JP2014518171A - 3次元物体を線形凝固を用いて形成するための装置および方法 - Google Patents
3次元物体を線形凝固を用いて形成するための装置および方法 Download PDFInfo
- Publication number
- JP2014518171A JP2014518171A JP2014518960A JP2014518960A JP2014518171A JP 2014518171 A JP2014518171 A JP 2014518171A JP 2014518960 A JP2014518960 A JP 2014518960A JP 2014518960 A JP2014518960 A JP 2014518960A JP 2014518171 A JP2014518171 A JP 2014518171A
- Authority
- JP
- Japan
- Prior art keywords
- energy
- solidification
- coagulation
- data
- solidification energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007711 solidification Methods 0.000 title claims abstract description 484
- 230000008023 solidification Effects 0.000 title claims abstract description 484
- 238000000034 method Methods 0.000 title claims abstract description 149
- 239000000463 material Substances 0.000 claims abstract description 226
- 238000005345 coagulation Methods 0.000 claims description 230
- 230000015271 coagulation Effects 0.000 claims description 230
- 239000000758 substrate Substances 0.000 claims description 203
- 238000010276 construction Methods 0.000 claims description 132
- 239000012528 membrane Substances 0.000 claims description 114
- 230000033001 locomotion Effects 0.000 claims description 47
- 238000012360 testing method Methods 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 24
- 230000001360 synchronised effect Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 21
- 241000238876 Acari Species 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 12
- 239000006117 anti-reflective coating Substances 0.000 claims description 12
- 230000003213 activating effect Effects 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 230000007935 neutral effect Effects 0.000 claims description 6
- 230000009849 deactivation Effects 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 239000005304 optical glass Substances 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 230000003667 anti-reflective effect Effects 0.000 claims 1
- 230000000750 progressive effect Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 abstract description 22
- 229920005989 resin Polymers 0.000 abstract description 22
- 239000010410 layer Substances 0.000 description 118
- 230000000875 corresponding effect Effects 0.000 description 54
- 230000008569 process Effects 0.000 description 47
- 230000005670 electromagnetic radiation Effects 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 13
- 230000000630 rising effect Effects 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 206010053567 Coagulopathies Diseases 0.000 description 6
- 230000000712 assembly Effects 0.000 description 6
- 238000000429 assembly Methods 0.000 description 6
- 230000035602 clotting Effects 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 4
- 238000011960 computer-aided design Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 229920001774 Perfluoroether Polymers 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- -1 acyl phosphine oxides Chemical class 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 2
- 229920001780 ECTFE Polymers 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000005594 diketone group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 229920006353 Acrylite® Polymers 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920007925 Ethylene chlorotrifluoroethylene (ECTFE) Polymers 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000004428 fluoroalkoxy group Chemical group 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000031915 positive regulation of coagulation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000982 solution X-ray diffraction Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/241—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/236—Driving means for motion in a direction within the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/772—Articles characterised by their shape and not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
Abstract
Description
この出願は、2012年2月14日に出願された米国仮特許出願番号第61/598,666号および2011年6月28日に出願された米国仮特許出願番号第61/502,020号の利益を請求し、これらの米国仮特許出願の各々は全文、参照により援用される。
この開示は、3次元物体を製造するための装置および方法に関し、より具体的には、このような物体を形成するよう線形凝固を用いるための装置および方法に関する。
3次元ラピッドプロトタイピングおよびマニュファクチャリングは、高精度で部品の迅速かつ正確な製造を可能にする。このような技術を用いると、機械加工ステップが低減または除去され得るとともに、部品の中には、製造に用いられる材料に依存して、それらの正規の製造相当物と機能的に均等となり得るものがある。
詳細な説明
図面は、3次元物体を凝固可能材料から製造するための装置および方法の例を示す。上記に基づき、本願明細書において用いられる用語は単純に簡便さのためであり、本発明を説明するよう用いられる用語は、当業者によってもっとも広い意味が与えられるべきであるということが一般的に理解されるべきである。
式中、Nmax=構築エンベロープ内においてx軸方向での線走査動作の最大回数であり
L=x軸方向における構築エンベロープの所望の長さ(mm)であり、
S=x軸方向における凝固エネルギー源の移動の速度(mm/sec)であり、
RPM=回転エネルギーデフレクタの回転数(回転/分)であり、
F=回転エネルギーデフレクタ上のファセットの数である。
式(2)では、境界からのステップの数は、構築エンベロープ境界343にて開始され、左から右に移動して数えられるか、または構築エンベロープ境界345にて開始され右から左に移動して数えられるモータステップの数を指す。ある長さを有する特定の3次元物体レイヤーは、構築エンベロープ342内で行われるある回数の線形走査によって形成され得る。
式中、
誤差は、切替遅延時間による部分寸法における最大変動(μm)であり、
LBEは、走査(y)軸方向における構築エンベロープ距離(mm)であり、
RPMは、回転エネルギーデフレクタ92の回転数(回転/分)であり、
Fは、回転エネルギーデフレクタ92上のファセットの数であり、
ttoggle lagは、マイクロプロセッサが凝固エネルギー源の状態を切り替えるのに必要な時間である。
式中、ΔCPUチックは、中心点CPUチックから古いCPUチックを減算することによって計算され、Cは無次元常数である。「中心点CPUチック」という変数は、凝固エネルギーが中心点に当たるCPUチックの数を指す。一般に、走査軸方向に沿った全走査線の中点に対応する。
式中yoldは、(数学的または図解的に)3次元物体のスライス302iを構築エンベロープ上に配置することにより決定されるようにエネルギー付加状態が変化するy軸基準位置に対するy軸位置(たとえば、図16(c)における境界344)であり、
ycenter pointは、y軸基準位置(たとえば、図16(c)における境界344)に対する中心点の位置であり、
ynewは、エネルギー付加状態が変化する新しい修正されたy軸値であり、
Cは無次元常数である。
式中、d(1,m)は、コンピュータメモリインデックスmの所与の値でのレイヤー1についてのストリングデータである。
式中、ステップは、構築エンベロープX軸境界から、インデックス値nを有する線走査が行われる位置までのモータステップの数であり、
Wは、単位がステップ/mmである、x軸方向における単位長さあたりのモータ76についてのモータステップの比であり、
Sは、単位がmm/秒である、モータ76の速度であり、
RPMは、単位が毎分回転数である、回転エネルギーデフレクタの回転数であり、
Fは、回転エネルギーデフレクタ上のファセットの数である。
(7) ステップにおける修正される構築エンベロープ長=ステップ(予測)+ステップオフセット
(8) Wcorrected=単位がステップ/Lである、修正構築エンベロープ長
式中、ΔLは、テストパーツレイヤーの第1および第2のセット同士の間の測定されたオフセット寸法(mm)であり、ΔLの正の値は、左から右のレイヤーが右から左のレイヤーに対して左側にオフセットしていることを示し、ΔLの負の数は、右から左のレイヤーが右から左のレイヤーに対して右にオフセットしていることを示しており、
Wは、Wのオリジナルの予測値(ステップ/mm)であり、
Lは構築エンベロープ長(mm)であり、
ステップ(予測)は、モータ回転数、ギア比、およびW*Lに等しい(Lは単位がmmである構築エンベロープ長)プーリ径に基づき、構築エンベロープ長Lに対応すると予測されるオリジナルのステップの数であり、
Wcorrectedは、Wの修正された値である。
式中、s=y軸方向における凝固エネルギービームの進行の速度(たとえばcm/sec)であり、
l=進行の最大長さ(たとえばcm)であり、
Δtmax=凝固エネルギーセンサによって生成される連続する感知される凝固エネルギー信号同士の間の経過時間(たとえば秒)。
式中、y=y軸の始点に対する、凝固可能材料に沿った凝固エネルギービームのy軸位置(たとえばcm)であり、
s=式(1)からの凝固エネルギービームの進行の速度であり、
Δt=センサからの前回の凝固エネルギー信号からの経過時間である。
式中、Ls=センサの感知エリアの線形距離であり、
LBE=走査(y)軸方向における構築エンベロープの長さ(すなわち全走査の線形長さ)であり、
RPM=回転エネルギーデフレクタ92の回転速度(回転/分)であり、
F=回転エネルギーデフレクタ92上のファセットの数である。
式中、Iは、供給された凝固エネルギーの強度(たとえば、ワット/ピクセル)であり、積分は露出時間期間Δtに亘って行われる。
Claims (115)
- 3次元物体を凝固可能材料から作製するための装置であって、
第1の方向に移動可能な凝固エネルギー源を含み、前記凝固エネルギー源は、前記第1の方向に移動する際に、第2の方向に選択的に凝固エネルギーを照射し、前記装置はさらに、
前記第1の方向に移動可能であるとともに前記第1の方向に実質的に垂直である回転面において回転可能である回転エネルギーデフレクタを含み、前記回転エネルギーデフレクタは前記凝固エネルギー源に光学的に連通しており、前記凝固エネルギー源が前記第2の方向に凝固エネルギーを照射する際、前記回転エネルギーデフレクタは、前記凝固エネルギーを前記凝固可能材料に向かうよう偏向し、偏向された前記凝固エネルギーは前記凝固可能材料を凝固する、装置。 - 前記凝固エネルギー源が前記第2の方向に凝固エネルギーを照射する際、偏向された光が前記凝固可能材料を走査方向に走査する、請求項1に記載の装置。
- 前記凝固エネルギー源は前記第1の方向に第1の速度で移動し、偏向された前記凝固エネルギーは、ある走査速度で前記走査方向に前記凝固可能材料を走査し、前記走査速度は前記第1の速度の少なくとも1000倍である、請求項1に記載の装置。
- 前記回転エネルギーデフレクタは1つ以上のファセットを有するミラーであり、各ファセットは前記レーザダイオードに光学的に連通する回転位置を有する、請求項1に記載の装置。
- 前記回転エネルギーデフレクタと前記凝固可能材料の源との間に少なくとも1つのレンズをさらに含み、前記レンズは約380nm〜約420nmの範囲の波長を有する入射光の少なくとも95%を透過するように反射防止コーティングでコーティングされる、請求項1に記載の装置。
- 前記反射防止コーティングはMgF2コーティングである、請求項5に記載の装置。
- 前記少なくとも1つのレンズは第1および第2のF−θレンズであり、前記第1のF−θレンズは前記回転光デフレクタと前記第2のF−θレンズとの間に存在し、前記第1のF−θレンズは入射面と透過面とを有し、前記第2のF−θレンズは入射面と透過面とを有し、前記第1のF−θレンズの透過面の曲率半径は、前記第2のF−θレンズの透過面の曲率半径よりも小さい、請求項5に記載の装置。
- 前記凝固エネルギー源と前記回転エネルギーデフレクタとの間にコリメートレンズをさらに含む、請求項1に記載の装置。
- 前記コリメートレンズはBK−7光学ガラスから形成される、請求項8に記載の装置。
- 前記コリメートレンズは約4.0mm〜約4.1mmの有効焦点距離を有する、請求項8に記載の装置。
- 前記回転エネルギーデフレクタに光学的に連通する凝固エネルギーセンサをさらに含む、請求項1に記載の装置。
- 前記回転エネルギーデフレクタと前記凝固エネルギーセンサとに光学的に連通するミラーをさらに含み、前記凝固エネルギー源が同期動作の間に前記第2の方向に凝固エネルギーを照射する際、偏向された光は前記ミラーから反射し、前記ミラーから前記センサに送られる、請求項11に記載の装置。
- 前記凝固エネルギーセンサに送られる光を受け取るとともにフィルタリングするよう位置決めされるニュートラルデンシティフィルタをさらに含む、請求項11に記載の装置。
- 前記装置は構築エンベロープを含んでおり、前記構築エンベロープは、照射された凝固エネルギーが前記回転エネルギーデフレクタからその中へと偏向され得る前記凝固可能材料の部分であり、前記回転面における前記回転光デフレクタの回転位置は、前記構築エンベロープ内の前記走査方向軸に沿った、偏向された凝固エネルギーの位置を規定しており、前記凝固エネルギーセンサが偏向された凝固エネルギーを受け取る際、前記回転エネルギーデフレクタの回転位置は、前記構築エンベロープの境界に対応する、請求項11に記載の装置。
- 照射された凝固エネルギーは走査方向軸に沿って前記凝固可能材料上に凝固エネルギー走査線を作り出すよう回転エネルギーデフレクタから偏向され、前記凝固エネルギーセンサによる偏向されたセンサエネルギーの受け取りは、前記走査軸方向に沿った走査線境界位置に対応する、請求項11に記載の装置。
- 前記3次元物体についての形状情報に基づき前記凝固エネルギー源を選択的に活性化する凝固エネルギー源コントローラをさらに含む、請求項1に記載の装置。
- 前記形状情報は、複数の物体断面ストリップに対応する物体データを含み、各物体断面ストリップは、長さ方向を規定する長さと幅方向を規定する幅とを有し、前記複数のストリップは幅方向に沿って幅方向に配される、請求項16に記載の装置。
- 前記凝固エネルギー源はエネルギー付加状態を有しており、前記凝固エネルギー源コントローラはデータストリングの複数のセットに従って前記凝固エネルギー源のエネルギー付加状態を選択的に変更し、データストリングの複数のセットの各々は前記3次元物体のレイヤーに対応し、各データストリングセット中のデータストリングの各セットは、物体断面ストリップに対応するとともに前記凝固エネルギー源のエネルギー付加状態が変更される時間を規定する複数の数を含む、請求項17に記載の装置。
- 前記凝固エネルギー源は、約380nm〜420nmの波長を有する光を照射するレーザダイオードである、請求項1に記載の装置。
- 前記レーザダイオードは少なくとも約300mWのパワー出力を有する、請求項19に記載の装置。
- 前記レーザダイオードは少なくとも約5ミリラジアンのビーム広がりを有する、請求項19に記載の装置。
- 前記凝固エネルギー源は第1の凝固エネルギー源であり、前記装置は前記第1の方向に移動可能な第2の凝固エネルギー源をさらに含み、前記第2の凝固エネルギー源は、前記第1の方向に移動する際に選択的に前記第2の方向に凝固エネルギーを照射する、請求項1に記載の装置。
- 第1および第2のプリズムをさらに含み、前記第1のプリズムが、前記第1の凝固エネルギー源から送られる凝固エネルギーを受け取るとともに前記第2のプリズムが前記第2の凝固エネルギー源から送られる凝固エネルギーを受け取る場合、前記第1のプリズムは前記第1の凝固エネルギー源と前記回転エネルギーデフレクタとの間に配置され、前記第2のプリズムは前記第2の凝固エネルギー源と前記回転エネルギーデフレクタとの間に配置される、請求項22に記載の装置。
- 前記第1の凝固エネルギー源と前記第1のプリズムとの間に配置される第1のコリメータと、前記第2の凝固エネルギー源と前記第2のプリズムの間に配置される第2のコリメータとをさらに含む、請求項23に記載の装置。
- 前記回転エネルギーデフレクタは、約1,000RPM〜約10,000RPMの回転速度で回転する、請求項1に記載の装置。
- 構築エンベロープ、第1のオフセット領域、および第2のオフセット領域を規定する前記凝固可能材料の源をさらに含み、3次元物体構築動作の間、前記3次元物体は前記第1のオフセット領域または前記第2のオフセット領域ではなく前記構築エンベロープ中に構築され、前記装置はさらに、
前記構築エンベロープから離れる方向において前記凝固エネルギーの源の進行端部の位置を検出するための、前記第1のオフセット領域における進行端部センサを含む、請求項1に記載の装置。 - 前記凝固エネルギー源は、線形走査データのセットに従って選択的に凝固エネルギーを照射し、線形走査データの各セットは、前記3次元物体のレイヤーに対応し、データストリングの複数のセットを含み、データストリングの各セットは、最小値から最大値までの範囲のストリングインデックスと、複数の時間値とを有し、各時間値は凝固源エネルギー付加状態変更イベントに対応し、各最小のストリングインデックス値は、前記第1のオフセット領域と前記構築エンベロープとの間の境界に対応する、請求項26に記載の装置。
- 線形走査データの各セットは、前記第2のオフセット領域と前記構築エンベロープとの間の境界に対応する最大ストリングインデックス値を有する、請求項27に記載の装置。
- ホストコンピュータとマイクロコンピュータとをさらに含み、前記ホストコンピュータは線形走査データの各セットに対応するストリングデータのセットを前記マイクロコンピュータに送信し、前記マイクロコンピュータは、前記ストリングデータのセットに従って選択的に前記第2の方向に凝固エネルギーを照射するとともに前記第1の方向に前記凝固エネルギー源を移動するようプログラムされる中央処理装置を含む、請求項27に記載の装置。
- 前記マイクロコンピュータは、レイヤー凝固動作の間に割込を禁止するようプログラムされる、請求項29に記載の装置。
- 3次元物体を凝固可能材料から作製する方法であって、
凝固エネルギーの源を第1の方向に移動するステップと、
前記凝固エネルギーの源が前記第1の方向に移動する際に、前記凝固可能材料の露出面に沿って第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップとを含む、方法。 - 前記第1の方向は前記第2の方向に実質的に垂直である、請求項31に記載の方法。
- 前記凝固エネルギーの源が前記第1の方向に移動する際に、前記凝固可能材料の露出面に沿って第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップは、線走査動作の連なりを行うステップを含み、前記方法はさらに、タイマーを各線走査動作の始まりに同期するステップを含む、請求項31に記載の方法。
- 前記凝固エネルギーの源に光学的に連通する凝固エネルギーセンサを設けるステップをさらに含み、タイマーを線走査動作の始まりに同期するステップは、凝固エネルギーの前記凝固エネルギーセンサの感知に応答して、特定される時間値に前記タイマーをセットするステップを含む、請求項33に記載の方法。
- 前記第2の方向に沿って前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップは、複数のストリングデータセットを含む物体データに従って、前記第2の方向に沿って前記凝固可能材料の部分を凝固エネルギーに選択的に晒すステップを含み、各ストリングデータセットは、凝固源エネルギー付加状態切替イベントを規定する複数の時間値を含み、各時間値は線走査動作の開始の後の経過時間に等しい、請求項33に記載の方法。
- 各ストリングデータセットはさらにストリング数を含み、各ストリング数は、凝固可能材料の源の構築エンベロープ部分内の位置に対応する、請求項35に記載の方法。
- タイマーを線走査動作の始まりに同期するステップは、各パルスの発生に対して特定される時間にて、一定の周波数のエネルギーパルスによってエネルギーが付加されるモータによって駆動される回転エネルギーデフレクタに向かって凝固エネルギーを照射するステップを含む、請求項33に記載の方法。
- タイマーを線走査動作の始まりに同期するステップは、約2ミリ秒〜約6ミリ秒の検出パルスについて、凝固エネルギーを回転エネルギーデフレクタに向かって照射するステップを含む、請求項37に記載の方法。
- タイマーを線走査動作の始まりに同期するステップは、同期センサが凝固エネルギーを検出した後、遅延時間内に前記回転エネルギー検出器に向かって凝固エネルギーを照射することをやめるステップを含む、請求項38に記載の方法。
- 前記遅延時間は約400ナノ秒以下である、請求項39に記載の方法。
- タイマーを線走査動作の始まりに同期するステップはさらに、プロセッサクロックに同期エネルギーパルスを動的に較正するステップを含む、請求項33に記載の方法。
- プロセッサクロックに同期エネルギーパルスを動的に較正するステップは、前記プロセッサクロックに対して複数の試行時間にてエネルギーパルスを送るステップと、送られたエネルギーパルスが凝固エネルギーセンサ信号を作り出すプロセッサクロック時間を決定するステップとを含む、請求項41に記載の方法。
- 前記3次元物体を形成するよう用いられる凝固可能材料の隣接するレイヤーに対応する第1および第2の同一の3次元物体レイヤーデータを提供するステップと、
前記第1および第2の同一の3次元物体レイヤーデータをそれぞれの第1および第2の複数の物体断面ストリップに細分するステップとをさらに含み、前記第1の複数の物体断面ストリップにおける各物体断面ストリップは、ストリップデータのセットと、0から前記第1の複数の物体断面ストリップにおけるストリップの合計数(Ntotal)よりも1だけ小さい値までの範囲の対応するコンピュータメモリインデックス値n(0)とを有し、前記第2の複数の物体断面ストリップにおける各ストリップは、ストリップデータのセットと、対応するコンピュータメモリインデックス値n(1)とを有し、前記第2の複数の物体断面ストリップについてのn(1)の各それぞれの値に対応する前記ストリップデータは、Ntotalからn(1)のそれぞれの値を引いたものよりも1だけ小さい値に等しいコンピュータメモリインデックス値n(0)に対応する前記第1の複数の物体断面ストリップについてのストリップデータに等しい、請求項31に記載の方法。 - 前記3次元物体を示す3次元物体データを提供するステップと、
複数の3次元物体レイヤーデータセットを規定するよう前記3次元物体データをスライスするステップと、
構築エンベロープ距離を前記第1の方向に設けるステップとをさらに含み、前記第1の方向における前記構築エンベロープ距離は、前記凝固エネルギー源の源を前記第1の方向に移動するようエネルギー付加が可能であるモータのモータ移動パラメータの値に対応しており、前記方法はさらに、
テストパーツ測定データに基づき、前記構築エンベロープ距離が対応するモータ移動パラメータの値を調節するステップを含む、請求項31に記載の方法。 - テストパーツのレイヤーの第1の連なりを形成するステップをさらに含み、前記レイヤーの第1の連なりにおける各レイヤーは、前記凝固エネルギーの源を第1のテスト方向に移動し、前記凝固エネルギーの源が前記第1の方向に移動する際に、前記凝固可能材料の露出面に沿って前記第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すことにより形成され、前記方法はさらに、
テストパーツのレイヤーの第2の連なりを形成するステップを含み、前記レイヤーの第2の連なりにおける各レイヤーは、前記第1のテスト方向とは反対の第3の方向に前記凝固エネルギーの源を移動し、前記凝固エネルギーの源が前記第3の方向に移動する際に、前記凝固可能材料の露出面に沿って前記第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すことにより形成され、前記方法はさらに、
前記レイヤーの第1の連なりと前記レイヤーの第2の連なりとの間のオフセット距離を測定するステップと、
前記レイヤーの第1の連なりと前記レイヤーの第2の連なりとの間の測定された前記オフセット距離に基づき、前記構築エンベロープ距離が対応する前記モータ移動パラメータの値を調節するステップとを含む、請求項44に記載の方法。 - 前記凝固エネルギーの源が前記第1の方向に移動する際に、前記凝固可能材料の露出面に沿って前記第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップは、ある数のファセットFを有する回転エネルギーデフレクタからの凝固エネルギーを前記凝固可能材料に向かうように偏向するステップを含み、
前記3次元物体は、特定される構築軸位置にて前記第1の方向に沿った所望の長さLを有し、
前記凝固エネルギーの源が前記第1の方向に移動する際に、前記凝固可能材料の露出面に沿って第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップは、前記特定される構築軸位置に対応する数の線走査動作を行うステップを含み、各線走査動作は、前記第1の方向に沿った位置に対応し、前記線走査動作の数は、
n=(L/S)*(RPM/60)*F
という式で表わされ、式中、
n=線走査動作の数であり、
L=前記特定される構築軸位置での物体の所望の長さ(mm)であり、
S=前記第1の方向における凝固エネルギー源の移動の速度(mm/sec)であり、
RPM=回転エネルギーデフレクタの回転数(回転/分)であり、
F=前記回転エネルギーデフレクタ上のファセットの数である、請求項31に記載の方法。 - 各線走査動作は1つ以上の時間値を含むストリングデータのセットに従って前記凝固エネルギーの源のエネルギー付加状態を選択的に変更することを含み、各時間値は凝固源エネルギー付加状態切替イベントを規定し、各時間値は、凝固エネルギーセンサによる同期信号の受け取りの後の経過時間に等しい、請求項46に記載の方法。
- 前記凝固エネルギーの源が第1の方向に移動する際に、前記凝固可能材料の露出面に沿って第2の方向に前記凝固可能材料の部分を凝固エネルギーに漸進的に晒すステップは、割込機能を有するマイクロコントローラによって制御され、前記割込機能は、前記漸進的に晒すステップの間、無効にされる、請求項31に記載の方法。
- 第1の方向に沿って構築エンベロープの長さを較正する方法であって、
前記長さに対応するモータ移動パラメータの値を特定するステップと、
第1の長さ方向に沿ってテストパーツのレイヤーの第1の連なりへと凝固可能材料を凝固し、かつ前記第1の長さ方向とは反対の第2の長さ方向に沿って前記テストパーツのレイヤーの第2の連なりへと前記凝固可能材料を凝固することにより前記テストパーツを構築するステップとを含み、前記テストパーツは、前記レイヤーの第1の連なりおよび前記レイヤーの第2の連なりによって規定される前記第1の長さ方向に沿って少なくとも1つのオフセット寸法を有しており、前記方法はさらに、
前記少なくとも1つのオフセット寸法の長さを測定するステップと、
前記少なくとも1つのオフセット寸法の長さに基づき、前記モータ移動パラメータの値を調節するステップとを含む、方法。 - 前記テストパーツは半球状であり、前記レイヤーの第1の連なりは、前記テストパーツを上から観察する場合に第1の直径を有する第1のセクションを規定し、前記レイヤーの第2の連なりは、前記テストパーツを上から観察する場合に第2の直径を有する第2のセクションを規定しており、前記第2の直径は前記第1の直径よりも大きく、前記少なくとも1つのオフセット寸法は、前記第1および第2のセクションの間の2つのオフセット寸法である、請求項49に記載の方法。
- 前記2つのオフセット寸法を測定するステップは、顕微鏡で上から前記テストパーツを観察するステップを含む、請求項50に記載の方法。
- 前記第1の長さ方向に沿ってレイヤーの第1の連なりへと凝固可能材料を凝固するステップは、前記第1の長さ方向に沿って前記凝固エネルギーの源を移動しながら、前記凝固可能材料を第3の方向に沿って漸進的に凝固するステップを含む、請求項49に記載の方法。
- 前記第1の方向とは反対の第2の方向に沿って前記テストパーツのレイヤーの第2の連なりへと前記凝固可能材料を凝固するステップは、前記凝固エネルギーの源を前記第2の長さ方向に沿って移動しながら、前記凝固可能材料を前記第3の方向に沿って漸進的に凝固するステップを含む、請求項49に記載の方法。
- 3次元物体を凝固可能材料から作製するための装置であって、
第1の方向に移動可能な凝固エネルギー源を含み、前記凝固エネルギー源は、第2の方向に沿って延在する前記凝固可能材料の実質的に線形のセクションを凝固するよう前記第1の方向に移動しながら、選択的に活性化可能であり、前記装置はさらに、
透明な剛性または半剛性の凝固基板を含む凝固基板アセンブリを含み、前記凝固エネルギー源が前記第1の方向に移動する際、前記凝固基板アセンブリは凝固可能材料の凝固されたセクションから剥離される、装置。 - 前記凝固可能材料の凝固されたセクションは、前記凝固可能材料の実質的に線形のセクションを含む、請求項54に記載の装置。
- 前記凝固エネルギー源が前記第1の方向に移動する際、前記凝固基板は、前記凝固基板を前記凝固可能材料の実質的に線形のセクションから剥離するよう揺動する、請求項54に記載の装置。
- 前記凝固エネルギー源が前記第1の方向に移動する際、前記凝固基板は前記第1の方向に移動する、請求項54に記載の装置。
- 前記凝固基板は膜を含む膜アセンブリを含み、前記凝固基板が前記第1の方向に移動する際、前記膜は凝固された前記凝固可能材料から剥離される、請求項57に記載の装置。
- 前記膜はフレーム内に配置され、前記フレームは固定型であり、前記凝固基板が前記第1の方向に移動する際、前記凝固基板は前記膜に対して前記第1の方向に移動する、請求項57に記載の装置。
- 前記膜はフレーム内に配置され、前記フレームは前記装置に対して固定型であり、前記凝固基板が前記第1の方向に移動する際、前記凝固基板は前記膜に対して前記第1の方向に移動する、請求項57に記載の装置。
- 前記凝固エネルギー源は、前記第2の方向に沿って延在する複数の発光ダイオードを含む発光ダイオードアレイを含む、請求項54に記載の装置。
- 線形凝固装置を含み、前記線形凝固装置は、前記凝固エネルギー源と回転エネルギーデフレクタとを含み、前記線形凝固装置は前記第1の方向に移動可能であり、前記回転エネルギーデフレクタは前記第1の方向に実質的に垂直である面において回転し、前記凝固エネルギー源が前記回転エネルギーデフレクタに凝固エネルギーを照射する際、前記回転エネルギーデフレクタは、第2の方向に沿って延在する前記凝固可能材料の実質的に線形のセクションを凝固するよう、前記凝固エネルギーを前記凝固可能材料に向かうように偏向する、請求項54に記載の装置。
- 線形凝固装置を含み、前記線形凝固装置は前記凝固エネルギー源とレーザ走査マイクロミラーとを含み、前記線形凝固装置は前記第1の方向に移動可能であり、前記凝固エネルギー源が凝固エネルギーを前記レーザ走査マイクロミラーに照射する際に、前記レーザ走査マイクロミラーは、前記第2の方向に沿って延在する前記凝固可能材料の実質的に線形のセクションを凝固するよう、前記凝固エネルギーを前記凝固可能材料に沿って走査する、請求項54に記載の装置。
- 前記凝固基板は、部分的に円柱形であり、前記第2の方向に沿って延在する長さ軸を有する、請求項54に記載の装置。
- 前記凝固基板アセンブリはさらに、固定膜を含み、前記凝固基板は前記固定膜と前記凝固エネルギー源とに配置される、請求項64に記載の装置。
- 前記固定膜と少なくとも1つのフレームとを含む膜アセンブリをさらに含み、前記膜アセンブリは凝固可能材料を収容するための貯蔵部を規定する、請求項65に記載の装置。
- 少なくとも1つの膜剥離部材をさらに含み、前記凝固エネルギー源が前記第1の方向に移動する際、前記膜剥離部材は前記第1の方向に移動し、前記固定膜の部分が前記少なくとも1つの膜剥離部材の下に配置される、請求項66に記載の装置。
- 構築台をさらに含み、前記構築台は、前記固定膜に近接した位置から、前記固定膜から間隔を空けた鉛直方向においてより高い位置まで、鉛直方向上方に移動可能であり、前記固定膜は前記構築台と前記凝固エネルギー源との間に位置する、請求項66に記載の装置。
- 3次元物体を凝固可能材料から形成するための装置であって、
第1の方向に移動可能であるとともに、走査装置に光学的に連通する凝固エネルギー源を含む線形凝固装置を含み、
前記凝固エネルギー源は、前記第1の方向に移動する際に第2の方向に凝固エネルギーを照射し、前記線形凝固装置が前記走査装置に凝固エネルギーを照射する際、前記走査装置は前記凝固エネルギーを走査方向に走査する、装置。 - 前記走査装置はレーザ走査マイクロミラーである、請求項69に記載の装置。
- 前記走査装置は回転エネルギーデフレクタである、請求項69に記載の装置。
- 前記回転エネルギーデフレクタは多角形のミラーである、請求項71に記載の装置。
- 前記第1の方向は前記走査方向に実質的に垂直である、請求項69に記載の装置。
- 前記凝固エネルギー源は前記第1の方向に第1の速度で移動し、前記凝固エネルギーはある走査速度で前記走査方向に前記凝固可能材料を走査し、前記走査速度は前記第1の速度の少なくとも1000倍である、請求項69に記載の装置。
- 前記走査装置と前記凝固可能材料の源との間に少なくとも1つのレンズをさらに含み、前記レンズは約380nm〜約420nmの範囲の波長を有する入射光の少なくとも95%を透過するように反射防止コーティングでコーティングされる、請求項69に記載の装置。
- 前記反射防止コーティングはMgF2コーティングである、請求項75に記載の装置。
- 前記少なくとも1つのレンズは第1および第2のF−θレンズであり、前記第1のF−θレンズは前記レーザ走査マイクロミラーと前記第2のF−θレンズとの間に存在し、前記第1のF−θレンズは入射面と透過面とを有し、前記第2のF−θレンズは入射面と透過面とを有し、前記第1のF−θレンズの透過面の曲率半径は、前記第2のF−θレンズの透過面の曲率半径よりも大きい、請求項75に記載の装置。
- 前記凝固エネルギー源と前記走査装置との間にコリメートレンズをさらに含む、請求項69に記載の装置。
- 前記コリメートレンズはBK−7光学ガラスから形成される、請求項78に記載の装置。
- 前記コリメートレンズは約4.0mm〜約4.1mmの有効焦点距離を有する、請求項78に記載の装置。
- 前記レーザ走査マイクロミラーに光学的に連通する凝固エネルギーセンサをさらに含む、請求項69に記載の装置。
- 前記走査装置と前記凝固エネルギーセンサとに光学的に連通するミラーをさらに含み、前記凝固エネルギー源が同期動作の間に前記第2の方向に凝固エネルギーを照射する際、凝固エネルギーが前記走査装置から前記ミラーに偏向され、偏向された前記凝固エネルギーは前記ミラーから反射し、前記ミラーから前記センサに送られる、請求項81に記載の装置。
- 前記凝固エネルギーセンサに送られる光を受け取るとともにフィルタリングするよう位置決めされるニュートラルデンシティフィルタをさらに含む、請求項81に記載の装置。
- 前記装置は構築エンベロープを含んでおり、前記構築エンベロープは、照射された凝固エネルギーが前記走査装置からその中へと偏向され得る前記凝固可能材料の部分であり、前記レーザ走査マイクロミラーの傾斜角度は、前記構築エンベロープ内の前記走査方向軸に沿った、偏向された凝固エネルギーの位置を規定しており、前記凝固エネルギーセンサが偏向された凝固エネルギーを受け取る際、前記線形走査装置の傾斜角度は、前記構築エンベロープの境界に対応する、請求項70に記載の装置。
- 前記装置は構築エンベロープを含んでおり、前記構築エンベロープは、照射された凝固エネルギーが前記走査装置からその中へと偏向され得る前記凝固可能材料の部分であり、前記回転面における前記回転エネルギーデフレクタの回転位置は、前記構築エンベロープ内の前記走査方向軸に沿った、偏向された凝固エネルギーの位置を規定しており、前記凝固エネルギーセンサが偏向された凝固エネルギーを受け取る際、前記回転エネルギーデフレクタの回転位置は、前記構築エンベロープの境界に対応する、請求項71に記載の装置。
- 前記3次元物体についての形状情報に基づき前記凝固エネルギー源を選択的に活性化する凝固エネルギー源コントローラをさらに含む、請求項69に記載の装置。
- 前記形状情報は、複数の物体断面ストリップに対応する物体データを含み、各物体断面ストリップは、長さ方向を規定する長さと幅方向を規定する幅とを有し、前記複数のストリップは幅方向に沿って幅方向に配される、請求項86に記載の装置。
- 前記凝固エネルギー源はエネルギー付加状態を有しており、前記凝固エネルギー源コントローラはデータストリングの複数のセットに従って前記凝固エネルギー源のエネルギー付加状態を選択的に変更し、データストリングの複数のセットの各々は前記3次元物体のレイヤーに対応し、各データストリングセット中のデータストリングの各セットは、物体断面ストリップに対応するとともに前記凝固エネルギー源のエネルギー付加状態が変更される時間を規定する複数の数を含む、請求項87に記載の装置。
- 前記凝固エネルギー源は、約380nm〜420nmの波長を有する光を照射するレーザダイオードである、請求項69に記載の装置。
- 前記レーザダイオードは少なくとも約300mWのパワー出力を有する、請求項89に記載の装置。
- 前記レーザダイオードは少なくとも約5ミリラジアンのビーム広がりを有する、請求項89に記載の装置。
- 構築エンベロープ、第1のオフセット領域、および第2のオフセット領域を規定する前記凝固可能材料の源をさらに含み、3次元物体構築動作の間、前記3次元物体は前記第1のオフセット領域または前記第2のオフセット領域ではなく前記構築エンベロープ中に構築され、前記装置はさらに、
前記構築エンベロープから離れる方向において前記凝固エネルギーの源の進行端部の位置を検出するための、前記第1のオフセット領域における進行端部センサを含む、請求項69に記載の装置。 - 凝固可能材料に沿った凝固エネルギーの走査線位置にタイマーを同期する方法であって、
凝固エネルギー源を活性化するステップを含み、前記凝固エネルギーの源は走査装置に光学的に連通しており、前記走査装置は前記凝固エネルギー源から受け取られた凝固エネルギーを偏向し、偏向された前記凝固エネルギーは凝固エネルギーセンサによって受け取られ、前記方法はさらに、
前記凝固エネルギーセンサによる凝固エネルギーの受け取りを感知するステップを含み、前記凝固エネルギーセンサによる凝固エネルギーの受け取りは線走査動作の開始に対応し、前記方法はさらに、
前記凝固エネルギーセンサによる凝固エネルギーの受け取りの感知に基づき、前記タイマーを特定された値に初期化するステップを含む、方法。 - 前記凝固エネルギー装置から偏向された前記凝固エネルギーは、前記凝固エネルギーセンサによって受け取られる前にニュートラルデンシティフィルタによってフィルタリングされる、請求項93に記載の方法。
- 前記凝固エネルギーセンサからの感知信号の受け取りの後の非活性化時間内に前記凝固エネルギー源を非活性化するステップをさらに含む、請求項93に記載の方法。
- 前記非活性化時間は約400ナノ秒未満である、請求項95に記載の方法。
- 前記凝固エネルギーセンサは、偏向された凝固エネルギーが前記凝固エネルギーセンサの感知長さを横断するのに必要な時間に対応する検出パルスを有し、前記非活性化時間は前記検出パルス未満である、請求項95に記載の方法。
- 前記感知長さは約1.0mm〜約4mmの範囲である、請求項97に記載の方法。
- 前記走査装置は回転エネルギーデフレクタである、請求項93に記載の方法。
- 前記走査装置はレーザ走査マイクロミラーである、請求項93に記載の方法。
- 凝固エネルギー源を活性化するステップは、走査装置作動信号に対して特定された時間にて凝固エネルギー源を活性化するステップを含む、請求項93に記載の方法。
- 前記走査装置作動信号は、レーザ走査マイクロミラーに供給される作動信号である、請求項101に記載の方法。
- 前記走査装置作動信号は、回転エネルギーデフレクタに動作可能に接続される回転モータに供給される作動信号である、請求項101に記載の方法。
- 複数の同一の物体レイヤーに対応する3次元物体データを格納するのに必要なコンピュータ可読媒体の記憶容量を低減する方法であって、
物体レイヤーデータの第1のセットをコンピュータ可読媒体上に格納するステップを含み、前記物体レイヤーデータは、データストリングの第1のセットを含み、前記データストリングの第1のセットの各データストリングはd(0,m)として示され、mは、0から、前記データストリングの第1のセットにおけるデータストリングの合計数Mmaxよりも1だけ小さい値の範囲のコンピュータメモリインデックス値であり、前記方法はさらに、
前記物体レイヤーデータの第1のセットから物体レイヤーデータの第2のセットを計算するよう、コンピュータ可読媒体上に格納されるプロセッサ命令を実行するステップを含み、前記物体レイヤーデータの第2のセットは、データストリングの第2のセットを含み、前記データストリングの第2のセットの各データストリングはd(1,m)として示され、mは0から、前記データストリングの第1のセットにおけるデータストリングの合計数Mmaxよりも1だけ小さい値までの範囲のコンピュータメモリインデックス値であり、d(1,m)の各値は、
d(1,m)=d(0,Mmax−1−m)
という式によって示される、方法。 - 各データストリングd(0,m)およびd(1,m)は複数の時間値を含み、各時間値は、凝固エネルギー源のエネルギー付加イベントに対応する、請求項104に記載の方法。
- 各データストリングd(0,m)およびd(1,m)はストリングインデックス値をさらに含み、各ストリングインデックス値は、物体構築エンベロープにおいてある方向に沿った位置に対応する、請求項104に記載の方法。
- 前記物体レイヤーデータの第1のセットと前記物体データレイヤーの第2のセットとは、前記3次元物体の隣接するレイヤー同士に対応する、請求項104に記載の方法。
- 前記物体レイヤーデータの第1のセットは、第1の方向に凝固可能材料を凝固することにより形成される物体レイヤーの第1のセットに対応し、前記物体レイヤーデータの第2のセットは、前記第1の方向とは反対の第2の方向に凝固可能材料を凝固することにより形成される物体レイヤーの第2のセットに対応する、請求項104に記載の方法。
- 3次元物体を作製する方法であって、
ストリングデータのセットを提供するステップを含み、各ストリングは走査軸方向に沿った物体レイヤーの領域を規定しており、前記方法はさらに、
線形凝固装置を設けるステップを含み、前記線形凝固装置は、走査軸に沿った位置により変動する走査速度で凝固エネルギーを前記走査軸方向に沿って供給し、前記方法はさらに、
前記走査軸に沿った位置による走査速度の変動に基づき前記ストリングデータを修正するステップを含む、方法。 - 前記ストリングデータは、凝固エネルギー源のエネルギー付加状態に対応する複数のオリジナルのストリングデータ値を含み、前記走査軸に沿った位置による走査速度の変動に基づき前記ストリングデータを修正するステップは、前記複数のオリジナルのストリングデータ値において各対応するオリジナルのストリングデータ値について新しいストリングデータ値を計算するステップを含み、各新しいストリングデータ値は、前記対応するオリジナルのストリングデータ値と前記走査軸に沿った中心点との間の距離に基づき計算される、請求項109に記載の方法。
- 前記複数のオリジナルのストリングデータ値は複数のCPUチックを含む、請求項110に記載の方法。
- 前記複数のオリジナルのストリングデータ値は、走査軸基準位置に対する複数の走査軸距離を含む、請求項110に記載の方法。
- 各新しいストリングデータ値は、
新しいCPUチック=オリジナルのCPUチック+ΔCPUチック*C
のように前記対応するオリジナルデータ値に関連付けられており、式中、
新しいCPUチックは、所与のデータストリングについてのオリジナルのCPUチック値に対応する新しいCPUチック値であり、
ΔCPUチックは、前記中心点に対応する前記CPUチック値を前記オリジナルのCPUチック値から減算することにより決定され、
Cは無次元常数である、請求項110に記載の方法。 - 複数の線形のセクションを含むテストパーツを構築するステップをさらに含み、前記複数の線形のセクションの各々は前記走査軸に垂直な軸に沿った長さを有しており、各新しいストリングデータ値は、前記テストパーツにおいて隣接する線形のセクション同士の間の少なくとも1つの距離に基づき計算される、請求項110に記載の方法。
- テストパーツを構築するステップは、複数の等しく間隔を空けた線形のセクションに対応するストリングデータを設けるステップと、前記ストリングデータに従って凝固可能材料を凝固するステップとを含む、請求項114に記載の方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161502020P | 2011-06-28 | 2011-06-28 | |
US61/502,020 | 2011-06-28 | ||
US201261598666P | 2012-02-14 | 2012-02-14 | |
US61/598,666 | 2012-02-14 | ||
PCT/US2012/044398 WO2013003457A1 (en) | 2011-06-28 | 2012-06-27 | Apparatus and method for forming three-dimensional objects using linear solidification |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014518171A true JP2014518171A (ja) | 2014-07-28 |
JP2014518171A5 JP2014518171A5 (ja) | 2015-08-13 |
JP6019113B2 JP6019113B2 (ja) | 2016-11-02 |
Family
ID=47389786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014518960A Active JP6019113B2 (ja) | 2011-06-28 | 2012-06-27 | 3次元物体を線形凝固を用いて形成するための装置および方法 |
Country Status (9)
Country | Link |
---|---|
US (5) | US9079355B2 (ja) |
EP (3) | EP2786859B1 (ja) |
JP (1) | JP6019113B2 (ja) |
KR (1) | KR101979969B1 (ja) |
CN (1) | CN103917348B (ja) |
CA (1) | CA2838255C (ja) |
DK (1) | DK2726264T3 (ja) |
ES (1) | ES2681980T3 (ja) |
WO (1) | WO2013003457A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016148664A (ja) * | 2015-02-12 | 2016-08-18 | ローズマウント・エアロスペース・インコーポレーテッドRosemount Aerospace Inc. | 気温センサおよび製造 |
JP2017110271A (ja) * | 2015-12-17 | 2017-06-22 | セイコーエプソン株式会社 | 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 |
JP2017136843A (ja) * | 2016-02-02 | 2017-08-10 | 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. | 立体オブジェクト成形システム及びその補正方法 |
JP2018514414A (ja) * | 2015-03-18 | 2018-06-07 | コスタベバー,エットーレ,マウリツィオ | 改良された光学ユニットを備える光造形機 |
JP2018517034A (ja) * | 2015-06-08 | 2018-06-28 | ディーエスエム アイピー アセッツ ビー.ブイ. | 付加造形用液状ハイブリッドUV/vis線硬化性樹脂組成物 |
JP2018523755A (ja) * | 2016-03-08 | 2018-08-23 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 三次元物体の積層造形法のための装置 |
JP2018535310A (ja) * | 2015-09-16 | 2018-11-29 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 付加製造システムのためのプリントヘッドモジュール |
JP2019500248A (ja) * | 2015-12-31 | 2019-01-10 | フォームラブス, インコーポレーテッドFormlabs, Inc. | 積層造形のための可撓性基板のシステムおよび方法 |
CN113631353A (zh) * | 2019-04-02 | 2021-11-09 | 耐克森三维有限公司 | 用于3d打印系统的箱组件及其部件 |
JP2021530370A (ja) * | 2018-06-28 | 2021-11-11 | スリーディー システムズ インコーポレーテッド | 統合走査モジュール較正を備えた三次元プリントシステム |
US11865768B2 (en) | 2018-08-20 | 2024-01-09 | NEXA3D Inc. | Methods for photo-curing photo-sensitive material for printing and other applications |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2728326T3 (es) | 2003-05-01 | 2019-10-23 | Stratasys Ltd | Aparato para producir un objeto por deposición secuencial de capas de material de construcción |
EP2011631B1 (en) | 2007-07-04 | 2012-04-18 | Envisiontec GmbH | Process and device for producing a three-dimensional object |
JP6019113B2 (ja) | 2011-06-28 | 2016-11-02 | ガルフ・フィルトレイション・システムズ・インコーポレイテッドGulf Filtration Systems Inc. | 3次元物体を線形凝固を用いて形成するための装置および方法 |
US9075409B2 (en) | 2011-06-28 | 2015-07-07 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using linear solidification |
WO2013177620A1 (en) * | 2012-05-29 | 2013-12-05 | Zydex Pty Ltd | Device for making an object and a method for making an object |
WO2014130610A2 (en) | 2013-02-22 | 2014-08-28 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using linear solidification |
US9308583B2 (en) | 2013-03-05 | 2016-04-12 | Lawrence Livermore National Security, Llc | System and method for high power diode based additive manufacturing |
JP6566872B2 (ja) | 2013-03-14 | 2019-08-28 | ストラタシス リミテッド | 高解像度dlpプロジェクタ装置、及びその利用方法 |
EP2981402B1 (en) * | 2013-04-04 | 2021-06-02 | Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. | Method for forming three-dimensional objects using linear solidification with travel axis correction and power control |
GB2514139A (en) * | 2013-05-14 | 2014-11-19 | Aghababaie Lin & Co Ltd | Apparatus for fabrication of three dimensional objects |
GB201310398D0 (en) | 2013-06-11 | 2013-07-24 | Renishaw Plc | Additive manufacturing apparatus and method |
US10335901B2 (en) | 2013-06-10 | 2019-07-02 | Renishaw Plc | Selective laser solidification apparatus and method |
AT514493B1 (de) | 2013-06-17 | 2015-04-15 | Way To Production Gmbh | Anlage zum schichtweisen Aufbau eines Körpers und Wanne hiefür |
DE112013002917B4 (de) | 2013-06-28 | 2021-07-22 | Intel Corporation | Erzeugung von Lichtmustern mit einem MEMS-Scanspiegel |
US20150102531A1 (en) | 2013-10-11 | 2015-04-16 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using a curved build platform |
GB201318898D0 (en) * | 2013-10-25 | 2013-12-11 | Fripp Design Ltd | Method and apparatus for additive manufacturing |
US9436214B2 (en) | 2013-11-12 | 2016-09-06 | Qualcomm Incorporated | System and methods of reducing energy consumption by synchronizing sensors |
SG10201804040VA (en) | 2013-11-14 | 2018-07-30 | Structo Pte Ltd | Additive manufacturing device and method |
US10081130B2 (en) * | 2013-11-14 | 2018-09-25 | B9Creations, LLC | Domain-based variable exposure for additive manufacturing devices |
US9586364B2 (en) * | 2013-11-27 | 2017-03-07 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data |
US9467680B2 (en) | 2013-12-12 | 2016-10-11 | Intel Corporation | Calibration of a three-dimensional acquisition system |
CN103722898B (zh) * | 2014-01-21 | 2016-03-09 | 杭州先临三维科技股份有限公司 | 立体打印控制系统及立体打印机 |
US9527244B2 (en) * | 2014-02-10 | 2016-12-27 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects from solidifiable paste |
US10144205B2 (en) * | 2014-02-20 | 2018-12-04 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using a tilting solidification substrate |
US11104117B2 (en) | 2014-02-20 | 2021-08-31 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using a tilting solidification substrate |
US10011076B2 (en) | 2014-02-20 | 2018-07-03 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using a tilting solidification substrate |
US9993951B2 (en) * | 2014-05-20 | 2018-06-12 | Crayola, Llc | Melting and molding device |
SG11201700024UA (en) | 2014-07-09 | 2017-02-27 | Applied Materials Inc | Layerwise heating, linewise heating, plasma heating and multiple feed materials in additive manufacturing |
KR101590774B1 (ko) * | 2014-10-16 | 2016-02-19 | 한국생산기술연구원 | 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치. |
KR101612254B1 (ko) * | 2014-10-30 | 2016-04-15 | 한국생산기술연구원 | 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 멀티채널헤드어셈블리 및 이를 이용하는 입체조형장비. |
US10354442B2 (en) * | 2014-11-12 | 2019-07-16 | Autodesk Inc. | Generative modeling framework for deferred geometry generation |
US20170368742A1 (en) * | 2014-12-11 | 2017-12-28 | Schmutz Ip, Llc | Curable nano-composites for additive manufacturing of lenses |
US9840045B2 (en) * | 2014-12-31 | 2017-12-12 | X Development Llc | Voxel 3D printer |
CN107428079A (zh) * | 2015-01-07 | 2017-12-01 | Eos有限公司电镀光纤系统 | 用于利用多条射线制造三维物体的设备以及生成式层构建方法 |
KR101704553B1 (ko) * | 2015-01-12 | 2017-02-23 | 한국생산기술연구원 | 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법 |
EP3250369B8 (en) * | 2015-01-30 | 2020-10-28 | Carbon, Inc. | Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related method and apparatus |
JP2018505805A (ja) * | 2015-02-24 | 2018-03-01 | スリーエム イノベイティブ プロパティズ カンパニー | 3d印刷表面 |
WO2016138345A1 (en) * | 2015-02-26 | 2016-09-01 | Stratasys, Inc. | Additive manufacturing with offset stitching |
US10589466B2 (en) * | 2015-02-28 | 2020-03-17 | Xerox Corporation | Systems and methods for implementing multi-layer addressable curing of ultraviolet (UV) light curable inks for three dimensional (3D) printed parts and components |
US9902112B2 (en) | 2015-04-07 | 2018-02-27 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using linear solidification and a vacuum blade |
CN104742376A (zh) * | 2015-04-09 | 2015-07-01 | 深圳长朗三维科技有限公司 | 激光线阵列式3d打印设备及其成型方法 |
CN104924616A (zh) * | 2015-06-12 | 2015-09-23 | 深圳市深思客科技有限公司 | 一种3d打印设备及3d打印方法 |
US10405638B2 (en) * | 2015-08-18 | 2019-09-10 | L'oreal | Connected photo-activatable formulation applicator |
WO2017033427A1 (ja) * | 2015-08-26 | 2017-03-02 | ナガセケムテックス株式会社 | パターニング材料、パターニング方法、およびパターニング装置 |
DE102015115011A1 (de) * | 2015-09-08 | 2017-03-09 | Valeo Schalter Und Sensoren Gmbh | Laserscanner für Kraftfahrzeuge |
CN105172141A (zh) * | 2015-09-10 | 2015-12-23 | 杜晖 | 一种以led列阵为光源的光敏树脂3d打印机 |
US10717265B2 (en) | 2015-09-16 | 2020-07-21 | Applied Materials, Inc. | Array of printhead modules for additive manufacturing system |
CN106553338A (zh) * | 2015-09-18 | 2017-04-05 | 广东汉邦激光科技有限公司 | 激光3d打印机及其振镜扫描校准系统及方法 |
US9676145B2 (en) * | 2015-11-06 | 2017-06-13 | Velo3D, Inc. | Adept three-dimensional printing |
US10331109B2 (en) | 2015-11-19 | 2019-06-25 | Xerox Corporation | System and method to embed objects into structure using stereolithography |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
KR101704547B1 (ko) * | 2015-12-09 | 2017-02-22 | 한국생산기술연구원 | 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치. |
WO2017100695A1 (en) | 2015-12-10 | 2017-06-15 | Velo3D, Inc. | Skillful three-dimensional printing |
CN108701162A (zh) * | 2015-12-11 | 2018-10-23 | Eos有限公司电镀光纤系统 | 用于检查逐层增材制造装置的输入数据集的方法和装置 |
US10245822B2 (en) * | 2015-12-11 | 2019-04-02 | Global Filtration Systems | Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials |
NL2017912B1 (en) * | 2015-12-14 | 2018-01-11 | Asml Netherlands Bv | A membrane assembly |
US20180319082A1 (en) * | 2016-01-29 | 2018-11-08 | Hewlett-Packard Development Company, L.P. | Additive manufacturing with irradiation filter |
US10747033B2 (en) | 2016-01-29 | 2020-08-18 | Lawrence Livermore National Security, Llc | Cooler for optics transmitting high intensity light |
US20170225393A1 (en) * | 2016-02-04 | 2017-08-10 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification |
SG11201806820UA (en) | 2016-03-09 | 2018-09-27 | Applied Materials Inc | Correction of fabricated shapes in additive manufacturing |
US10659764B2 (en) | 2016-06-20 | 2020-05-19 | Intel Corporation | Depth image provision apparatus and method |
US10609359B2 (en) | 2016-06-22 | 2020-03-31 | Intel Corporation | Depth image provision apparatus and method |
WO2018005452A1 (en) | 2016-06-27 | 2018-01-04 | Formlabs, Inc. | Position detection techniques for additive fabrication and related systems and methods |
US11691343B2 (en) | 2016-06-29 | 2023-07-04 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
DE102016011801A1 (de) * | 2016-09-30 | 2018-04-05 | Eos Gmbh Electro Optical Systems | Verfahren zum Kalibrieren einer Vorrichtung zum Herstellen eines dreidimensionalen Objekts und zum Durchführen des Verfahrens ausgebildete Vorrichtung |
US20180095450A1 (en) | 2016-09-30 | 2018-04-05 | Velo3D, Inc. | Three-dimensional objects and their formation |
DE102016120044A1 (de) * | 2016-10-20 | 2018-04-26 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur additiven Herstellung dreidimensionaler Objekte |
US20180126460A1 (en) | 2016-11-07 | 2018-05-10 | Velo3D, Inc. | Gas flow in three-dimensional printing |
US11167490B2 (en) | 2016-11-08 | 2021-11-09 | Formlabs, Inc. | Multi-material separation layers for additive fabrication |
EP3330062B1 (de) * | 2016-11-30 | 2022-02-09 | Ivoclar Vivadent AG | Materialbereitstellungsvorrichtung für ein stereolithographiegerät |
US20180250745A1 (en) | 2017-03-02 | 2018-09-06 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10730240B2 (en) * | 2017-03-09 | 2020-08-04 | Applied Materials, Inc. | Additive manufacturing with energy delivery system having rotating polygon |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
CN106965416B (zh) * | 2017-03-31 | 2019-05-21 | 安徽机电职业技术学院 | 基于骨架线提取的3d打印机控制优化系统 |
GB2564956B (en) | 2017-05-15 | 2020-04-29 | Holo Inc | Viscous film three-dimensional printing systems and methods |
US11084143B2 (en) | 2017-05-25 | 2021-08-10 | Applied Materials, Inc. | Correction of fabricated shapes in additive manufacturing using modified edge |
US10967482B2 (en) | 2017-05-25 | 2021-04-06 | Applied Materials, Inc. | Fabrication of polishing pad by additive manufacturing onto mold |
US10940641B2 (en) | 2017-05-26 | 2021-03-09 | Applied Materials, Inc. | Multi-light beam energy delivery with rotating polygon for additive manufacturing |
US10981323B2 (en) | 2017-05-26 | 2021-04-20 | Applied Materials, Inc. | Energy delivery with rotating polygon and multiple light beams on same path for additive manufacturing |
US10245785B2 (en) | 2017-06-16 | 2019-04-02 | Holo, Inc. | Methods for stereolithography three-dimensional printing |
EP3643475A4 (en) * | 2017-06-20 | 2021-07-07 | Toray Engineering Co., Ltd. | METHOD FOR PREDICTING THE STRENGTH OF A STRUCTURE, METHOD FOR MANUFACTURING A STRUCTURE, METHOD TO SUPPORT THE STRUCTURE OF A STRUCTURE AND PROGRAM |
US11135773B2 (en) | 2017-06-23 | 2021-10-05 | Applied Materials, Inc. | Additive manufacturing with multiple mirror scanners |
US20180369914A1 (en) | 2017-06-23 | 2018-12-27 | Applied Materials, Inc. | Additive manufacturing with multiple polygon mirror scanners |
CN110997292B (zh) * | 2017-07-20 | 2022-04-15 | 昕诺飞控股有限公司 | 在具有金属外观的fdm打印照明器的部件上隐藏光学缺陷线 |
USD854591S1 (en) * | 2017-08-24 | 2019-07-23 | Structo Pte Ltd | Housing for a 3D printer |
US10766242B2 (en) | 2017-08-24 | 2020-09-08 | General Electric Company | System and methods for fabricating a component using a consolidating device |
USD836714S1 (en) * | 2017-09-22 | 2018-12-25 | Xerox Corporation | Printer for printing on 3D objects |
JP2021500250A (ja) | 2017-10-20 | 2021-01-07 | フォームラブス, インコーポレーテッドFormlabs, Inc. | 積層造形において光を適用するための技術、関連するシステムおよび方法 |
US11331855B2 (en) | 2017-11-13 | 2022-05-17 | Applied Materials, Inc. | Additive manufacturing with dithering scan path |
WO2019145795A2 (en) | 2018-01-26 | 2019-08-01 | Cellink Ab | Systems and methods for optical assessments of bioink printability |
WO2019165417A1 (en) * | 2018-02-26 | 2019-08-29 | Formlabs, Inc. | Heating techniques in additive fabrication and related systems and methods |
CN108644620A (zh) * | 2018-04-19 | 2018-10-12 | 深圳市华星光电技术有限公司 | 一种led固化装置及框胶固化系统 |
CN108372662A (zh) * | 2018-04-20 | 2018-08-07 | 张振海 | 一种新型的图形或图像软件处理设备 |
JP2021523293A (ja) | 2018-05-09 | 2021-09-02 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | ポリゴンスキャナを用いた付加製造 |
US11390027B2 (en) | 2018-06-01 | 2022-07-19 | Formlabs, Inc. | Techniques for force sensing in additive fabrication and related systems and methods |
EP3820678B1 (en) | 2018-07-10 | 2023-06-14 | 3D Systems, Inc. | Three dimensional (3d) printer and method |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US11186736B2 (en) | 2018-10-10 | 2021-11-30 | Cellink Ab | Double network bioinks |
EP3880435B1 (en) | 2018-11-12 | 2024-03-27 | Össur Iceland EHF | Additive manufacturing system and corresponding components for elastomeric materials |
CN117067579A (zh) | 2018-12-26 | 2023-11-17 | 霍洛公司 | 用于三维打印系统和方法的传感器 |
US11794412B2 (en) | 2019-02-20 | 2023-10-24 | General Electric Company | Method and apparatus for layer thickness control in additive manufacturing |
US11498283B2 (en) | 2019-02-20 | 2022-11-15 | General Electric Company | Method and apparatus for build thickness control in additive manufacturing |
US11679555B2 (en) | 2019-02-21 | 2023-06-20 | Sprintray, Inc. | Reservoir with substrate assembly for reducing separation forces in three-dimensional printing |
EP3930987B1 (en) | 2019-02-28 | 2023-01-25 | 3D Systems, Inc. | High resolution three-dimensional printing system |
US11179891B2 (en) | 2019-03-15 | 2021-11-23 | General Electric Company | Method and apparatus for additive manufacturing with shared components |
US11673326B2 (en) * | 2019-03-22 | 2023-06-13 | Young Optics Inc. | Three dimensional printing apparatus |
CN111890676B (zh) * | 2019-05-05 | 2024-05-10 | 扬明光学股份有限公司 | 三维打印装置 |
CN112129686A (zh) * | 2019-06-24 | 2020-12-25 | 国标(北京)检验认证有限公司 | 一种用于腐蚀研究的定位跟踪表征方法 |
CA3148849A1 (en) | 2019-07-26 | 2021-02-04 | Velo3D, Inc. | Quality assurance in formation of three-dimensional objects |
CN110421847A (zh) * | 2019-09-02 | 2019-11-08 | 佛山捷越电子科技有限公司 | 一种3d打印设备 |
US11826951B2 (en) | 2019-09-06 | 2023-11-28 | Cellink Ab | Temperature-controlled multi-material overprinting |
EP4057947A1 (en) | 2019-11-12 | 2022-09-21 | Ossur Iceland Ehf | Ventilated prosthetic liner |
US11524455B2 (en) | 2019-11-25 | 2022-12-13 | Applied Materials, Inc. | Removable unit for selective powder delivery for additive manufacturing |
US11518097B2 (en) | 2019-11-25 | 2022-12-06 | Applied Materials, Inc. | Selective powder dispenser configurations for additive manufacturing |
US11639027B2 (en) * | 2020-02-21 | 2023-05-02 | CALT Dynamics Limited | Systems, apparatus, and methods for curing of a photopolymer via lateral vacuum release during an additive manufacturing process |
WO2021247926A1 (en) * | 2020-06-03 | 2021-12-09 | Quadratic 3D, Inc. | Volumetric three-dimensional printing methods |
DE102020117245A1 (de) | 2020-06-30 | 2021-12-30 | Carl Zeiss Ag | Optikeinheit, Herstellungsvorrichtung und Verfahren zum additiven Herstellen eines Gegenstands |
KR102629452B1 (ko) * | 2020-08-24 | 2024-01-25 | 세메스 주식회사 | 기판 처리 장치 |
CN112693113B (zh) * | 2020-12-10 | 2022-04-19 | 浙江大学 | 一种基于投影三维重建的快速增材制造系统 |
WO2022217128A1 (en) * | 2021-04-08 | 2022-10-13 | 3Dfortify Inc. | Digital image transformation to reduce effects of scatter during digital light processing-style manufacturing |
WO2022220790A1 (en) * | 2021-04-12 | 2022-10-20 | Hewlett-Packard Development Company, L.P. | Additive manufacture with line-shaped energy beam |
US11951679B2 (en) | 2021-06-16 | 2024-04-09 | General Electric Company | Additive manufacturing system |
US11731367B2 (en) | 2021-06-23 | 2023-08-22 | General Electric Company | Drive system for additive manufacturing |
US11958249B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11958250B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11826950B2 (en) | 2021-07-09 | 2023-11-28 | General Electric Company | Resin management system for additive manufacturing |
US11813799B2 (en) | 2021-09-01 | 2023-11-14 | General Electric Company | Control systems and methods for additive manufacturing |
US11813794B2 (en) | 2021-11-02 | 2023-11-14 | NEXA3D Inc. | 3D printing system |
US11498275B1 (en) * | 2021-11-02 | 2022-11-15 | NEXA3D Inc. | 3D printing system |
WO2023219725A1 (en) * | 2022-05-13 | 2023-11-16 | University Of Southern California | Hopping light additive manufacturing |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223719A (ja) * | 1985-07-24 | 1987-01-31 | Fujitsu Ltd | 立体形状形成装置 |
JPS63145016A (ja) * | 1986-12-10 | 1988-06-17 | Fujitsu Ltd | 立体形状形成装置 |
JP2000000893A (ja) * | 1988-04-18 | 2000-01-07 | Three D Syst Inc | 三次元物体を形成する方法および装置 |
JP2000015705A (ja) * | 1998-07-03 | 2000-01-18 | Hitachi Koki Co Ltd | 光造形装置 |
JP2000258916A (ja) * | 1999-03-09 | 2000-09-22 | Sakae Tanaka | 大型基板用露光装置 |
JP2003507223A (ja) * | 1999-08-20 | 2003-02-25 | デルタメド・メディツィーンプロドュクテ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 3次元物体を生成するための装置およびその方法 |
JP2003181942A (ja) * | 2003-01-15 | 2003-07-03 | Teijin Seiki Co Ltd | 光学的立体造形方法および装置 |
JP2004514053A (ja) * | 2000-10-30 | 2004-05-13 | コンセプト レーザー ゲーエムベーハー | 電磁放射線束によって焼結、物質除去および/またはラベリングを行う装置およびその装置を操作する方法 |
JP2009543716A (ja) * | 2006-07-18 | 2009-12-10 | ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー | 有形物体の積層製造方法およびシステム |
JP2010094893A (ja) * | 2008-10-16 | 2010-04-30 | Roland Dg Corp | 三次元造形装置 |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8502643A (nl) | 1985-09-27 | 1986-04-01 | Oce Nederland Bv | Werkwijze voor het genereren van lijnstukken. |
US5104592A (en) | 1988-04-18 | 1992-04-14 | 3D Systems, Inc. | Method of and apparatus for production of three-dimensional objects by stereolithography with reduced curl |
US5876550A (en) | 1988-10-05 | 1999-03-02 | Helisys, Inc. | Laminated object manufacturing apparatus and method |
JPH03244528A (ja) | 1989-09-28 | 1991-10-31 | Three D Syst Inc | 実質的に平担な立体平版加工面の形成装置および方法 |
US5121329A (en) | 1989-10-30 | 1992-06-09 | Stratasys, Inc. | Apparatus and method for creating three-dimensional objects |
US5358673A (en) * | 1990-02-15 | 1994-10-25 | 3D Systems, Inc. | Applicator device and method for dispensing a liquid medium in a laser modeling machine |
US5049901A (en) | 1990-07-02 | 1991-09-17 | Creo Products Inc. | Light modulator using large area light sources |
JPH06118346A (ja) * | 1992-10-02 | 1994-04-28 | Minolta Camera Co Ltd | レーザビーム光源装置及びレーザビーム走査光学系 |
JPH0789131A (ja) * | 1993-09-24 | 1995-04-04 | Hitachi Ltd | 光走査装置 |
WO1995031326A1 (de) | 1994-05-13 | 1995-11-23 | Eos Gmbh Electro Optical Systems | Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes |
US5521748A (en) | 1994-06-16 | 1996-05-28 | Eastman Kodak Company | Light modulator with a laser or laser array for exposing image data |
KR960007184A (ko) | 1994-08-30 | 1996-03-22 | 이형도 | 레이저 프린터용 레이저 스캐닝장치 |
US5991102A (en) * | 1994-11-25 | 1999-11-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Beam protecting device |
JPH08150662A (ja) | 1994-11-30 | 1996-06-11 | Olympus Optical Co Ltd | 粉末混合光硬化性樹脂を用いた光造形装置及び光造形方法 |
WO1996023647A2 (en) | 1995-02-01 | 1996-08-08 | 3D Systems, Inc. | Rapid recoating of three-dimensional objects formed on a cross-sectional basis |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
JP3803735B2 (ja) * | 1996-02-14 | 2006-08-02 | 独立行政法人理化学研究所 | リコートと同時に光走査する光固化造形装置 |
US6151056A (en) * | 1996-11-11 | 2000-11-21 | Asahi Kogaku Kogyo Kabushiki Kaisha | Laser scan based recording apparatus |
ES2335452T3 (es) | 1997-04-14 | 2010-03-26 | Huntsman Advanced Materials (Switzerland) Gmbh | Unidad de ilumunacion y procedimiento para la iluminacion puntual de un medio. |
JP4145978B2 (ja) | 1997-11-11 | 2008-09-03 | ナブテスコ株式会社 | 光造形装置及び方法 |
US6030199A (en) | 1998-02-09 | 2000-02-29 | Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University | Apparatus for freeform fabrication of a three-dimensional object |
US6267919B1 (en) | 1998-02-19 | 2001-07-31 | Nissan Motor Co., Ltd. | Method of producing a three-dimensional object |
US7483049B2 (en) | 1998-11-20 | 2009-01-27 | Aman James A | Optimizations for live event, real-time, 3D object tracking |
US6406658B1 (en) * | 1999-02-08 | 2002-06-18 | 3D Systems, Inc. | Stereolithographic method and apparatus for production of three dimensional objects using multiple beams of different diameters |
DE19929199A1 (de) | 1999-06-25 | 2001-01-18 | Hap Handhabungs Automatisierun | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objektes |
JP2001145956A (ja) | 1999-11-19 | 2001-05-29 | Meiko:Kk | 光硬化性樹脂三次元造形物の積層造形装置及びその積層造形方法 |
US20050104241A1 (en) | 2000-01-18 | 2005-05-19 | Objet Geometried Ltd. | Apparatus and method for three dimensional model printing |
SE521124C2 (sv) * | 2000-04-27 | 2003-09-30 | Arcam Ab | Anordning samt metod för framställande av en tredimensionell produkt |
US6560248B1 (en) * | 2000-06-08 | 2003-05-06 | Mania Barco Nv | System, method and article of manufacture for improved laser direct imaging a printed circuit board utilizing a mode locked laser and scophony operation |
US6570952B2 (en) | 2001-02-27 | 2003-05-27 | Siemens Corporate Research, Inc. | Memory efficient shear-warp voxel projection algorithm |
DE10119817A1 (de) | 2001-04-23 | 2002-10-24 | Envision Technologies Gmbh | Vorrichtung und Verfahren für die zerstörungsfreie Trennung ausgehärteter Materialschichten von einer planen Bauebene |
JP2002331591A (ja) | 2001-05-08 | 2002-11-19 | Fuji Photo Film Co Ltd | 光造形方法 |
JP2003080604A (ja) * | 2001-09-10 | 2003-03-19 | Fuji Photo Film Co Ltd | 積層造形装置 |
CN1659479A (zh) | 2002-04-10 | 2005-08-24 | 富士胶片株式会社 | 曝光头及曝光装置和它的应用 |
US6986654B2 (en) | 2002-07-03 | 2006-01-17 | Therics, Inc. | Apparatus, systems and methods for use in three-dimensional printing |
DE10235434A1 (de) * | 2002-08-02 | 2004-02-12 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
CN1757093A (zh) | 2002-08-19 | 2006-04-05 | 纽约市哥伦比亚大学托管会 | 具有多种照射图形的单步半导体处理系统和方法 |
US6954222B2 (en) * | 2002-08-21 | 2005-10-11 | Pentax Corporation | Manufacturing method of scanning optical system |
DE10256672B4 (de) | 2002-12-04 | 2019-05-09 | Envisiontec Gmbh | Verfahren zur Trennung stereolithographisch ausgehärteter Materialschichten von einer Kontaktfläche |
WO2005029546A2 (en) | 2003-09-16 | 2005-03-31 | The Trustees Of Columbia University In The City Of New York | Method and system for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts, and a mask for facilitating such artifact reduction/elimination |
US7261542B2 (en) | 2004-03-18 | 2007-08-28 | Desktop Factory, Inc. | Apparatus for three dimensional printing using image layers |
JP4489544B2 (ja) | 2004-03-19 | 2010-06-23 | 株式会社リコー | 画像形成装置 |
DE102004022961B4 (de) | 2004-05-10 | 2008-11-20 | Envisiontec Gmbh | Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift |
US7158849B2 (en) * | 2004-10-28 | 2007-01-02 | National Cheng Kung University | Method for rapid prototyping by using linear light as sources |
EP1876012A1 (en) | 2006-07-07 | 2008-01-09 | Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO | System and method for producing a tangible object |
US7636610B2 (en) | 2006-07-19 | 2009-12-22 | Envisiontec Gmbh | Method and device for producing a three-dimensional object, and computer and data carrier useful therefor |
KR20080103801A (ko) * | 2007-05-25 | 2008-11-28 | 삼성전자주식회사 | 광주사유닛 및 이를 채용한 전자사진방식 화상형성장치 |
EP2011631B1 (en) | 2007-07-04 | 2012-04-18 | Envisiontec GmbH | Process and device for producing a three-dimensional object |
JP4958714B2 (ja) * | 2007-10-09 | 2012-06-20 | キヤノン株式会社 | 走査光学装置及びそれを用いた画像形成装置 |
US20100097662A1 (en) | 2008-10-20 | 2010-04-22 | John Eric Churilla | System and method for scanning and processing printed media |
JP5873720B2 (ja) | 2008-12-22 | 2016-03-01 | ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオーNederlandse Organisatie Voor Toegepast−Natuurwetenschappelijk Onderzoek Tno | 3d有体物の積層製造の方法とそのシステム |
US8326024B2 (en) | 2009-04-14 | 2012-12-04 | Global Filtration Systems | Method of reducing the force required to separate a solidified object from a substrate |
EP2251185A1 (de) | 2009-05-11 | 2010-11-17 | Ivoclar Vivadent AG | Verfahren und Vorrichtung zur generativen Herstellung eines Formkörpers mit non-planaren Schichten |
WO2011011818A1 (en) | 2009-07-29 | 2011-02-03 | Zydex Pty Ltd | 3d printing on a rotating cylindrical surface |
WO2011064725A1 (en) * | 2009-11-24 | 2011-06-03 | Aerosud Innovation & Training Centre (Pty) Ltd | Method and apparatus for layer manufacturing of artefacts |
CN103167946A (zh) | 2010-08-20 | 2013-06-19 | 再德克斯私人有限公司 | 用来制造物体的设备和方法 |
US9075409B2 (en) | 2011-06-28 | 2015-07-07 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects using linear solidification |
JP6019113B2 (ja) | 2011-06-28 | 2016-11-02 | ガルフ・フィルトレイション・システムズ・インコーポレイテッドGulf Filtration Systems Inc. | 3次元物体を線形凝固を用いて形成するための装置および方法 |
US20130287933A1 (en) | 2012-04-25 | 2013-10-31 | Pierre J. Kaiser | Three-dimensional (3d) printing |
-
2012
- 2012-06-27 JP JP2014518960A patent/JP6019113B2/ja active Active
- 2012-06-27 CN CN201280042705.9A patent/CN103917348B/zh active Active
- 2012-06-27 ES ES14172372.6T patent/ES2681980T3/es active Active
- 2012-06-27 CA CA2838255A patent/CA2838255C/en active Active
- 2012-06-27 DK DK12804540.8T patent/DK2726264T3/en active
- 2012-06-27 WO PCT/US2012/044398 patent/WO2013003457A1/en active Application Filing
- 2012-06-27 EP EP14172357.7A patent/EP2786859B1/en active Active
- 2012-06-27 US US13/534,638 patent/US9079355B2/en active Active
- 2012-06-27 EP EP12804540.8A patent/EP2726264B1/en active Active
- 2012-06-27 KR KR1020147002528A patent/KR101979969B1/ko active IP Right Review Request
- 2012-06-27 EP EP14172372.6A patent/EP2786860B1/en active Active
-
2014
- 2014-07-11 US US14/328,886 patent/US9073260B2/en active Active
- 2014-07-11 US US14/328,955 patent/US9073261B2/en active Active
- 2014-07-11 US US14/329,153 patent/US9073262B2/en active Active
-
2015
- 2015-05-14 US US14/712,386 patent/US9981425B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223719A (ja) * | 1985-07-24 | 1987-01-31 | Fujitsu Ltd | 立体形状形成装置 |
JPS63145016A (ja) * | 1986-12-10 | 1988-06-17 | Fujitsu Ltd | 立体形状形成装置 |
JP2000000893A (ja) * | 1988-04-18 | 2000-01-07 | Three D Syst Inc | 三次元物体を形成する方法および装置 |
JP2000015705A (ja) * | 1998-07-03 | 2000-01-18 | Hitachi Koki Co Ltd | 光造形装置 |
JP2000258916A (ja) * | 1999-03-09 | 2000-09-22 | Sakae Tanaka | 大型基板用露光装置 |
JP2003507223A (ja) * | 1999-08-20 | 2003-02-25 | デルタメド・メディツィーンプロドュクテ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 3次元物体を生成するための装置およびその方法 |
JP2004514053A (ja) * | 2000-10-30 | 2004-05-13 | コンセプト レーザー ゲーエムベーハー | 電磁放射線束によって焼結、物質除去および/またはラベリングを行う装置およびその装置を操作する方法 |
JP2003181942A (ja) * | 2003-01-15 | 2003-07-03 | Teijin Seiki Co Ltd | 光学的立体造形方法および装置 |
JP2009543716A (ja) * | 2006-07-18 | 2009-12-10 | ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー | 有形物体の積層製造方法およびシステム |
JP2010094893A (ja) * | 2008-10-16 | 2010-04-30 | Roland Dg Corp | 三次元造形装置 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016148664A (ja) * | 2015-02-12 | 2016-08-18 | ローズマウント・エアロスペース・インコーポレーテッドRosemount Aerospace Inc. | 気温センサおよび製造 |
JP2018514414A (ja) * | 2015-03-18 | 2018-06-07 | コスタベバー,エットーレ,マウリツィオ | 改良された光学ユニットを備える光造形機 |
JP2018517034A (ja) * | 2015-06-08 | 2018-06-28 | ディーエスエム アイピー アセッツ ビー.ブイ. | 付加造形用液状ハイブリッドUV/vis線硬化性樹脂組成物 |
JP2018535310A (ja) * | 2015-09-16 | 2018-11-29 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 付加製造システムのためのプリントヘッドモジュール |
US11154933B2 (en) | 2015-12-17 | 2021-10-26 | Seiko Epson Corporation | Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article |
JP2017110271A (ja) * | 2015-12-17 | 2017-06-22 | セイコーエプソン株式会社 | 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物 |
JP6994295B2 (ja) | 2015-12-17 | 2022-01-14 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形物製造装置 |
JP7018395B2 (ja) | 2015-12-31 | 2022-02-10 | フォームラブス,インコーポレーテッド | 積層造形のための可撓性基板のシステムおよび方法 |
JP2019500248A (ja) * | 2015-12-31 | 2019-01-10 | フォームラブス, インコーポレーテッドFormlabs, Inc. | 積層造形のための可撓性基板のシステムおよび方法 |
JP2017136843A (ja) * | 2016-02-02 | 2017-08-10 | 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. | 立体オブジェクト成形システム及びその補正方法 |
JP2018523755A (ja) * | 2016-03-08 | 2018-08-23 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | 三次元物体の積層造形法のための装置 |
US11052605B2 (en) | 2016-03-08 | 2021-07-06 | Concept Laser Gmbh | Apparatus for the additive manufacturing of a three-dimensional object |
US11884006B2 (en) | 2016-03-08 | 2024-01-30 | Concept Laser Gmbh | Apparatus for the additive manufacturing of a three-dimensional object |
JP7165761B2 (ja) | 2018-06-28 | 2022-11-04 | スリーディー システムズ インコーポレーテッド | 統合走査モジュール較正を備えた三次元プリントシステム |
JP2021530370A (ja) * | 2018-06-28 | 2021-11-11 | スリーディー システムズ インコーポレーテッド | 統合走査モジュール較正を備えた三次元プリントシステム |
US11865768B2 (en) | 2018-08-20 | 2024-01-09 | NEXA3D Inc. | Methods for photo-curing photo-sensitive material for printing and other applications |
JP2022528685A (ja) * | 2019-04-02 | 2022-06-15 | ネクサ3ディー インコーポレイテッド | 3d印刷システムのためのタンク組立体及びその構成要素 |
US11559945B2 (en) | 2019-04-02 | 2023-01-24 | NEXA3D Inc. | Membrane assembly for a 3D printing system |
JP7325856B2 (ja) | 2019-04-02 | 2023-08-15 | ネクサ3ディー インコーポレイテッド | 3d印刷システムのためのタンク組立体及びその構成要素 |
CN113631353A (zh) * | 2019-04-02 | 2021-11-09 | 耐克森三维有限公司 | 用于3d打印系统的箱组件及其部件 |
Also Published As
Publication number | Publication date |
---|---|
EP2726264B1 (en) | 2016-11-23 |
JP6019113B2 (ja) | 2016-11-02 |
US9073261B2 (en) | 2015-07-07 |
EP2786859B1 (en) | 2019-08-07 |
US9981425B2 (en) | 2018-05-29 |
US20140319736A1 (en) | 2014-10-30 |
CA2838255C (en) | 2019-08-20 |
DK2726264T3 (en) | 2017-02-27 |
CN103917348B (zh) | 2016-12-21 |
US9073260B2 (en) | 2015-07-07 |
US20140319737A1 (en) | 2014-10-30 |
EP2786860B1 (en) | 2018-05-16 |
US9073262B2 (en) | 2015-07-07 |
KR20140047103A (ko) | 2014-04-21 |
KR101979969B1 (ko) | 2019-05-17 |
CA2838255A1 (en) | 2013-01-03 |
US20140319738A1 (en) | 2014-10-30 |
ES2681980T3 (es) | 2018-09-17 |
US20130001834A1 (en) | 2013-01-03 |
WO2013003457A1 (en) | 2013-01-03 |
EP2786860A2 (en) | 2014-10-08 |
US20150246482A1 (en) | 2015-09-03 |
CN103917348A (zh) | 2014-07-09 |
EP2786860A3 (en) | 2015-02-25 |
EP2726264A4 (en) | 2015-02-25 |
EP2726264A1 (en) | 2014-05-07 |
EP2786859A3 (en) | 2015-02-25 |
EP2786859A2 (en) | 2014-10-08 |
US9079355B2 (en) | 2015-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6019113B2 (ja) | 3次元物体を線形凝固を用いて形成するための装置および方法 | |
US10000023B2 (en) | Apparatus and method for forming three-dimensional objects using linear solidification | |
EP2981402B1 (en) | Method for forming three-dimensional objects using linear solidification with travel axis correction and power control | |
US10005237B2 (en) | Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data | |
EP2958719B1 (en) | Method for forming three-dimensional objects using linear solidification | |
US10589507B2 (en) | Apparatus and method for forming three-dimensional objects using a curved build platform or curved solidification substrate | |
Barone et al. | Development of a DLP 3D printer for orthodontic applications | |
EP4200120A1 (en) | Method and 3d printing system for manufacturing a physical object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150622 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6019113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |