JP6481254B2 - 位相検出装置、モータ駆動制御装置、及びモータ装置 - Google Patents

位相検出装置、モータ駆動制御装置、及びモータ装置 Download PDF

Info

Publication number
JP6481254B2
JP6481254B2 JP2014044226A JP2014044226A JP6481254B2 JP 6481254 B2 JP6481254 B2 JP 6481254B2 JP 2014044226 A JP2014044226 A JP 2014044226A JP 2014044226 A JP2014044226 A JP 2014044226A JP 6481254 B2 JP6481254 B2 JP 6481254B2
Authority
JP
Japan
Prior art keywords
signal
intersection
level
phase
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014044226A
Other languages
English (en)
Other versions
JP2015169528A (ja
Inventor
智彦 釜谷
智彦 釜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014044226A priority Critical patent/JP6481254B2/ja
Priority to US14/628,383 priority patent/US9281936B2/en
Priority to EP15157016.5A priority patent/EP2916108B1/en
Priority to CN201510092362.2A priority patent/CN104901594B/zh
Publication of JP2015169528A publication Critical patent/JP2015169528A/ja
Application granted granted Critical
Publication of JP6481254B2 publication Critical patent/JP6481254B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/22Controlling the speed digitally using a reference oscillator, a speed proportional pulse rate feedback and a digital comparator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、例えばブラシレスDC(直流)モータなどの回転子の位相を検出する位相検出装置、それを備えたモータ駆動制御装置、及びそれを備えたモータ装置に関する。
ブラシレスDCモータの停止制御など、モータの回転位置を制御する場合、回転子の回転角度を検出する必要がある。ロータリーエンコーダ方式では、一般に回転軸にロータリーエンコーダを接続して、回転角度に応じて変化する1/4周期の位相差を有する2相パルス信号を出力し、そのエッジ検出と2相のハイ/ロウ状態から相対的な回転角度を検出する。
特許文献1には、多くの位相検出を行う目的で、モータの回転子の回転位置に応じた信号レベルを有する複数のセンサ信号に基づいて位相情報信号を発生してモータを駆動制御するモータ駆動制御装置が開示されている。特許文献1においては、複数のセンサ信号を所定の複数のしきい値レベルと比較して位相を検出し、検出した位相を示す第1の位相情報信号を出力し、複数のセンサ信号どうしを比較して位相を検出し、検出した位相を示す第2の位相情報信号を出力する。さらに、検出された位相を所定の複数の位相区間に分け、所定の複数の位相区間において複数のセンサ信号の中の一つを選択し、選択されたセンサ信号のレベルが回転子の所定の位相に応じた所定のしきい値レベルに到達したことを検出する構成が開示されている。
しかしながら、従来のロータリーエンコーダ方式の制御においては、一般に外周部に光学窓となるスリットを等間隔に設けた円盤と、円盤のスリットピッチの1/4間隔で配置された2個のフォトインタラプタにより構成されているため、高額の追加部品を必要とする。
特許文献1においては、センサ信号が位相ずれを有する場合に理想的なセンサ信号から位相誤差が発生してしまう。例えばセンサを外付けする場合、モータの製造過程において微小な実装ずれにより位相ずれが生じ、従来のモータ制御技術では、このセンサ信号の位相ずれが直接検出位相の誤差となってしまう問題があった。
本発明の目的は、従来技術と比較して、追加コストを抑えて回転位相の検出精度を高められる位相検出装置を提供することにある。
本発明に係る位相検出装置は、複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する位相検出装置において、
上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
上記複数の交点レベル信号に基づいて、上記しきい値レベルを補正するしきい値レベル補正手段とを備えたことを特徴とする。
本発明に係る位相検出装置によれば、従来技術と比較して、追加コストを抑えて回転位相の検出精度を高めることができる。
本発明の実施形態1に係る位相検出装置1の構成を、モータM1及びセンサ回路2とともに示すブロック図である。 図1の交点位相検出回路10における各センサ信号U1,V1,W1の比較結果の交点位相検出信号UV,VW,WUを示す表である。 図1の信号選択回路20の信号選択条件を示す表である。 図1の位相検出装置1の動作状態を示す各信号のタイミングチャートである。 図1の信号選択回路20からの選択信号Xの電気角と振幅割合との関係を示す表である。 図1のセンサS1〜S3を実装したモータM1の平面図である。 図6のセンサS3による検出位相誤差を示すグラフである。 図7のセンサ信号W1に対して、ゼロクロス点のしきい値を補正した位相検出装置1の動作を示すグラフである。 本発明の実施形態1の変形例に係る位相検出装置1aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 図9の交点レベルバイアス電圧生成回路70と位相検出回路30aの構成を示すブロック図である。 図9の位相検出装置1aの動作を示すグラフである。 本発明の実施形態2に係るモータ装置の構成を示すブロック図である。 図12のモータ駆動部110の構成を示すブロック図である。 図13のモータ駆動部110の動作を示す各信号のタイミングチャートである。 本発明の実施形態2の変形例1に係るモータ装置の構成を示すブロック図である。 本発明の実施形態2の変形例2に係るモータ装置の構成を示すブロック図である。 本発明の実施形態3に係る位相検出装置1bの構成を、モータM1及びセンサ回路2bとともに示すブロック図である。 本発明の変形例に係る位相検出装置1cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。 本発明の変形例に係るしきい値レベル補正回路60の動作を示すグラフである。
実施形態1.
図1は、本発明の実施形態1に係る位相検出装置1の構成を、モータM1及びセンサ回路2とともに示すブロック図である。図1において、位相検出装置1は、交点位相検出回路10と、信号選択回路20と、位相検出回路30と、信号合成回路40と、交点レベル検出回路50と、しきい値レベル補正回路60とを備えて構成される。交点位相検出回路10は、3個の比較器11,12,13を備える。信号選択回路20は、ロジック回路21と、スイッチSW1とを備える。位相検出回路30は、複数N個の比較器31−1〜31−Nと、(N+2)個の可変電圧源32−1〜32−N,33,34とを備える。
図1において、モータM1は例えばブラシレスDCモータで構成され、センサ回路2はモータM1の回転子の周囲に設けられる。センサ回路2はセンサS1〜S3を備え、各センサS1〜S3によって所定の電気角(例えば120°)の間隔を設定したモータM1のU相、V相、W相の回転角をそれぞれ検出する。センサS1〜S3は、例えばホール素子で構成される磁気センサであってモータM1の回転に応じて変化する磁束密度を検出する。センサ回路2はセンサS1〜S3の検出結果のセンサ信号U1,V1,W1を位相検出装置1の交点位相検出回路10、信号選択回路20及び交点レベル検出回路50に出力する。交点位相検出回路10において、比較器11はセンサ信号U1の信号レベルをセンサ信号V1と比較して、センサ信号U1,V1の交点の位相(タイミング)を示す交点位相検出信号UVを発生する。比較器11と同様に、比較器12はセンサ信号V1,W1を比較してセンサ信号V1,W1の交点位相を示す交点位相検出信号VWを生成し、比較器13はセンサ信号W1,U1を比較してセンサ信号W1,U1の交点位相を示す交点位相検出信号WUを発生する。
図2は、図1の交点位相検出回路10における各センサ信号U1,V1,W1の比較結果の交点位相検出信号UV,VW,WUを示す表である。図2に示すとおり、図1の比較器11はセンサ信号U1のレベルがセンサ信号V1のレベル以上のとき、ハイレベル(Hi)を有する交点位相検出信号UVを発生する。一方、比較器11はセンサ信号U1のレベルがセンサ信号V1のレベル未満のとき、ロウレベル(Low)を有する交点位相検出信号UVを発生する。図1の比較器12,13も、比較器11と同様にして、それぞれ図2に従う二値の交点位相検出信号VW,WUを生成する。このように、交点位相検出回路10はセンサ信号U1,V1,W1のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号UV,VW,WUを生成する。交点位相検出回路10の比較器11〜13はそれぞれ交点位相検出信号UV,VW,WUを信号選択回路20、交点レベル検出回路50、及び信号合成回路40に出力する。
図3は、図1の信号選択回路20の信号選択条件を示す表である。図1の信号選択回路20において、センサ信号U1,V1,W1はそれぞれスイッチSW1の端子a,b,cに入力され、ロジック回路21は交点位相検出信号UV,VW,WUに基づいてスイッチSW1の端子a,b,cを切り替え制御する。図3に示す交点位相検出信号UV,VW,WUの入力条件に従って、図1の信号選択回路20はセンサ信号U1,V1,W1のうちのいずれか一つを選択した選択信号Xを位相検出回路30に出力する。
図1の交点レベル検出回路50は交点位相検出信号UVの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号U1又はセンサ信号V1の信号レベルを検出して、センサ信号U1,V1の交点の信号レベルである交点レベル信号Yを生成する。交点レベル検出回路50は交点位相検出信号VWの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号V1又はセンサ信号W1の信号レベルを検出して、センサ信号V1,W1の交点レベルの交点レベル信号Yを生成する。交点レベル検出回路50は交点位相検出信号WUの立ち上がり又は立ち下がりのタイミングにおいて、センサ信号W1又はセンサ信号U1の信号レベルを検出して、センサ信号W1,U1の交点レベルの交点レベル信号Yを生成する。交点レベル検出回路50は、各交点レベルの交点レベル信号Yをしきい値レベル補正回路60に出力する。しきい値レベル補正回路60は、交点レベル信号Yに基づいて位相検出回路30の可変電圧源32−1〜32−Nの各電圧を制御する。
図1の位相検出回路30において、可変電圧源33は選択信号Xの隣接する2つの交点のうちのより高い信号レベルの交点Aの所定電圧BiasAを発生する。可変電圧源34は選択信号Xの隣接する2つの交点のうちのより低い信号レベルの交点Bの所定電圧BiasBを発生する。可変電圧源32−1〜32−Nは、可変電圧源33,34間に直列接続されて挿入され、それぞれ発生する電圧により複数のしきい値レベルを生成する。比較器31−n(n=1,2,…,N)は、選択信号Xを可変電圧源32−nのしきい値レベルと比較して、選択信号Xがしきい値レベル以上のときハイレベルの二値信号を出力する。一方、比較器31−nは選択信号Xが可変電圧源32−nのしきい値レベル未満のとき、ロウレベルの二値信号を出力する。位相検出回路30は、全ての比較器31−1〜31−Nの比較結果の各二値信号を、モータM1が所定の角度に回転したことを知り得る位相情報信号PhCとして信号合成回路40に出力する。このように、位相検出回路30は比較器31−1〜31−Nによって、選択信号Xの信号レベルがモータM1の回転子の所定の位相に対応するしきい値レベルに到達したことを検出する。そうして位相検出回路30は、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号PhCを信号合成回路40に出力する。
次いで、信号合成回路40は、位相情報信号PhCと交点位相検出信号UV,VW,WUとを例えば排他的論理和を取ることによりトグル信号に合成して、合成後の位相情報の位相情報信号Phsynを出力する。
以上のように構成された位相検出装置1において、以下に示すように、センサS1〜S3からのセンサ信号U1,V1,W1に基づいてモータM1の回転子の位相情報を検出することができる。
図4は、図1の位相検出装置1の動作状態を示す各信号のタイミングチャートである。図4において、センサS1,S2,S3からのセンサ信号U1,V1,W1を正弦波(これに代えて、正弦波に実質的に同一な、準じた波形であってもよい。)で表しており、センサS1〜S3のU相、V相、W相は電気角120°間隔で設定されている。
交点位相検出回路10を用いれば、交点位相検出信号UV,VW,WUは、図2に示すようにセンサ信号U1,V1,W1の互いの比較結果として得る。次いで、信号選択回路20は図3の入力条件に従って、各センサ信号U1,V1,W1の交点間の位相区間毎にセンサ信号U1,V1,W1のうちのいずれか一つを選択して選択信号Xを得る。このようにして得られた選択信号Xは連結されており、図4の下段の太線で示すように時間的に連続した信号となる。選択信号Xは理想的には図3のように、
(1)センサ信号W1の正弦波位相150°〜210°の60°区間の期間T1と、
(2)センサ信号V1の正弦波位相−30°〜30°の60°区間の期間T2と、
(3)センサ信号U1の正弦波位相150°〜210°の60°区間の期間T3と、
(4)センサ信号W1の正弦波位相−30°〜30°の60°区間の期間T4と、
(5)センサ信号V1の正弦波位相150°〜210°の60°区間の期間T5と、
(6)センサ信号U1の正弦波位相−30°〜30°の60°区間の期間T6とから構成される。これらの各60°区間は正弦波位相30°〜90°,正弦波位相90°〜150°,正弦波位相210°〜270°及び正弦波位相270°〜310°の60°区間よりも直線性が高い。図4において、選択信号Xに対して付した水平の矢印は前述の所定のしきい値レベルを示し、位相検出装置1は、選択信号Xが所定のしきい値レベルに到達したことを検出して、位相情報信号Phsynの二値を切り替えている。
図5は、図1の信号選択回路20からの選択信号Xの電気角と振幅割合との関係を示す表である。例えば、位相検出回路30が選択信号Xの電気角−30°から30°の間を7.5°毎に8分割にする場合、振幅と電気角の関係は図5のとおりとなる。ただし、選択された各センサ信号U1,V1,W1の振幅中心レベルを0とし(ゼロクロスレベル)、電気角90°の振幅を1として振幅割合を規格化している。位相検出回路30は、図5に従う選択信号Xの正弦波振幅に対する各振幅割合によって、所定の各しきい値レベルを決定する。なお、電気角−30°、30°は交点位相検出信号UV,VW,WUによって検出可能であるため、これに対応するしきい値レベルは必ずしも必要ではない。
以上のように構成された位相検出装置1によれば、センサS1〜S3からのセンサ信号U1,V1,W1に基づいてモータM1の位相を検出することができる。ここで、以下詳述するように、センサ信号S1〜S3はモータM1に対して取付け誤差を有し得るが、位相検出装置1はしきい値レベル補正回路60を用いて取付け誤差を補正してモータM1の位相を検出できる。
図6は、図1のセンサS1〜S3を実装したモータM1の平面図である。図6において、モータM1は8極インナーロータであり、モータM1の1回転において8極の回転子磁極が切り替わる。電気角はN/S極の2極の通過に対して1周し、電気角360°はモータ角90°に相当する。センサS1〜S3は、それぞれ電気角120°間隔で配置されるのが理想的だが、これはモータ角30°に対応し、図6のセンサS3のように理想的な位置から取付け位相誤差αずれて配置され得る。例えば直径20mmのモータM1の回転子外周直下に実装する場合に電気角1°以内の位相誤差を要求するとき、電気角360°の周長20π/4mm=15.7mmより、必要な実装精度は電気角1°に相当する周長43.6μmとなる。
図7は、図6のセンサS3による検出位相誤差を示すグラフである。図7に示すように、センサ信号U1,V1,W1の位相θに対する信号レベルを比較器31−n(n=1,2,…,N)のゼロクロスレベルのしきい値と比較することで、位相情報信号Phsynにおいてゼロクロス点の位相が検出される。一方、交点Aの位相は図1の交点検出信号WUにより検出されて、合成された位相情報の位相情報信号Phsynに反映される。理想的なセンサ信号Wiは、図6の配置により、センサ信号U1を位相差120°だけシフトした信号である。センサS3のセンサ信号W1は、センサS3が取付け位相誤差αを有するために理想的なセンサ信号Wiよりも位相αだけ進んでいる。センサ信号U1,W1の交点Aはセンサ信号U1と理想的なセンサ信号Wiの交点Aiと一致せず、センサ信号V1,W1の交点Bはセンサ信号V1と理想的なセンサ信号Wiの交点Biと一致しない。ここで、センサ信号W1のゼロクロス点においては、センサW1の取付け位相誤差αが直接、位相情報信号Phsynの検出位相誤差αとなっている。一方、交点Aは、センサ信号U1と理想的なセンサ信号Wiの交点Aiと信号レベルが異なるために検出位相誤差が低減されている。本実施形態の場合、理想的な正弦波における交点Aiが電気角30°に位置することから、位相情報信号Phsynは交点Aにおいて検出位相誤差α/2を有する。なお、センサ信号W1’は、取付け位相誤差(−α)を有する場合を示しており、理想的なセンサ信号Wiよりも位相αだけ遅れている。
図8は、図7のセンサ信号W1に対して、ゼロクロス点のしきい値を補正した位相検出装置1の動作を示すグラフである。図8において、各センサ信号U1,W1,V1は図7と同様である。図1のしきい値レベル補正回路60は、交点レベル信号Yに基づいて位相検出回路30の可変電圧源32−1〜32−Nの各電圧を制御することによって、各しきい値レベルを補正する。図8において、しきい値レベル補正回路60は可変電圧源32−nのゼロクロスレベルのしきい値を補正して、センサ信号W1に対してゼロクロス点の補正レベルL0を発生させている。ここで、図8のゼロクロス点の補正レベルL0は、交点A,Bの信号レベルの中間値すなわち中点で算出されている。図1の位相検出回路30がセンサ信号W1をゼロクロス点の補正レベルL0と比較することにより、センサ信号W1のゼロクロス点における検出位相の誤差は、交点Aにおける検出位相誤差と同程度に改善される。例えば取付け位相誤差α=5°だけ進んでいるとき、センサ信号Wi,V1はそれぞれセンサ信号U1を基準として120°と240°の位相差を有するため、交点A検出位相θと交点Bの検出位相θは次式で表される。
[数1]
sinθ=sin(θ−240°+5°) (1)
sin(θ−240°+5°)=sin(θ−120°) (2)
式(1)及び式(2)より、検出位相θ=27.5°,θ=87.5°が求まる一方、理想的な交点A,Bはそれぞれ電気角30°と電気角90°であるため、交点A,Bの検出位相はそれぞれ誤差2.5°だけ進んでいる。次いで、ゼロクロス点の補正レベルL0とゼロクロス点の検出位相θは、次式で与えられる。
[数2]
L0=(sin(θ−240°+5°)+sin(θ−240°+5°))/2
≒−0.0378 (3)
L0=sin(θ−240°+5°) (4)
式(3)及び式(4)より、ゼロクロス点の検出位相θ≒57.17°が求まる一方、理想的なセンサ信号Wiのゼロクロス点は電気角60°である。よって、ゼロクロス点の検出位相は誤差2.83°だけ進んでおり、交点Aにおける検出位相誤差と同程度に改善されていることがわかる。他のしきい値レベルも、ゼロクロス点の補正レベルと同様に補正できる。
以上のように構成された実施形態1に係る位相検出装置1によれば、複数のコイルを有するモータM1の回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号U1,V1,W1に基づいて位相情報信号PhC,Phsynを発生して出力する。位相検出装置1は、交点位相検出回路10と、交点レベル検出回路50と、信号選択回路20と、位相検出回路30と、しきい値レベル補正回路60とを備える。交点位相検出回路10は、複数のセンサ信号U1,V1,W1のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号UV,VW,WUを生成して出力する。交点レベル検出回路50は、上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号Yを生成して出力する。信号選択回路20は、上記複数のセンサ信号U1,V1,W1の中から1つの選択信号Xを選択する。位相検出回路30は、信号選択回路20により選択された選択信号Xの信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号PhCを出力する。しきい値レベル補正回路60は、交点レベル信号Yに基づいて、上記しきい値レベルを補正する。
実施形態1に係る位相検出装置1によると、従来技術と比較して、追加コストを抑えて回転位相の検出精度を高めることができる。センサS1〜S3からのセンサ信号U1,V1,W1における直線性の良い区間において、位相検出回路30によって信号レベルを複数のしきい値レベルと比較することにより、モータM1の回転子の位相情報を検出することができる。位相検出装置1によると、センサ信号S1〜S3がモータM1に対して取付け誤差を有していても、しきい値レベル補正回路60を用いて取付け誤差を補正してモータM1の位相を検出できる。
モータM1の回転子を検出する磁気センサのセンサS1〜S3は、一般的にホール素子が使用され、回転子が回転することで発生する磁束密度は正弦波である場合が多い。すなわち、磁気センサからの信号も正弦波である場合が多い。しかし、回転子が回転する際に発生し固定されている磁気センサにて受ける磁束密度が必ずしも図8に示す綺麗な正弦波ではなく歪んだ正弦波である場合がある。また、センシングする磁束密度が磁気センサの許容値を超えるために起こる磁気飽和により、磁気センサ出力が飽和し台形波に近い出力となる場合もある。これに対して、位相検出装置1は各センサ信号の互いに隣接する2つの交点の間の波形が、他の交点間の位相区間よりも傾きの高い部分(例えば正弦波位相±30°区間)のように直線に近い部分において、すなわち実質的に直線の部分において位相を検出できる。例えば、位相検出装置1を、正弦波又はそれに近い波形の信号の電気角−60°〜60°,120°〜240°区間内に用いることで、複数の位相検出を高精度で行うことが可能である。さらに、上記波形の信号に対して、本実施形態に係るしきい値レベル補正回路60によるしきい値レベルの補正を行うことにより、位相検出の精度を高められる。
図2において、選択信号Xは各センサ信号U1,V1,W1の正弦波の−30°から30°の区間又は150°から210°区間となっており、位相区間が切り換わり選択されたセンサ信号が変化しても連続した信号となっている。さらに、位相検出回路30からの位相情報信号PhCは各比較器31−1〜31−Nからの隣り合う比較結果の二値信号が順番に切り換わるため、最終的な合成信号はグレイコードとなすことが可能となっている。また、図5では電気角7.5°毎の位相情報を得る手段を示したが、一例であって本発明はこれに限らず、例えば電気角6°毎の振幅割合に区切って位相情報を得てもよいし、電気角3°毎に区切って電気角7.5°毎の2.5倍の位相情報を得ることもできる。
実施形態1の変形例.
図9は、本発明の実施形態1の変形例に係る位相検出装置1aの構成を、モータM1及びセンサ回路2とともに示すブロック図である。図10は、図9の交点レベルバイアス電圧生成回路70と位相検出回路30aの構成を示すブロック図である。実施形態1の変形例に係る位相検出装置1aは、実施形態1に係る位相検出装置1と比較して、可変電圧源33,34、位相検出回路30に代えて交点レベルバイアス電圧生成回路70、位相検出回路30aを備え、更に微調整設定回路61を備えたことを特徴とする。この相違点について、以下説明する。
図9において、交点レベルバイアス電圧生成回路70は交点レベル信号Yに基づいて、交点A,Bの信号レベルの電圧BiasA,BiasBを生成して、上記しきい値レベルを発生するために必要な2つの信号レベルとして位相検出回路30aに供給する。微調整設定回路61は、センサ信号U1,V1,W1の高調波成分の観測情報などの外部情報に基づいて、しきい値レベル補正回路60による演算の演算係数をしきい値レベル補正回路60に通知して、しきい値レベルを微調整する。
図10において、交点レベル検出回路50は、ロジック回路54とスイッチSW2を有する信号選択回路51と、A/D変換器52と、ロジック回路53とを備える。交点レベルバイアス電圧生成回路70は、D/A変換器71,72を備える。位相検出回路30aは、位相検出回路30と比較して、可変電圧源32−1〜32−N,33,34に代えて可変抵抗35−1〜35−(N+1)を備える。
図10の信号選択回路51において、図9のセンサ信号U1,V1,W1はそれぞれスイッチSW2の端子a,b,cに入力され、ロジック回路54は図9の交点位相検出信号UV,VW,WUに基づいてスイッチSW2の端子a,b,cを切り替え制御する。信号選択回路51はセンサ信号U1,V1,W1から選択信号Xを選択して、選択信号Xの各交点レベルのアナログ信号をA/D変換器52に出力する。A/D変換器52は信号選択回路51からのアナログ信号をデジタル信号に変換してロジック回路53に出力し、ロジック回路53は各交点レベルに対応するデジタル信号を格納して、しきい値レベル補正回路60に出力する。ロジック回路53は、格納したデジタル信号の中で選択信号Xの隣接する2つの交点のうちのより高い信号レベルの交点Aのデジタル信号をD/A変換器71に出力し、より低い信号レベルの交点Bのデジタル信号をD/A変換器72に出力する。
交点レベルバイアス電圧生成回路70において、D/A変換器71はロジック回路53からのデジタル信号をアナログ信号に変換して、電圧BiasAとして位相検出回路30aに出力する。D/A変換器72はロジック回路53からの交点Bのデジタル信号をアナログ信号に変換して、電圧BiasBとして位相検出回路30aに出力する。位相検出回路30aにおいて、可変抵抗35−1〜35−(N+1)は互いに直列に接続され、可変抵抗35−1と35−(N+1)にそれぞれ印加される電圧BiasA,BiasB間をそれぞれ抵抗分圧する。可変抵抗35−1〜35−(N+1)の各抵抗値は、図1の可変電圧源32−1〜32−Nと同様に、それぞれしきい値レベル補正回路60によって設定される。比較器31−1〜31−Nの各反転入力端子はそれぞれ可変抵抗35−1〜35−Nに接続され、各可変抵抗35−1〜35−Nから図1の可変電圧源32−1〜32−Nと同様にしきい値レベルの電圧を印加される。
図11は、図9の位相検出装置1aの動作を示すグラフである。図9の実施形態1の変形例に係るしきい値レベル補正回路60は、図8の動作と比較して、以下詳述するように交点Aの補正レベルLAと、それに基づくゼロクロス点の補正レベルL0aを位相検出回路30aに発生させる。
図11において、図10のしきい値レベル補正回路60は可変抵抗35−(N+1)の抵抗値を設定して交点Aの補正レベルLAを位相検出回路30に生成させる。位相検出回路30は、選択信号Xを補正レベルLAと比較することにより、交点Aに対応する位相を検出する。交点Aの補正レベルLAは、選択信号Xの線形近似において正確に理想的な交点Aiの位相を検出するように、交点Aiの信号レベルから、交点Aiと交点Aの信号レベルの差の2倍を減算して算出される。一方、ゼロクロス点の補正レベルL0aは、理想的なゼロクロスレベルから、交点Aiと交点Aの信号レベルの差と、交点Biと交点Bの信号レベルの差とを減算して算出される。図11において、理想的な交点Ai、ゼロクロス点、交点Biの位相30°,60°,90°に対する検出位相誤差Δθ,Δθを用いて、センサ信号W1の検出位相(30°−Δθ),(60°−Δθ)と各補正レベルLA,L0aは、次式で与えられる。
[数3]
LA=sin(30°−Δθ−240°+α)
=sin(−210°)−2(sin(−210°)−sin(−210°+α)) (5)
[数4]
L0a=sin(60°−Δθ−240°+α)
=0−(sin(−210°)−sin(−210°+α))−(sin(−150°)−sin(−150°+α)) (6)
例えば、図8と同様に取付け位相誤差α=5°のとき、式(5)及び式(6)より各補正レベルLA≒0.424,L0a≒−0.076が算出される。このとき、検出位相誤差Δθ≒0.09°,Δθ≒0.64°であり、各補正レベルLA,L0aによって検出精度1°未満にまで位相検出の精度が向上している。しきい値レベル補正回路60は理想的なセンサ信号Wiと第1の信号であるセンサ信号U1との間の第1の交点Aiの信号レベルと、第2の信号であるセンサ信号W1と第1の信号U1との間の第2の交点Aの信号レベルとに基づいてしきい値レベルを補正している。理想的なセンサ信号Wiは、しきい値レベル補正回路60は、第1の信号であるセンサ信号U1から位相差120°だけシフトされた信号である。しきい値レベル補正回路60は、式(5)において第1の交点Aiと第2の交点Aとの信号レベルの差だけ、第2の交点Aの信号レベルをシフトさせることにより当該第2の交点Aの補正レベルLAを演算している。しきい値レベル補正回路60は当該第2の交点Aの補正レベルLAを上記しきい値レベルとして設定している。
以上のように構成された実施形態1の変形例に係る位相検出装置1aによれば、交点レベル信号Yに基づく交点レベルバイアス電圧生成回路70が電圧BiasA,BiasBを生成することで、簡単にバイアス電圧を位相検出回路30に供給できる。また、信号選択回路51と、A/D変換器52と、ロジック回路53により、交点レベル検出回路50において簡単に交点レベルを検出できる。D/A変換器71,72によって構成される交点レベルバイアス電圧生成回路70により、交点レベルを復元したバイアス電圧を位相検出回路30に供給する回路を簡単に構成できる。可変抵抗35−1〜35−(N+1)によって電圧BiasA,BiasBを分圧して複数のしきい値レベルを生成し、しきい値レベル補正回路60により可変抵抗35−1〜35−(N+1)の各抵抗値を設定する構成により、しきい値レベルを簡単に補正できる。
実施形態2.
図12は、本発明の実施形態2に係るモータ装置の構成を示すブロック図である。図12において、実施形態2に係るモータ装置は、モータM1と、センサ回路2と、モータ駆動制御装置3とを備えて構成される。モータ駆動制御装置3は、実施形態1に係る位相検出装置1と、モータコントローラ100と、モータ駆動部110とを備えて構成される。モータコントローラ100は、位相情報信号Phsynに基づいて、PWM信号を発生してモータ駆動部110に出力する。モータ駆動部110は、モータコントローラ100のPWM信号に基づいて、駆動電流を複数のモータコイルに選択的に流してモータM1の回転子を回転駆動させる。
図13は、図12のモータ駆動部110の構成を示すブロック図である。図13において、モータ駆動部110は、プリドライバ80と、メインドライバ90とを備えて構成される。例えばブラシレスDCモータであるモータM1を駆動するための3相コイルを、U相、V相、W相とし、それぞれのコイルの一端はモータM1内でY結線されている。ここで、メインドライバ90は、それぞれのコイルの他端には電源側に接続されたハイサイドのスイッチ素子91,93,95と、接地側に接続されたロウサイドのスイッチ素子92,94,96とを備えて構成される。さらに、各相のスイッチ素子91〜96を駆動するためのスイッチの制御信号UH,UL,VH,VL,WH,WLが前段のプリドライバ80より出力される。
図13において、プリドライバ80は、駆動相コントローラ81と3個の駆動増幅器82,83,84とを備えて構成される。駆動相コントローラ81は各センサ信号U1,V1,W1に基づいて、モータコントローラ100からのPWM信号を駆動増幅器82,83,84のいずれか1つに選択的に順次出力する。駆動増幅器82は、駆動相コントローラ81からの出力に基づいて、一対の制御信号UH,ULを生成して、制御信号UHによりハイサイドのスイッチ素子91をオン/オフ制御し、制御信号ULによりロウサイドのスイッチ素子92をオン/オフ制御する。駆動増幅器83は、駆動相コントローラ81からの出力に基づいて、一対の制御信号VH,VLを生成して、制御信号VHによりハイサイドのスイッチ素子93をオン/オフ制御し、制御信号VLによりロウサイドのスイッチ素子94をオン/オフ制御する。駆動増幅器84は、駆動相コントローラ81からの出力に基づいて、一対の制御信号WH,WLを生成して、制御信号WHによりハイサイドのスイッチ素子95をオン/オフ制御し、制御信号WLによりロウサイドのスイッチ素子96をオン/オフ制御する。
図14は、図13のモータ駆動部110の動作を示す各信号のタイミングチャートである。図14では、各センサ信号U1,V1,W1の信号論理における各フェーズの切り換え例を示しており、ブラシレスDCモータを駆動する方法として一般的な駆動方法である。図12のモータコントローラ100は回転しているモータM1のできるだけ正確な位相情報に基づいて、前述のPWM信号の然るべきデューティサイクルを制御し、PWM信号をモータ駆動部110に出力する。図13の駆動相コントローラ81は、各センサ信号U1,V1,W1に基づいて、各センサ信号U1,V1,W1の信号レベルがそれぞれゼロクロスレベル以上であるか否かを示す転流信号HU,HV,HWを生成する。駆動相コントローラ81は転流信号HU,HV,HWに基づいて、駆動増幅器82,83,84のうちの1つをPWM制御し、他の2つの駆動増幅器のうちの1つの一対の制御信号をロウレベルにする。駆動相コントローラ81は、残る1つの駆動増幅器のハイサイドのスイッチ素子の制御信号をロウレベルにするとともに、ロウサイドのスイッチ素子の制御信号をハイレベルにする。これにより、駆動相コントローラ81は、PWMデューティサイクルで同期整流する相と、ロウサイドのスイッチ素子のみをオンする相と、ハイサイドのスイッチ素子及びロウサイドのスイッチ素子を共にオフする相のいずれかの状態に振り分ける。
以上のように構成された実施形態2に係るモータ装置によれば、センサS1,S2,S3を、例えばブラシレスDCモータで構成されるモータM1の駆動に必要なコイル電流の転流用のセンサと共通化して使用することで、追加のセンサを省略できる。すなわち、モータ駆動制御装置3において従来のモータ装置が有するセンサによるコイル電流の転流信号を用いることで、位相検出装置1による多数の位相情報の取得を実現できる。
実施形態2の変形例1.
図15は、本発明の実施形態2の変形例1に係るモータ装置の構成を示すブロック図である。実施形態2の変形例1に係るモータ装置は、実施形態2に係るモータ装置と比較して、モータ駆動制御装置3に代えて、モータ駆動制御装置3aを備えることを特徴とする。実施形態2の変形例1に係るモータ駆動制御装置3aは、実施形態2に係るモータ駆動制御装置3と比較して、モータ駆動部110がセンサ信号U1,V1,W1に代えて、位相検出回路30からの位相情報信号PhBに基づいて動作することを特徴とする。位相情報信号PhBは、センサ信号U1,V1,W1をそれぞれゼロクロス点の補正レベルL0と比較した結果の各二値信号であり、モータ駆動部110に入力される。モータ駆動部110は、図14と同様の動作において、位相情報信号PhBを転流信号HU,HV,HWに代えて用いて、駆動増幅器82,83,84を制御する。
以上のように構成された実施形態2の変形例1に係るモータ駆動制御装置3aによれば、センサ信号U1,V1,W1をゼロクロス点の補正レベルL0と比較した結果の位相情報信号PhBを、モータ駆動部110においてコイル電流の転流信号として再利用する。これにより、コイル電流の転流タイミングを元のゼロクロス点よりも理想的な電気角の設定に近づけられ、位相誤差の拡大による微小な速度ムラを抑制することができる。位相検出回路30からの位相情報信号PhBを用いることにより、センサ信号U1,V1,W1からコイル電流の転流信号HU,HV,HWを生成するための回路を省略でき、回路面積を削減できる。
実施形態2の変形例2.
図16は、本発明の実施形態2の変形例2に係るモータ装置の構成を示すブロック図である。実施形態2の変形例2に係るモータ装置は、実施形態2に係るモータ装置の位相検出装置1とモータ駆動部110を半導体集積回路(以下、半導体LSIという。)5として集積化したことを特徴としている。モータ駆動部110は一般に元々半導体LSIにて集積化されており、そこに位相検出回路30をオンチップすることで、従来装置からの規模増大はほぼなく、且つ、光学エンコーダがなくなる分装置の小型化が可能となる。
なお、半導体LSIとして集積化する例としては、図16の半導体LSI5に限られず、例えば交点位相検出回路10と位相検出回路30のみを集積化してもよいし、図16の構成に加えてモータコントローラ100も集積化してもよい。図16のモータ駆動部110は駆動相コイルを駆動して発熱源となり得るため、モータ駆動部110のみ切り離して集積化してもよい。
実施形態3.
図17は、本発明の実施形態3に係る位相検出装置1bの構成を、モータM1及びセンサ回路2bとともに示すブロック図である。実施形態3に係る位相検出装置1bは、実施形態1に係る位相検出装置1と比較して、交点レベル検出回路50に代えて交点レベル検出回路50bを備え、信号調整回路120をさらに備えたことを特徴とする。この相違点について、以下説明する。
図17において、信号調整回路120は、増幅器121,122,123を備えて構成される。センサ回路2bのセンサS1,S2,S3は、それぞれU相、V相、W相の磁束密度の検出信号Ub,Vb,Wbと、その逆相信号Uc,Vc,Wcを発生して信号調整回路120に入力する。信号調整回路120の増幅器121,122,123は、それぞれ非反転点入力端子に入力される信号Ub,Vb,Wbと、反転入力端子に入力される信号Uc,Vc,Wcとを差動増幅して、差動増幅結果のセンサ信号U1,V1,W1を生成する。センサ信号U1,V1,W1は、図1と同様に交点位相検出回路10、信号選択回路20及び交点レベル検出回路50に入力される。
交点レベル検出回路50bは、実施形態1と同様に、各交点検出信号UV,VW,WUのタイミングによってセンサ信号U1,V1,W1のうちの2つの交点レベルをそれぞれ検出して、検出した交点レベル信号Yをしきい値レベル補正回路60に出力する。交点レベル検出回路50bはさらに、センサ信号U1,V1,W1に基づいて、各センサ信号U1,V1,W1の信号レベルのピーク値を検出して、検出した3つのピーク値信号Ypを信号調整回路120に出力する。信号調整回路120は各センサ信号U1,V1,W1のピーク値信号Ypに基づいて、各センサ信号U1,V1,W1の信号振幅が等しくなるように、各増幅器121〜123のゲインを調整する。
以上のように構成された実施形態3に係る位相検出装置1bによれば、信号調整回路120によってセンサS1,S2,S3からの検出信号を調整したセンサ信号U1,V1,W1を生成することにより、センサ信号のばらつきを抑制できる。センサS1〜S3は、個々の素子ばらつき、1回転中の偏心、磁極ばらつきなどによって出力信号の振幅がばらつき得、ばらついたままの信号では交点検出の誤差が大きくなり得るが、信号調整回路120によりこの誤差を低減できる。さらに、交点レベル検出回路50によって各センサ信号U1,V1,W1の振幅を検出し、信号調整回路120を制御する構成により、回路規模の拡大を抑制できる。
変形例.
図18は、本発明の変形例に係る位相検出装置1cの構成を、モータM1及びセンサ回路2とともに示すブロック図である。実施形態1に係る位相検出装置1は、信号合成回路40を備えて位相情報信号Phsynを出力したが、本発明はこれに限らず、例えば実施形態1の変形例2に係る位相検出装置1cのように信号合成回路40を備えなくてもよい。位相検出装置1cは、位相情報信号PhCを位相情報として直接外部に出力する。
図19は、本発明の変形例におけるしきい値レベル補正回路60の動作を示すグラフである。本発明の各実施形態に係る位相検出装置1,1a,1b,1cは、3相のセンサ信号U1,V1,W1に対してモータM1の回転位置を検出したが、本発明はこれに限らず、複数相のセンサ信号に対してモータM1の回転位置を検出できる。例えば図19(a)のように、電気角90°の間隔で設定された2つのセンサ信号U1,V1において、図19(b)に示すように各センサ信号の逆相信号を生成して重ね合わせる。図19(b)に示すように、各センサ信号の交点に基づいて選択信号Xを取ることで、実施形態1と同様に所定のしきい値レベルで位相を検出することができる。このときのしきい値レベルも、各交点レベルと電気角90°間隔の理想的な交点レベルに基づいて、しきい値レベル補正回路60によって補正できる。
図6〜図8、及び図11においては、センサS3のみに取付け位相誤差がある場合を例にとって説明したが、本発明はこれに限らず、センサS2も取付け位相誤差を有してもよい。センサS2,S3がそれぞれ取付け位相誤差を有するとき、センサS1を基準に所定の電気角だけ離れた理想的なセンサ信号を設定することで、図8又は図11と同様に各しきい値の補正レベルが算出できる。複数相のセンサ信号に対しても同様である。
実施形態1に係る位相検出装置1は、可変電圧源33,34によって、交点レベルの電圧BiasA,BiasBを発生したが、本発明はこれに限らず、例えば位相検出装置1の外部から交点レベルの電圧BiasA,BiasBを供給してもよい。また、センサ回路2はセンサS1〜S3の検出結果のセンサ信号U1,V1,W1を出力したが、本発明はこれに限らない。位相検出装置1は、センサ信号U1,V1,W1に代えて、複数のセンサ信号U1,V1,W1に対して所定の信号処理を行った後の複数のセンサ処理信号に対して、上述の動作を行ってもよい。他の実施形態においても同様である。
実施形態1の変形例に係る位相検出装置1aは、微調整設定回路61を有したが、本発明はこれに限らず、微調整設定回路61を有さなくてもよい。位相検出装置1aの外部から補正レベルを微調整する情報をしきい値レベル補正回路60に通知してもよい。
位相検出回路30は図8及び図11のように補正レベルを算出したが、本発明はこれに限らず、他の演算で算出してもよい。例えば、交点Aの補正レベルLAは、交点Aの信号レベルの2倍から交点Aiの信号レベルを減算して算出してもよいし、交点Bの補正レベルも同様である。ゼロクロス点の補正レベルは、図8と同様に交点Aの補正レベルと交点Bの補正レベルの中間値に設定してもよい。
図16の半導体LSI5は、位相検出装置1を備えるモータ駆動制御装置を集積化して構成されたが、本発明はこれに限らない。本発明に係る半導体集積回路装置は、位相検出装置1,1a,1b,1cを備えて構成されてもよい。
実施形態のまとめ.
本発明の第1の態様に係る位相検出装置は、
複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する位相検出装置において、
上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
上記複数の交点レベル信号に基づいて、上記しきい値レベルを補正するしきい値レベル補正手段とを備えたことを特徴とする。
本発明の第2の態様に係る位相検出装置は、第1の態様に係る位相検出装置において、
上記しきい値レベル補正手段は、上記各交点のうちの互いに隣接する2つの交点の信号レベルの中点に基づいて、上記しきい値レベルを補正することを特徴とする。
本発明の第3の態様に係る位相検出装置は、第1の態様に係る位相検出装置において、
上記しきい値レベル補正手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第1の信号から所定の位相差だけシフトされた信号と当該第1の信号との間の第1の交点の信号レベルと、
上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第2の信号と上記第1の信号との間の第2の交点の信号レベルとに基づいて、上記しきい値レベルを補正することを特徴とする。
本発明の第4の態様に係る位相検出装置は、第3の態様に係る位相検出装置において、
上記しきい値レベル補正手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第1の信号から所定の位相差だけシフトされた信号と当該第1の信号との間の第1の交点の信号レベルと、
上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第2の信号と上記第1の信号との間の第2の交点の信号レベルとの間の差だけ、上記第2の交点の信号レベルをシフトさせることにより当該第2の交点の補正レベルを演算し、
当該第2の交点の補正レベルを上記しきい値レベルとして設定することにより上記しきい値レベルを補正することを特徴とする。
本発明の第5の態様に係る位相検出装置は、第1乃至第4の態様に係る位相検出装置において、
上記複数のセンサ信号又は当該複数のセンサ信号の波形は、上記各交点のうちの互いに隣接する2つの交点の間の波形が実質的に直線である波形であることを特徴とする。
本発明の第6の態様に係る位相検出装置は、第1乃至第5の態様に係る位相検出装置において、
上記複数の交点レベル信号に基づいて、上記各交点のうちの互いに隣接する交点の交点レベルを生成して、
上記しきい値レベルを発生するために必要な2つの信号レベルとして上記位相検出手段に供給する交点レベルバイアス生成手段をさらに備えたことを特徴とする。
本発明の第7の態様に係る位相検出装置は、第1乃至第6の態様に係る位相検出装置において、
上記信号選択手段は、上記各交点のうちの互いに隣接する交点間の位相区間毎に、上記複数のセンサ信号又は上記複数のセンサ処理信号の中からそれぞれ1つの選択信号を選択して連結することにより選択信号を生成することを特徴とする。
本発明の第8の態様に係る位相検出装置は、第1乃至第7の態様に係る位相検出装置において、
上記複数のセンサ信号又は上記複数のセンサ処理信号の各信号振幅が互いにそれぞれ等しくなるように、上記複数のセンサ信号又は上記複数のセンサ処理信号を調整して出力する信号調整手段をさらに備えたことを特徴とする。
本発明の第9の態様に係るモータ駆動制御装置は、第1乃至第8の態様に係る位相検出装置を備え、上記位相検出装置からの位相情報信号に基づいてモータを駆動制御するモータ駆動制御装置であって、
上記複数のセンサ信号、又は上記位相情報信号は、上記モータのコイル電流を切り換えるために用いられることを特徴とする。
本発明の第10の態様に係るモータ装置は、第9の態様に係るモータ駆動制御装置と、
上記モータ駆動制御装置によって駆動制御されるモータとを備えることを特徴とする。
1,1a,1b,1c…位相検出装置、
2,2b…センサ回路、
3,3a…モータ駆動制御装置、
5…半導体集積回路(半導体LSI)、
10…交点位相検出回路、
11,12,13…比較器、
20…信号選択回路、
21…ロジック回路、
30,30a…位相検出回路、
31−1〜31−N…比較器、
32−1〜32−N,33,34…可変電圧源、
35−1〜35−(N+1)…可変抵抗、
40…信号合成回路、
50,50b…交点レベル検出回路、
51…信号選択回路、
52…A/D変換器、
53,54…ロジック回路、
60…しきい値レベル補正回路、
61…微調整設定回路、
70…交点レベルバイアス電圧生成回路、
71,72…D/A変換器
80…プリドライバ、
81…駆動相コントローラ、
82〜84…駆動増幅器、
90…メインドライバ、
91〜96…スイッチ素子、
100…モータコントローラ、
110…モータ駆動部、
120…信号調整回路、
121,122,123…増幅器、
M1…モータ、
S1,S2,S3…センサ、
SW1,SW2…スイッチ。
特開2013−099023号公報

Claims (9)

  1. 複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する位相検出装置において、
    上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
    上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
    上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
    上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
    上記複数の交点レベル信号に基づいて、上記しきい値レベルを補正するしきい値レベル補正手段とを備え、
    上記しきい値レベル補正手段は、上記各交点のうちの互いに隣接する2つの交点の信号レベルの中点に基づいて、上記しきい値レベルを補正することを特徴とする位相検出装置。
  2. 複数のコイルを有するモータの回転子の回転位置に対応する信号レベルをそれぞれ有する複数のセンサ信号に基づいて位相情報信号を発生して出力する位相検出装置において、
    上記複数のセンサ信号又は当該複数のセンサ信号に対して所定の信号処理を行った後の複数のセンサ処理信号のうちの各1対の信号を互いに比較して、上記各1対の信号の交点の位相をそれぞれ示す交点位相検出信号を生成して出力する交点位相検出手段と、
    上記各交点の信号レベルである各交点レベルを検出して、上記検出した各交点レベルを示す複数の交点レベル信号を生成して出力する交点レベル検出手段と、
    上記複数のセンサ信号又は上記複数のセンサ処理信号の中から1つの選択信号を選択する信号選択手段と、
    上記信号選択手段により選択された選択信号の信号レベルが上記回転子の所定の位相に対応するしきい値レベルに到達したことを検出して、当該到達を検出したしきい値レベルに対応する位相を示す位相情報信号を出力する位相検出手段と、
    上記複数の交点レベル信号に基づいて、上記しきい値レベルを補正するしきい値レベル補正手段とを備え、
    上記しきい値レベル補正手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第1の信号から所定の位相差だけシフトされた信号と当該第1の信号との間の第1の交点の信号レベルと、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第2の信号と上記第1の信号との間の第2の交点の信号レベルとに基づいて、上記しきい値レベルを補正することを特徴とする位相検出装置。
  3. 上記しきい値レベル補正手段は、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第1の信号から所定の位相差だけシフトされた信号と当該第1の信号との間の第1の交点の信号レベルと、上記複数のセンサ信号又は上記複数のセンサ処理信号のうちの第2の信号と上記第1の信号との間の第2の交点の信号レベルとの間の差だけ、上記第2の交点の信号レベルをシフトさせることにより当該第2の交点の補正レベルを演算し、当該第2の交点の補正レベルを上記しきい値レベルとして設定することにより上記しきい値レベルを補正することを特徴とする請求項2記載の位相検出装置。
  4. 上記複数のセンサ信号又は当該複数のセンサ信号の波形は、上記各交点のうちの互いに隣接する2つの交点の間の波形が実質的に直線である波形であることを特徴とする請求項1〜3のうちのいずれか1つに記載の位相検出装置。
  5. 上記複数の交点レベル信号に基づいて、上記各交点のうちの互いに隣接する交点の交点レベルを生成して、上記しきい値レベルを発生するために必要な2つの信号レベルとして上記位相検出手段に供給する交点レベルバイアス生成手段をさらに備えたことを特徴とする請求項1〜4のうちのいずれか1つに記載の位相検出装置。
  6. 上記信号選択手段は、上記各交点のうちの互いに隣接する交点間の位相区間毎に、上記複数のセンサ信号又は上記複数のセンサ処理信号の中からそれぞれ1つの選択信号を選択して連結することにより選択信号を生成することを特徴とする請求項1〜5のうちのいずれか1つに記載の位相検出装置。
  7. 上記複数のセンサ信号又は上記複数のセンサ処理信号の各信号振幅が互いにそれぞれ等しくなるように、上記複数のセンサ信号又は上記複数のセンサ処理信号を調整して出力する信号調整手段をさらに備えたことを特徴とする請求項1〜6のうちのいずれか1つに記載の位相検出装置。
  8. 請求項1〜7のうちのいずれか1つに記載の位相検出装置を備え、上記位相検出装置からの位相情報信号に基づいてモータを駆動制御するモータ駆動制御装置であって、
    上記複数のセンサ信号、又は上記位相情報信号は、上記モータのコイル電流を切り換えるために用いられることを特徴とするモータ駆動制御装置。
  9. 請求項8に記載のモータ駆動制御装置と、
    上記モータ駆動制御装置によって駆動制御されるモータとを備えることを特徴とするモータ装置。
JP2014044226A 2014-03-06 2014-03-06 位相検出装置、モータ駆動制御装置、及びモータ装置 Active JP6481254B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014044226A JP6481254B2 (ja) 2014-03-06 2014-03-06 位相検出装置、モータ駆動制御装置、及びモータ装置
US14/628,383 US9281936B2 (en) 2014-03-06 2015-02-23 Phase detector, motor drive controller, motor device, and method of detecting phase of rotor
EP15157016.5A EP2916108B1 (en) 2014-03-06 2015-02-27 Phase detector, motor drive controller, motor device, and method of detecting phase of rotor
CN201510092362.2A CN104901594B (zh) 2014-03-06 2015-03-02 相位检出装置及其方法,电机驱动控制装置,电机装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014044226A JP6481254B2 (ja) 2014-03-06 2014-03-06 位相検出装置、モータ駆動制御装置、及びモータ装置

Publications (2)

Publication Number Publication Date
JP2015169528A JP2015169528A (ja) 2015-09-28
JP6481254B2 true JP6481254B2 (ja) 2019-03-13

Family

ID=52726932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014044226A Active JP6481254B2 (ja) 2014-03-06 2014-03-06 位相検出装置、モータ駆動制御装置、及びモータ装置

Country Status (4)

Country Link
US (1) US9281936B2 (ja)
EP (1) EP2916108B1 (ja)
JP (1) JP6481254B2 (ja)
CN (1) CN104901594B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823092B2 (en) * 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
JP6569210B2 (ja) 2014-11-21 2019-09-04 株式会社リコー 位相検出装置及び方法、モータ駆動制御装置、モータ装置及びシート搬送装置
JP6627574B2 (ja) 2016-02-29 2020-01-08 株式会社リコー 電圧レベル検出装置、モータ駆動装置、モータ駆動システム、及び画像形成装置
JP6798306B2 (ja) * 2016-03-01 2020-12-09 株式会社リコー 位相調整装置、位相検出装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
JP2018021884A (ja) * 2016-08-05 2018-02-08 株式会社リコー 位相検出装置、モータシステム、画像形成装置、搬送装置、及びセンサレベル取得方法。
CN106921320B (zh) * 2017-04-23 2019-04-02 中国科学院国家天文台南京天文光学技术研究所 一种拼接弧线电机转子电零点及电角度检测方法
JP6881875B2 (ja) * 2017-05-11 2021-06-02 太陽誘電株式会社 レゾルバ信号の演算処理装置
US10788335B2 (en) * 2017-07-26 2020-09-29 Rolls-Royce Corporation Position sensing system
US11451172B2 (en) 2017-11-09 2022-09-20 Pierburg Pump Technology Gmbh Electronically commutated electric motor and method for controlling the same
EP3743987B1 (en) 2018-01-25 2024-06-05 Pierburg Pump Technology GmbH Electronically commutated electric motor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
CN115347822A (zh) * 2021-04-27 2022-11-15 美蓓亚三美株式会社 马达驱动控制装置、马达单元以及马达驱动控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057753A (en) * 1990-06-29 1991-10-15 Seagate Technology, Inc. Phase commutation circuit for brushless DC motors using a spike insensitive back EMF detection method
JP3086700B2 (ja) * 1990-11-01 2000-09-11 愛知電機株式会社 ブラシレスモータの回転子位置検出回路
US5616994A (en) * 1994-01-12 1997-04-01 Mitsubishi Denki Kabushiki Kaisha Drive circuit for brushless motor
JP3673964B2 (ja) * 2000-03-29 2005-07-20 株式会社ルネサステクノロジ ブラシレスモータ駆動制御用半導体集積回路およびブラシレスモータ駆動制御装置
JP4292571B2 (ja) * 2003-03-31 2009-07-08 株式会社デンソー 磁気センサの調整方法及び磁気センサの調整装置
JP4386815B2 (ja) * 2004-10-04 2009-12-16 パナソニック株式会社 モータの駆動装置および駆動方法
JP4708992B2 (ja) 2005-12-12 2011-06-22 日立オートモティブシステムズ株式会社 位置検出装置及びこれを用いた同期モータ駆動装置
WO2007148461A1 (ja) 2006-06-19 2007-12-27 Panasonic Corporation エンコーダ信号の位相補正回路
JP2008029177A (ja) * 2006-07-25 2008-02-07 Ricoh Co Ltd 半導体装置
JP5155322B2 (ja) * 2006-09-26 2013-03-06 アギア システムズ インコーポレーテッド 直流モータを制御するシステムおよび方法
JP4895832B2 (ja) 2007-01-18 2012-03-14 日立オートモティブシステムズ株式会社 位置検出装置,これを用いた同期電動機,4輪駆動用車両駆動装置及びハイブリッド自動車用車両駆動装置
US7956561B2 (en) * 2007-05-28 2011-06-07 Denso Corporation Rotor position sensing system of brushless motor
JP5150650B2 (ja) 2008-01-28 2013-02-20 北斗制御株式会社 モータ駆動装置
JP2012093215A (ja) * 2010-10-27 2012-05-17 Omron Automotive Electronics Co Ltd 回転角度検出装置
US9000697B2 (en) * 2011-08-30 2015-04-07 Texas Instruments Incorporated System and method for driving three-phase motor
JP2013108971A (ja) 2011-10-25 2013-06-06 Ricoh Co Ltd 角度検出装置、モータ駆動装置及び画像形成装置
JP5919730B2 (ja) 2011-10-28 2016-05-18 株式会社リコー モータ駆動制御装置及び方法
JP6014989B2 (ja) 2011-10-28 2016-10-26 株式会社リコー モータ駆動制御装置及び方法

Also Published As

Publication number Publication date
EP2916108A1 (en) 2015-09-09
US20150256328A1 (en) 2015-09-10
CN104901594A (zh) 2015-09-09
CN104901594B (zh) 2017-12-26
EP2916108B1 (en) 2016-10-19
US9281936B2 (en) 2016-03-08
JP2015169528A (ja) 2015-09-28

Similar Documents

Publication Publication Date Title
JP6481254B2 (ja) 位相検出装置、モータ駆動制御装置、及びモータ装置
JP5919730B2 (ja) モータ駆動制御装置及び方法
JP6014989B2 (ja) モータ駆動制御装置及び方法
JP6398233B2 (ja) 位相検出装置、モータ駆動制御装置、及びモータ装置
JP4732106B2 (ja) モータ制御装置及びモータ制御方法
US9647586B2 (en) Signal amplifier, phase detector, and motor drive controller
US8427089B2 (en) Motor driving device
US20050275362A1 (en) Motor driving device, motor driving method, and electronic device
US6806663B2 (en) Motor driving circuit
US20150061559A1 (en) Motor controller
JP6554896B2 (ja) 角度検出装置、モータ駆動制御装置、及びモータ装置
JP2006034086A (ja) モータ駆動装置、モータ駆動方法及び電子装置
JP6492917B2 (ja) 角度検出装置、モータ駆動制御装置、及びモータ装置
JP6340899B2 (ja) 位相検出装置、モータ駆動制御装置およびモータ装置
JP2005204403A (ja) モータ駆動装置
JP2006020440A (ja) モータ駆動回路
JP2022138592A (ja) ブラシレスモータ駆動装置
JP2017042019A (ja) 回転検知装置、回転駆動装置、モータ装置及び回転検知方法
JP2005073438A (ja) モータ駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180807

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R151 Written notification of patent or utility model registration

Ref document number: 6481254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151