JP6720046B2 - モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置 - Google Patents

モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置 Download PDF

Info

Publication number
JP6720046B2
JP6720046B2 JP2016202132A JP2016202132A JP6720046B2 JP 6720046 B2 JP6720046 B2 JP 6720046B2 JP 2016202132 A JP2016202132 A JP 2016202132A JP 2016202132 A JP2016202132 A JP 2016202132A JP 6720046 B2 JP6720046 B2 JP 6720046B2
Authority
JP
Japan
Prior art keywords
value
motor
phase
speed
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202132A
Other languages
English (en)
Other versions
JP2018064397A5 (ja
JP2018064397A (ja
Inventor
雄大 仁藤
雄大 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016202132A priority Critical patent/JP6720046B2/ja
Publication of JP2018064397A publication Critical patent/JP2018064397A/ja
Publication of JP2018064397A5 publication Critical patent/JP2018064397A5/ja
Application granted granted Critical
Publication of JP6720046B2 publication Critical patent/JP6720046B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Stepping Motors (AREA)

Description

本発明は、モータの駆動を制御するモータ制御装置及び該モータ制御装置を用いたシート搬送装置、原稿読取装置、画像形成装置に関する。
従来、モータを制御する方法として、モータの回転子の回転位相を基準とした回転座標系における電流値を制御することによってモータを制御する、ベクトル制御と称される制御方法が知られている。具体的には、例えば、回転子の指令位相と実際の回転位相との偏差が小さくなるように前記電流値を制御する位相フィードバック制御を行うことによってモータを制御する。また、回転子の指令速度と実際の回転速度との偏差が小さくなるように前記電流値を制御する速度フィードバック制御を行うことによってモータを制御する手法もある。
ベクトル制御を用いると、モータの巻線に供給する駆動電流を、回転子が回転するためのトルクを発生させる電流成分(q軸電流)と、回転子の磁束強度に影響する電流成分(d軸電流)とに分けて制御することができる。この結果、回転子にかかる負荷トルクが変化しても、負荷トルクの変化に応じてq軸電流を制御することによって、回転に必要なトルクを効率的に発生させることができる。即ち、従来問題とされていた、回転子にかかる負荷トルクがモータの巻線に供給した駆動電流に対応した出力トルクを超えて、回転子が入力信号に同期しない制御不能な状態(脱調状態)になることを防止することができる。また、消費電力の増大や、余剰トルクに起因したモータ音の増大を抑制することができる。
モータの各相の巻線には、回転子が回転することによって誘起電圧が発生する。モータの巻線に誘起電圧が発生すると、モータの巻線に印加することができる電圧が小さくなってしまう。具体的には、例えば、モータの巻線に電圧を印加する電源の電圧が24Vである場合、電源電圧(24V)から該巻線に発生した誘起電圧を減算した電圧が巻線に印加できる電圧となる。従って、該巻線に誘起電圧が発生することによって、巻線に印加することができる電圧が24Vよりも小さくなってしまう。前記誘起電圧の大きさは、回転子の回転速度が速くなればなるほど大きくなる。したがって、回転子の回転速度が速くなればなるほど、モータの巻線に印加することができる電圧は小さくなる。モータの巻線に印加することができる電圧が小さくなると、回転子に与えることができるトルク(出力可能トルク)も小さくなってしまう。この結果、回転子が高速回転する際に、回転子に最適なトルクを与えることができなくなってしまう。
特許文献1では、回転子の回転速度が所定の回転速度以上である場合に、d軸電流を0より小さい値に制御することによって、回転子の磁束強度を弱める構成(弱め界磁)が述べられている。弱め界磁を行うと、巻線に発生する誘起電圧の大きさが大きくなることを抑制することができる。この結果、巻線に印加することができる電圧が小さくなることを抑制することができ、出力可能トルクが小さくなることを抑制することができる。この結果、回転子が高速回転する際に、回転子に最適なトルクを与えることができなくなることを抑制することができる。
特開2007−153273号公報
しかしながら、回転子の回転速度が速い場合であっても、弱め界磁を行う必要が無い場合がある。例えば、回転子の回転速度が速くなって出力可能トルクが小さくなっても、回転子にかかる負荷トルクが前記出力可能トルクよりも小さい場合は、弱め界磁を行う必要が無い。このような場合、前記特許文献1において述べられている構成を適用すると、弱め界磁を行う必要が無い場合においても弱め界磁を行ってしまう。即ち、不要な電流を巻線に供給してしまう。この結果、消費電力が増大してしまう。そのため、巻線に発生する誘起電圧の大きさが大きくなることによって出力可能トルクが回転子にかかる負荷トルクよりも小さくなるような場合において弱め界磁を行う構成が求められていた。
上記課題に鑑み、本発明は、モータの制御を効率的に行うことを目的とする。
上記課題を解決するために、本発明にかかるモータ制御装置は、
電源から供給される電力によって稼働し、モータを制御するモータ制御装置において、
前記モータの回転子の回転位相を決定する位相決定手段と、
前記回転子の回転速度を決定する速度決定手段と、
前記位相決定手段によって決定された回転位相を基準とした回転座標系において表される電流成分であって前記回転子にトルクを発生させる電流成分であるトルク電流成分の値が目標値になるように、前記モータの巻線に流れる駆動電流を制御する制御手段であって、前記回転座標系において表される電流成分であって前記巻線を貫く磁束の強度に影響する電流成分である励磁電流成分の値を制御することによって、前記巻線を貫く磁束の強度を弱める弱め界磁を行う制御手段と、
を有し、
前記制御手段は、
前記回転子の目標位相を表す指令位相と前記位相決定手段によって決定された回転位相との偏差が小さくなるように、前記トルク電流成分の目標値を設定する第1設定手段と、
前記モータの巻線に流れる駆動電流を検出する検出手段と、
前記検出手段によって検出された駆動電流の前記トルク電流成分の値と前記第1設定手段によって設定された前記トルク電流成分の目標値との偏差が小さくなるように、駆動電圧を生成する生成手段と、
前記生成手段によって生成された駆動電圧に基づいて、前記巻線に駆動電流を供給する駆動回路と、
前記生成手段によって生成された駆動電圧の値が所定値よりも大きく且つ前記速度決定手段によって決定された回転速度が所定速度より大きい場合は前記弱め界磁の程度が第1の程度になるように前記励磁電流成分の値を設定し、前記生成手段によって生成された駆動電圧の値が前記所定値よりも大きいこと、及び、前記速度決定手段によって決定された回転速度が前記所定速度より大きいこと、の少なくとも一方を満たさない場合は前記弱め界磁の程度が前記第1の程度よりも小さい第2の程度になるように前記励磁電流成分の値を設定する第2設定手段と、
を備えることを特徴とする。
本発明によれば、モータを効率的に制御することができる。
第1実施形態に係る画像形成装置を説明する断面図である。 前記画像形成装置の制御構成を示すブロック図である。 第1実施形態に係るモータ制御装置の構成を示すブロック図である。 A相及びB相から成る2相のモータと回転座標系のd軸及びq軸との関係を示す図である。 PWMインバータに設けられているフルブリッジ回路の構成を示す図である。 速度フィードバック制御を行うモータ制御装置の構成を示すブロック図である。 回転子の回転速度ωと電源電圧Vcc及び誘起電圧の振幅eとの関係を示す図である。 出力可能トルクTと回転子の回転速度ωとの関係を示す図である。 前記モータ制御装置が弱め界磁を行う方法を説明するフローチャートである。
以下に図面を参照して、本発明の好適な実施の形態を説明する。ただし、この実施の形態に記載されている構成部品の形状及びそれらの相対配置などは、この発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。なお、モータ制御装置が設けられるのは画像形成装置に限定されるわけではない。
〔第1実施形態〕
[画像形成装置]
図1は、本実施形態で用いられている画像形成装置であるモノクロの電子写真方式の複写機(以下、画像形成装置と称する)100の構成を示す断面図である。なお、画像形成装置は複写機に限定されず、例えば、ファクシミリ装置、印刷機、プリンタ等であっても良い。また、記録方式は、電子写真方式に限らず、例えば、インクジェット等であっても良い。更に、画像形成装置はモノクロ及びカラーのいずれの形式であっても良い。
以下に、図1を用いて、画像形成装置100の構成および機能について説明する。画像形成装置100には、原稿自動送り装置201、原稿読取装置202及び画像形成装置本体301が設けられている。
原稿自動送り装置201の原稿載置部203に載置された原稿は、給紙ローラ204によって1枚ずつ給紙され、搬送ガイド206に沿って原稿読取装置202の原稿ガラス台214上に搬送される。更に、原稿は、搬送ベルト208によって一定速度で搬送されて、排紙ローラ205によって不図示の排紙トレイへ排紙される。原稿読取装置202の読取位置において照明209によって照明された原稿画像からの反射光は、反射ミラー210、211、212からなる光学系によって画像読取部101に導かれ、画像読取部101によって画像信号に変換される。画像読取部101は、レンズ、光電変換素子であるCCD、CCDの駆動回路等で構成される。画像読取部101から出力された画像信号は、ASIC等のハードウェアデバイスで構成される画像処理部112によって、各種補正処理が行われた後、画像形成装置本体301へ出力される。前述の如くして、原稿の読取が行われる。
また、読取装置202における原稿の読取モードとして、流し読みモードと固定読みモードがある。流し読みモードは、照明系209及び光学系を所定の位置に固定した状態で、原稿を一定速度で搬送しながら原稿の画像を読み取るモードである。固定読みモードは、読取装置202の原稿ガラス214上に原稿を載置し、照明系209及び光学系を一定速度で移動させながら、原稿ガラス214上に載置された原稿の画像を読み取るモードである。通常、シート状の原稿は流し読みモードで読み取られ、本や冊子等の綴じられた原稿は固定読みモードで読み取られる。
画像形成装置本体301の内部には、シート収納トレイ302、304が設けられている。シート収納トレイ302、304には、それぞれ異なる種類の記録媒体を収納することができる。例えば、シート収納トレイ302にはA4サイズの普通紙が収納され、シート収納トレイ304にはA4サイズの厚紙が収納される。なお、記録媒体とは、画像形成装置によって画像が形成されるものであって、例えば、用紙、樹脂シート、布、OHPシート、ラベル等が含まれる。
シート収納トレイ302に収納された記録媒体は、給紙ローラ303によって給送されて、搬送ローラ306によってレジストレーションローラ308へ送り出される。また、シート収納トレイ304に収納された記録媒体は、給紙ローラ305によって給送されて、搬送ローラ307及び306によってレジストレーションローラ308へ送り出される。
読取装置202から出力された画像信号は、半導体レーザ及びポリゴンミラーを含んでいる光走査装置311に入力される。また、感光ドラム309は、帯電器310によって外周面が帯電される。感光ドラム309の外周面が帯電された後、読取装置202から光走査装置311に入力された画像信号に応じたレーザ光が、光走査装置311からポリゴンミラー及びミラー312、313を経由し、感光ドラム309の外周面に照射される。この結果、感光ドラム309の外周面に静電潜像が形成される。なお、感光ドラムの帯電には、例えば、コロナ帯電器や帯電ローラを用いた帯電方法が用いられる。
続いて、その静電潜像が現像器314内のトナーによって現像され、感光ドラム309の外周面にトナー像が形成される。感光ドラム309に形成されたトナー像は、感光ドラム309と対向する位置(転写位置)に設けられた転写分離器315によって記録媒体に転写される。この際、レジストレーションローラ308は、トナー像にタイミングを合わせて、記録媒体を転写位置へ送り込む。
前述の如くして、トナー像が転写された記録媒体は、搬送ベルト317によって定着器318へ送り込まれ、定着器318によって加熱加圧されて、トナー像が記録媒体に定着される。このようにして、画像形成装置100によって記録媒体に画像が形成される。
片面印刷モードで画像形成が行われる場合は、定着器318を通過した記録媒体は、排紙ローラ319、324によって、不図示の排紙トレイへ排紙される。また、両面印刷モードで画像形成が行われる場合は、定着器318によって記録媒体の第1面に定着処理が行われた後に、記録媒体は、排紙ローラ319、搬送ローラ320、及び反転ローラ321によって、反転パス325へと搬送される。その後、記録媒体は、搬送ローラ322、323によって再度レジストレーションローラ308へと搬送され、前述した方法で記録媒体の第2面に画像が形成される。その後、記録媒体は、排紙ローラ319、324によって不図示の排紙トレイへ排紙される。
また、第1面に画像形成された記録媒体をフェースダウンで画像形成装置100の外部へ排紙する場合は、定着器318を通過した記録媒体を、排紙ローラ319を通って搬送ローラ320へ向かう方向へ搬送する。その後、記録媒体の後端が搬送ローラ320のニップ部を通過する直前に、搬送ローラ320の回転を反転させる。この結果、記録媒体の第1面が下向きになった状態で、記録媒体が排紙ローラ324を経由して、画像形成装置100の外部へ排出される。
以上が画像形成装置100の構成および機能についての説明である。なお、本発明における負荷とはモータによって駆動される対象物である。例えば、給紙ローラ204、303、305、レジストレーションローラ308及び排紙ローラ319等の各種ローラ(搬送ローラ)や感光ドラム309、搬送ベルト208、317、照明系209及び光学系等は本発明における負荷に対応する。本実施形態のモータ制御装置は、これら負荷を駆動するモータに適用することができる。
図2は、画像形成装置100の制御構成の例を示すブロック図である。図2に示すように、画像形成装置100には電源1が備えられている。電源1は交流電源(AC)に接続されており、画像形成装置100の内部の各種装置は電源1から出力される電力によって稼働する。また、システムコントローラ151は、図2に示すように、CPU151a、ROM151b、RAM151cを備えている。また、システムコントローラ151は、画像処理部112、操作部152、アナログ・デジタル(A/D)変換器153、高圧制御部155、モータ制御装置157、センサ類159、ACドライバ160と接続されている。システムコントローラ151は、接続された各ユニットとの間でデータやコマンドの送受信をすることが可能である。
CPU151aは、ROM151bに格納された各種プログラムを読み出して実行することによって、予め定められた画像形成シーケンスに関連する各種シーケンスを実行する。
RAM151cは記憶デバイスである。RAM151cには、例えば、高圧制御部155に対する設定値、モータ制御装置157に対する指令値及び操作部152から受信される情報等の各種データが格納される。
システムコントローラ151は、画像処理部112における画像処理に必要となる、画像形成装置100の内部に設けられた各種装置の設定値データを画像処理部112に送信する。更に、システムコントローラ151は、各種装置からの信号(センサ類159等からの信号)を受信して、受信した信号に基づいて高圧制御部155の設定値を設定する。高圧制御部155は、システムコントローラ151によって設定された設定値に応じて、高圧ユニット156(帯電器310、現像器314、転写分離器315等)に必要な電圧を供給する。なお、センサ類159には、搬送ローラによって搬送される記録媒体を検知するセンサ等が含まれる。
モータ制御装置157は、CPU151aから出力された指令に応じて、前述した負荷を駆動するモータ509を制御する。電源1はモータ制御装置157に設けられたフルブリッジ回路50に電圧Vccを供給する。なお、フルブリッジ回路50については後述する。
A/D変換器153は、定着ヒータ161の温度を検出するためのサーミスタ154が検出した検出信号を受信し、前記検出信号をアナログ信号からデジタル信号に変換してシステムコントローラ151に送信する。システムコントローラ151は、A/D変換器153から受信したデジタル信号に基づいて、ACドライバ160の制御を行う。ACドライバ160は、定着ヒータ161の温度が定着処理を行うために必要な温度となるように定着ヒータ161を制御する。なお、定着ヒータ161は、定着処理に用いられるヒータであり、定着器318に含まれる。
システムコントローラ151は、使用する記録媒体の種類(以下、紙種と称する)等の設定をユーザが行うための操作画面を、操作部152に設けられた表示部に表示するように、操作部152を制御する。システムコントローラ151は、ユーザが設定した情報を操作部152から受信し、前記ユーザが設定した情報に基づいて画像形成装置100の動作シーケンスを制御する。また、システムコントローラ151は、画像形成装置の状態を示す情報を操作部152に送信する。なお、画像形成装置の状態を示す情報とは、例えば、画像形成枚数、画像形成中か否か、ジャム発生及びその発生箇所等の情報である。操作部152は、システムコントローラ151から受信した情報を表示部に表示する。
前述の如くして、システムコントローラ151は、画像形成装置100の動作シーケンスを制御する。
[ベクトル制御]
次に、本実施形態におけるモータ制御装置について説明する。本実施形態におけるモータ制御装置は、ベクトル制御を用いてモータを制御する。なお、以下の説明においては、負荷を駆動するモータとしてステッピングモータが用いられているが、これに限定されるものではない。また、モータは2相モータであるとは限らない。更に、本実施形態におけるモータには、モータの回転子の回転位相を検出するためのロータリエンコーダなどのセンサは設けられていないが、ロータリエンコーダなどのセンサが設けられている構成であっても良い。
まず、図3及び図4を用いて、本実施形態におけるモータ制御装置157がベクトル制御を行う方法について説明する。
図3は、ステッピングモータ(以下、モータと称する)509を制御するモータ制御装置157の構成の例を示すブロック図である。
また、図4は、A相(第1相)とB相(第2相)の2相から成るモータ509と回転座標系のd軸及びq軸との関係を示す図である。図4では、静止座標系において、A相の巻線に対応した軸をα軸、B相の巻線に対応した軸をβ軸と定義している。また、静止座標系におけるα軸と、回転子402に用いられている永久磁石の磁極によって作られる磁束の方向(d軸方向)との成す角度をθと定義している。回転子402の回転位相は、角度θによって表される。ベクトル制御では、回転子402の磁束方向に沿ったd軸と、d軸から反時計回りに90度進んだ方向に沿った(d軸と直交する)q軸とで表される、モータ509の回転子402の回転位相θを基準とした回転座標系が用いられる。
ベクトル制御とは、モータの回転子の回転位相を基準とした回転座標系における電流値を制御することによってモータを制御する制御方法である。具体的には、例えば、回転子の目標位相を表す指令位相と実際の回転位相との偏差が小さくなるように前記電流値を制御する位相フィードバック制御を行うことによってモータを制御する。また、回転子の目標速度を表す指令速度と実際の回転速度との偏差が小さくなるように前記電流値を制御する速度フィードバック制御を行うことによってモータを制御する手法もある。回転座標系における電流値とは、モータの回転子にトルクを発生させるq軸成分(トルク電流成分)の電流値と、モータの回転子の磁束強度に影響するd軸成分(励磁電流成分)の電流値とに対応する。
図3に示すように、モータ制御装置157には、ベクトル制御を行う回路として、位相制御器502、電流制御器503、座標逆変換器505、座標変換器511、モータの巻線に駆動電流を供給するPWMインバータ506等が設けられている。座標変換器511は、モータ509のA相及びB相の巻線に流れる駆動電流に対応する電流ベクトルを、α軸及びβ軸で表される静止座標系から、q軸及びd軸で表される回転座標系に座標変換する。この結果、モータ509のA相及びB相の巻線に供給する駆動電流を、回転座標系において、q軸成分の電流値(q軸電流)及びd軸成分の電流値(d軸電流)を用いて表すことができる。なお、q軸電流は、モータ509の回転子402にトルクを発生させるトルク電流に相当する。また、d軸電流は、モータ509の回転子402の磁束強度に影響する励磁電流に相当し、回転子402のトルクの発生には寄与しない。モータ制御装置157は、q軸電流及びd軸電流をそれぞれ独立に制御することができる。即ち、回転子402が回転するために必要なトルクを、効率的に発生させることができる。
モータ制御装置157は、モータ509の回転子402の回転位相θを後述する方法により決定し、その決定結果に基づいてベクトル制御を行う。CPU151aは、モータ509の回転子402の目標位相を表す指令位相θ_refを生成し、所定の時間周期で指令位相θ_refをモータ制御装置157へ出力する。
加算器101は、モータ509の回転子402の回転位相θと指令位相θ_refとの偏差を演算し、該偏差を位相制御器502に出力する。
位相制御器502は、比例(P)、積分(I)補償器から構成されている。位相制御器502は、比例(P)、積分(I)補償器を用いて、加算器101から出力された偏差が小さくなるように、q軸電流指令値iq_refを生成して出力する。具体的には、位相制御器502は、比例(P)、積分(I)補償器を用いて、加算器101から出力された偏差が0になるように、q軸電流指令値iq_refを生成して出力する。なお、本実施形態における位相制御器502は、比例(P)、積分(I)補償器から構成されているが、比例(P)、積分(I)、微分(D)補償器から構成されていても良い。
モータ509のA相及びB相の巻線に流れる駆動電流は、電流検出器507、508によって検出され、その後、A/D変換器510によってアナログ値からデジタル値へと変換される。
A/D変換器510によってアナログ値からデジタル値へと変換された駆動電流の電流値は、静止座標系における電流値iα及びiβとして、図4に示す電流ベクトルの位相θeを用いて次式によって表される。なお、電流ベクトルの位相θeは、α軸と電流ベクトルとの成す角度と定義する。
iα=I*cosθe (1)
iβ=I*sinθe (2)
これらの電流値iα及びiβは、座標変換器511と誘起電圧決定器512に入力される。
座標変換器511において、電流値iα及びiβは、次式によって回転座標系におけるq軸電流の電流値iq及びd軸電流の電流値idに座標変換される。
id= cosθ*iα+sinθ*iβ (3)
iq=−sinθ*iα+cosθ*iβ (4)
前述のように、座標変換器511は、モータ509のA相及びB相の巻線に流れる駆動電流に対応する電流ベクトルを、α軸及びβ軸で表される静止座標系から、q軸及びd軸で表される回転座標系に座標変換する。
加算器102には、位相制御器502から出力されたq軸電流指令値iq_refと座標変換器511から出力された前記電流値iqとが入力される。加算器102は、q軸電流指令値iq_refと前記電流値iqとの偏差を演算し、該偏差を電流制御器503に出力する。
また、加算器103には、位相制御器502から出力されたd軸電流指令値id_refと界磁制御器540から出力された前記電流値idとが入力される。加算器103は、d軸電流指令値id_refと前記電流値idとの偏差を演算し、該偏差を電流制御器503に出力する。なお、界磁制御器540については後述する。
電流制御器503は、比例(P)、積分(I)補償器から構成されている。電流制御器503は、前記偏差がそれぞれ小さくなるように電流値iq*及びid*を生成する。具体的には、電流制御器503は、前記偏差がそれぞれ0になるように電流値iq*及びid*を生成する。その後、電流制御器503は、それぞれの電流値iq*及びid*に対応した駆動電圧Vq及びVdを生成して座標逆変換器505に出力する。即ち、電流制御器503は、電圧生成手段として機能する。なお、本実施形態における電流制御器503は、比例(P)、積分(I)補償器から構成されているが、比例(P)、積分(I)、微分(D)補償器から構成されていても良い。
座標逆変換器505は、電流制御器503から出力された回転座標系における駆動電圧Vq及びVdを、次式によって、静止座標系における駆動電圧Vα及びVβに座標逆変換する。
Vα=cosθ*Vd−sinθ*Vq (5)
Vβ=sinθ*Vd+cosθ*Vq (6)
座標逆変換器505は、回転座標系における駆動電圧Vq及びVdを静止座標系における駆動電圧Vα及びVβに座標逆変換した後、Vα及びVβを誘起電圧決定器512、界磁制御器540及びPWMインバータ506に出力する。なお、本実施形態においては、電流値iq*及びid*に対応した駆動電圧Vq及びVdを生成し、前記駆動電圧Vq及びVdを座標逆変換することによって静止座標系における駆動電圧Vα及びVβを得たが、この限りではない。例えば、電流値iq*及びid*を静止座標系における電流値iα*及びiβ*に座標逆変換し、前記電流値iα*及びiβ*に対応した駆動電圧Vα及びVβを生成する構成であっても良い。
PWMインバータ506は、フルブリッジ回路を有している。図5は、PWMインバータ506に設けられているフルブリッジ回路50の構成の例を示す図である。前述したように、フルブリッジ回路50には、電源1から電圧Vccが供給されている。また、フルブリッジ回路50には、スイッチング素子としてのFET Q1乃至Q4、モータ509の巻線L1等が設けられている。
FET Q1乃至Q4は座標逆変換器505から入力された駆動電圧Vα及びVβに基づく信号よって駆動される。その結果、巻線L1には電源1から電圧が印加される。この結果、駆動電圧Vα及びVβに応じた駆動電流iα及びiβが巻線L1に供給される。即ち、PWMインバータ506は、電流供給手段として機能する。なお、本実施形態においては、PWMインバータはフルブリッジ回路を有しているが、ハーフブリッジ回路等であっても良い。また、フルブリッジ回路は、モータ509のA相とB相それぞれに対応して設けられている。
次に、回転位相θの決定方法について説明する。回転子402の回転位相θの決定には、回転子402の回転によってモータ509のA相及びB相の巻線に誘起される誘起電圧Eα及びEβの値が用いられる。誘起電圧の値は誘起電圧決定器512によって決定(算出)される。具体的には、誘起電圧Eα及びEβは、A/D変換器510から誘起電圧決定器512に入力された電流値iα及びiβと、座標逆変換器505から誘起電圧決定器512に入力された駆動電圧Vα及びVβとから、次式によって決定される。
Eα=Vα−R*iα−L*diα/dt (7)
Eβ=Vβ−R*iβ−L*diβ/dt (8)
ここで、Rは巻線レジスタンス、Lは巻線インダクタンスである。R及びLの値は使用されているモータ509に固有の値であり、ROM151b又はモータ制御装置157に設けられたメモリ(不図示)等に予め格納されている。
誘起電圧決定器512によって決定された誘起電圧Eα及びEβは位相決定器513及び界磁制御器540に出力される。
位相決定器513は、誘起電圧決定器512から出力された誘起電圧Eαと誘起電圧Eβとの比に基づいて、次式によってモータ509の回転子402の回転位相θを決定する。
θ=tan^−1(−Eβ/Eα) (9)
前述の如くして得られた回転子402の回転位相θは、速度決定器515、加算器101、座標逆変換器505及び座標変換器511に入力される。
速度決定器515は、位相決定器513から出力された回転位相θの時間変化に基づいて回転速度ωを決定する。なお、速度の決定には、次式(11)が用いられるものとする。
ω=dθ/dt (10)
その後、速度決定器515は、決定した回転速度ωを界磁制御器540に出力する。
界磁制御器540は、座標逆変換器505から出力された駆動電圧Vα及びVβ、誘起電圧決定器512から出力された誘起電圧Eα及びEβ、速度決定器515から出力された回転速度ωに基づいて、後述する方法によりd軸電流指令値id_refを決定する。その後、界磁制御器540は、決定したd軸電流指令値id_refを加算器103に出力する。
その後、モータ制御装置157は前述の制御を繰り返し行う。
前述の如くして、本実施形態におけるベクトル制御では、指令位相θ_refと回転位相θとの偏差が小さくなるように、回転座標系における電流値を制御する位相フィードバック制御を行うことによってモータを制御する。ベクトル制御を行うと、モータが脱調状態となることや、余剰トルクに起因してモータ音が増大すること及び消費電力が増大することを抑制することができる。また、位相フィードバック制御を行っているため、回転子の回転位相が所望の位相になるように制御することができる。したがって、画像形成装置において、記録媒体への画像形成を適切に行うために回転位相を精度よく制御する必要がある負荷(例えば、レジストレーションローラ等)を駆動するモータに位相フィードバック制御を用いたベクトル制御を適用する。この結果、記録媒体への画像形成を適切に行うことができる。
なお、本実施形態におけるベクトル制御では、前述した位相フィードバック制御を行うことによってモータ509を制御しているが、これに限定されるものではない。例えば、回転子402の回転速度ωをフィードバックしてモータ509を制御する構成であっても良い。具体的には、図6に示すように、CPU151aが回転子の目標速度を表す指令速度ω_refを出力する。また、モータ制御装置内部に速度制御器500を設け、速度制御器500が回転速度ωと指令速度ω_refとの偏差が小さくなるように、q軸電流指令値iq_refを生成して出力する構成とする。このような速度フィードバック制御を行うことによって、モータ509を制御する構成であっても良い。このような構成においては回転速度をフィードバックしているため、回転子の回転速度が所定の速度になるように制御することができる。したがって、画像形成装置において、記録媒体への画像形成を適切に行うために回転速度を一定速度に制御する必要がある負荷(例えば、感光ドラム、搬送ベルト等)を駆動するモータに速度フィードバック制御を用いたベクトル制御を適用する。この結果、記録媒体への画像形成を適切に行うことができる。
[弱め界磁]
次に、弱め界磁について説明する。前述したように、モータの各相の巻線には、回転子が回転することによって誘起電圧が発生する。モータの巻線に誘起電圧が発生すると、モータの巻線に印加することができる電圧(以下、使用可能電圧と称する)が小さくなってしまう。具体的には、例えば、電源1から出力される電圧値がVccである場合、使用可能電圧Vα´及びVβ´は、各相の巻線に誘起電圧が発生することに起因して、以下の式(11)及び(12)に示す値に制限されてしまう。
Vα´=Vcc−eα (11)
Vβ´=Vcc−eβ (12)
ここで、eαは正弦波状に変化する誘起電圧Eαの振幅を示す。また、eβは正弦波状に変化する誘起電圧Eβの振幅を示す。
また、回転子が回転することによって各相の巻線に発生する誘起電圧の振幅eは、以下の式(13)に示すように、回転子の回転速度ωが大きくなればなるほど大きくなる。
e=Ke*ω (13)
ここで、Keは誘起電圧係数であり、モータに固有の値である。
図7は、回転子の回転速度ωと電源電圧Vcc及び誘起電圧の振幅eとの関係を示す図である。
図7及び式(11)乃至式(13)に示すように、回転子の回転速度が速くなればなるほど、使用可能電圧(モータ駆動電圧)は小さくなる。使用可能電圧が小さくなると、回転子に与えることができるトルク(以下、出力可能トルクと称する)も小さくなってしまう。この結果、回転子が高速回転する際に、回転子に最適なトルクを与えることができなくなってしまう。
前記誘起電圧は、巻線を貫く磁束が変化することに伴って発生する。したがって、巻線を貫く磁束を弱めることによって、巻線に発生する誘起電圧の大きさが大きくなることを抑制することができる。具体的には、回転子の磁束強度に影響するd軸電流を負の値に制御することによって、巻線を貫く磁束を弱め、その結果、巻線に発生する誘起電圧の大きさが大きくなることを抑制することができる。以上のような手法は、弱め界磁と称されている。
回転子の回転速度ωが大きい場合において弱め界磁を行うことによって、使用可能電圧Vα´及びVβ´が小さくなることを抑制することができ、出力可能トルクが小さくなることを抑制することができる。この結果、回転子が高速回転する際に、回転子に最適なトルクを与えることができなくなることを抑制することができる。
しかしながら、回転速度ωが大きい場合であっても、弱め界磁を行う必要が無い場合がある。例えば、回転速度ωが大きくなることによって出力可能トルクが小さくなっても、回転子にかかる負荷トルクが前記出力可能トルクよりも小さい場合は、弱め界磁を行う必要が無い。このような場合、前述した構成を適用すると、弱め界磁を行う必要が無い場合においても弱め界磁を行ってしまう。即ち、不要な電流を巻線に供給してしまう。この結果、消費電力が増大してしまう。そのため、巻線に発生する誘起電圧の大きさが大きくなることによって出力可能トルクが回転子にかかる負荷トルクよりも小さくなるような場合において弱め界磁を行う構成が求められている。
次に、本実施形態におけるモータ制御装置157が弱め界磁を行う方法について説明する。
図3に示すように、本実施形態におけるモータ制御装置157には、界磁制御器540が設けられている。界磁制御器540には、回転速度ω、誘起電圧Eα及びEβ、駆動電圧Vα及びVβが入力される。界磁制御器540は、回転速度ω、誘起電圧Eα及びEβ、駆動電圧Vα及びVβに基づいてd軸電流指令値id_refを生成して出力する。以下、界磁制御器540が回転速度ω、誘起電圧Eα及びEβ、駆動電圧Vα及びVβに基づいてd軸電流指令値id_refを生成する方法について説明する。
本実施形態においては、界磁制御器540は、入力された回転速度、誘起電圧及び駆動電圧が以下の2つの条件を満たすか否かに基づいて、d軸電流指令値id_refを生成する。
1つ目の条件は、以下の式(14)に示すように、速度決定器515から出力された回転速度ωが所定の回転速度(速度閾値)ωthよりも大きいことである。
ω>ωth (14)
界磁制御器540は、界磁制御器540の内部に設けられているメモリ540aに記憶されている速度閾値ωthと速度決定器515から出力された回転速度ωとを比較することによって、回転速度ωが式(14)を満たすか否かを判断する。
図8は、出力可能トルクTと回転子の回転速度ωとの関係を示す図である。図8には、d軸電流を0に制御した場合のトルクT−回転速度ω特性(破線)とd軸電流を負の値に制御した場合のトルクT−回転速度ω特性(実線)が示されている。また、破線と実線との交点における回転速度をω0と定義している。なお、図8に示すトルクT−回転速度ω特性は、本実施形態における一例であり、これに限定されるものではない。
図8に示すように、回転速度ωがω0より小さい(ω<ω0)場合は、d軸電流を負の値に制御する場合における出力可能トルクTよりもd軸電流を0に制御する場合における出力可能トルクTのほうが大きい。即ち、回転速度ωがω0より小さい(ω<ω0)場合は、弱め界磁を行う場合よりも弱め界磁を行わない場合のほうがより大きなトルクを回転子に与えることができる。
また、図8に示すように、回転速度ωがω0より大きい(ω>ω0)場合は、d軸電流を0に制御する場合における出力可能トルクTよりもd軸電流を負の値に制御する場合における出力可能トルクTのほうが大きい。即ち、回転速度ωがω0より大きい(ω>ω0)場合は、弱め界磁を行わない場合よりも弱め界磁を行う場合のほうがより大きなトルクを回転子に与えることができる。
したがって、本実施形態においては、式(14)における速度閾値ωthをω0とし(ωth=ω0)、回転速度ωがω0よりも大きいことを、弱め界磁を行うための1つ目の条件とする。
なお、式(14)においては、速度閾値ωthをω0に設定しているが、これに限定されるものではない。しかし、速度閾値をω0よりも小さい値に設定すると、回転速度ωがω0より小さい状態において弱め界磁を行う期間がある。前述したように、回転速度ωがω0より小さい状態において弱め界磁を行うと、出力可能トルクがかえって小さくなってしまう。また、速度閾値をω0よりも大きい値に設定すると、回転速度ωがω0より大きい状態において弱め界磁を行わない期間がある。前述したように、回転速度ωがω0より大きい状態において弱め界磁を行わない場合、出力可能トルクが弱め界磁を行う場合よりも小さくなってしまう。したがって、速度閾値ωthをω0に設定することによって、トルクを回転子に効率的に発生させることができるようになる。
しかしながら、式(14)のみを、弱め界磁を行う条件としてしまうと、前述したように、弱め界磁を行う必要が無い場合においても弱め界磁を行い、不要な電流を巻線に供給してしまう可能性がある。
そこで、本実施形態においては、以下の式(15)に示すように、駆動電圧が使用可能電圧以下である所定値(電圧閾値)よりも大きいことを、弱め界磁を行うための2つ目の条件とする。
Vα>Vα´*γ=(Vcc−eα)*γ (15)
ここで、γ(0<γ≦1)はばらつき補正係数で、部品のばらつきや演算誤差を加味して決定される値であって、予め設定されている値である。また、電源電圧Vcc及びばらつき補正係数γは、メモリ540aに記憶されているものとする。
界磁制御器540は、誘起電圧決定器512から取得した誘起電圧Eαと該誘起電圧Eαが決定された時刻とを対応させて1周期分メモリ540aに記憶する。更に、界磁制御器540は、誘起電圧Eαがメモリ540aに1周期分記憶されたら、誘起電圧Eαの最大値又は最小値を振幅値eαとして決定する。その後、界磁制御器540は、決定した振幅値eα、電源電圧Vcc及び座標逆変換器505から取得した駆動電圧Vαに基づいて、駆動電圧Vαが式(15)を満たすか否かを判断する。
なお、本実施形態においては、メモリ540aは、界磁制御器540が振幅値を決定したら、記憶している誘起電圧を削除する構成とするが、この限りではない。また、本実施形態においては、界磁制御器540は、誘起電圧Eαがメモリ540aに1周期分記憶される毎に振幅値を決定して更新する構成とする。また、界磁制御器540は、誘起電圧決定器512から取得した誘起電圧Eαと該誘起電圧Eαが決定された時刻とを対応させてn周期分メモリ540aに記憶する構成であっても良い。(nは正の整数である。)更に、本実施形態においては、式(15)においてA相の駆動電圧及び誘起電圧を用いたが、B相の駆動電圧及び誘起電圧を用いてもよい。なお、電源はA相、B相にそれぞれ一つずつ設けられているものとするが、この限りではない。
界磁制御器540は、回転速度及び駆動電圧が前述の二つの条件を満たす場合は、id_refを負の値(例えば−0.3A)に設定して出力する。即ち、モータ制御装置157は弱め界磁を行う。なお、設定されるid_refの値が負の値であり且つ絶対値が大きすぎると、回転子である永久磁石から発生する磁界を過剰に弱めてしまい、結果として、回転子に発生させるトルクが小さくなってしまう。また、設定されるid_refの値が負の値であり且つ絶対値が0に近い値であると、回転子である永久磁石から発生する磁界を弱めることができず、結果として、巻線に発生する誘起電圧を低減することができなくなってしまう。前記負の値は、以上のようなことを考慮して予め決定されており、メモリ540a等に記憶されている。界磁制御器540はメモリ540a等に記憶されている前記負の値をid_refとして設定する。
また、界磁制御器540は、回転速度及び駆動電圧が前述の二つの条件を満たさない場合は、界磁制御器540は、id_refを0に設定する。即ち、モータ制御装置157は弱め界磁を行わない。
なお、本実施形態においては、回転速度及び駆動電圧が前述の二つの条件を満たす場合に界磁制御器540によって設定されるd軸電流指令値id_refの値は、実験によって得られた値であるものとするがこの限りではない。例えば、界磁制御器540が、界磁制御器540に入力された回転速度ωに基づいて、d軸電流指令値id_refの値を変える構成であっても良い。具体的には、界磁制御器540は、回転速度ωが大きければ大きいほどd軸電流指令値id_refの値をより小さく設定する構成であっても良い。この結果、巻線に発生する誘起電圧が回転速度の増大に伴って大きくなることを抑制することができる。また、本実施形態においては、式(14)を満たすか否かを判断する際に、位相決定器513によって決定された回転位相θに基づいて決定された回転速度ωを用いたが、この限りではない。例えば、速度決定器515が、指令位相θ_refに基づいて、式(10)を用いて指令速度ω_refの代わりとなる回転速度ω_ref´を算出し、界磁制御器540は該回転速度ω_ref´を用いて式(14)を満たすか否かを判断しても良い。
図9は、本実施形態におけるモータ制御装置157が弱め界磁を行う方法を説明するフローチャートである。以下、図9を用いて、本実施形態におけるモータ制御装置157が弱め界磁を行う方法を説明する。このフローチャートの処理は、CPU151aからの指示を受けたモータ制御装置157によって実行される。
まず、S1001において、CPU151aからモータ制御装置157にenable信号‘H’が出力されると、モータ制御装置157はCPU151aから出力される指令に基づいてモータ509の駆動制御を開始する。enable信号とは、モータ制御装置157の稼働を許可又は禁止する信号である。enable信号が‘L(ローレベル)’である場合は、CPU151aはモータ制御装置157の稼働を禁止する。即ち、モータ制御装置157によるモータ509の制御は終了される。また、enable信号が‘H(ハイレベル)’である場合は、CPU151aはモータ制御装置157の稼働を許可して、モータ制御装置157はCPU151aから出力される指令に基づいてモータ509の駆動制御を行う。
次に、S1002において、モータ制御装置157はベクトル制御を行う。その後、S1003において、CPU151aがモータ制御装置157にenable信号‘L’を出力した場合は、モータ制御装置157はモータ509の駆動を終了する。また、S1003おいて、CPU151aがモータ制御装置157にenable信号‘H’を出力した場合は、モータ制御装置157は処理をS1004に進める。
S1004において、界磁制御器540は、回転速度ω、誘起電圧Eα及びEβ、駆動電圧Vα及びVβを取得する。更に、界磁制御器540は、S1005において、誘起電圧Eαの振幅値eαを決定し、モータ制御装置は処理をS1006に進める。
S1006において、式(14)と(15)とのいずれか一方でも満たさない場合は、S1007において、界磁制御器540は、d軸電流指令値id_refを0に設定して出力する。この結果、モータ制御装置157は弱め界磁を行わない。
また、S1006において、回転速度ωが式(14)を満たし且つ駆動電圧Vαが式(15)を満たす場合は、S1008において、界磁制御器540は、メモリ540a等に記憶されている負の値をid_refとして設定して出力する。この結果、モータ制御装置157は弱め界磁を行う。
その後、処理は再びS1002に戻り、モータ制御装置157によるベクトル制御が続行される。以降、CPU151aがモータ制御装置157にenable信号‘L’を出力するまで、モータ制御装置157は前述した制御を繰り返し行い、モータ509を制御する。
以上のように、本実施形態においては、回転速度ωが式(14)を満たし且つ駆動電圧Vαが式(15)を満たす場合にのみ弱め界磁を行う。具体的には、回転速度ωが速度閾値であるω0より大きく且つ駆動電圧Vαが電圧閾値よりも大きい場合にのみ弱め界磁を行う。この結果、出力可能トルクが回転子にかかる負荷トルクよりも小さくなるような場合(弱め界磁が必要となる場合)にのみ弱め界磁を行うことができる。その結果、消費電力が増大することを抑制することができる。
なお、回転速度ωが式(14)を満たさず、駆動電圧Vαが式(15)を満たす場合に弱め界磁を行う構成では、上述した効果を得ることはできない。これは、駆動電圧Vαが式(15)を満たしていても、図8に示すように、回転速度ωがω0よりも小さい場合に弱め界磁を行うと、出力可能トルクがかえって小さくなってしまうからである。このような場合は、モータの制御を中断する等の処理を行う必要がある。
本実施形態においては、界磁制御器540は、回転速度及び駆動電圧が前述の2つの条件を満たす場合は、id_refを負の値に設定した。また、回転速度及び駆動電圧が前述の2つの条件のうちいずれか一方でも満たさない場合は、id_refを0に設定したが、この限りではない。例えば、回転速度及び駆動電圧が前述の2つの条件のうちいずれか一方でも満たさない場合においては、id_refを0以外の値に設定しても良いが、可能な限り0に近い値に設定するほうが効果的に消費電力の増大を抑制することができる。
本実施形態におけるベクトル制御では、回転子402の回転位相θを基準とした回転座標系が用いられているが、これに限定されるものではない。例えば、指令位相θ_refを基準とした回転座標系が用いられても良い。
また、指令速度ω_refの代わりとなる回転速度ω_ref´の決定は、式(10)を用いて行うことに限らない。例えば、モータ509のA相(またはB相)の巻線に流れる駆動電流、A相(またはB相)駆動電圧、A相(またはB相)の巻線に発生する誘起電圧等、回転子402の回転速度と相関のある周期的な信号を検出する。前記信号の値が0になる周期(ゼロクロス周期)を検出することによって、指令速度ω_refの代わりとなる回転速度ω_ref´を決定しても良い。
157 モータ制御装置
402 回転子
502 位相制御器
503 電流制御器
506 PWMインバータ
507、508 電流検出器
509 ステッピングモータ
512 誘起電圧決定器
513 位相決定器
515 速度決定器
540 界磁制御器

Claims (9)

  1. 電源から供給される電力によって稼働し、モータを制御するモータ制御装置において、
    前記モータの回転子の回転位相を決定する位相決定手段と、
    前記回転子の回転速度を決定する速度決定手段と、
    前記位相決定手段によって決定された回転位相を基準とした回転座標系において表される電流成分であって前記回転子にトルクを発生させる電流成分であるトルク電流成分の値が目標値になるように、前記モータの巻線に流れる駆動電流を制御する制御手段であって、前記回転座標系において表される電流成分であって前記巻線を貫く磁束の強度に影響する電流成分である励磁電流成分の値を制御することによって、前記巻線を貫く磁束の強度を弱める弱め界磁を行う制御手段と、
    を有し、
    前記制御手段は、
    前記回転子の目標位相を表す指令位相と前記位相決定手段によって決定された回転位相との偏差が小さくなるように、前記トルク電流成分の目標値を設定する第1設定手段と、
    前記モータの巻線に流れる駆動電流を検出する検出手段と、
    前記検出手段によって検出された駆動電流の前記トルク電流成分の値と前記第1設定手段によって設定された前記トルク電流成分の目標値との偏差が小さくなるように、駆動電圧を生成する生成手段と、
    前記生成手段によって生成された駆動電圧に基づいて、前記巻線に駆動電流を供給する駆動回路と、
    前記生成手段によって生成された駆動電圧の値が所定値よりも大きく且つ前記速度決定手段によって決定された回転速度が所定速度より大きい場合は前記弱め界磁の程度が第1の程度になるように前記励磁電流成分の値を設定し、前記生成手段によって生成された駆動電圧の値が前記所定値よりも大きいこと、及び、前記速度決定手段によって決定された回転速度が前記所定速度より大きいこと、の少なくとも一方を満たさない場合は前記弱め界磁の程度が前記第1の程度よりも小さい第2の程度になるように前記励磁電流成分の値を設定する第2設定手段と、
    を備えることを特徴とするモータ制御装置。
  2. 電源から供給される電力によって稼働し、モータを制御するモータ制御装置において、
    前記モータの回転子の回転位相を決定する位相決定手段と、
    前記モータの回転子の回転速度を決定する速度決定手段と、
    前記位相決定手段によって決定された回転位相を基準とした回転座標系において表される電流成分であって前記回転子にトルクを発生させる電流成分であるトルク電流成分の値が目標値になるように、前記モータの巻線に流れる駆動電流を制御する制御手段であって、前記回転座標系において表される電流成分であって前記巻線を貫く磁束の強度に影響する電流成分である励磁電流成分の値を制御することによって、前記巻線を貫く磁束の強度を弱める弱め界磁を行う制御手段と、
    を有し、
    前記制御手段は、
    前記回転子の目標速度を表す指令速度と前記速度決定手段によって決定された回転速度との偏差が小さくなるように、前記トルク電流成分の目標値を設定する第1設定手段と、
    前記モータの巻線に流れる駆動電流を検出する検出手段と、
    前記検出手段によって検出された駆動電流の前記トルク電流成分の値と前記第1設定手段によって設定された前記トルク電流成分の目標値との偏差が小さくなるように、駆動電圧を生成する生成手段と、
    前記生成手段によって生成された駆動電圧に基づいて、前記巻線に駆動電流を供給する駆動回路と、
    前記生成手段によって生成された駆動電圧の値が所定値よりも大きく且つ前記速度決定手段によって決定された回転速度が所定速度より大きい場合は前記弱め界磁の程度が第1の程度になるように前記励磁電流成分の値を設定し、前記生成手段によって生成された駆動電圧の値が前記所定値よりも大きいこと、及び、前記速度決定手段によって決定された回転速度が前記所定速度より大きいこと、の少なくとも一方を満たさない場合は前記弱め界磁の程度が前記第1の程度よりも小さい第2の程度になるように前記励磁電流成分の値を設定する第2設定手段と、
    を備えることを特徴とするモータ制御装置。
  3. 前記モータ制御装置は、前記検出手段によって検出された駆動電流に基づいて、前記回転子の回転によって前記巻線に誘起される誘起電圧の値を決定する誘起電圧決定手段を有し、
    前記所定値は、前記電源から前記駆動回路に出力される電圧の値から前記誘起電圧の値を減算した値以下の値であることを特徴とする請求項1又は2に記載のモータ制御装置。
  4. 前記第2の程度には、前記弱め界磁が行われない状態が含まれることを特徴とする請求項1乃至のいずれか一項に記載のモータ制御装置。
  5. 前記位相決定手段は、前記誘起電圧決定手段によって決定された誘起電圧の値に基づいて前記回転子の回転位相を決定することを特徴とする請求項1乃至のいずれか一項に記載のモータ制御装置。
  6. シートを搬送する搬送ローラと、
    前記搬送ローラを駆動するモータと、
    請求項1乃至のいずれか一項に記載のモータ制御装置であって、前記搬送ローラを駆動するモータを制御するモータ制御装置と、
    を有することを特徴とするシート搬送装置。
  7. 原稿が積載される積載部と、
    前記積載部に積載された原稿を搬送する搬送部と、
    負荷を駆動するモータと、
    請求項1乃至のいずれか一項に記載のモータ制御装置であって、前記負荷を駆動するモータを制御するモータ制御装置と、
    を有することを特徴とする原稿読取装置。
  8. 記録媒体に画像を形成する画像形成部と、
    負荷を駆動するモータと、
    請求項1乃至のいずれか一項に記載のモータ制御装置であって、前記負荷を駆動するモータを制御するモータ制御装置と、
    を有することを特徴とする画像形成装置。
  9. 前記負荷は、前記記録媒体を搬送する搬送ローラであることを特徴とする請求項に記載の画像形成装置。
JP2016202132A 2016-10-13 2016-10-13 モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置 Active JP6720046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202132A JP6720046B2 (ja) 2016-10-13 2016-10-13 モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202132A JP6720046B2 (ja) 2016-10-13 2016-10-13 モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置

Publications (3)

Publication Number Publication Date
JP2018064397A JP2018064397A (ja) 2018-04-19
JP2018064397A5 JP2018064397A5 (ja) 2019-07-18
JP6720046B2 true JP6720046B2 (ja) 2020-07-08

Family

ID=61966998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202132A Active JP6720046B2 (ja) 2016-10-13 2016-10-13 モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP6720046B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849729B2 (ja) * 2019-04-15 2021-03-24 キヤノン株式会社 モータ制御装置、シート搬送装置及び画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182398A (ja) * 1994-12-27 1996-07-12 Fuji Electric Co Ltd 永久磁石形同期電動機の駆動装置
JP2001095297A (ja) * 1999-09-20 2001-04-06 Massuru Kk ステップモータの制御方式
JP4205473B2 (ja) * 2003-04-14 2009-01-07 株式会社アイエイアイ ステッピングモータ制御方法とステッピングモータ制御装置
CN1784824B (zh) * 2004-03-26 2010-04-21 三菱电机株式会社 永久磁铁式同步电动机的控制装置
JP2006067242A (ja) * 2004-08-26 2006-03-09 Kyocera Mita Corp 画像読取装置
JP2007153273A (ja) * 2005-12-08 2007-06-21 Jtekt Corp 電動パワーステアリング装置
JP5995789B2 (ja) * 2013-06-14 2016-09-21 京セラドキュメントソリューションズ株式会社 シート搬送装置、画像読取装置、及び画像形成装置
JP2016046859A (ja) * 2014-08-20 2016-04-04 株式会社リコー モータ駆動制御装置及びモータ駆動制御方法
FR3027474B1 (fr) * 2014-10-16 2018-03-30 Thales Dispositif de defluxage automatique et adaptatif et procede mettant en oeuvre un tel dispositif

Also Published As

Publication number Publication date
JP2018064397A (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6505155B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6647262B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6548627B2 (ja) シート搬送装置及び画像形成装置
JP6328172B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6552532B2 (ja) シート搬送装置及び画像形成装置
JP6643388B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6980555B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6991758B2 (ja) シート搬送装置及び画像形成装置
US20180358913A1 (en) Motor control apparatus, sheet conveyance apparatus, document feeding apparatus, document reading apparatus, and image forming apparatus
JP6720046B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6728433B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6900444B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6498227B2 (ja) シート搬送装置及び画像形成装置
JP7034727B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6812505B2 (ja) シート搬送装置、原稿給送装置、原稿読取装置及び画像形成装置
JP7208351B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6849729B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP7005733B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6801065B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6915133B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP7301556B2 (ja) モータ制御装置及び画像形成装置
JP6789851B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP2018121400A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2018104168A (ja) シート搬送装置
JP2019205346A (ja) シート搬送装置、原稿読取装置及び画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R151 Written notification of patent or utility model registration

Ref document number: 6720046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151