JP2015011930A - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- JP2015011930A JP2015011930A JP2013138310A JP2013138310A JP2015011930A JP 2015011930 A JP2015011930 A JP 2015011930A JP 2013138310 A JP2013138310 A JP 2013138310A JP 2013138310 A JP2013138310 A JP 2013138310A JP 2015011930 A JP2015011930 A JP 2015011930A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- positive electrode
- electrode active
- mah
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 60
- 230000002427 irreversible effect Effects 0.000 claims abstract description 62
- 239000007773 negative electrode material Substances 0.000 claims abstract description 58
- 239000007774 positive electrode material Substances 0.000 claims abstract description 41
- 239000007789 gas Substances 0.000 claims description 54
- 239000003795 chemical substances by application Substances 0.000 claims description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 229910002804 graphite Inorganic materials 0.000 claims description 15
- 239000010439 graphite Substances 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 238000001069 Raman spectroscopy Methods 0.000 claims description 7
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 44
- 238000006243 chemical reaction Methods 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- -1 nickel metal hydride Chemical class 0.000 description 18
- 239000011230 binding agent Substances 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 11
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000003860 storage Methods 0.000 description 10
- 239000011149 active material Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 8
- 238000007600 charging Methods 0.000 description 8
- 230000000977 initiatory effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 229910013870 LiPF 6 Inorganic materials 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 7
- 239000002800 charge carrier Substances 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007770 graphite material Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000009782 nail-penetration test Methods 0.000 description 3
- 238000009783 overcharge test Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- XTBFPVLHGVYOQH-UHFFFAOYSA-N methyl phenyl carbonate Chemical compound COC(=O)OC1=CC=CC=C1 XTBFPVLHGVYOQH-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical group 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/578—Devices or arrangements for the interruption of current in response to pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
【課題】幅広いSOC領域(特には低SOC領域)における入出力特性と、耐久性とを高いレベルで両立可能な非水電解質二次電池を提供する。【解決手段】本発明に係る非水電解質二次電池は、正極活物質を有する正極と負極活物質を有する負極とを備える電極体と、非水電解質と、を電池ケース内に収容した構成である。ここで、上記負極活物質1gあたりの負極単位不可逆容量は、15mAh/g以上35mAh/g以下である。また、上記負極活物質1gあたりの負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極不可逆容量Ua(mAh)と、上記正極活物質1gあたりの正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極不可逆容量Uc(mAh)とは、Uc<Uaの関係を満たしている。【選択図】図1
Description
本発明は、非水電解質二次電池に関する。詳しくは、不可逆容量の大きな負極を備えた非水電解質二次電池に関する。
リチウムイオン二次電池、ニッケル水素電池等の非水電解質二次電池は、近年、携帯電子機器や輸送機器の電源として用いられている。特に軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車、ハイブリッド自動車等の駆動用高出力電源として好ましく用いられている。
このような非水電解質二次電池では、電池性能向上の一環として、サイクル特性の更なる向上が検討されている。これに関連する技術として、特許文献1が挙げられる。特許文献1には、負極に所定の有機物を担持した形態の炭素材料を用いることで、不可逆容量を低減し得、サイクル特性を向上し得る旨が記載されている。
ところで、非水電解質二次電池のなかには、充電深度(State of Charge:SOC)の低い状態で頻繁にハイレート放電(急速放電)を繰り返す態様で使用されるものがある。このような使用態様が想定される電池としては、例えばプラグインハイブリッド自動車等の車両に動力源として搭載される電池が挙げられる。しかしながら、非水電解質二次電池は低SOC領域において(例えばSOCが30%以下の領域において)内部抵抗が非常に高く、入出力特性を確保することが難しい。
本発明は、かかる事情に鑑みてなされたものであり、その目的は、耐久性(例えばサイクル特性や高温保存特性)と、幅広いSOC領域(特には低SOC領域)における入出力特性と、を高いレベルで両立可能な非水電解質二次電池を提供することである。
本発明者の知見によれば、低SOC領域における内部抵抗の増大は、主に正極に起因している。より詳しくは、低SOC領域(放電末期)では、正極の電位が急激に低下するため、電池電圧の低下が正極起因となる。これによって正極の反応抵抗が増大し、入出力特性が低下し得る。そこで、本発明者は、充放電に使用する正極の電位範囲(作動電位)を高電位側にシフトさせることを考えた。図1は本発明の概念を表す図であり、縦軸に電位を、横軸に容量を表している。また、(1)は従来技術に係る負極のチャートを、(2)は本発明に係る負極のチャートをそれぞれ示している。すなわち、本発明者は、負極の電位を(1)から(2)へシフトさせることで、低SOC領域においても正極の電位を高く保持することができ、これによって電池の反応抵抗を低減することを考えた。そして、鋭意検討を重ねた結果、これを解決し得る手段を見出し、本発明を完成させた。
ここで開示される非水電解質二次電池(例えばリチウムイオン二次電池)は、電極体と、非水電解質と、を電池ケース内に収容した構成である。上記電極体は、正極活物質を有する正極と負極活物質を有する負極とを備えている。また、上記電極体は、以下の(A)および(B)の特徴を有している。
(A);負極活物質1gあたりの負極単位不可逆容量が、15mAh/g以上35mAh/g以下である。
(B);負極活物質1gあたりの負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極不可逆容量Ua(mAh)と、正極活物質1gあたりの正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極不可逆容量Uc(mAh)とが、Uc<Uaである。
(A);負極活物質1gあたりの負極単位不可逆容量が、15mAh/g以上35mAh/g以下である。
(B);負極活物質1gあたりの負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極不可逆容量Ua(mAh)と、正極活物質1gあたりの正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極不可逆容量Uc(mAh)とが、Uc<Uaである。
負極の不可逆容量Uaを正極の不可逆容量Ucよりも大きくすることで、相対的に負極の電位(vs. Li/Li+)を上昇させることができる。したがって、電池電圧が同じであれば、従来よりも放電末期の正極の電位を高電位側へシフトさせることができる。このため、低SOC領域における電池電圧の低下を負極起因とすることができ、優れた入出力特性を実現することができる。また、負極の単位不可逆容量を上記範囲とすることで、耐久性(例えば高温保存特性)も高く維持することができる。
このように、上記構成によれば、低SOC領域における優れた入出力特性と、高い耐久性とを兼ね備えた電池を提供することができる。
このように、上記構成によれば、低SOC領域における優れた入出力特性と、高い耐久性とを兼ね備えた電池を提供することができる。
なお、本明細書において「単位不可逆容量(mAh/g)」とは、活物質1gあたりの不可逆容量をいう。かかる値は、従来公知の2極式セルを用いた手法によって測定することができる。例えば、負極(負極活物質)の単位不可逆容量(mAh/g)を測定する場合には、先ず、測定対象たる負極(負極活物質層)を所定の大きさに切り出して、作用極を準備する。次に、この作用極を、セパレータを介して、対極としての金属リチウムと対向させ、積層体を作製する。そして、この積層体を非水電解質とともにケースに収容して、2極式セルを構築する。次に、当該セルに対して、25℃の温度環境下で、作用極−対極間の端子電圧が0.01Vになるまで0.1Cの定電流で充電し、続いて充電時間の合計が14時間になるまで定電圧で充電した後、10分間休止し、次いで、作用極−対極間の端子電圧が1.5Vになるまで0.1Cの定電流で放電させる。このときの1サイクル目のCCCV充電容量(mAh)から1サイクル目のCC放電容量(mAh)を差し引いて、測定に供した負極活物質の質量(g)で除すことにより、負極単位不可逆容量(mAh/g)を求めることができる。
好適な一態様では、上記負極活物質の1gあたりの負極単位充電容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極充電容量Ca(mAh)と、上記正極活物質の1gあたりの正極単位充電容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極充電容量Cc(mAh)との比(Ca/Cc)が、1.2≦(Ca/Cc)≦1.5を満たしている。
対向する正極容量と負極容量の割合は、電池容量(または不可逆容量)やエネルギー密度に直接的に影響し、電池の使用条件等(例えば急速充放電)によっては電荷担体が負極表面に固定化されて(例えば、リチウムが負極表面に析出して)、熱安定性が低下することがあり得る。正負極の容量比を上記範囲とすることで、エネルギー密度等の電池特性を良好に維持しつつ、電荷担体が負極に固定化されることを好適に抑制することができる。したがって、本発明の適用効果を高いレベルで発揮することができる。
対向する正極容量と負極容量の割合は、電池容量(または不可逆容量)やエネルギー密度に直接的に影響し、電池の使用条件等(例えば急速充放電)によっては電荷担体が負極表面に固定化されて(例えば、リチウムが負極表面に析出して)、熱安定性が低下することがあり得る。正負極の容量比を上記範囲とすることで、エネルギー密度等の電池特性を良好に維持しつつ、電荷担体が負極に固定化されることを好適に抑制することができる。したがって、本発明の適用効果を高いレベルで発揮することができる。
なお、本明細書において「単位充電容量(mAh/g)」とは、活物質1gあたりの充電容量をいう。負極(負極活物質)の単位充電容量(mAh/g)は、上記2極式セルの測定によって得られた1サイクル目のCCCV充電容量(mAh)を、測定に供した負極活物質の質量(g)で除すことによって求めることができる。
また、正極(正極活物質)の単位充電容量(mAh/g)は、上記負極に倣って測定することができる。具体的には、先ず、上記負極の場合と同様に、測定対象たる正極(正極活物質層)を所定の大きさに切り出して、作用極を準備する。次に、この作用極を、セパレータを介して、対極としての金属リチウムと対向させ、積層体を作製する。そして、この積層体を非水電解質とともにケースに収容して、2極式セルを構築する。次に、当該セルに対して、25℃の温度環境下で、作用極−対極間の端子電圧が4.2Vになるまで0.1Cの定電流で充電し、続いて充電時間の合計が14時間になるまで定電圧で充電した後、10分間休止し、次いで、作用極−対極間の端子電圧が3.0Vになるまで0.1Cの定電流で放電させる。このときの1サイクル目のCCCV充電容量(mAh)を、測定に供した正極活物質の質量(g)で除すことにより、正極の単位充電容量(mAh/g)を求めることができる。
また、正極(正極活物質)の単位充電容量(mAh/g)は、上記負極に倣って測定することができる。具体的には、先ず、上記負極の場合と同様に、測定対象たる正極(正極活物質層)を所定の大きさに切り出して、作用極を準備する。次に、この作用極を、セパレータを介して、対極としての金属リチウムと対向させ、積層体を作製する。そして、この積層体を非水電解質とともにケースに収容して、2極式セルを構築する。次に、当該セルに対して、25℃の温度環境下で、作用極−対極間の端子電圧が4.2Vになるまで0.1Cの定電流で充電し、続いて充電時間の合計が14時間になるまで定電圧で充電した後、10分間休止し、次いで、作用極−対極間の端子電圧が3.0Vになるまで0.1Cの定電流で放電させる。このときの1サイクル目のCCCV充電容量(mAh)を、測定に供した正極活物質の質量(g)で除すことにより、正極の単位充電容量(mAh/g)を求めることができる。
好適な一態様では、上記電池ケースは、該ケース内の圧力上昇時に作動する電流遮断機構(CID:Current Interrupt Device)を備えている。また、好適な他の一態様では、上記非水電解質は、電池のSOCが115%以上140%以下になった際に分解してガスを発生し得るガス発生剤を含んでいる。
電池内に含まれるガス発生剤は、電池が過充電状態となり所定のSOC(あるいは酸化電位)に達すると、正極で酸化分解され、典型的には水素イオン(H+)を生じる。そして、該水素イオンが非水電解質中に拡散して負極で還元されることにより、水素ガス(H2)が発生する。これによって電池内の圧力が上昇するため、CIDを作動させることができる。ガス発生剤の分解するSOCを上記範囲とすることで、過充電時には迅速にCIDを作動させることができる。また、通常使用時の抵抗を低減することができ、長期に渡り優れた電池特性(サイクル特性)を維持発揮することができる。
電池内に含まれるガス発生剤は、電池が過充電状態となり所定のSOC(あるいは酸化電位)に達すると、正極で酸化分解され、典型的には水素イオン(H+)を生じる。そして、該水素イオンが非水電解質中に拡散して負極で還元されることにより、水素ガス(H2)が発生する。これによって電池内の圧力が上昇するため、CIDを作動させることができる。ガス発生剤の分解するSOCを上記範囲とすることで、過充電時には迅速にCIDを作動させることができる。また、通常使用時の抵抗を低減することができ、長期に渡り優れた電池特性(サイクル特性)を維持発揮することができる。
好適な一態様では、上記負極活物質は粒子状の非晶質炭素被覆黒鉛であり、該黒鉛粒子のラマン分光法に基づくR値と、窒素吸着法に基づくBET比表面積SBET(m2/g)とが、−0.03≦log(R×SBET)≦0.18を満たしている。負極活物質の性状を上記範囲とすることで、上記負極単位充電容量(mAh/g)の範囲を好適に実現することができる。
なお、本明細書において「R値」とは、波長514.5mmのアルゴンレーザーを使用したラマン分光によって得られたラマンスペクトルにおいて、1580cm−1付近のラマンバンド(Gピーク)強度IGに対する1360cm−1付近のラマンバンド(Dピーク)の強度IDの比(R=ID/IG)をいう。また、「BET比表面積」とは、吸着質として窒素(N2)ガスを用いたガス吸着法(定容量式吸着法)によって測定されたガス吸着量を、BET法(例えば、BET多点法)で解析した値をいう。
好適な一態様では、上記電極体は扁平形状の捲回電極体であり、該捲回電極体の扁平部の厚みTが20mm以上である。
本発明者の知見によれば、扁平部の厚みTが20mm以上の電極体では、過充電時に電極体内で温度差が大きくなり得る。このため、過充電を想定した対策が殊に重要である。ここに開示される技術によれば、通常使用時における電池特性と過充電時の信頼性(過充電耐性)とを高いレベルで両立することができる。したがって、電極体の厚みが厚い場合には、本発明の適用が特に好適である。
なお、本明細書において「扁平部の厚みT」とは、扁平形状の捲回電極体の扁平部の平均厚みをいう。
本発明者の知見によれば、扁平部の厚みTが20mm以上の電極体では、過充電時に電極体内で温度差が大きくなり得る。このため、過充電を想定した対策が殊に重要である。ここに開示される技術によれば、通常使用時における電池特性と過充電時の信頼性(過充電耐性)とを高いレベルで両立することができる。したがって、電極体の厚みが厚い場合には、本発明の適用が特に好適である。
なお、本明細書において「扁平部の厚みT」とは、扁平形状の捲回電極体の扁平部の平均厚みをいう。
上述の通り、ここで開示される非水電解質二次電池は、低SOC領域における入出力特性と、耐久性とを高いレベルで両立可能なことを特徴とする。さらには、過充電時に的確にCIDを作動させることのできる信頼性の高いものであり得る。したがって、かかる特徴を活かして、プラグインハイブリッド自動車やハイブリッド自動車等の動力源(駆動電源)として好適に利用し得る。
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の構成要素や一般的な製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
ここで開示される非水電解質二次電池は、電極体と非水電解質とを電池ケース内に収容した構成である。電池ケースとしては、例えばアルミニウム等の軽量な金属材製のものを好適に採用することができる。好適な一態様では、上記電池ケースには、該ケース内の圧力が上昇した際に作動する電流遮断機構(CID)を備えている。これにより、過充電耐性に優れた高容量の電池を提供することができる。
上記電極体は、正極活物質を有する正極と、負極活物質を有する負極とを備えており、負極の不可逆容量Ua(mAh)が正極の不可逆容量Uc(mAh)よりも大きい(すなわちUc<Uaの関係である)ことで特徴づけられる。これにより、放電末期の電池電圧の低下を負極起因とすることができ、低SOC領域においても高い入出力特性を発揮することができる(図1参照)。なお、「不可逆容量」は、単位不可逆容量(mAh/g)と活物質の質量(g)との積で算出される。このことから、正負極の不可逆容量は、それぞれ、活物質の単位不可逆容量(すなわち活物質の性状)、および/または、使用する活物質の質量によって調整することができる。
<負極>
負極は、負極活物質を有するものであれば特に限定されないが、典型的には、負極集電体上に負極活物質を含む負極活物質層が固着された形態である。このような負極は、例えば、以下のような方法で作製することができる。先ず、負極活物質とバインダ(結着剤)とを適当な溶媒(例えば、水やN−メチル−2−ピロリドン)に分散させ、ペースト状またはスラリー状の組成物を調製する。次に、この組成物を負極集電体の表面に付与した後、乾燥によって溶媒を除去する。これにより、負極集電体上に負極活物質層を備えた負極を作製することができる。
負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に採用し得る。
負極は、負極活物質を有するものであれば特に限定されないが、典型的には、負極集電体上に負極活物質を含む負極活物質層が固着された形態である。このような負極は、例えば、以下のような方法で作製することができる。先ず、負極活物質とバインダ(結着剤)とを適当な溶媒(例えば、水やN−メチル−2−ピロリドン)に分散させ、ペースト状またはスラリー状の組成物を調製する。次に、この組成物を負極集電体の表面に付与した後、乾燥によって溶媒を除去する。これにより、負極集電体上に負極活物質層を備えた負極を作製することができる。
負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に採用し得る。
負極活物質としては、1gあたりの単位不可逆容量が15mAh/g以上35mAh/g以下のものを用いることができる。単位不可逆容量を従来品より大きく、例えば15mAh/g以上(典型的には16mAh/g以上、例えば20mAh/g以上、好ましくは22mAh/g以上)とすることで、電池の入出力特性(特に低SOC領域における入出力特性)を向上させることができる。
しかしながら、本発明者の知見によれば、単純に単位不可逆容量を大きくすると、それに伴って耐久性が低下することがあり得る。図3は、負極単位不可逆容量と容量劣化傾きとの関係を示すグラフである。具体的には、先ず、単位不可逆容量のみが異なる7種類の負極活物質を用いてリチウムイオン二次電池を構築し、これらの電池についてサイクル試験(25℃・1000回)を行った。なお、負極活物質の質量等その他の条件は全て等しい。サイクル試験後の電池容量を外挿して、ルート則から容量劣化傾き(%/√(day))を算出した。図3に示すように、負極単位不可逆容量が増大するにつれて、容量劣化傾きが大きくなる。これは、負極単位不可逆容量の大きな電池では多くの電荷担体が負極活物質内に捕捉されてしまい、充放電に使用できる電荷担体(例えばリチウムイオン)の有効量が少なくなるためである。
そこで、ここで開示される技術では、単位不可逆容量を35mAh/g以下(典型的には、34mAh/g以下)とする。これにより、電池の耐久性(例えばサイクル特性や高温保存特性)を維持向上させることができる。このように、ここに開示される電池では幅広いSOC領域における入出力特性と耐久性とを両立することができる。
しかしながら、本発明者の知見によれば、単純に単位不可逆容量を大きくすると、それに伴って耐久性が低下することがあり得る。図3は、負極単位不可逆容量と容量劣化傾きとの関係を示すグラフである。具体的には、先ず、単位不可逆容量のみが異なる7種類の負極活物質を用いてリチウムイオン二次電池を構築し、これらの電池についてサイクル試験(25℃・1000回)を行った。なお、負極活物質の質量等その他の条件は全て等しい。サイクル試験後の電池容量を外挿して、ルート則から容量劣化傾き(%/√(day))を算出した。図3に示すように、負極単位不可逆容量が増大するにつれて、容量劣化傾きが大きくなる。これは、負極単位不可逆容量の大きな電池では多くの電荷担体が負極活物質内に捕捉されてしまい、充放電に使用できる電荷担体(例えばリチウムイオン)の有効量が少なくなるためである。
そこで、ここで開示される技術では、単位不可逆容量を35mAh/g以下(典型的には、34mAh/g以下)とする。これにより、電池の耐久性(例えばサイクル特性や高温保存特性)を維持向上させることができる。このように、ここに開示される電池では幅広いSOC領域における入出力特性と耐久性とを両立することができる。
負極単位不可逆容量は、種々の方法によって調整することができる。具体的には、例えば、ラマン分光法に基づくR値と、窒素吸着法に基づくBET比表面積SBET(m2/g)とを制御することで調整し得る。図4に、負極単位不可逆容量と上記性状(log(R×SBET))との関係を示す。ここに示すように、負極の性状が以下の関係:−0.03≦log(R×SBET)≦0.18を満たす場合、負極単位不可逆容量を15mAh/g〜35mAh/gの範囲に好適に調整することができる。なお、R値は、例えば、以下に示すような黒鉛化度(結晶性の)異なる2種以上の材料を混合することによって調整することができる。また、SBETは、例えば、粉砕や篩いがけ(分級)によって調整することができる。
負極活物質としては、上記負極単位不可逆容量の範囲を満たす限りにおいて特に限定されず、非水電解質二次電池の負極活物質として使用し得ることが知られているものを、1種または2種以上使用することができる。好適例として、結晶性の異なる2種以上の炭素材料(例えば、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)、カーボンナノチューブ等から選択される2種以上の炭素材料)の混合物が挙げられる。なかでも、黒鉛の表面に非晶質な炭素材料(例えば易黒鉛化炭素)からなる被膜が形成された形態の非晶質炭素被覆黒鉛を好ましく用いることができる。理論容量の大きな黒鉛を、電荷担体の吸蔵・放出スピードが速い非晶質炭素で被覆することにより、高エネルギー密度と高出力密度とを兼ね備えることができる。
かかる非晶質炭素被覆黒鉛は、従来公知の手法によって作製することができる。例えば、先ず、原料としての黒鉛材料と易黒鉛化炭素材料とを準備する。黒鉛材料としては、塊状黒鉛、鱗片状黒鉛等の天然黒鉛、炭素前駆体を焼成処理して得られる人造黒鉛、あるいは上記黒鉛に粉砕やプレス等の加工処理を施したもの等を用いることができる。また、易黒鉛化炭素材料としては、コークス(ピッチコークス、石油コークス等)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維等を用いることができる。次に、従来公知の手法、例えば、CVD法(Chemical Vapor Deposition)等の気相法、あるいは液相法や固相法等によって、黒鉛材料の表面に易黒鉛化炭素材料を付着させる。そして、この複合体を焼成して炭化させることにより、非晶質炭素被覆黒鉛を作製することができる。なお、R値は、例えば使用する原料の種類やその混合割合、焼成温度等によって、調整することができる。
バインダとしては、例えば、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等のポリマー材料を好適に用いることができる。また、本発明の効果を著しく損なわない限りにおいて、上記材料に加えて各種添加剤(例えば、増粘剤、分散剤、導電材等)を使用することもできる。例えば、増粘剤としては、カルボキシメチルセルロース(CMC)やメチルセルロース(MC)等を用いることができる。
負極活物質層全体に占める負極活物質の割合は、凡そ50質量%以上とすることが適当であり、通常は90質量%〜99.5質量%(例えば95質量%〜99質量%)とすることが好ましい。バインダを使用する場合には、負極活物質層全体に占めるバインダの割合は例えば凡そ0.5質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが好ましい。増粘剤等の各種添加剤を使用する場合には、負極活物質層全体に占める添加剤の割合は例えば凡そ0.5質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが好ましい。
単電池あたりに使用する負極活物質の質量は、上記不可逆容量の関係(Uc<Ua)を満たすように、あるいはエネルギー密度の観点から決定すればよい。例えば、負極集電体の単位面積当たりの負極活物質の質量は、片面あたり、5mg/cm2〜20mg/cm2(典型的には10mg/cm2〜15mg/cm2)程度とすることができる。
<正極>
正極は、正極活物質を備えるものであれば特に限定されないが、典型的には、正極集電体上に当該正極活物質を含む正極活物質層が固着された形態である。このような正極は、例えば、以下のような方法で作製することができる。先ず、正極活物質と導電材とバインダ(結着剤)とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させ、ペースト状またはスラリー状の組成物を調製する。次に、この組成物を正極集電体の表面に付与した後、乾燥によって溶媒を除去する。これにより、正極集電体上に正極活物質層を備えた正極を作製することができる。
正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に採用し得る。
正極は、正極活物質を備えるものであれば特に限定されないが、典型的には、正極集電体上に当該正極活物質を含む正極活物質層が固着された形態である。このような正極は、例えば、以下のような方法で作製することができる。先ず、正極活物質と導電材とバインダ(結着剤)とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させ、ペースト状またはスラリー状の組成物を調製する。次に、この組成物を正極集電体の表面に付与した後、乾燥によって溶媒を除去する。これにより、正極集電体上に正極活物質層を備えた正極を作製することができる。
正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に採用し得る。
正極活物質としては特に限定されず、非水電解質二次電池の正極活物質として使用し得ることが知られているものを、1種または2種以上採用することができる。好適例として、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO2、LiCoO2、LiFeO2、LiMn2O4、LiNi0.5Mn1.5O4,LiCrMnO4、LiFePO4等)が挙げられる。なかでも、構成元素としてLi,Ni,CoおよびMnを含む、層状構造(典型的には、六方晶系に属する層状岩塩型構造)のリチウムニッケルコバルトマンガン複合酸化物(例えば、LiNi1/3Co1/3Mn1/3O2)は、熱安定性に優れ、且つ高いエネルギー密度を実現し得るため好ましく用いることができる。
導電材としては、例えば、カーボンブラック(典型的にはアセチレンブラック、ケッチェンブラック)、活性炭、黒鉛、炭素繊維等の炭素材料を好適に用いることができる。バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂;ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイド;等のポリマー材料を好適に用いることができる。また、本発明の効果を著しく損なわない限りにおいて、上記材料に加えて各種添加剤(例えば、過充電時にガスを発生させる無機化合物、分散剤、増粘剤等)を使用することもできる。
正極活物質層全体に占める正極活物質の割合は、凡そ60質量%以上(典型的には60質量%〜99質量%)とすることが適当であり、通常は凡そ70質量%〜95質量%であることが好ましい。導電材を使用する場合、正極活物質層全体に占める導電材の割合は、例えば凡そ1質量%〜20質量%とすることができ、通常は凡そ2質量%〜10質量%とすることが好ましい。バインダを使用する場合、正極活物質層全体に占めるバインダの割合は、例えば凡そ0.5質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが好ましい。
単電池あたりに使用する正極活物質の質量は、上記不可逆容量の関係(Uc<Ua)やエネルギー密度の観点から決定すればよい。例えば、正極集電体の単位面積当たりの正極活物質の質量は、片面あたり、5mg/cm2〜35mg/cm2(典型的には10mg/cm2〜30mg/cm2)程度とすることができる。
ここで開示される好適な一態様では、負極充電容量Ca(mAh)と正極充電容量Cc(mAh)との比(Ca/Cc)が、以下の関係:1.2≦(Ca/Cc)≦1.5を満たしている。なお、「充電容量」は、活物質1gあたりの単位充電容量(mAh/g)と活物質の質量(g)との積で算出することができる。
容量比(Ca/Cc)を1.2以上(典型的には1.25以上)とすることで、過充電時に電荷担体が負極に固定化される(例えばリチウムが負極表面に析出する)ことを抑制することができる。これにより、熱安定性に優れた電池を実現することができる。また、容量比(Ca/Cc)を1.5以下(典型的には1.45以下)とすることで、初回充電時の負極の到達電位を比較的低く抑えることができ、非水電解質由来の分解物からなる被膜(いわゆるSEI(Solid Electrolyte Interface)被膜)を負極表面に好適に形成することができる。これにより、負極活物質と非水電解質との界面を一層安定化することができ、以後の充放電における非水電解質の還元分解を高いレベルで抑制することができる。したがって、ここで開示される電池は、長期に渡り高いエネルギー密度を発揮し得る耐久性に優れた電池を実現することができる。
容量比(Ca/Cc)を1.2以上(典型的には1.25以上)とすることで、過充電時に電荷担体が負極に固定化される(例えばリチウムが負極表面に析出する)ことを抑制することができる。これにより、熱安定性に優れた電池を実現することができる。また、容量比(Ca/Cc)を1.5以下(典型的には1.45以下)とすることで、初回充電時の負極の到達電位を比較的低く抑えることができ、非水電解質由来の分解物からなる被膜(いわゆるSEI(Solid Electrolyte Interface)被膜)を負極表面に好適に形成することができる。これにより、負極活物質と非水電解質との界面を一層安定化することができ、以後の充放電における非水電解質の還元分解を高いレベルで抑制することができる。したがって、ここで開示される電池は、長期に渡り高いエネルギー密度を発揮し得る耐久性に優れた電池を実現することができる。
<絶縁層>
上記正極および上記負極の直接接触を防ぐ絶縁層としては、典型的には、セパレータを用いることができる。セパレータとしては特に限定されず、正極活物質層と負極活物質層とを絶縁するとともに非水電解質の保持機能やシャットダウン機能を有するものであればよい。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シート(フィルム)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
上記正極および上記負極の直接接触を防ぐ絶縁層としては、典型的には、セパレータを用いることができる。セパレータとしては特に限定されず、正極活物質層と負極活物質層とを絶縁するとともに非水電解質の保持機能やシャットダウン機能を有するものであればよい。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔質樹脂シート(フィルム)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。
好適な一態様では、セパレータは上記多孔性樹脂シートの片面または両面(典型的には片面)に多孔質の耐熱層を備えた構成である。かかる多孔質耐熱層は、無機材料(例えば、アルミナ粒子等の無機フィラー類)とバインダとを含む層であり得る。あるいは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレン等の粒子)を含む層であり得る。これにより、例えば内部短絡等によって電池内が高温(典型的には160℃以上、例えば200℃以上)になった場合でも軟化や溶融をせず、形状を保持し得る(若干の変形は許容され得る)ものであり得る。換言すれば、セパレータの溶融温度は160℃以上(好ましくは200℃以上)であることが好ましい。
非水電解質は、典型的には、非水溶媒中に支持塩が溶解または分散した構成である。
支持塩としては、電荷担体(例えば、リチウムイオン、ナトリウムイオン、マグネシウムイオン等。リチウムイオン二次電池ではリチウムイオン。)を含むものであれば特に限定されず、一般的な非水電解質二次電池と同様のものを適宜選択して使用することができる。例えば電荷担体がリチウムイオンの場合は、LiPF6、LiBF4、LiClO4等のリチウム塩が例示される。このような支持塩は、1種を単独で、または2種以上を組み合わせて用いることができる。特に好ましい支持塩としてLiPF6が挙げられる。また、支持塩の濃度は、非水電解質全に対して0.7mol/L〜1.3mol/Lに調製することが好ましい。
支持塩としては、電荷担体(例えば、リチウムイオン、ナトリウムイオン、マグネシウムイオン等。リチウムイオン二次電池ではリチウムイオン。)を含むものであれば特に限定されず、一般的な非水電解質二次電池と同様のものを適宜選択して使用することができる。例えば電荷担体がリチウムイオンの場合は、LiPF6、LiBF4、LiClO4等のリチウム塩が例示される。このような支持塩は、1種を単独で、または2種以上を組み合わせて用いることができる。特に好ましい支持塩としてLiPF6が挙げられる。また、支持塩の濃度は、非水電解質全に対して0.7mol/L〜1.3mol/Lに調製することが好ましい。
非水溶媒としては、特に限定されず、一般的な非水電解質二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を用いることができる。好適な一態様では、カーボネート類を主体とする非水溶媒を用いる。具体的には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に用いることができる。
好適な一態様では、上述の支持塩と非水溶媒に加えてガス発生剤を含んでいる。ガス発生剤は、所定の電圧を超えると正極で酸化分解され、ガスを発生する添加剤である。ガス発生剤としては、酸化電位(vs. Li/Li+)が正極の充電上限電位以上であって、かかる電位を超えた場合(電池が過充電状態となった場合)に分解してガスを発生するような化合物であれば特に限定されず、同様の用途で用いられているもののなかから1種または2種以上を使用することができる。具体的には、ビフェニル化合物、アルキルビフェニル化合物、シクロアルキルベンゼン化合物、アルキルベンゼン化合物、有機リン化合物、フッ素原子置換芳香族化合物、カーボネート化合物、脂環式炭化水素等の芳香族化合物が挙げられる。より具体的な化合物(略称および該化合物の有する凡その酸化電位(vs. Li/Li+))としては、ビフェニル(BP;4.4V)、シクロヘキシルベンゼン(CHB;4.6V)、メチルフェニルカーボネート(MPhC;4.8V)、オルト−ターフェニル(OTP;4.3V)等が例示される。なお、各化合物の酸化電位は、従来公知の3極式セルを用いた測定方法により測定することができる。
使用するガス発生剤の種類は、例えば、正極活物質の種類、または、電池の作動電圧や上述の容量比(Ca/Cc)等を考慮して決定するとよい。好適な一態様では、電池のSOCが115%以上140%以下になった際に分解してガスが発生するよう、ガス発生剤の酸化電位を調整する。SOC115%以上(例えば120%以上)とすることで、通常使用時にガス発生剤が反応することを抑制し得る。このため、高い耐久性(例えば優れたサイクル特性や高温保存特性)を発揮することができる。また、SOC140%以下とすることで、過充電の初期段階で速やかにガスを発生させることができる。このため、CIDを迅速に作動させることができ、電池の信頼性を高めることができる。
発明者の知見によれば、ガス発生剤の反応開始SOC(反応開始電位、典型的には酸化電位)は、例えば酸化電位の異なる2種以上のガス発生剤を混合することによって、調整することができる。一例として、CHBとBPを用いた場合を図5に示す。図5では、横軸には、ガス発生剤全量(CHB添加量+BP添加量)を1とした時のCHBの占める割合を、縦軸には反応開始SOC(%)を示している。すなわち、CHB比率が0.0のときはBPのみを、CHB比率が1.0のときはCHBのみを、その間はCHBとBPを混合して用いている。ここに示すように、CHBとBPを所定の割合で混合することにより、反応開始SOCを凡そ120%〜130%の間で調整することができる。換言すれば、反応開始酸化電位(vs. Li/Li+)を凡そ4.4〜4.6Vの間の任意の値に調整することができる。同様に、反応開始SOCが130%を超えるガス発生剤を所望の場合には、CHBやBPよりも酸化電位の高いもの(例えばMPhC)を併用すればよい。反応開始SOCが120%以下のガス発生剤を所望の場合には、CHBやBPよりも酸化電位の低いもの(例えばOTP)を併用すればよい。このように、ガス発生剤の反応開始SOCは、酸化電位の異なる2種以上のガス発生剤の混合比率で比較的簡便に調節することができる。
好適な一態様では、上記正負極の充電容量比(Ca/Cc)とガス発生剤の反応開始SOCとが、以下の関係:(ガス発生剤の反応開始SOC(%)+5(%))/100≦(Ca/Cc)を満たしている。より具体的には、例えばSOC115%で反応開始するガス発生剤を用いる場合には、5%のマージンをとって、正負極の充電容量比(Ca/Cc)を1.20以上とすることが好ましい。また、SOC140%で反応開始するガス発生剤を用いる場合には、5%のマージンをとって、正負極の充電容量比(Ca/Cc)を1.45以上とすることが好ましい。このように、5%のマージン(好ましくは10%以上、より好ましくは15%以上)をとることで、非水電解質が負極で還元分解される前に、正極でガス発生剤を優先的に酸化分解することができる。したがって、過充電時にはガス発生剤を効率よく反応させることができ、大量のガスを迅速に発生させることができる。
ガス発生剤の添加量は特に限定されないが、過充電防止機構を作動させるのに十分なガス量を確保する観点からは、非水電解質100質量%に対して、凡そ0.05質量%以上が適当であり、好ましくは0.1質量%以上である。ただし、ガス発生剤は電池反応の抵抗成分となり得るため、過剰に添加した場合、入出力特性が低下することがあり得る。また、ガス発生剤は典型的には非極性であるため、極性を有する非水溶媒中で層分離を生じることがあり得る。
さらに、本発明者の知見によれば、過充電時に酸化分解反応が一気に生じることで、電池内の温度が上昇することがあり得る。図6は、横軸にガス発生剤の添加量(質量%)を、縦軸に電池の表面温度(℃)を表したグラフである。具体的には、ガス発生剤の添加量のみが異なる6種類の電池を構築し、過充電試験を行った際の電池表面の温度を計測した。発明者の検討によれば、電池容量や電極体の厚み等によっても異なり得るが、電池表面の温度が130℃を超えると、電極体の中心部が局所的にセパレータの溶融温度(例えば160℃)以上の高温状態になることがあり得る。セパレータが溶融して絶縁機能を失うと、正負極が短絡して、電池内の温度が上昇することがあり得る。このような観点から、ガス発生剤の添加量は、非水電解質100質量%に対して、凡そ5質量%以下、好ましくは4質量%以下に抑えることが好ましい。
さらに、本発明者の知見によれば、過充電時に酸化分解反応が一気に生じることで、電池内の温度が上昇することがあり得る。図6は、横軸にガス発生剤の添加量(質量%)を、縦軸に電池の表面温度(℃)を表したグラフである。具体的には、ガス発生剤の添加量のみが異なる6種類の電池を構築し、過充電試験を行った際の電池表面の温度を計測した。発明者の検討によれば、電池容量や電極体の厚み等によっても異なり得るが、電池表面の温度が130℃を超えると、電極体の中心部が局所的にセパレータの溶融温度(例えば160℃)以上の高温状態になることがあり得る。セパレータが溶融して絶縁機能を失うと、正負極が短絡して、電池内の温度が上昇することがあり得る。このような観点から、ガス発生剤の添加量は、非水電解質100質量%に対して、凡そ5質量%以下、好ましくは4質量%以下に抑えることが好ましい。
特に限定することを意図したものではないが、本発明の一実施形態に係る非水電解質二次電池の概略構成として、図2に模式的に示す非水電解質二次電池(単電池)を例として、本発明を詳細に説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は必ずしも実際の寸法関係を反映するものではない。
図2に示す非水電解質二次電池100は、正極シート10と負極シート20とが2枚のセパレータシート40A,Bを介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解質とともに、扁平な箱型形状の電池ケース50内に収容された構成を有する。
電池ケース50は、上端が開放された扁平な直方体形状(箱型)の電池ケース本体52と、その開口部を塞ぐ蓋体54とを備えている。電池ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する外部接続用の正極端子70、および捲回電極体80の負極と電気的に接続する負極端子72が設けられている。蓋体54にはまた、従来の非水電解質二次電池の電池ケースと同様に、電池ケース50の内部で発生したガスをケース50の外部に排出するための安全弁55が備えられている。
電池ケース50の内部には、電池ケースの内圧上昇により作動する電流遮断機構30が設けられている。電流遮断機構30は、電池ケース50の内圧が上昇した場合に少なくとも一方の電極端子から電極体80に至る導電経路(例えば、充電経路)を切断するように構成されていればよく、特定の形状に限定されない。例えば図2に示す形態では、電流遮断機構30は蓋体54に固定した正極端子70と電極体80との間に設けられ、電池ケース50の内圧(ガス圧)が上昇した場合に正極端子70から電極体80に至る導電経路を切断するように構成されている。具体的には、上記電流遮断機構30は、例えば第一部材32と第二部材34とを含み得る。そして、電池ケース50の内圧が上昇した場合に第一部材32および/または第二部材34(ここでは第一部材32)が変形して他方から離隔することにより上記導電経路を切断するように構成されている。この実施形態では、第一部材32は変形金属板であり、第二部材34は上記変形金属板32に接合された接続金属板である。変形金属板(第一部材)32は、中央部分が下方へ湾曲したアーチ形状を有し、その周縁部分が集電リード端子35を介して正極端子70の下面と接続されている。また、変形金属板32の湾曲部分33の先端が接続金属板34の上面と接合されている。接続金属板34の下面(裏面)には正極集電板74が接合され、かかる正極集電板74が電極体80の正極10に接続されている。このようにして、正極端子70から電極体80に至る導電経路が形成されている。
また、電流遮断機構30は、プラスチック等により形成された絶縁ケース38を備えている。絶縁ケース38は変形金属板32を囲むように設けられ、変形金属板32の上面を気密に密閉している。この気密に密閉された湾曲部分33の上面には、電池ケース50の内圧が作用しない。また、絶縁ケース38は、変形金属板32の湾曲部分33を嵌入する開口部を有しており、該開口部から湾曲部分33の下面を電池ケース50の内部に露出させている。この電池ケース50の内部に露出した湾曲部分33の下面には、電池ケース50の内圧が作用する。
かかる構成の電流遮断機構30において、電池ケース50の内圧が高まると、該内圧が変形金属板32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。この湾曲部分33の上方への押し上げは、電池ケース50の内圧が上昇するに従い増大する。そして、電池ケース50の内圧が設定圧力を超えると、湾曲部分33が上下反転し上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。これにより、正極端子70から電極体80に至る導電経路が切断され、過充電電流が遮断されるようになっている。
なお、電流遮断機構30は正極端子70側に限らず、負極端子72側に設けてもよい。また、電流遮断機構30は、上述した変形金属板32の変形を伴う機械的な切断に限定されず、例えば、電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。
かかる構成の電流遮断機構30において、電池ケース50の内圧が高まると、該内圧が変形金属板32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。この湾曲部分33の上方への押し上げは、電池ケース50の内圧が上昇するに従い増大する。そして、電池ケース50の内圧が設定圧力を超えると、湾曲部分33が上下反転し上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。これにより、正極端子70から電極体80に至る導電経路が切断され、過充電電流が遮断されるようになっている。
なお、電流遮断機構30は正極端子70側に限らず、負極端子72側に設けてもよい。また、電流遮断機構30は、上述した変形金属板32の変形を伴う機械的な切断に限定されず、例えば、電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。
電池ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解質とともに収容されている。捲回電極体80は、組み立てる前段階において、長尺シート状の正極(正極シート)10と、長尺シート状の負極(負極シート)20とを備えている。正極シート10は、長尺状の正極集電体と、その少なくとも一方の表面(典型的には両面)に長手方向に沿って形成された正極活物質層14とを備えている。負極シート20は、長尺状の負極集電体と、その少なくとも一方の表面(典型的には両面)に長手方向に沿って形成された負極活物質層24とを備えている。また、正極活物質層14と負極活物質層24との間には、両者の直接接触を防ぐ絶縁層が配置されている。ここでは、上記絶縁層として2枚の長尺シート状のセパレータ40A,Bを使用している。
このような捲回電極体80は、例えば、正極シート10、セパレータシート40A、負極シート20、セパレータシート40Bの順に重ね合わせた積層体を長手方向に捲回し、得られた捲回体を側面方向から押圧して拉げさせることによって扁平形状に成形することにより作製することができる。
このような捲回電極体80は、例えば、正極シート10、セパレータシート40A、負極シート20、セパレータシート40Bの順に重ね合わせた積層体を長手方向に捲回し、得られた捲回体を側面方向から押圧して拉げさせることによって扁平形状に成形することにより作製することができる。
捲回電極体80の捲回軸方向の一の端部から他の一の端部に向かう方向として規定される幅方向において、その中央部分には、正極集電体の表面に形成された正極活物質層14と負極集電体の表面に形成された負極活物質層24とが重なり合って密に積層された捲回コア部分が形成されている。また、捲回電極体80の捲回軸方向の両端部では、正極シート10の正極活物質層非形成部および負極シート20の負極活物質層非形成部が、それぞれ捲回コア部分から外方にはみ出ている。そして、正極側はみ出し部分には正極集電板74が、負極側はみ出し部分には負極集電板76が、それぞれ付設され、正極端子70および上記負極端子72とそれぞれ電気的に接続されている。
かかる構成の非水電解質二次電池100は、例えば、電池ケース50の開口部から捲回電極体80をその内部に収容し、該ケース50の開口部に蓋体54を取り付けた後、蓋体54に設けられた図示しない電解液注入孔から非水電解質を注入し、次いでかかる注入孔を溶接等により封止することによって構築することができる。
ここで開示される非水電解質二次電池は、優れた電池性能と信頼性(過充電時の耐性)とを高いレベルで両立可能なものであり得る。したがって、本発明の好ましい適用対象として、例えば、容量の大きな(例えば電池容量が20Ah以上の、典型的には25Ah以上の、例えば30Ah以上の)二次電池や、電極体の厚みが厚い(例えば、捲回電極体の扁平部の厚みTが10mm以上(典型的には20mm以上)であって、45mm未満(典型的には40mm以下)の)二次電池が挙げられる。
本発明者の知見によれば、捲回電極体の扁平部の厚みTが20mm以上の電極体では、過充電時に電極体内で温度差が大きくなり得る。例えば、図7に示すように、捲回電極体の中心部(捲芯)と外周部(最外周)との温度差が、最大で20℃近くになり得る。例えば過充電時に電池内の温度が上昇して、電極体外周部のセパレータがシャットダウン温度に到達しても、中心付近のセパレータが溶融し、絶縁機能が失われることがあり得る。これによって、正負極間が短絡すると、電池温度が上昇することがあり得る。したがって、このような大型または大容量の電池では、過充電を想定した対策(例えば電池ケースへのCIDの搭載)が殊に重要である。ここに開示される技術によれば、通常使用時における電池特性と過充電時の信頼性(過充電耐性)とを高いレベルで両立することができる。
本発明者の知見によれば、捲回電極体の扁平部の厚みTが20mm以上の電極体では、過充電時に電極体内で温度差が大きくなり得る。例えば、図7に示すように、捲回電極体の中心部(捲芯)と外周部(最外周)との温度差が、最大で20℃近くになり得る。例えば過充電時に電池内の温度が上昇して、電極体外周部のセパレータがシャットダウン温度に到達しても、中心付近のセパレータが溶融し、絶縁機能が失われることがあり得る。これによって、正負極間が短絡すると、電池温度が上昇することがあり得る。したがって、このような大型または大容量の電池では、過充電を想定した対策(例えば電池ケースへのCIDの搭載)が殊に重要である。ここに開示される技術によれば、通常使用時における電池特性と過充電時の信頼性(過充電耐性)とを高いレベルで両立することができる。
好適な一態様では、電池のエネルギー容量(Wh)を扁平部の厚みT(mm)で除した電極体厚みあたりのエネルギー容量(Wh/mm)が、4.4Wh/mm以下(例えば4.2Wh/mm以下)である。本発明者の検討によれば、上記範囲とすることで、例えば釘刺し試験時の温度上昇(発熱量)をより小さく抑えることができ、内部短絡に対する耐性をより高めることができる。
ここで開示される非水電解質二次電池は各種用途に利用可能であるが、従来品に比べて、高い電池特性を実現し得る(例えば、幅広いSOC領域における入出力特性と耐久性とを高いレベルで両立可能な)ことを特徴とする。また、優れた電池性能と信頼性(過充電時の耐性や内部短絡への耐性)とを高いレベルで両立可能なものであり得る。したがって、このような特徴を活かして、高エネルギー密度や高入出力密度が要求される用途、高い信頼性を要求される用途で好ましく用いることができる。かかる用途としては、例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載される駆動用電源が挙げられる。なお、かかる二次電池は、典型的には、それらの複数個を直列および/または並列に接続してなる組電池の形態で使用され得る。
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
(リチウムイオン二次電池の構築)
先ず、負極活物質として、表1に示すlog(R×SBET)を満たす球形化非晶質炭素被覆黒鉛C1〜C10を準備した。なお、上記Rは、ラマン分光法に基づくR値を表す。また、SBETは、窒素吸着法に基づくBET比表面積(m2/g)を表す。そして、この負極活物質と、バインダとしてのスチレンブタジエンゴムと、分散剤としてのカルボキシメチルセルロースとを、これら材料の質量比が99:0.5:0.5となるようにイオン交換水と混合して、スラリー状の組成物を調製した。この組成物を厚さ10μmの銅箔(負極集電体)の両面に塗付して、乾燥後にプレスすることによって、負極集電体上に負極活物質層を有する負極シートC1〜C10を作製した。
先ず、負極活物質として、表1に示すlog(R×SBET)を満たす球形化非晶質炭素被覆黒鉛C1〜C10を準備した。なお、上記Rは、ラマン分光法に基づくR値を表す。また、SBETは、窒素吸着法に基づくBET比表面積(m2/g)を表す。そして、この負極活物質と、バインダとしてのスチレンブタジエンゴムと、分散剤としてのカルボキシメチルセルロースとを、これら材料の質量比が99:0.5:0.5となるようにイオン交換水と混合して、スラリー状の組成物を調製した。この組成物を厚さ10μmの銅箔(負極集電体)の両面に塗付して、乾燥後にプレスすることによって、負極集電体上に負極活物質層を有する負極シートC1〜C10を作製した。
次に、この負極活物質1gあたりの単位不可逆容量を測定した。具体的には、先ず、上記作製した負極シートC1〜C10を、それぞれ□45mm×47mmの大きさに切り出した。これを、セパレータ(ここでは、片面に多孔質耐熱層を備えたポリエチレン製のものを用いた。)を介して、金属リチウムのシート(□47mm×49mm)と対向させ、積層体(電極体)を作製した。この積層体をラミネート製のケースに収容し、非水電解質(ここでは、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPF6を1.1mol/Lの濃度で溶解させたものを用いた。)を注液した。そして真空に引きながら、ラミネートシートの開口部を熱融着して、ラミネートシート型の2極式セルC1〜C10を構築した。次に、当該セルに対して、25℃の温度環境下で、上述のような充放電試験を実施し、それぞれ負極単位不可逆容量(mAh/g)を求めた。結果を、表1の当該欄に示す。
次に、正極活物質としてのLiNi0.38Co0.32Mn0.30O4粉末と、導電材としてのアセチレンブラックと、バインダとしてのポリフッ化ビニリデンとを、これら材料の質量比が94:3:3となるようにN−メチルピロリドンと混合して、スラリー状の組成物を調製した。この組成物を厚さ15μmの長尺状アルミニウム箔(正極集電体)の両面に塗付して、乾燥後にプレスすることによって、正極集電体上に正極活物質層を有する正極シートを作製した。
次に、正極活物質1gあたりの単位不可逆容量を測定した。具体的には、先ず、上記作製した正極シートを、□45mm×47mmの大きさに切り出した。これを、セパレータ(ここでは、片面に多孔質耐熱層を備えたポリエチレン製のものを用いた。)を介して金属リチウムのシート(□47mm×49mm)と対向させ、積層体(電極体)を作製した。この積層体をラミネート製のケースに収容し、非水電解質(ここでは、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPF6を1.1mol/Lの濃度で溶解させたものを用いた。)を注液した。そして真空に引きながら、ラミネートシートの開口部を熱融着して、ラミネートシート型の2極式セルを構築した。次に、当該セルに対して、25℃の温度環境下で、上述のような充放電試験を実施し、正極単位不可逆容量(mAh/g)を求めた。
上記負極シートC1〜C10について、負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積から、それぞれ負極不可逆容量Ua(mAh)を算出した。同様に、上記正極シートについて、上記正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積から正極不可逆容量Ua(mAh)を求めた。そして、UaとUcとを比較した。表1の当該欄にUaとUcの大小関係を示す。
上記負極シートC1〜C10について、負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積から、それぞれ負極不可逆容量Ua(mAh)を算出した。同様に、上記正極シートについて、上記正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積から正極不可逆容量Ua(mAh)を求めた。そして、UaとUcとを比較した。表1の当該欄にUaとUcの大小関係を示す。
次に、上記作製した負極シートC1〜C10のそれぞれを、2枚のセパレータシートを介して上記作製した正極シートと対向させて積層した。セパレータシートとしては、ポリエチレン(PE)の単層構造に、アルミナを含む耐熱層を備えた構成のものを用いた。この積層体を長尺方向に捲回した後、側面方向から押しつぶして拉げさせることによって、負極シートC1〜C10に対応する計10種類の扁平形状の捲回電極体を作製した。それぞれの電極体について、上述の方法により正負極の充電容量比(Ca/Cc)を算出し、捲回電極体の扁平部の厚み(mm)を計測した。結果を、表1の該当欄に示す。
次に、電池ケースの蓋体に正極端子および負極端子を取り付け、これらの端子を捲回電極体端部において露出した正極集電体(正極活物質層の未塗工部)および負極集電体(負極活物質層の未塗工部)にそれぞれ溶接した。また、正極端子と捲回電極体との間には、図2に示すような電流遮断機構を設置した。このようにして蓋体と連結された捲回電極体をアルミ製の角型電池ケースの開口部からその内部に収容し、開口部と蓋体を溶接した。
次に、非水電解液を準備した。すなわち、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とをEC:DMC:EMC=30:40:30の体積比で含む混合溶媒に、支持塩としてのLiPF6を1.1mol/Lの濃度で溶解させたものと、これに加えて、表1に示す種類および割合(質量%)でガス発生剤を含ませものをそれぞれ調製した。
そして、電池ケースの蓋体に設けられた電解液注入孔から非水電解液を注入した後、電池ケースの開口部を気密に封口した。このようにして、角型のリチウムイオン二次電池(例1〜例10)をそれぞれ3個ずつ構築した。
そして、電池ケースの蓋体に設けられた電解液注入孔から非水電解液を注入した後、電池ケースの開口部を気密に封口した。このようにして、角型のリチウムイオン二次電池(例1〜例10)をそれぞれ3個ずつ構築した。
(初期容量)
上記構築したリチウムイオン二次電池に対して、充電処理を行った。具体的には、25℃の環境下において、上記電池を正負極端子間の電圧が4.1Vになるまで1Cの定電流で充電(CC充電)し、続いて合計の充電時間が2.5時間になるまで定電圧で充電(CV充電)した後、10分間休止し、正負極端子間の電圧が3.0Vになるまで1/3Cの定電流で放電(CC放電)し、次いで合計の放電時間が3時間になるまで定電圧で放電(CV放電)した。そして、上記放電容量(CCCV放電容量)を初期容量とした。また、このときのエネルギー容量(Wh)を上記計測した電極体の扁平部の厚み(mm)で除すことにより、電極体の厚みあたりのエネルギー容量(Wh/mm)を算出した。結果を表1の該当欄に示す。
上記構築したリチウムイオン二次電池に対して、充電処理を行った。具体的には、25℃の環境下において、上記電池を正負極端子間の電圧が4.1Vになるまで1Cの定電流で充電(CC充電)し、続いて合計の充電時間が2.5時間になるまで定電圧で充電(CV充電)した後、10分間休止し、正負極端子間の電圧が3.0Vになるまで1/3Cの定電流で放電(CC放電)し、次いで合計の放電時間が3時間になるまで定電圧で放電(CV放電)した。そして、上記放電容量(CCCV放電容量)を初期容量とした。また、このときのエネルギー容量(Wh)を上記計測した電極体の扁平部の厚み(mm)で除すことにより、電極体の厚みあたりのエネルギー容量(Wh/mm)を算出した。結果を表1の該当欄に示す。
(反応抵抗)
次に、25℃の温度環境下において、上記電池をSOCが20%の状態に調整した。この電池について、25℃の温度環境下で、10Cの放電レートで3VまでCC放電を行い、放電から10秒間の電圧降下量を測定した。この電圧降下の値(mV)を対応する電流値(mA)で除してIV抵抗(mΩ)を算出した。結果を表1の該当欄に示す。
次に、25℃の温度環境下において、上記電池をSOCが20%の状態に調整した。この電池について、25℃の温度環境下で、10Cの放電レートで3VまでCC放電を行い、放電から10秒間の電圧降下量を測定した。この電圧降下の値(mV)を対応する電流値(mA)で除してIV抵抗(mΩ)を算出した。結果を表1の該当欄に示す。
表1に示すように、例10は相対的に低SOC領域におけるIV抵抗の値が高かった。これは、負極の不可逆容量Uaよりも正極の不可逆容量Ucが大きかった(Uc>Ua)ために、放電末期の電圧変化が正極電位起因となったためと考えられる。このことから、Uc<Uaとすることで、広範なSOC領域(特には低SOC領域)において優れた入出力特性を実現可能なことがわかった。
(高温保存試験)
次に、25℃の温度環境下において、上記電池をSOC85%の充電状態に調整した。この電池を、60℃の恒温槽に入れて100日間保存した。その後、上記初期容量と同様の手順で高温保存試験後の電池容量を測定し、[(高温保存後容量/初期容量)×100]により、容量維持率(%)を算出した。結果を表1の該当欄に示す。
次に、25℃の温度環境下において、上記電池をSOC85%の充電状態に調整した。この電池を、60℃の恒温槽に入れて100日間保存した。その後、上記初期容量と同様の手順で高温保存試験後の電池容量を測定し、[(高温保存後容量/初期容量)×100]により、容量維持率(%)を算出した。結果を表1の該当欄に示す。
表1に示すように、例8では、相対的に高温保存特性が低かった。これは、負極単位不可逆容量が大きすぎたためと考えられる。このことから、負極単位不可逆容量を35mAh/g以下とすることで、優れた耐久性(例えば高温保存特性)を実現可能なことがわかった。
以上の結果から、負極活物質1gあたりの負極単位不可逆容量が15mAh/g以上35mAh/g以下であり、且つ、負極不可逆容量Ua(mAh)と正極不可逆容量Uc(mAh)とがUc<Uaを満たすことで、低SOC領域における優れた入出力特性と、高い耐久性とを兼ね備えた電池を実現し得ることがわかった。
以上の結果から、負極活物質1gあたりの負極単位不可逆容量が15mAh/g以上35mAh/g以下であり、且つ、負極不可逆容量Ua(mAh)と正極不可逆容量Uc(mAh)とがUc<Uaを満たすことで、低SOC領域における優れた入出力特性と、高い耐久性とを兼ね備えた電池を実現し得ることがわかった。
(過充電試験)
さらに、25℃の温度環境下において、上記電池をSOC100%の充電状態(満充電状態)に調整し、過充電試験を行った。この電池を、以下(1)〜(3)のいずれかに該当するまで1Cの定電流で連続的に充電し、強制的に充電し続けた時の電池の挙動を観察した。
(1)SOCが200%に到達するまで
(2)電池電圧(正極電位と負極電位の差)が5Vになるまで
(3)CIDが作動するまで
結果を表1の該当欄に示す。表1では、(3)によって試験が終了した場合、すなわちCIDが安全に作動した場合を「○」、それ以外を「×」と表記している。
さらに、25℃の温度環境下において、上記電池をSOC100%の充電状態(満充電状態)に調整し、過充電試験を行った。この電池を、以下(1)〜(3)のいずれかに該当するまで1Cの定電流で連続的に充電し、強制的に充電し続けた時の電池の挙動を観察した。
(1)SOCが200%に到達するまで
(2)電池電圧(正極電位と負極電位の差)が5Vになるまで
(3)CIDが作動するまで
結果を表1の該当欄に示す。表1では、(3)によって試験が終了した場合、すなわちCIDが安全に作動した場合を「○」、それ以外を「×」と表記している。
表1に示すように、例9では、ガス発生剤を含まないため、CIDが作動しなかった。また、例6および例7についても、同様にCIDが作動しなかった。例6では、ガス発生剤の反応開始SOCと正負極の充電容量比(Ca/Cc)とが、以下の関係:(ガス発生剤の反応開始SOC+5)/100≦(Ca/Cc)を満たしていない。このため、過充電時に負極表面でリチウムの析出が生じ、非水電解液の還元分解が優先的に生じたことで、ガス発生剤の分解が生じ難く、電池内の圧力上昇幅が小さかったと考えられる。一方、例7では、電極体の厚みが厚いために、電池内部で温度ムラが生じていた。これによって局所的にセパレータの溶融が進行し、CIDの作動より先に他の終止条件に至ったと考えられる。
以上の結果から、ガス発生剤の反応開始SOCと正負極の充電容量比(Ca/Cc)とが、以下の関係:(ガス発生剤の反応開始SOC+5)/100≦(Ca/Cc)を満たすことで過充電耐性や熱的安定性に優れた電池を実現し得ることがわかった。例えばガス発生剤の反応開始SOCが115%以上140%以下のときには、1.2≦(Ca/Cc)≦1.5を満たすことで過充電耐性や熱的安定性に優れた電池を実現し得ることがわかった。
以上の結果から、ガス発生剤の反応開始SOCと正負極の充電容量比(Ca/Cc)とが、以下の関係:(ガス発生剤の反応開始SOC+5)/100≦(Ca/Cc)を満たすことで過充電耐性や熱的安定性に優れた電池を実現し得ることがわかった。例えばガス発生剤の反応開始SOCが115%以上140%以下のときには、1.2≦(Ca/Cc)≦1.5を満たすことで過充電耐性や熱的安定性に優れた電池を実現し得ることがわかった。
(釘刺し試験)
次に、25℃の温度環境下において、上記電池をSOC80%の充電状態に調整し、釘刺し試験を行った。具体的には、電池ケースの外表面に2枚の熱電対を貼り付けて、25℃の温度環境下において、角型の電池ケースの中央付近にΦ6mm、先端鋭度30°の鉄製の釘を、20mm/secの速度で直角に突き刺し、貫通させた。このときの電池の温度変化を計測した。結果を表1の該当欄に示す。表1では、発煙のみの場合を「○」と、継続的に温度上昇がみられた場合に「×」と表記している。
次に、25℃の温度環境下において、上記電池をSOC80%の充電状態に調整し、釘刺し試験を行った。具体的には、電池ケースの外表面に2枚の熱電対を貼り付けて、25℃の温度環境下において、角型の電池ケースの中央付近にΦ6mm、先端鋭度30°の鉄製の釘を、20mm/secの速度で直角に突き刺し、貫通させた。このときの電池の温度変化を計測した。結果を表1の該当欄に示す。表1では、発煙のみの場合を「○」と、継続的に温度上昇がみられた場合に「×」と表記している。
表1に示すように、例7では、熱的に不安定な状態に至った。これは、電極体の厚みあたりのエネルギー容量が高いため、温度上昇幅が大きくなったためと考えられる。
以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
ここで開示される電池は、幅広いSOC領域において優れた入出力特性を発揮し得ることを特徴とする。従って、かかる特徴を活かして、例えば低SOC領域で入出力特性が要求される用途で特に好適に用いることができる。このような用途として、例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載されるモーター用の動力源(駆動用電源)を挙げることができる。
10 正極シート(正極)
14 正極活物質層
20 負極シート(負極)
24 負極活物質層
30 電流遮断機構
32 変形金属板(導通部材;第一部材)
33 湾曲部分
34 接続金属板(導通部材;第二部材)
35 集電リード端子
36 接合点
38 絶縁ケース
40A,B セパレータシート(セパレータ)
50 電池ケース
52 電池ケース本体
54 蓋体
70 正極端子
72 負極端子
74 正極集電板
76 負極集電板
80 捲回電極体
100 非水電解質二次電池
14 正極活物質層
20 負極シート(負極)
24 負極活物質層
30 電流遮断機構
32 変形金属板(導通部材;第一部材)
33 湾曲部分
34 接続金属板(導通部材;第二部材)
35 集電リード端子
36 接合点
38 絶縁ケース
40A,B セパレータシート(セパレータ)
50 電池ケース
52 電池ケース本体
54 蓋体
70 正極端子
72 負極端子
74 正極集電板
76 負極集電板
80 捲回電極体
100 非水電解質二次電池
Claims (5)
- 正極活物質を有する正極と、負極活物質を有する負極と、を備える電極体と、
非水電解質と、を電池ケース内に収容した構成の非水電解質二次電池であって、
前記負極活物質1gあたりの負極単位不可逆容量が15mAh/g以上35mAh/g以下であり、且つ、
前記負極活物質1gあたりの負極単位不可逆容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極不可逆容量Ua(mAh)と、
前記正極活物質1gあたりの正極単位不可逆容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極不可逆容量Uc(mAh)とが、
Uc<Uaであることを特徴とする、非水電解質二次電池。 - 前記負極活物質の1gあたりの負極単位充電容量(mAh/g)と該負極活物質の質量(g)との積で算出される負極充電容量Ca(mAh)と、
前記正極活物質の1gあたりの正極単位充電容量(mAh/g)と該正極活物質の質量(g)との積で算出される正極充電容量Cc(mAh)と、の比(Ca/Cc)が、
1.2≦(Ca/Cc)≦1.5を満たす、請求項1に記載の非水電解質二次電池。 - 前記電池ケースは、該ケース内の圧力上昇時に作動する電流遮断機構を備え、且つ、
前記非水電解質は、電池のSOCが115%以上140%以下になった際に分解してガスを発生し得るガス発生剤を含む、請求項1または2に記載の非水電解質二次電池。 - 前記負極活物質は粒子状の非晶質炭素被覆黒鉛であり、
該黒鉛粒子のラマン分光法に基づくR値と、窒素吸着法に基づくBET比表面積SBET(m2/g)とが、以下の関係:−0.03≦log(R×SBET)≦0.18を満たす、請求項1から3のいずれか1項に記載の非水電解質二次電池。 - 前記電極体は扁平形状の捲回電極体であり、
該捲回電極体の扁平部の厚みTは20mm以上である、請求項1から4のいずれか1項に記載の非水電解質二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013138310A JP2015011930A (ja) | 2013-07-01 | 2013-07-01 | 非水電解質二次電池 |
PCT/IB2014/001239 WO2015001411A1 (en) | 2013-07-01 | 2014-06-11 | Non-aqueous electrolyte secondary battery |
CN201480038090.1A CN105359308A (zh) | 2013-07-01 | 2014-06-11 | 非水电解质二次电池 |
US14/902,206 US20160372798A1 (en) | 2013-07-01 | 2014-06-11 | Non-aqueous electrolyte secondary battery |
KR1020157036872A KR20160016920A (ko) | 2013-07-01 | 2014-06-11 | 비수전해질 이차 전지 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013138310A JP2015011930A (ja) | 2013-07-01 | 2013-07-01 | 非水電解質二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015011930A true JP2015011930A (ja) | 2015-01-19 |
Family
ID=51211814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013138310A Pending JP2015011930A (ja) | 2013-07-01 | 2013-07-01 | 非水電解質二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160372798A1 (ja) |
JP (1) | JP2015011930A (ja) |
KR (1) | KR20160016920A (ja) |
CN (1) | CN105359308A (ja) |
WO (1) | WO2015001411A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017107795A (ja) * | 2015-12-11 | 2017-06-15 | 株式会社デンソー | 非水電解質二次電池 |
JP2017107796A (ja) * | 2015-12-11 | 2017-06-15 | 株式会社デンソー | 非水電解質二次電池 |
WO2018123792A1 (ja) * | 2016-12-28 | 2018-07-05 | 日立オートモティブシステムズ株式会社 | 二次電池 |
WO2018155582A1 (ja) * | 2017-02-24 | 2018-08-30 | エリーパワー株式会社 | 非水電解質二次電池及び充電方法 |
WO2019111644A1 (ja) * | 2017-12-04 | 2019-06-13 | 日立オートモティブシステムズ株式会社 | 二次電池 |
WO2019103470A3 (en) * | 2017-11-21 | 2019-08-15 | Samsung Electronics Co., Ltd. | All-solid-state secondary battery and method of charging the same |
JP2022143313A (ja) * | 2021-03-17 | 2022-10-03 | プライムプラネットエナジー&ソリューションズ株式会社 | 再生リチウムイオン二次電池の製造方法 |
JP2022143310A (ja) * | 2021-03-17 | 2022-10-03 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 |
US11824155B2 (en) | 2019-05-21 | 2023-11-21 | Samsung Electronics Co., Ltd. | All-solid lithium secondary battery and method of charging the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10276868B2 (en) | 2015-12-11 | 2019-04-30 | Denso Corporation | Non-aqueous electrolyte rechargeable battery |
KR20220001661A (ko) * | 2020-06-30 | 2022-01-06 | 에스케이이노베이션 주식회사 | 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지 |
WO2024152228A1 (zh) * | 2023-01-18 | 2024-07-25 | 宁德时代新能源科技股份有限公司 | 阴极极片、阳极极片、电池单体、电池和用电装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110250A (ja) * | 2000-09-27 | 2002-04-12 | At Battery:Kk | 非水系電解液二次電池 |
JP2004273424A (ja) * | 2003-02-20 | 2004-09-30 | Mitsubishi Chemicals Corp | リチウム二次電池負極及びリチウム二次電池 |
WO2011145301A1 (ja) * | 2010-05-18 | 2011-11-24 | パナソニック株式会社 | リチウム二次電池 |
JP2012182025A (ja) * | 2011-03-01 | 2012-09-20 | Toyota Motor Corp | 二次電池 |
JP2013069490A (ja) * | 2011-09-21 | 2013-04-18 | Toyota Motor Corp | 密閉型リチウム二次電池の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0917431A (ja) | 1995-06-27 | 1997-01-17 | Hitachi Ltd | リチウム二次電池 |
US6605390B1 (en) * | 1999-09-10 | 2003-08-12 | Daimlerchrysler Corporation | Lithium ion battery utilizing carbon foam electrodes |
JP2002216761A (ja) * | 2001-01-24 | 2002-08-02 | Sagaken Chiiki Sangyo Shien Center | リチウムイオン電池用正極及びロッキングチェアー型リチウムイオン電池 |
JP2002280076A (ja) * | 2001-03-15 | 2002-09-27 | Hitachi Ltd | リチウム二次電池、リチウム二次電池を用いたモジュール及びこれらを用いた装置 |
JP2004349141A (ja) * | 2003-05-23 | 2004-12-09 | Sanyo Electric Co Ltd | 扁平巻回電極体を備えた電池及びその製造方法 |
KR100977965B1 (ko) * | 2006-08-25 | 2010-08-24 | 주식회사 엘지화학 | 리튬의 삽입이 가능한 고가역성 전극활물질, 그 제조방법,이를 포함하는 전극, 및 이차전지 |
EP2304837B1 (en) * | 2008-06-30 | 2017-01-04 | LG Chem, Ltd. | Cylindrical lithium secondary battery |
US8524113B2 (en) * | 2010-09-27 | 2013-09-03 | Long Time Technology Corp., LTD. | Anode material of lithium-ion secondary battery and preparation method thereof |
EP2701231A4 (en) * | 2011-04-20 | 2014-11-19 | Panasonic Corp | NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
-
2013
- 2013-07-01 JP JP2013138310A patent/JP2015011930A/ja active Pending
-
2014
- 2014-06-11 CN CN201480038090.1A patent/CN105359308A/zh active Pending
- 2014-06-11 KR KR1020157036872A patent/KR20160016920A/ko not_active Application Discontinuation
- 2014-06-11 US US14/902,206 patent/US20160372798A1/en not_active Abandoned
- 2014-06-11 WO PCT/IB2014/001239 patent/WO2015001411A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110250A (ja) * | 2000-09-27 | 2002-04-12 | At Battery:Kk | 非水系電解液二次電池 |
JP2004273424A (ja) * | 2003-02-20 | 2004-09-30 | Mitsubishi Chemicals Corp | リチウム二次電池負極及びリチウム二次電池 |
WO2011145301A1 (ja) * | 2010-05-18 | 2011-11-24 | パナソニック株式会社 | リチウム二次電池 |
JP2012182025A (ja) * | 2011-03-01 | 2012-09-20 | Toyota Motor Corp | 二次電池 |
JP2013069490A (ja) * | 2011-09-21 | 2013-04-18 | Toyota Motor Corp | 密閉型リチウム二次電池の製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017107796A (ja) * | 2015-12-11 | 2017-06-15 | 株式会社デンソー | 非水電解質二次電池 |
JP2017107795A (ja) * | 2015-12-11 | 2017-06-15 | 株式会社デンソー | 非水電解質二次電池 |
JPWO2018123792A1 (ja) * | 2016-12-28 | 2019-06-27 | 日立オートモティブシステムズ株式会社 | 二次電池 |
WO2018123792A1 (ja) * | 2016-12-28 | 2018-07-05 | 日立オートモティブシステムズ株式会社 | 二次電池 |
WO2018155582A1 (ja) * | 2017-02-24 | 2018-08-30 | エリーパワー株式会社 | 非水電解質二次電池及び充電方法 |
WO2019103470A3 (en) * | 2017-11-21 | 2019-08-15 | Samsung Electronics Co., Ltd. | All-solid-state secondary battery and method of charging the same |
US10985407B2 (en) | 2017-11-21 | 2021-04-20 | Samsung Electronics Co., Ltd. | All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same |
US11764407B2 (en) | 2017-11-21 | 2023-09-19 | Samsung Electronics Co., Ltd. | All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same |
US11929463B2 (en) | 2017-11-21 | 2024-03-12 | Samsung Electronics Co., Ltd. | All-solid-state secondary battery and method of charging the same |
WO2019111644A1 (ja) * | 2017-12-04 | 2019-06-13 | 日立オートモティブシステムズ株式会社 | 二次電池 |
US11824155B2 (en) | 2019-05-21 | 2023-11-21 | Samsung Electronics Co., Ltd. | All-solid lithium secondary battery and method of charging the same |
JP2022143313A (ja) * | 2021-03-17 | 2022-10-03 | プライムプラネットエナジー&ソリューションズ株式会社 | 再生リチウムイオン二次電池の製造方法 |
JP2022143310A (ja) * | 2021-03-17 | 2022-10-03 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池及びリチウムイオン二次電池の製造方法 |
JP7242735B2 (ja) | 2021-03-17 | 2023-03-20 | プライムプラネットエナジー&ソリューションズ株式会社 | 再生リチウムイオン二次電池の製造方法 |
JP7286697B2 (ja) | 2021-03-17 | 2023-06-05 | プライムプラネットエナジー&ソリューションズ株式会社 | リチウムイオン二次電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160372798A1 (en) | 2016-12-22 |
WO2015001411A1 (en) | 2015-01-08 |
CN105359308A (zh) | 2016-02-24 |
KR20160016920A (ko) | 2016-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7045539B2 (ja) | 二次電池用正極及びそれを含むリチウム二次電池 | |
JP2015011930A (ja) | 非水電解質二次電池 | |
JP5896218B2 (ja) | 密閉型非水電解質二次電池 | |
JP5554780B2 (ja) | 非水電解質二次電池 | |
JP5727019B2 (ja) | 非水電解質電池及び電池パック | |
US9484599B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6043339B2 (ja) | 非水電解質二次電池用電極、非水電解質二次電池と電池パック | |
JP6152825B2 (ja) | 非水電解液二次電池 | |
JP2013235653A (ja) | 密閉型非水電解質二次電池 | |
KR102345309B1 (ko) | 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
JP6297991B2 (ja) | 非水電解質二次電池 | |
JP5411813B2 (ja) | 非水電解質二次電池及びそれを有する電池システム | |
JP6755182B2 (ja) | リチウムイオン二次電池 | |
JP2014010981A (ja) | 非水電解質二次電池 | |
JP5835617B2 (ja) | 密閉型リチウム二次電池 | |
JP2006351306A (ja) | 非水電解液二次電池 | |
WO2013145110A1 (ja) | 非水電解質二次電池用電極、非水電解質二次電池と電池パック | |
KR101858334B1 (ko) | 비수 전해질 이차 전지 | |
JP5618156B2 (ja) | 密閉型リチウム二次電池の製造方法 | |
WO2020202661A1 (ja) | リチウムイオン二次電池 | |
JP5725381B2 (ja) | 非水電解液二次電池及びその製造方法 | |
WO2016171276A1 (ja) | リチウムイオン電池 | |
JP5904366B2 (ja) | 非水電解質二次電池およびその製造方法 | |
JP2017054736A (ja) | リチウムイオン二次電池用電解液、およびリチウムイオン二次電池の製造方法 | |
JP2016024898A (ja) | 正極、これを用いた二次電池およびこれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160519 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170105 |