図である。 (a)は、図9のセンサ信号U1,V1,W1のゼロクロス位相を検出したゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wを示すタイミングチャートであり、(b)は、図9の反転回路22によって全波整流される各センサ信号U1,V1,W1とそれらの反転信号IU1,IV1,IW1を示す波形図であり、(c)は、(a)の各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいて選択された選択信号Xを示す波形図であり、(d)は、(c)の選択信号Xを信号増幅した選択信号Yを示す波形図であり、(e)は、(d)の選択信号Yとしきい値レベルLth5,Lth6との比較結果の位相検出情報信号Psynを示すタイミングチャートである。 本発明の実施形態4に係るモータ装置の構成を示すブロック図である。 図12のモータ駆動部110の構成を示すブロック図である。 図13のモータ駆動部110の動作を示す各信号のタイミングチャートである。 本発明の変形例1に係る角度検出装置1aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 本発明の変形例2に係る角度検出装置1bの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 本発明の変形例3に係る角度検出装置1cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
実施形態1.
図1は、本発明の実施形態1に係る角度検出装置1の構成を、モータM1及びセンサ回路2とともに示すブロック図である。図1において、角度検出装置1は、交点位相検出部10と、信号選択部20と、位相検出部30と、交点レベル検出部40と、しきい値レベル調整部50とを備えて構成される。交点位相検出部10は、3個の比較器11,12,13と、レジスタ14とを備える。信号選択部20は、ロジック回路21と、スイッチSW1とを備える。位相検出部30は、複数N個の比較器31−1〜31−Nと、(N−1)個の可変電圧源32−1〜32−(N−1)とを備える。
図1において、モータM1は例えばブラシレスDCモータで構成され、センサ回路2はモータM1の回転子の周囲に設けられる。センサ回路2はセンサS1〜S3を備え、各センサS1〜S3によって所定の電気角(例えば120°)の間隔を設定したモータM1のU相、V相、W相の回転角をそれぞれ検出する。センサS1〜S3は、例えばホール素子で構成される磁気センサであってモータM1の回転に応じて変化する磁束密度を検出する。センサ回路2はセンサS1〜S3の検出結果のセンサ信号U1,V1,W1を角度検出装置1の交点位相検出部10、信号選択部20及び交点レベル検出部40に出力する。
交点位相検出部10の比較器11,12,13は、それぞれ所定レベルのヒステリシス幅Vhys1を有するヒステリシスコンパレータで構成される。各比較器11,12,13は、非反転入力端子に入力される信号レベルから反転入力端子に入力される信号レベルを減算した信号レベル差Vinが信号レベル差Vin≧Vhys1であるとき、ハイレベル(Hi)の出力信号Voutを生成する。出力信号Voutがハイレベルとなった後に信号レベル差Vinが信号レベル−Vhys1≦Vin<Vhys1となるとき、各比較器11,12,13はハイレベルの出力信号Voutを生成する。一方、出力信号Voutがロウレベルとなった後に信号レベル差Vinが信号レベル−Vhys1≦Vin<Vhys1となるとき、各比較器11,12,13はロウレベル(Low)の出力信号Voutを生成する。各比較器11,12,13は、信号レベル差Vinが信号レベル差Vin<−Vhys1であるとき、ロウレベルの出力信号Voutを生成する。レジスタ14には、各比較器11,12,13のヒステリシス幅Vhys1を示すヒステリシス情報が書き込まれる。
交点位相検出部10において、比較器11はセンサ信号U1の信号レベルをセンサ信号V1と比較して、センサ信号U1,V1の交点の位相(タイミング)を示す交点位相検出信号UVを発生する。比較器11と同様に、比較器12はセンサ信号V1,W1を比較してセンサ信号V1,W1の交点位相を示す交点位相検出信号VWを生成し、比較器13はセンサ信号W1,U1を比較してセンサ信号W1,U1の交点位相を示す交点位相検出信号WUを発生する。
図2は、図1の交点位相検出部10における各センサ信号U1,V1,W1の比較結果の交点位相検出信号UV,VW,WUを示す表である。図2に示すとおり、比較器11は、信号レベル差U1−V1が信号レベル差U1−V1≧Vhys1であるとき、ハイレベルの交点位相検出信号UVを生成する。交点位相検出信号UVがハイレベルとなった後に信号レベル差U1−V1が信号レベル−Vhys1≦U1−V1<Vhys1となるとき、比較器11はハイレベルの交点位相検出信号UVを生成する。一方、交点位相検出信号UVがロウレベルとなった後に信号レベル差U1−V1が信号レベル−Vhys1≦U1−V1<Vhys1となるとき、比較器11はロウレベルの交点位相検出信号UVを生成する。比較器11は、信号レベル差U1−V1が信号レベル差U1−V1<−Vhys1であるとき、ロウレベルの交点位相検出信号UVを生成する。
図1の比較器12,13も、比較器11と同様にして、それぞれ図2に従う二値の交点位相検出信号VW,WUを生成する。このように、交点位相検出部10はセンサ信号U1,V1,W1のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号UV,VW,WUを生成する。交点位相検出部10は、上記各1対の信号の信号レベルが一致した後で、上記各1対の信号の信号レベル差がヒステリシス幅Vhys1だけ離れたときの位相を上記交点の位相として検出する(図4(c)参照)。交点位相検出部10の比較器11〜13はそれぞれ交点位相検出信号UV,VW,WUを信号選択部20と、交点レベル検出部40に出力する。
図3は、図1の信号選択部20の信号選択条件を示す表である。図1の信号選択部20において、センサ信号U1,V1,W1はそれぞれスイッチSW1の端子a,b,cに入力され、ロジック回路21は交点位相検出信号UV,VW,WUに基づいてスイッチSW1の端子a,b,cを切り替え制御する。図3に示す交点位相検出信号UV,VW,WUの入力条件に従って、図1の信号選択部20はセンサ信号U1,V1,W1のうちのいずれか一つを選択した選択信号Xを位相検出部30に出力する。
図1の交点レベル検出部40は交点位相検出信号UVの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号U1又はセンサ信号V1の信号レベルを検出して、センサ信号U1,V1の交点の信号レベルである交点レベル信号Sxを生成する。交点レベル検出部40は交点位相検出信号VWの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号V1又はセンサ信号W1の信号レベルを検出して、センサ信号V1,W1の交点レベルの交点レベル信号Sxを生成する。交点レベル検出部40は交点位相検出信号WUの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号W1又はセンサ信号U1の信号レベルを検出して、センサ信号W1,U1の交点レベルの交点レベル信号Sxを生成する。交点レベル検出部40は、各交点レベルの交点レベル信号Sxをしきい値レベル調整部50に出力する。
しきい値レベル調整部50は、レジスタ14から、各比較器11,12,13のヒステリシス情報を示すヒステリシス情報信号Shys1を読み出す。しきい値レベル調整部50は、交点レベル信号Sxとヒステリシス情報信号Shys1に基づいて、各センサ信号の2つの交点レベル間で設定される各しきい値レベルを、ヒステリシス幅Vhys1だけシフトするように、各可変電圧源32−nの電圧を制御する。
図1の位相検出部30において、可変電圧源32−1〜32−(N−1)は、互いに直列接続され、それぞれ発生する電圧により複数のしきい値レベルを生成する。比較器31−n(n=1,2,…,N)は、選択信号Xを可変電圧源32−nのしきい値レベルと比較して、選択信号Xがしきい値レベル以上のときハイレベルの二値信号を出力する。一方、比較器31−nは選択信号Xが可変電圧源32−nのしきい値レベル未満のとき、ロウレベルの二値信号を出力する。位相検出部30は、全ての比較器31−1〜31−Nの比較結果の各二値信号を、モータM1が所定の角度に回転したことを知り得る位相情報信号PhCとして出力する。このように、位相検出部30は比較器31−1〜31−Nによって、選択信号Xの信号レベルがモータM1の回転子の所定の位相に対応するしきい値レベルに到達したことを検出する。そうして位相検出部30は、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号PhCを出力する。
以上のように構成された角度検出装置1において、以下に示すように、センサS1〜S3からのセンサ信号U1,V1,W1に基づいてモータM1の回転子の位相情報を検出することができる。
図4(a)は、図1の各センサ信号U1,V1,W1の時間tに対する信号レベルの変化を示す波形図である。図4(a)において、センサ信号U1,V1,W1の時間tの経過に対する信号レベルの波形は、互いに等しい振幅を有する正弦波である。各センサ信号U1,V1,W1は、各センサS1,S2,S3の配置によりそれぞれ電気角120°間隔を空けて出力されている。
図4(b)は、図1の交点位相検出部10によって図4(a)のセンサ信号U1,V1,W1の各交点の位相を検出した交点位相検出信号UV,VW,WUを示すタイミングチャートである。図4(b)において、交点位相検出部10は、図2に示す条件に従って、図4(a)のセンサ信号U1,V1,W1を互いに比較することにより、交点位相検出信号UV,VW,WUを出力している。そのため、各交点位相検出信号UV,VW,WUの信号レベルが切り替わる交点の検出タイミングは、比較器11,12,13のヒステリシスによって各交点の実際のタイミングよりもヒステリシス幅Vhys1に対応した期間だけ遅れる。
図4(c)は、図4(a)のセンサ信号U1,V1,W1から図4(b)の交点位相検出信号UV,VW,W1に基づいて選択された選択信号Xを示す波形図である。図4(c)において、図1の信号選択部20は、図3の入力条件に従い、各交点位相検出信号UV,VW,WUの切り替わりによって規定される位相区間毎に、センサ信号U1,V1,W1のうちのいずれか一つを選択して、選択信号Xを得る。選択信号Xは理想的には図3のように、
(1)センサ信号W1の正弦波位相150°〜210°の60°区間と、
(2)センサ信号V1の正弦波位相−30°〜30°の60°区間と、
(3)センサ信号U1の正弦波位相150°〜210°の60°区間と、
(4)センサ信号W1の正弦波位相−30°〜30°の60°区間と、
(5)センサ信号V1の正弦波位相150°〜210°の60°区間と、
(6)センサ信号U1の正弦波位相−30°〜30°の60°区間とから構成される。すなわち、各センサ信号U1,V1,W1の位相−30°〜30°の位相区間T1と、各センサ信号U1,V1,W1の位相150°〜210°の位相区間T2とが、交互に連結して繰り返され、選択信号Xは理想的な三角波となる。これらの各位相区間T1,T2は、正弦波位相30°〜90°,正弦波位相90°〜150°,正弦波位相210°〜270°及び正弦波位相270°〜310°の60°区間よりも直線性が高い。図1の位相検出部30は、上記各位相区間T1,T2において、選択信号Xが所定のしきい値レベルに到達したことを検出する。
図5は、図1の信号選択部20からの選択信号Xの電気角と振幅割合との関係を示す表である。例えば位相検出部30が選択信号Xの電気角−30°から30°の間を7.5°毎に8分割にする場合、振幅と電気角の関係は図5のとおりとなる。ここで、選択された各センサ信号U1,V1,W1の振幅中心の信号レベルを0とし(ゼロクロスレベル)、電気角90°の振幅レベルを1として振幅割合を規格化している。位相検出部30の各しきい値レベルは、図5に従う正弦波振幅に対する各振幅割合に基づいて設定される。なお、電気角−30°、30°は交点位相検出信号UV,VW,WUによって検出可能であるため、これに対応するしきい値レベルは必ずしも必要ではない。
上記の理想的な選択信号Xでは、角度検出装置1は、各位相区間の切り替えタイミングにおいて検出ノイズにより誤動作を起こし得る。例えば、モータM1の回転が遅いとき、各センサ信号U1,V1,W1の傾きは緩やかになって検出ノイズの影響が出る。これに対して、交点位相検出部10にヒステリシスを有する比較器11,12,13を用いることで、各位相区間の切り替えにマージンを持たせて誤動作を抑制できる。しかしながら、比較器11,12,13のヒステリシスにより、選択信号Xの波形は理想的な三角波からずれる。図4(c)に示すように、交点レベルLA1は、各交点位相検出信号UV,VW,WUの立ち下がりにおいて検出されるが、ヒステリシスによって検出対象の交点の実際の信号レベルLA0よりも増加する。また、交点レベルLB1は、各交点位相検出信号UV,VW,WUの立ち上がりにおいて検出されるが、ヒステリシスによって検出対象の交点の実際の信号レベルLB0よりも減少する。そのため、理想的な選択信号Xに対するしきい値レベルではモータM1の回転位置の位相検出に検出誤差を生じてしまう。
図4(d)は、図4(c)の選択信号Xのヒステリシス幅Vhys1に対応して調整されたしきい値レベルLth1,Lth2を示す波形図である。図4(d)において、選択信号Xに対して付した水平の矢印は前述の複数のしきい値レベルLth1,Lth2を示す。図4(d)に示すように、位相区間T1から位相区間T2に切り替わる時点で、位相区間T1側の選択信号Xの信号レベルは位相区間T2側の選択信号Xの信号レベルよりもヒステリシス幅Vhys1だけ大きい。また、位相区間T2から位相区間T1に切り替わる時点で、位相区間T2側の選択信号Xの信号レベルは位相区間T1側の選択信号Xよりもヒステリシス幅Vhys1だけ小さい。このように、位相区間T1,T2の切り替わりにおいて選択信号Xの波形はひずみ、信号レベルにヒステリシス幅Vhys1のギャップが生じる。
このようにひずんだ波形の選択信号Xに対して、しきい値レベル調整部50は、交点レベル信号Sxとヒステリシス情報信号Shys1に基づいて、しきい値レベルを位相区間T1,T2毎に調整する。位相区間T1においては、交点レベルLB1とヒステリシス幅Vhys1との加算値から検出交点レベルLA1までの信号レベルを等間隔に分割して、各位相に対応するしきい値レベルLth1を設定する。一方、位相区間T2においては、交点レベルLA1からのヒステリシス幅Vhys1の減算値から交点レベルLB1までの信号レベルを等間隔に分割して、各位相に対応するしきい値レベルLth2を設定する。このように、しきい値レベル調整部50は、交点レベル信号Sxとヒステリシス情報信号Shys1に基づいて、しきい値レベルを位相区間T1,T2毎にヒステリシス幅Vhys1だけシフトするように調整する。
図4(e)は、図4(d)の選択信号Xとしきい値レベルLth1,Lth2との比較結果の位相検出情報信号Psynを示すタイミングチャートである。位相情報信号Phsynは、位相情報信号PhCと交点位相検出信号UV,VW,WUとを例えば排他的論理和を取ることによりトグル信号に合成した、合成後の位相情報を示す。角度検出装置1は、選択信号Xが上記の各しきい値レベルLth1,Lth2に到達したことを検出して、位相情報信号Phsynの二値を切り替えている。調整された各しきい値レベルLth1,Lth2により、選択信号Xの波形のひずみに影響されずに、モータM1の回転位置が正確に検出されている。
以上のように構成された実施形態1に係る角度検出装置1によれば、複数のコイルを有するモータM1の回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号U1,V1,W1に基づいて位相情報信号PhCを発生して出力する。角度検出装置1は、交点位相検出部10と、交点レベル検出部40と、信号選択部20と、位相検出部30と、しきい値レベル調整部50とを備える。交点位相検出部10は、上記複数のセンサ信号U1,V1,W1のうちの各1対の信号を互いに比較する。交点位相検出部10は、上記各1対の信号の信号レベルが一致した後で上記各1対の信号の信号レベル差がヒステリシス幅Vhys1だけ離れたときの位相を上記各一対の信号の交点の位相としてそれぞれ示す交点位相検出信号UV,VW,WUを生成して出力する。交点レベル検出部40は、上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号Sxを生成して出力する。信号選択部20は、上記複数のセンサ信号U1,V1,W1の中から1つの選択信号Xを選択する。位相検出部30は、信号選択部20により選択された選択信号Xの信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号PhCを出力する。しきい値レベル調整部50は、交点レベル信号Sxとヒステリシス幅Vhys1に基づいてしきい値レベルLth1,Lth2を調整する。
実施形態1に係る角度検出装置1によると、ノイズによる誤動作を防止するようにヒステリシスを有する比較器11〜13を用いるとともに、ヒステリシスによる選択信号Xの波形のひずみに対してしきい値レベルを調整する。そのため、従来技術と比較して、モータの回転子の回転位置を高精度に検出することができる。
モータM1の回転子を検出する磁気センサのセンサS1〜S3は、一般的にホール素子が使用され、回転子が回転することで発生する磁束密度は正弦波である場合が多い。すなわち、磁気センサからの信号も正弦波である場合が多い。しかし、回転子が回転する際に発生し固定されている磁気センサにて受ける磁束密度が必ずしも図4に示す綺麗な正弦波ではなく歪んだ正弦波である場合がある。また、センシングする磁束密度が磁気センサの許容値を超えるために起こる磁気飽和により、磁気センサ出力が飽和し台形波に近い出力となる場合もある。これに対して、角度検出装置1は各センサ信号の互いに隣接する2つの交点の間の波形が、他の交点間の位相区間よりも傾きの高い部分(例えば正弦波位相±30°区間)のように直線に近い部分において、すなわち実質的に直線の部分において位相を検出できる。例えば、角度検出装置1を、正弦波又はそれに近い波形の信号の電気角−60°〜60°,120°〜240°区間内に用いることで、複数の位相検出を高精度で行うことが可能である。
図3において、選択信号Xは各センサ信号U1,V1,W1の正弦波位相−30°から30°区間又は150°から210°区間となっており、位相区間が切り換わり選択されたセンサ信号が変化しても連続した信号となっている。さらに、位相検出部30からの位相情報信号PhCは各比較器31−1〜31−Nからの隣り合う比較結果の二値信号が順番に切り換わるため、最終的な合成信号はグレイコードとなすことが可能となっている。また、図5では電気角7.5°毎の位相情報を得る手段を示したが、一例であって本発明はこれに限らず、例えば電気角6°毎の振幅割合に区切って位相情報を得てもよいし、電気角3°毎に区切って電気角7.5°毎の2.5倍の位相情報を得ることもできる。
実施形態1の変形例.
図6は、本発明の実施形態1の変形例に係る角度検出装置1Aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。実施形態1の変形例に係る角度検出装置1Aは、実施形態1に係る角度検出装置1と比較して、交点位相検出部10に代えて交点位相検出部10Aを備え、メモリ51をさらに備えたことを特徴とする。この相違点について、以下説明する。
図6において、交点位相検出部10Aは、図1の交点位相検出部10と比較して、レジスタ14を有さない。一方、メモリ51は、各比較器11,12,13のヒステリシス幅Vhys1に関するヒステリシス情報を記憶する。しきい値レベル調整部50は、メモリ51からヒステリシス情報信号Shys1を読み出して、図4と同様にヒステリシス幅Vhys1に基づいて位相検出部30のしきい値レベルを調整する。
以上のように構成された角度検出装置1Aによれば、メモリ51からヒステリシス幅Vhys1を読み出すことで、図4と同様のしきい値レベルの調整動作を行うことができる。ヒステリシス幅Vhys1に関するヒステリシス情報を、あらかじめメモリ51に記憶させておくことができる。そのため、ヒステリシス幅Vhys1を固定値で設定することができる。
実施形態2.
図7は、本発明の実施形態2に係る角度検出装置1Bの構成を、モータM1及びセンサ回路2とともに示すブロック図である。実施形態2に係る角度検出装置1Bは、実施形態1に係る角度検出装置1と比較して、信号増幅部60をさらに備えたことを特徴とする。この相違点について、以下説明する。
図7において、信号増幅部60は、交点レベル信号Sxに基づいて、交点レベルLA1,LB1が所定値の信号レベルに一致するように選択信号Xを信号増幅して、増幅した選択信号Yを位相検出部30に出力する。さらに、信号増幅部60は、選択信号Yの信号レベルと、選択信号Xから選択信号Yへの信号増幅率αを示す増幅レベル信号Syをしきい値レベル調整部50に出力する。しきい値レベル調整部50は、増幅レベル信号Syとヒステリシス情報信号Shys1に基づいて、位相検出部30の各しきい値レベルを調整する。
以上のように構成された角度検出装置1Bにおいて、以下に示すように、センサS1〜S3からのセンサ信号U1,V1,W1に基づいてモータM1の回転子の位相情報を検出することができる。
図8(a)は、図7の各センサ信号U1,V1,W1の時間tに対する信号レベルの変化を示す波形図である。図8(b)は、図7の交点位相検出部10によって図8(a)のセンサ信号U1,V1,W1の各交点の位相を検出した交点位相検出信号UV,VW,WUを示すタイミングチャートである。図8(c)は、図8(a)のセンサ信号U1,V1,W1から図8(b)の交点位相検出信号UV,VW,W1に基づいて選択された選択信号Xを示す波形図である。図8(a)〜図8(c)において、角度検出装置1Bは図4と同様に、センサ信号U1,V1,W1から交点位相検出信号UV,VW,WUに基づいて選択信号Xを選択する。
図8(d)は、図8(c)の選択信号Xを信号増幅した選択信号Yを示す波形図である。図8(e)は、図8(d)の選択信号Yとしきい値レベルLth3,Lth4との比較結果の位相検出情報信号Psynを示すタイミングチャートである。
図8(d)において、図7の信号増幅部60は、交点レベル信号Sxに基づいて、図8(c)の選択信号Xの各交点レベルLA1,LB1がそれぞれ増幅交点レベルLA2,LB2に一致するように、選択信号Xを信号増幅した選択信号Yを出力している。このとき、選択信号Xのヒステリシス幅Vhys1も増幅される。そのため、選択信号Yは、各位相区間T1,T2の切り替わりにおいてヒステリシス幅Vhys1を増幅した増幅ヒステリシス幅Vhys2のギャップを有する。
しきい値レベル調整部50は、まず信号増幅率αをヒステリシス情報信号Shys1のヒステリシス幅Vhys1に乗算して、乗算結果の増幅ヒステリシス幅Vhys2=Vhys1×αを算出する。次いで、位相区間T1においては、増幅交点レベルLB2と増幅ヒステリシス幅Vhys2との加算値から増幅交点レベルLA2までの信号レベルを等間隔に分割して、各位相に対応するしきい値レベルLth3を設定する。一方、位相区間T2においては、増幅交点レベルLA2からの増幅ヒステリシス幅Vhys2の減算値から増幅交点レベルLB2までの信号レベルを等間隔に分割して、各位相に対応するしきい値レベルLth4を設定する。しきい値レベル調整部50は、各位相区間T1,T2毎に2つのしきい値レベルLth3,Lth4に切り替えるように、各可変電圧源32−1〜32−(N−1)の電圧を調整する。
図8(e)において、図4(e)と同様の位相情報信号PhCは、調整された各しきい値レベルLth3,Lth4により、選択信号Yの波形のひずみが増幅されているにも関わらず、モータM1の回転位置が正確に検出されている。
以上のように構成された角度検出装置1Bによれば、選択信号Xを信号増幅した選択信号Yを用いて位相検出を行うことにより、各しきい値レベルの設定幅を増幅前よりも大きく取ることができ、より詳細な位相情報を得ることができる。このとき、ヒステリシスによる選択信号Yのひずみも増幅されるが、しきい値レベルLth3,Lth4によって、増幅ヒステリシス幅Vhys2による検出位相誤差を抑制できる。
実施形態3.
図9は、本発明の実施形態3に係る角度検出装置1Cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。図10は、図9のゼロクロス位相検出部70の構成を示すブロック図である。実施形態3に係る角度検出装置1Cは、実施形態2に係る角度検出装置1Bと比較して、ゼロクロス位相検出部70と、反転回路22をさらに備え、信号選択部20に代えてスイッチSW2及びロジック回路24を有する信号選択部20Aを備えたことを特徴とする。この相違点について、以下説明する。
図10において、ゼロクロス位相検出部70は、3個の比較器71,72,73と、レジスタ74とを備える。比較器71,72,73は、それぞれ所定値のヒステリシス幅Vhys3を有するヒステリシスコンパレータで構成される。各比較器71,72,73のヒステリシス幅Vhys3は、レジスタ74に書き込まれる。
比較器71において、非反転入力端子には図8のセンサS1からセンサ信号U1が入力され、反転入力端子は接地される。比較器71は、信号レベルU1≧Vhys3であるとき、ハイレベルのゼロクロス位相検出信号CMP_Uを生成する。ゼロクロス位相検出信号CMP_Uがハイレベルとなった後に信号レベルU1が信号レベル−Vhys3≦U1<Vhys3となるとき、比較器71は、ハイレベルのゼロクロス位相検出信号CMP_Uを生成する。一方、ゼロクロス位相検出信号CMP_Uがロウレベルとなった後に信号レベルU1が信号レベル−Vhys3≦U1<Vhys3となるとき、比較器71はロウレベルのゼロクロス位相検出信号CMP_Uを生成する。比較器71は、信号レベルU1<−Vhys3であるとき、ロウレベルのゼロクロス位相検出信号CMP_Uを生成する。
比較器72において、非反転入力端子には図8のセンサS2からセンサ信号V1が入力され、反転入力端子は接地される。比較器72は、信号レベルV1≧Vhys3であるとき、ハイレベルのゼロクロス位相検出信号CMP_Vを生成する。ゼロクロス位相検出信号CMP_Vがハイレベルとなった後に信号レベルV1が信号レベル−Vhys3≦V1<Vhys3となるとき、比較器72は、ハイレベルのゼロクロス位相検出信号CMP_Vを生成する。一方、ゼロクロス位相検出信号CMP_Vがロウレベルとなった後に信号レベルV1が信号レベル−Vhys3≦V1<Vhys3となるとき、比較器72はロウレベルのゼロクロス位相検出信号CMP_Vを生成する。比較器72は、信号レベルV1<−Vhys3であるとき、ロウレベルのゼロクロス位相検出信号CMP_Vを生成する。
比較器73において、非反転入力端子には図8のセンサS3からセンサ信号W1が入力され、反転入力端子は接地される。比較器73は、信号レベルW1≧Vhys3であるとき、ハイレベルのゼロクロス位相検出信号CMP_Wを生成する。ゼロクロス位相検出信号CMP_Wがハイレベルとなった後に信号レベルW1が信号レベル−Vhys3≦W1<Vhys3となるとき、比較器73は、ハイレベルのゼロクロス位相検出信号CMP_Wを生成する。一方、ゼロクロス位相検出信号CMP_Wがロウレベルとなった後に信号レベルW1が信号レベル−Vhys3≦W1<Vhys3となるとき、比較器72はロウレベルのゼロクロス位相検出信号CMP_Wを生成する。比較器72は、信号レベルW1<−Vhys3であるとき、ロウレベルのゼロクロス位相検出信号CMP_Wを生成する。
図9において、反転回路22は、各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wのタイミングに基づいて各センサ信号U1,V1,W1を反転して全波整流する。反転回路22は、全波整流した各センサ処理信号U2,V2,W2をそれぞれスイッチSW2の端子a,b,cに出力する。ロジック回路24はゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいて規定される所定の位相区間毎に端子a,b,cを切り替えるように、スイッチSW2を切り替え制御する。信号選択部20Aは、センサ処理信号U2,V2,W2のうちのいずれか一つを選択した選択信号Xを位相検出部30に出力する。
以上のように構成された実施形態3に係る角度検出装置1Cにおいて、以下に示すように、センサS1〜S3からのセンサ信号U1,V1,W1に基づいてモータM1の回転子の位相情報を検出することができる。
図11(a)は、図9のセンサ信号U1,V1,W1のゼロクロス位相を検出したゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wを示すタイミングチャートである。
図11(b)は、図9の反転回路22によって全波整流される各センサ信号U1,V1,W1とそれらの反転信号IU1,IV1,IW1を示す波形図である。図11(b)において、図9の反転回路22は図11(a)の各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいて、ゼロクロスレベル未満の各センサ信号U1,V1,W1を折り返すように、各センサ信号U1,V1,W1を全波整流する。これにより、各センサ信号U1,V1,W1を反転した反転信号IU1,IV1,IW1が生成される。反転回路22は、各センサ信号U1,V1,W1をそれぞれ反転信号IU1,IV1,IW1と連結することによってセンサ処理信号U2,V2,W2を生成する。図9のロジック回路24は、図11(a)に示す各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいてスイッチSW2を切り替え制御する。
図11(c)は、図11(a)に示す各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいて選択された選択信号Xを示す波形図である。図11(c)において、図9のロジック回路24は図11(a)の各ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wに基づいて、図9のスイッチSW2の端子a,b,cを順次選択するように切り替え制御する。具体的には以下の条件で切り替えを行う。
(1)CMP_U=“H”、CMP_V=“L”、CMP_W=“H”若しくはCMP_U=“L”、CMP_V=“L”、CMP_W=“H”の場合に端子a(U2)を選択する。
(2)CMP_U=“H”、CMP_V=“L”、CMP_W=“L”若しくはCMP_U=“H”、CMP_V=“H”、CMP_W=“L”の場合に端子b(V2)を選択する。
(3)CMP_U=“L”、CMP_V=“H”、CMP_W=“L”若しくはCMP_U=“L”、CMP_V=“H”、CMP_W=“H”の場合に端子c(W2)を選択する。
これにより、信号選択部20は、センサ処理信号U2、V2、W2から選択信号Xが選択する。選択信号Xは、ハイレベルのゼロクロストグル信号Szによって規定される位相区間T3と、ロウレベルのゼロクロストグル信号Szによって規定される位相区間T4とにおいて、互いに異なる波形を有する。図11(d)に示すように、位相区間T3から位相区間T4に切り替わる時点で、位相区間T3側の選択信号Xの信号レベルは位相区間T4側の選択信号Xの信号レベルよりもヒステリシス幅Vhys1だけ大きい。また、位相区間T4から位相区間T3に切り替わる時点で、位相区間T4側の選択信号Xの信号レベルは位相区間T3側の選択信号Xよりもヒステリシス幅Vhys3だけ小さい。
図11(d)は、図11(c)の選択信号Xを信号増幅した選択信号Yを示す波形図である。図11(e)は、図11(d)の選択信号Yとしきい値レベルLth5,Lth6との比較結果の位相検出情報信号Psynを示すタイミングチャートである。
図11(d)において、図9の信号増幅部60は増幅レベル信号Syに基づいて、図11(c)の選択信号Xの交点レベルLA1が増幅交点レベルLA2に一致するように、ゼロクロスレベルを基準に選択信号Xを信号増幅した選択信号Yを出力する。このとき、ゼロクロス位相検出部70の比較器71,72,73のヒステリシス幅Vhys3も、交点位相検出部10の比較器11,12,13のヒステリシス幅Vhys1と同様に増幅されて増幅ヒステリシス幅Vhys4となる。そのため、選択信号Yは、図8と同様に各位相区間T3,T4の切り替わりにおいて増幅ヒステリシス幅Vhys2,Vhys4のギャップを有する。しきい値レベル調整部50は、図8と同様にしきい値レベルを位相区間T3,T4毎に増幅ヒステリシス幅Vhys2,Vhys4だけシフトするように調整して、各位相区間T3,T4においてそれぞれしきい値レベルLth5,Lth6を設定する。これにより、図11(e)に示すように、選択信号Yの波形のひずみに影響されずに、正確な位相情報を得ることができる。
以上のように構成された角度検出装置1Cによれば、センサ信号U1,V1,W1を全波整流することにより、選択信号Yの信号レベルがゼロクロス点において折り返される。これにより、選択信号Yの位相検出に用いる信号レベルの幅を実質的に維持しながら回路規模を縮小できる。角度検出装置1Cは、このように回路規模を縮小しながら、ヒステリシス幅Vhys1,Vhys3によって検出ノイズによる誤動作を防止する。さらに、しきい値レベルLth5,Lth6によって、当該ヒステリシス幅Vhys1,Vhys3による検出位相誤差を抑制できる。
実施形態4.
図12は、本発明の実施形態4に係るモータ装置の構成を示すブロック図である。図12において、実施形態4に係るモータ装置は、モータM1と、センサ回路2と、モータ駆動制御装置3とを備えて構成される。モータ駆動制御装置3は、実施形態3に係る角度検出装置1Cと、信号合成回路33と、モータコントローラ100と、モータ駆動部110とを備えて構成される。信号合成回路33は、位相情報信号PhCに基づいて位相情報信号Phsynを生成して、モータコントローラ100に出力する。モータコントローラ100は、位相情報信号Phsynに基づいて、PWM信号を発生してモータ駆動部110に出力する。モータ駆動部110は、モータコントローラ100のPWM信号に基づいて、駆動電流を複数のモータコイルに選択的に流してモータM1の回転子を回転駆動させる。
図13は、図12のモータ駆動部110の構成を示すブロック図である。図13において、モータ駆動部110は、プリドライバ80と、メインドライバ90とを備えて構成される。例えばブラシレスDCモータであるモータM1を駆動するための3相コイルを、U相、V相、W相とし、それぞれのコイルの一端はモータM1内でY結線されている。ここで、メインドライバ90は、それぞれのコイルの他端には電源側に接続されたハイサイドのスイッチ素子91,93,95と、接地側に接続されたロウサイドのスイッチ素子92,94,96とを備えて構成される。さらに、各相のスイッチ素子91〜96を駆動するためのスイッチの制御信号UH,UL,VH,VL,WH,WLが前段のプリドライバ80より出力される。
図13において、プリドライバ80は、駆動相コントローラ81と3個の駆動増幅器82,83,84とを備えて構成される。駆動相コントローラ81は各位相検出信号U2,V2,W2に基づいて、モータコントローラ100からのPWM信号を駆動増幅器82,83,84のいずれか1つに選択的に順次出力する。駆動増幅器82は、駆動相コントローラ81からの出力に基づいて、一対の制御信号UH,ULを生成して、制御信号UHによりハイサイドのスイッチ素子91をオン/オフ制御し、制御信号ULによりロウサイドのスイッチ素子92をオン/オフ制御する。駆動増幅器83は、駆動相コントローラ81からの出力に基づいて、一対の制御信号VH,VLを生成して、制御信号VHによりハイサイドのスイッチ素子93をオン/オフ制御し、制御信号VLによりロウサイドのスイッチ素子94をオン/オフ制御する。駆動増幅器84は、駆動相コントローラ81からの出力に基づいて、一対の制御信号WH,WLを生成して、制御信号WHによりハイサイドのスイッチ素子95をオン/オフ制御し、制御信号WLによりロウサイドのスイッチ素子96をオン/オフ制御する。
図14は、図13のモータ駆動部110の動作を示す各信号のタイミングチャートである。図14では、各センサ信号U1,V1,W1の信号論理における各フェーズの切り換え例を示しており、ブラシレスDCモータを駆動する方法として一般的な駆動方法である。図12のモータコントローラ100は回転しているモータM1のできるだけ正確な位相情報に基づいて、前述のPWM信号の然るべきデューティサイクルを制御し、PWM信号をモータ駆動部110に出力する。図13の駆動相コントローラ81は、各センサ信号U1,V1,W1に基づいて、各センサ信号U1,V1,W1の信号レベルがそれぞれゼロクロスレベル以上であるか否かを示す転流信号HU,HV,HWを生成する。駆動相コントローラ81は転流信号HU,HV,HWに基づいて、駆動増幅器82,83,84のうちの1つをPWM制御し、他の2つの駆動増幅器のうちの1つの一対の制御信号をロウレベルにする。駆動相コントローラ81は、残る1つの駆動増幅器のハイサイドのスイッチ素子の制御信号をロウレベルにするとともに、ロウサイドのスイッチ素子の制御信号をハイレベルにする。これにより、駆動相コントローラ81は、PWMデューティサイクルで同期整流する相と、ロウサイドのスイッチ素子のみをオンする相と、ハイサイドのスイッチ素子及びロウサイドのスイッチ素子を共にオフする相のいずれかの状態に振り分ける。
以上のように構成された実施形態4に係るモータ装置によれば、センサS1,S2,S3を、例えばブラシレスDCモータで構成されるモータM1の駆動に必要なコイル電流の転流用のセンサと共通化して使用することで、追加のセンサを省略できる。すなわち、モータ駆動制御装置3において従来のモータ装置が有するセンサによるコイル電流の転流信号を用いることで、角度検出装置1による多数の位相情報の取得を実現できる。
変形例.
図15は、本発明の変形例1に係る角度検出装置1aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。本発明の実施形態1に係る角度検出装置1はヒステリシス情報を書き込むレジスタ14を備え、実施形態1の変形例に係る角度検出装置1Aはメモリ51を備えたが、本発明はこれに限らない。図15の変形例に示すように、ヒステリシス幅Vhys1は、比較器11〜13を構成するヒステリシスコンパレータにおいて、回路上で固定してもよい。図15において、交点位相検出部10aは、比較器11〜13で構成され、各比較器11〜13のヒステリシス幅Vhys1は、一定値(例えば15mV)に固定して構成される。しきい値レベル調整部50aは、角度検出装置1,1Aのようにヒステリシス情報信号Shys1を読み出すことなく、一定値のヒステリシス幅Vhys1を用いてしきい値レベルLth1,Lth2を調整する。ヒステリシスコンパレータのヒステリシス幅Vhys1を回路上で固定して構成することにより、角度検出装置1aは、当該ヒステリシス情報をレジスタ等に格納する必要がない。さらに、しきい値レベル調整部50aを固定値のヒステリシス幅Vhys1を用いてしきい値レベルLth1,Lth2を調整するように構成できる。
図16は、本発明の変形例2に係る角度検出装置1bの構成を、モータM1及びセンサ回路2とともに示すブロック図である。実施形態2に係る角度検出装置1Bも、変形例1の角度検出装置1aと同様に、ヒステリシス幅Vhys1を回路上で固定して構成してもよい。図16において、角度検出装置1bのしきい値レベル調整部50bは、固定値のヒステリシス幅Vhys1を信号増幅率α倍にした増幅ヒステリシス幅Vhys2を用いて、角度検出装置1Bと同様にしきい値レベルLth3,Lth4を調整する。
図17は、本発明の変形例3に係る角度検出装置1cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。実施形態3に係る角度検出装置1Cも、変形例1の角度検出装置1aと同様に、ヒステリシス幅Vhys1,Vhys3を回路上で固定して構成してもよい。図17において、角度検出装置1cのゼロクロス位相検出部70aは比較器71〜73を有し、各比較器71〜73のヒステリシス幅Vhys3は一定の固定値に設定される。角度検出装置1cにおいて、しきい値レベル調整部50cは、固定値のヒステリシス幅Vhys1,Vhys3を用いて、角度検出装置1Cと同様にしきい値レベルLth5,Lth6を調整する。
本発明の各実施形態に係る角度検出装置1,1B,1Cは、レジスタを備え、レジスタにヒステリシス情報を書き込んだ。しかし、本発明はこれに限らず、しきい値レベル調整部50によって読み出し可能にヒステリシス情報が記憶されてもよい。各比較器のヒステリシスを示すヒステリシス情報は、メモリに記憶されてもよいし、角度検出装置の外部から設定されてもよい。
本発明の各実施形態に係る角度検出装置1,1A,1B,1C,1a,1b,1cは、3相のセンサ信号U1,V1,W1に対してモータM1の回転位置を検出したが、本発明はこれに限らず、複数相のセンサ信号に対してモータM1の回転位置を検出できる。例えば、電気角90°の間隔で設定された2つのセンサ信号U1,V1において、各センサ信号の逆相信号を生成して重ね合わせ、各センサ信号の交点に基づいて選択信号Xを取ることで、実施形態1と同様に位相を検出することができる。
本発明の各実施形態に係る角度検出装置1,1A,1B,1C,1a,1b,1cは、センサ信号U1,V1,W1に代えて、複数のセンサ信号U1,V1,W1に対して所定の信号処理を行った後の複数のセンサ処理信号に対して、上述の動作を行ってもよい。他の実施形態においても同様である。
本発明の実施形態4に係るモータ装置は、角度検出装置1Cを備えるモータ駆動制御装置3備えて構成されたが、本発明はこれに限らない。本発明に係るモータ駆動制御装置は、角度検出装置1,1A,1B,1C,1a,1b,1cを備えて構成されてもよい。本発明に係るモータ装置は、当該モータ駆動制御装置を備えて構成されてもよい。また、駆動相コントローラ81は、ゼロクロス位相検出信号CMP_U,CMP_V,CMP_Wを、転流信号HU,HV,HWとして用いてもよい。これにより、駆動相コントローラ81の回路面積を削減できる。
実施形態のまとめ.
本発明の第1の態様に係る角度検出装置は、
複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する角度検出装置において、
上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、
上記各1対の信号の信号レベルが一致した後で上記各1対の信号の信号レベル差が第1のヒステリシス幅だけ離れたときの位相を上記各一対の信号の交点の位相として、それぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
上記交点レベル信号と上記第1のヒステリシス幅に基づいて上記しきい値レベルを調整する上記しきい値レベル調整手段とを備えたことを特徴とする。
本発明の第2の態様に係る角度検出装置は、第1の態様に係る角度検出装置において、
上記しきい値レベル調整手段は、上記しきい値レベルを上記ヒステリシス幅だけシフトするように調整することを特徴とする。
本発明の第3の態様に係る角度検出装置は、第1または第2の態様に係る角度検出装置において、
上記しきい値レベル調整手段は、
互いに隣接する二つの上記交点の交点レベルのうちで一方の交点レベルよりも第1のヒステリシス幅だけ他方の交点レベルに近い信号レベルと当該他方の交点レベルとの間を等間隔に分割した各信号レベルを上記しきい値レベルとして設定することを特徴とする。
本発明の第4の態様に係る角度検出装置は、第1乃至第3の態様に係る角度検出装置において、
上記しきい値レベル調整手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号において、上記選択信号として選択される位相区間を含む所定の位相区間ごとに、上記しきい値レベルを調整することを特徴とする。
本発明の第5の態様に係る角度検出装置は、第1乃至第4の態様に係る角度検出装置において、
上記角度検出装置は、上記各交点レベルを所定の信号レベルに一致させるように、上記複数のセンサ信号又は上記複数のセンサ処理信号を信号増幅して出力する信号増幅手段をさらに備え、
上記しきい値レベル調整手段は、上記信号増幅手段の信号増幅率を上記第1のヒステリシス幅に乗算して、乗算結果の増幅ヒステリシス幅に基づいて上記しきい値レベルを調整することを特徴とする。
本発明の第6の態様に係る角度検出装置は、第1乃至第5の態様に係る角度検出装置において、
上記角度検出装置は、上記各センサ信号又は上記各センサ処理信号が、所定の信号レベルと一致した後で、当該所定の信号レベルから第2のヒステリシス幅だけ離れたときの位相をゼロクロス位相として検出するゼロクロス位相検出手段をさらに備え、
上記しきい値レベル調整手段は、上記交点レベル信号と上記第1及び第2のヒステリシス幅に基づいて上記しきい値レベルを調整することを特徴とする。
本発明の第7の態様に係る角度検出装置は、第1乃至第6の態様に係る角度検出装置において、
上記信号選択手段は、上記各交点のうちの互いに隣接する交点間の位相区間毎に、上記複数のセンサ信号又は上記複数のセンサ処理信号の中からそれぞれ1つの選択信号を選択して連結することにより選択信号を生成することを特徴とする。
本発明の第8の態様に係る角度検出装置は、第7の態様に係る角度検出装置において、
上記位相区間は、電気角30°から電気角60°の幅に対応する区間であることを特徴とする。
本発明の第8の態様に係るモータ駆動制御装置は、第1乃至第8の態様に係る角度検出装置を備え、上記角度検出装置からの位相情報信号に基づいてモータを駆動制御することを特徴とする。
本発明の第8の態様に係るモータ駆動制御装置は、第9の態様に係るモータ駆動制御装置と、上記モータ駆動制御装置によって駆動制御されるモータとを備えたことを特徴とする。
1,1A,1B,1C,1a,1b,1c…角度検出装置、
2…センサ回路、
3…モータ駆動制御装置、
10,10A,10a…交点位相検出部、
11,12,13…比較器、
14…レジスタ、
20…信号選択部、
21…ロジック回路、
22…反転回路、
30…位相検出部、
31−1〜31−N…比較器、
32−1〜32−(N−1)…可変電圧源、
33…信号合成回路、
40…交点レベル検出部、
50,50a,50b,50c…しきい値レベル調整部、
51…メモリ、
60…信号増幅部、
70,70a…ゼロクロス位相検出部、
71,72,73…比較器、
74…レジスタ、
80…プリドライバ、
81…駆動相コントローラ、
82,83,84…駆動増幅器、
90…メインドライバ、
91〜96…スイッチ素子、
100…モータコントローラ、
110…モータ駆動部、
M1…モータ、
S1,S2,S3…センサ、
SW1…スイッチ。
特開2013−099023号公報

Claims (10)

  1. 複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する角度検出装置において、
    上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、上記各1対の信号の信号レベルが一致した後で上記各1対の信号の信号レベル差が第1のヒステリシス幅だけ離れたときの位相を上記各一対の信号の交点の位相として、それぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
    上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
    上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
    上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
    上記交点レベル信号と上記第1のヒステリシス幅に基づいて上記しきい値レベルを調整するしきい値レベル調整手段とを備えたことを特徴とする角度検出装置。
  2. 上記しきい値レベル調整手段は、上記しきい値レベルを上記第1のヒステリシス幅だけシフトするように調整することを特徴とする請求項1に記載の角度検出装置。
  3. 上記しきい値レベル調整手段は、互いに隣接する二つの上記交点の交点レベルのうちで一方の交点レベルよりも上記第1のヒステリシス幅だけ他方の交点レベルに近い信号レベルと、当該他方の交点レベルとの間を等間隔に分割した各信号レベルを、上記しきい値レベルとして設定することを特徴とする請求項1または2に記載の角度検出装置。
  4. 上記しきい値レベル調整手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号において、上記選択信号として選択される位相区間を含む所定の位相区間ごとに、上記しきい値レベルを調整することを特徴とする請求項1〜3のうちのいずれか1つに記載の角度検出装置。
  5. 上記角度検出装置は、上記各交点レベルを所定の信号レベルに一致させるように、上記複数のセンサ信号又は上記複数のセンサ処理信号を信号増幅して出力する信号増幅手段をさらに備え、
    上記しきい値レベル調整手段は、上記信号増幅手段の信号増幅率を上記第1のヒステリシス幅に乗算して、乗算結果の増幅ヒステリシス幅に基づいて上記しきい値レベルを調整することを特徴とする請求項1〜4のうちのいずれか1つに記載の角度検出装置。
  6. 上記角度検出装置は、上記各センサ信号又は上記各センサ処理信号が、所定の信号レベルと一致した後で、当該所定の信号レベルから第2のヒステリシス幅だけ離れたときの位相をゼロクロス位相として検出するゼロクロス位相検出手段をさらに備え、
    上記しきい値レベル調整手段は、上記交点レベル信号と上記第1及び第2のヒステリシス幅に基づいて上記しきい値レベルを調整することを特徴とする請求項1〜5のうちのいずれか1つに記載の角度検出装置。
  7. 上記信号選択手段は、上記各交点のうちの互いに隣接する交点間の位相区間毎に、上記複数のセンサ信号又は上記複数のセンサ処理信号の中からそれぞれ1つの選択信号を選択して連結することにより選択信号を生成することを特徴とする請求項1〜6のうちのいずれか1つに記載の角度検出装置。
  8. 上記交点間の位相区間は、電気角30°から電気角60°の幅に対応する区間であることを特徴とする請求項7に記載の角度検出装置。
  9. 請求項1〜8のうちのいずれか1つに記載の角度検出装置を備え、上記角度検出装置からの位相情報信号に基づいてモータを駆動制御することを特徴とするモータ駆動制御装置。
  10. 請求項9に記載のモータ駆動制御装置と、
    上記モータ駆動制御装置によって駆動制御されるモータとを備えたことを特徴とするモータ装置。
JP2015086679A 2014-04-25 2015-04-21 角度検出装置、モータ駆動制御装置、及びモータ装置 Active JP6554896B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086679A JP6554896B2 (ja) 2014-04-25 2015-04-21 角度検出装置、モータ駆動制御装置、及びモータ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014091824 2014-04-25
JP2014091824 2014-04-25
JP2015086679A JP6554896B2 (ja) 2014-04-25 2015-04-21 角度検出装置、モータ駆動制御装置、及びモータ装置

Publications (2)

Publication Number Publication Date
JP2015215344A JP2015215344A (ja) 2015-12-03
JP6554896B2 true JP6554896B2 (ja) 2019-08-07

Family

ID=54335716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086679A Active JP6554896B2 (ja) 2014-04-25 2015-04-21 角度検出装置、モータ駆動制御装置、及びモータ装置

Country Status (2)

Country Link
US (1) US9562792B2 (ja)
JP (1) JP6554896B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798306B2 (ja) * 2016-03-01 2020-12-09 株式会社リコー 位相調整装置、位相検出装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
CN108153289A (zh) * 2018-01-15 2018-06-12 宁波精成车业有限公司 驱动器执行机械动作滞后时间差的测试方法及电路
JP2021143910A (ja) * 2020-03-11 2021-09-24 株式会社デンソー 回転角度検出装置
JP7490602B2 (ja) * 2021-03-10 2024-05-27 株式会社東芝 ブラシレスモータ駆動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224621A (ja) * 1988-03-04 1989-09-07 Hitachi Ltd 位置検出方法又は装置
JPH04193093A (ja) * 1990-11-27 1992-07-13 Mitsubishi Heavy Ind Ltd ブラシレスモータの回転位置検出回路
JP2002286506A (ja) * 2001-03-23 2002-10-03 Citizen Watch Co Ltd 光学スケールを用いた寸法測定装置
US7362094B2 (en) * 2006-01-17 2008-04-22 Allegro Microsystems, Inc. Methods and apparatus for magnetic article detection
TWI399914B (zh) * 2010-08-17 2013-06-21 Amtek Semiconductor Co Ltd 無感應元件之直流無刷馬達系統及其中的驅動裝置
JP2013108971A (ja) 2011-10-25 2013-06-06 Ricoh Co Ltd 角度検出装置、モータ駆動装置及び画像形成装置
JP6014989B2 (ja) 2011-10-28 2016-10-26 株式会社リコー モータ駆動制御装置及び方法
JP5919730B2 (ja) 2011-10-28 2016-05-18 株式会社リコー モータ駆動制御装置及び方法
JP6163874B2 (ja) 2013-05-23 2017-07-19 株式会社リコー 回転角度検出装置、画像処理装置及び回転角度検出方法
JP2015132593A (ja) 2013-05-29 2015-07-23 株式会社リコー 回転角度検出装置、回転角度検出方法及び画像形成装置
JP2014238331A (ja) 2013-06-07 2014-12-18 株式会社リコー 角度検出装置および角度検出方法
JP2015019563A (ja) 2013-06-10 2015-01-29 株式会社リコー 制御装置、駆動装置および画像形成装置
JP6212993B2 (ja) 2013-07-03 2017-10-18 株式会社リコー 回転角度検出装置、画像処理装置及び回転角度検出方法

Also Published As

Publication number Publication date
US9562792B2 (en) 2017-02-07
US20150311837A1 (en) 2015-10-29
JP2015215344A (ja) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5919730B2 (ja) モータ駆動制御装置及び方法
JP6014989B2 (ja) モータ駆動制御装置及び方法
JP6481254B2 (ja) 位相検出装置、モータ駆動制御装置、及びモータ装置
JP4732106B2 (ja) モータ制御装置及びモータ制御方法
US7088067B2 (en) Motor driving apparatus and motor driving method
JP6554896B2 (ja) 角度検出装置、モータ駆動制御装置、及びモータ装置
JP6398233B2 (ja) 位相検出装置、モータ駆動制御装置、及びモータ装置
US9647586B2 (en) Signal amplifier, phase detector, and motor drive controller
US20150123582A1 (en) Motor driving apparatus and controlling method thereof
JP2006034086A (ja) モータ駆動装置、モータ駆動方法及び電子装置
JP6492917B2 (ja) 角度検出装置、モータ駆動制御装置、及びモータ装置
JP6361428B2 (ja) 電圧レベル検出装置及び方法、モータ駆動制御装置、及びモータ装置
CN108702123B (zh) 逆变器控制装置
JP6340899B2 (ja) 位相検出装置、モータ駆動制御装置およびモータ装置
JP2005204403A (ja) モータ駆動装置
JP2006020440A (ja) モータ駆動回路
JP2007282314A (ja) モータ駆動装置およびモータ駆動方法
JP2017042019A (ja) 回転検知装置、回転駆動装置、モータ装置及び回転検知方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6554896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151