KR101704547B1 - 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치. - Google Patents

단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치. Download PDF

Info

Publication number
KR101704547B1
KR101704547B1 KR1020150175154A KR20150175154A KR101704547B1 KR 101704547 B1 KR101704547 B1 KR 101704547B1 KR 1020150175154 A KR1020150175154 A KR 1020150175154A KR 20150175154 A KR20150175154 A KR 20150175154A KR 101704547 B1 KR101704547 B1 KR 101704547B1
Authority
KR
South Korea
Prior art keywords
polygon mirror
shaping
axis
light
plane
Prior art date
Application number
KR1020150175154A
Other languages
English (en)
Inventor
김승택
김형태
박문수
김종석
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020150175154A priority Critical patent/KR101704547B1/ko
Application granted granted Critical
Publication of KR101704547B1 publication Critical patent/KR101704547B1/ko

Links

Images

Classifications

    • B29C67/0085
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명은, 단방향으로 회전하는 폴리곤미러를 구비하는 구성을 갖고, 이들의 조합으로 2축 스캐닝을 고속으로 수행할 수 있고, 타이밍 및 조형광선 조사 위치를 용이하게 제어할 수 있으며, 조형정밀도를 높일 수 있는 효과를 지니는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면(10) 스캐닝 방법에 관한 것으로, 빔스팟 또는 유효빔스팟의 크기를 제어함으로써 조형품질을 높이기 위해, 상기 조형광선을 생성하는 조형광원부(15), 조형평면(10) 상부의 소정의 위치에 설치되고, 조형광원부(15)로부터의 조형광선을 1차반사하여 제2광가이드부(30)로 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제1광가이드부(20), 상기 조형평면(10) 상부의 소정의 위치에 설치되고, 상기 제1광가이드부(20)로터 입사받은 조형광선을 2차반사하여 상기 조형평면(10) 상에 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제2광가이드부(30), 상기 조형광선을 입력받고, 상기 조형광선의 에너지밀도가 상기 조형평면상의 모든 조사위치에 대하여 균일하게 되도록 상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기를 조절하는 기능을 수행하는 빔스팟크기조절광학모듈(50), 및 상기 조형광선의 구동, 상기 제1광가이드부(20) 및 상기 제2광가이드부(30)의 구동, 및 상기 빔스팟크기조절광학모듈(50)을 연동하여 제어하는 제어부(40)를 포함하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치를 제공한다.

Description

단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.{A head module for 3D printer comprising polygon mirrors rotating in single direction with a function of controlling the size of a beam spot, and a scanning method therewith and a 3D printer therewith}
본 발명은, 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법에 관한 것으로, 더욱 상세하게는, 단방향으로 회전하는 폴리곤미러를 구비하는 구성을 갖고, 이들의 조합으로 2축 스캐닝을 고속으로 수행할 수 있고, 빔스팟크기조절광학모듈을 구비하여 조형광선의 빔스팟 또는 유효빔스팟의 크기를 제어함으로써 광경로(optical path) 또는 입사각 차이와 관계없이 조형평면의 모든 지점에 대해 에너지밀도를 균일하도록 하여 조형품질을 높일 수 있는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법을 제공한다.
3D 프린팅은 제품을 제작하는 방식 중 하나로, 적층 방식을 이용하므로 종래의 절삭가공에 비하여 재료의 손실이 작고, 상대적으로 저렴한 제조 비용이 소요되므로 주로 시제품 제작에 이용하여 왔다. 최근 이 분야의 기술은 시제품 제작을 넘어 차세대 생산기술로서의 가능성을 인정받고 있는데, 제작 속도의 증대, 출력물의 완성도(해상도)가 높아지고, 사용가능한 소재가 다양해지고, 장치의 소형화로 인해 개인들도 이용 접근성이 높아졌기 때문이다. 이러한, 3D 프린팅의 방식은, 크게 SLA(Stereo Lithography Apparatus), SLS(Selective Laser Sintering), FDM(Fused Deposition Modeling) 등의 방식이 존재한다.
미국 등록특허 제 08605761호 (발명의 명칭 : multi-beam laser control system and method, 이하 종래기술1이라 한다.) 에서는 방사선 조각에 있는 광에너지를 방출하기 위한 레이저 전송기, 타겟을 감지하기 위한 센서, 각각의 센서에서 수용광의 강도를 측정하기 위해 구성된 제2센서, 레이저 전송 장치의 방향을 타겟에 맞도록 조정하는 컨트롤러를 포함하여 이루어진 것을 특징으로 하고, 레이저빔의 강도와 조사 수를 조정하여 타겟의 레이저 흡수량을 제어하는 특징을 갖는 장치가 개시되어 있다.
US 08605761 B
종래기술1은, 별도의 센서를 이용하여, 레이저빔의 강도와 조사수를 측정하여 타겟의 레이저 흡수량을 제어하는 구성을 취하므로, 센서류 및 복수개의 센서로부터 입력되는 신호를 처리하기 위한 배선 등의 부가적인 설치로 인해 제품 레이아웃이 복잡해진다는 제1문제점, 상대적으로 고가 부품인 센서류, 그리고 센서류에 광의 적절합 입사를 위한 렌즈 등의 추가적인 광학적 요소의 포함으로 인해 원가가 증대된다는 제2문제점을 갖는다.
상기와 같은 문제점 및 니즈를 해결하기 위해 안출된 본 발명은, 상기 조형광선을 생성하는 조형광원부(15), 조형평면(10) 상부의 소정의 위치에 설치되고, 조형광원부(15)로부터의 조형광선을 1차반사하여 제2광가이드부(30)로 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제1광가이드부(20), 상기 조형평면(10) 상부의 소정의 위치에 설치되고, 상기 제1광가이드부(20)로부터 입사받은 조형광선을 2차반사하여 상기 조형평면(10) 상에 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제2광가이드부(30),및 상기 조형광선을 입력받고, 상기 조형광선의 에너지밀도가 상기 조형평면상의 모든 조사위치에 대하여 균일하게 되도록 상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기를 조절하는 기능을 수행하는 빔스팟크기조절광학모듈(50)을 포함하여 이루어지고, 상기 제어부는, 상기 조형광선의 구동, 상기 제1광가이드부(20) 및 상기 제2광가이드부(30)의 구동, 및 상기 빔스팟크기조절광학모듈(50)을 연동하여 제어하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치를 제공한다.
또한, 제1폴리곤미러(21)가 일방향으로 회전하고, 상기 조형광원부(15)가 상기 제1폴리곤미러(21)에 조형광선을 입사하는 것을 시작하고, 제1폴리곤미러(21)가 소정의 속도로 계속 회전을 하는 동안, 제1폴리곤미러(21)에 1차반사된 조형광선이 상기 제2폴리곤미러(31)에서 2차반사된 후 상기 조형평면(10)에 대해 상기 제2축(2)과 평행한 방향으로 라인스캔(line scan)을 수행하고, 조형광원부(15)가 오프되어 라인스캔(line scan)이 종료된 후 제1축(1)방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(line scan)을 수행하기 위해, 제2폴리곤미러(31)가 소정의 각변위만큼 회전하고, 제1폴리곤미러(21)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전하며, 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 단계들을 반복하여 수행하는 조형평면(10)의 스캐닝방법을 제공한다.
또한, 본 발명의 입체조형장비의 헤드장치를 포함하여 이루어지고, 조형재료를 공급받아 조형레이어를 형성하고 적층하여 입체조형물을 조형하는 입체조형장치를 제공한다.
본 발명은, 단일 방향으로 회전하는 폴리곤미러를 채택하고, 폴리곤미러를 정지없이 계속 회전하게 함으로써, 조형광선 조사를 고속으로 수행할 수 있고, 조형광선의 조사위치를 제어함에 있어, 두 개의 폴리곤미러의 회전각속도 및 회전각변위의 제어를 통해 제어를 수행함으로써, 헤드장치로부터 발생하는 진동 및 소음을 줄일 수 있는 헤드장치에 대하여, 추가적으로, 빔스팟크기조절광학모듈을 구비하여 조형광선의 빔스팟(또는 유효빔스팟)의 크기를 조절하도록 함으로써, 조형광선의 입사되는 부위에 관계없이 조형에너지밀도를 균일하게 함으로써 정해진 해상도에 대하여 조형해상도조형레이어의 품질을 개선할 수 있다는 제1효과, 이러한 제어를 통해, 조형 정밀도를 높이고, 평균 조형속도를 높일 수 있다는 제2효과를 갖는다. 나아가 본 발명은, SLA 또는 SLS 방식을 포함하는 다양한 방식의 입체조형장치에 적용할 수 있다.
도 1은, 단일출력/전류를 갖는 조형광원의 사용시 나타나는 문제점에 대해 설명하는 설명도이다.
도 2는 본 발명의 빔스팟크기조절광학모듈(50)을 구비한 입체조형장비의 헤드장치의 일실시예의 구성을 나타내는 설명도이다.
도 3은 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면을 스캐닝 하는 방법의 일실시예(제1-1배치)를 나타내는 사시도이다.
도 4는 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면을 스캐닝 하는 방법의 일실시예(제2-1배치)를 나타내는 사시도이다.
도 5는 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면을 스캐닝 하는 방법의 일실시예(제2-2배치)를 나타내는 사시도이다.
도 6은 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면을 스캐닝 하는 방법의 일실시예(제1-2배치)를 나타내는 사시도이다.
도 7은, 본 발명의 입체조형장비의 헤드장치 및 제1광센서(41)의 일실시예를 나타내는 사시도이다.
도 8은, 본 발명의 입체조형장비의 헤드장치 및 제2광센서(42) 및 제3광센서(43)의 일실시예를 나타내는 사시도이다.
도 9는, 본 발명의 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면(10)을 스캐닝 하는 방법의 일실시예(제1-1배치)에서, 제1폴리곤미러(21)를 순방향 및 역방향 회전하도록 할 때의 절차를 나타내는 설명도이다.
도 10은, 본 발명의 빔스팟크기조절광학모듈의 일실시예로서, 렌즈간의 거리를 제어하는 구성을 나타내는 모식도이다.
도 11은, 본 발명의 빔스팟크기조절광학모듈의 일실시예로서, 렌즈의 초점거리를 제어하는 구성을 나타내는 모식도이다.
도 12는, 본 발명의 최대 유효빔스팟 크기과 빔스팟크기 간의 관계를 나타내는 설명도이다.
도 13은, 본 발명의 최대 유효빔스팟 크기과 빔스팟크기 간의 관계를 나타내는 설명도이다.
도 14는, 본 발명의 빔스팟크기조절광학모듈에 의해 유효빔스팟 크기가 제어되어 조형광선의 입사 지점에 따라 조형광선에너지밀도가 균일하게 제어되는 일시예를 나타내는 설명도이다.
본 발명의 입체조형장비의 헤드장치는, 조형광선을 생성하는 조형광원부(15), 조형광선을 1차반사하여 제2광가이드부(30)로 입사시키는 제1광가이드부(20), 제1광가이드부(20)로부터 입사받은 조형광선을 2차반사하여 조형평면(10) 상에 입사시키는 기능을 구비하는 제2광가이드부(30), 상기 조형광선을 입력받고, 상기 조형광선의 에너지밀도가 상기 조형평면상의 모든 조사위치에 대하여 균일하게 되도록 상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기를 조절하는 기능을 수행하는 빔스팟크기조절광학모듈(50) 및 조형광선의 온오프와 출력크기, 제1광가이드부(20) 및 제2광가이드부(30) 및 상기 빔스팟크기조절광학모듈(50)의 구동을 연동하여 제어하는 제어부(40)를 주요구성요소로 갖고, 조형평면(10) 전면에 걸쳐 소정의 스캐닝패턴으로 조형광선을 조사하는 기능을 수행한다. 이러한 구성에 대한 개략도가 도 2에 도시되어 있다.
이하, 주요구성요소 및 실시예를 상술하는 방식으로 본 발명에 대해 설명하기에 앞서, 관련 용어들을 정의하기로 한다.
조형평면(10)은, 본 발명의 입체조형장비의 헤드장치에서 그 경로가 제어되는 조형광선이 조사되는 영역을 의미하기도 하며, 이러한 실제의 조형광선의 조사 영역을 수학적으로 나타내기 위해, 서로 수직하는 제1축(1)과 제2축(2)을 포함하여 이루어지고, 제1축(1)과 제2축(2)에 따른 좌표값으로써 그 평면상의 위치가 기술되는 논리적인 영역을 의미하기도 한다. 실제의 조형평면(10)은, 외부에 직접적으로 노출되거나, 또는 조형광선을 직접 조사받을 수 없다 하더라도, 조형광선이 투과할 수 있는 투명한 부재로 차단된 상태일 수 있다. 또한, 조형광선에 에너지가 부여되어, 실제로 광경화 또는 소결경화 등의 작용이 일어나는 것은 조형평면(10) 영역에 한정된다는 점에서, 조형평면(10)은 유효조형영역(effective forming region)이라고 표현할 수 있을 것이다.
제1축(1), 제2축(2), 제3축(3)은 후술할 조형평면(10)에 대한 조형광선의 스캐닝방향 및 패턴 또는 폴리곤미러 회전축의 위치 관계를 기술함에 있어 기준이 된다. 제3축(3)은 제1축(1)과 제2축(2) 모두에 대해 수직한 축이다. 제1축(1) 및 제2축(2)은 실제 조형평면(10) 상에는 임의적으로 위치한다.
이하, 본 발명의 기술적 특징인 빔스팟(beam spot) 또는 유효빔스팟(이에 관하여는 후술한다)의 크기 제어와 관련된 부분을 먼저 설명하고, 본 발명의 헤드장치의 나머지 구성요소에 대하는 그 이후에 설명하기로 한다.
도 1에 도시된 바와 같이, 조형광선이 조사되는 조형평면상의 위치에 따라 조형광선이 조형평면에 형성하는 조사구역(빔스팟)의 형상이 왜곡되고, 빔스팟의 크기가 달라지는 문제가 발생한다. 즉, 도 1(b)에 나타난 바와 같이, 조형광선이 조형평면(10)을 이루는 각 지점까지 도달하는 데 필요한 광경로길이의 차이 또는 조형광선의 입사각도의 차이에 따라 야기되는 각 지점에서의 조형광선에너지밀도의 차이를 보정하는 것이 필요한 것이다. 구체적으로는, 조형광선이 조형평면(10)에 대해 수직으로 입사하면, 입사면적이 최소가 되므로, 조형광선에너지밀도가 커지게 되며, 반대로 조형광선이 조형평면(10)에 대해 비스듬한 각도를 가지면서 입사한다면, 입사면적도 커지게 되므로, 조형광선에너지밀도는 작아지게 된다. 조형재료에 대한 조형광선의 경화-광경화 또는 분말소결 등 ?작용의 정도는 조형광선에너지밀도의 크기에 비례하므로, 조형레이어의 높은 품질을 확보하기 위해서는 조형평면(10)의 전면적에 대해, 균일한 조형광선에너지밀도를 보장하는 것이 필요하다.
그런데, 이러한 조형광선에너지밀도는, 정출력의 조형광선을 사용하는 경우에는, 조형광선의 입사면적에 반비례하는데, 조형광선의 입사면적은, 조형광선의 빔스팟 크기에 해당한다. 따라서, 조형광선의 빔스팟 크기에 대한 제어를 통해, 조형광선에너지밀도를 제어할 수 있다는 것이다.
나아가, 일반적인 조형광원은, 빔스팟의 중심에서의 강도가 가장 높고, 빔스팟의 가장자리로 갈수록 강도가 낮아지는데, 조형재료에 따라 결정되는 조형임계강도를 감안하여 결정되는 유효빔스팟을 빔스팟 대신 고려할 필요가 있으며, 자세한 내용은 후술하기로 한다.
종래기술의 실시예를 도시한 도 1을 참고하였을 때, 조형평면상의 각 영역 별로 빔스팟 크기(또는 유효빔스팟 크기)가 달라지는 경우, 조형해상도에도 악영향을 미치게 된다. 일반적으로 조형평면상에 형성되는 빔스팟 내부의 영역 중, 후술하는 유효빔스팟 내부에서 조형이 이루어지게 되는데, 도 1(b)에 도시된 바와 같이, C부분의 유효빔스팟 크기가 A부분의 유효빔스팟 크기보다 현저하게 크게 되므로, 스캐닝 속도 등이 별도로 제어되지 않는다면, A부분, B부분, C부분의 조형해상도가 각각 차이를 갖게 되며, 이는 조형품질 저하 요인이 된다.
특히 본 발명의 헤드장치가 대형화되는 경우, 조형광선이 조형평면(10)을 이루는 각 지점까지 도달하는 데 필요한 광경로길이의 차이가 더 커지게 되어, 각 부분별로 빔스팟 크기가 더욱 상이하게 될 것이므로, 이에 대한 보정은 더 중요한 것이 될 것이다.
조형재료와의 관계에서 조형재료를 경화(광경화폴리머 등의 경우), 용융(금속 재료 등의 경우)시켜 조형을 수행하기 위한 조형광선의 조형임계강도의 값이 중요한 의미를 갖는다. 이러한 조형임계강도는 조형재료에 따라 결정된다. 또한, 조사중심점을 중심으로 소정의 거리 내의 구역에 대하여, 조형광선의 강도가 조형임계강도보다 크므로, 해당 구역에서는 조형이 실제로 발생하게 된다. 유효빔스팟은 일반적으로 레이저 등의 조형광선이 직접 조형평면에 조사되면서 생성되는 조형광선과 조형평면간의 경계선 및 그 내부로 이루어지는 영역인 빔스팟(beam spot)과 대비되어야 한다. 즉, 빔스팟 내부의 모든 지점에 대하여, 조형작용이 발생하는 것은 아닌데, 이는 앞서 설명한 바와 같이, 레이저 등의 조형광선은 조사중심점에서 멀어질수록 그 강도가 점점 감소하기 때문에, 조사중심점에서부터 특정값 이상의 거리를 나타내는 지점에서는 조형광선의 강도가 조형임계강도레벨의 값보다 작아지기 때문이다. 따라서, 조형광선의 강도가 조형임계강도레벨 이상의 값을 갖게 되는 경계가 중요한 의미를 가지며, 이러한 경계가 유효빔스팟이라 호칭되는 영역을 결정한다. 정출력의 조형광선을 사용하는 경우, 조형임계강도레벨은 고정될 것이므로, 이러한 조형임계강도의 그래프와 강도 프로파일의 그래프의 교차에 의해 결정되는 최대 유효빔스팟의 크기 역시 고정되게 된다.
더욱 상세하게는, 정출력의 조형광선을 적용하는 경우, 유효빔스팟의 크기와 빔스팟의 크기는 다음과 같은 관계가 있다. 도 12에 도시된 일실시예를 참조하면, 조형광선의 빔스팟(조형광선과 조형평면과의 교차면)의 크기가 최대 유효빔스팟의 크기보다 작도록 된 경우에는, 빔스팟의 모든 부분에 대해 조형이 이루어지게 되므로, 유효빔스팟의 크기는 빔스팟의 크기와 같게 된다. 반면, 도 13에 도시된 일실시예를 참조하면, 조형광선의 빔스팟의 크기가 최대 유효빔스팟의 크기보다 크도록 된 경우에는, 빔스팟 중 최대 유효빔스팟 영역을 벗어나는 부분에 대해서는 조형이 이루어지지 않으므로, 유효빔스팟의 크기는 최대 유효빔스팟의 크기와 같게 된다. 따라서, 광경로차이 등의 원인에 의해, 조형평면의 가장자리로 갈수록 빔스팟의 크기가 커진다고 하더라도, 유효빔스팟은 최대 유효빔스팟의 크기를 넘지는 않는다.
일반적으로, 조형평면의 중심부에서는, 조형광선의 빔스팟의 왜곡의 정도가 작은 반면, 조형평면의 가장자리로 갈수록 조형광선의 빔스팟의 왜곡(크기의 확대 및 모양의 타원형화)가 심하게 된다.
이에 본 발명에서는 이러한 문제점을 해결하기 위해, 제어의 일실시예로서, 조형평면의 각 지점에 대하여, 조형평면의 중심에서부터의 거리가 증가하여도 조형광선의 유효빔스팟의 크기가 유지되도록 조절하는 제어패턴을 제안한다.
구체적으로는, 최대 유효빔스팟과 유효빔스팟의 크기 간의 관계를 감안하여야 하는데, 그 일실시예로서, 조형평면의 전면에 대하여 모든 부위의 빔스팟의 크기가 최대 유효빔스팟의 크기보다 작게 되도록 설정하고자 하는 경우에는, 각 부위의 유효빔스팟의 크기는 빔스팟의 크기와 동일하게 될 것이며, 따라서, 본 발명의 제어는, 모든 부위에 대해 빔스팟 크기를 동일하게 되도록 조절하는 패턴을 취할 수 있다. 일반적으로 조사영역의 가장자리로 갈수록 빔스팟의 크기가 커지고 모양도 더 왜곡됨을 감안하여, 가장자리 영역에 조사가 이루어지는 경우에는, 빔스팟의 크기를 감소시키고, 조사영역의 중심부로 갈수록 오히려 빔스팟의 크기를 증대시킬 수 있을 것이나, 이러한 실시예에 한정할 것이 아님은 분명하다. 또한, 이러한 조절을 위한 구체적인 구성은 후술하기로 한다.
다른 실시예로서, 조형평면에 대하여 일부 부위의 빔스팟의 크기가 최대 유효빔스팟의 크기보다 커지는 것을 허용하는 경우에는, 이들 부위의 유효빔스팟의 크기는 최대 유효빔스팟의 크기와 동일하게 될 것이므로, 따라서, 본 발명의 제어는, 모든 부위에 대해 빔스팟 크기를 최대 유효빔스팟의 크기와 동일하게 되도록 조절하는 패턴을 취할 수 있다. 일반적으로 조사영역의 가장자리로 갈수록 유효빔스팟의 크기가 커지고 모양도 더 왜곡됨을 감안하여, 가장자리 영역에 조사가 이루어지는 경우에는, 유효빔스팟의 크기를 감소시키고, 조사영역의 중심부로 갈수록 오히려 유효빔스팟의 크기를 증대시킬 수 있을 것이나, 이러한 실시예에 한정할 것이 아님은 분명하다. 이러한 조절을 위한 구체적인 구성은 후술하기로 한다.
물론, 조형광선의 빔스팟은, 형상에 있어서도 타원형화하는 등 왜곡이 발생하므로, 빔스팟의 크기를 유지되도록 하는 제어는, 빔스팟의 크기를 조형평면의 모든 부위에 대해 동일한 크기를 갖도록 하되, 일정한 오차범위 내에 포함되는 경우도 포함하는 것으로 간주하는 것도 고려할 수 있다.
도 14를 참조하면, 상기와 같은 제어를 통해 빔스팟의 크기가 유지되는 일실시예가 도시되어 있는데, 조형평면의 각부에 대해 유효빔스팟의 크기의 편차를 최소화할 수 있어, 조형해상도 등 측면에서 조형품질을 증대시킬 수 있다는 것이다.
다만, 조형광원부와 조형평면의 상대적 위치 및 제1광가이드부, 제2광가이드부 등의 구체적인 설치 위치에 따라, 상기의 제어 패턴과 다른 패턴의 제어가 수행되는 것을 배제하지 않는다. 또한, 정출력의 조형광원이 아닌, 가변출력의 조형광원을 적용하는 경우에는, 빔스팟의 크기를 유지하는 패턴으로의 제어가 필요없을 수 있음을 감안한다.
상기와 같은 제어를 수행하는 구성요소는, 빔스팟크기조절광학모듈(50)일 수 있으며, 본 발명에서는, 조형광선의 상기 조형광선을 입력받고, 상기 조형광선의 에너지밀도가 상기 조형평면상의 모든 조사위치에 대하여 균일하게 되도록 상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기를 조절하는 기능을 수행하도록 한다는 것이다.
빔스팟크기조절광학모듈(50)은, 도 2에 도시된 바와 같이, 조형광원부의 출력단에 직접 광학적으로 연결하여, 조형광선을 입력받도록 할 수 있는데, 이는, 폴리곤미러등의 수동 광학소자에 의한 빔스팟의 크기 변동은 크게 유의미하지 않기 때문이기도 하다. 다만, 두 개의 폴리곤미러 사이나, 조형평면의 근접 영역에 구비하는 등의 구성을 배제하는 것은 아니다.
빔스팟크기조절광학모듈(50)은, 유효빔스팟 크기를 조절하는 목적을 수행하기 위해, 상기 조형광선과 조형평면이 교차하는 영역으로서의 빔스팟(beam spot) 크기를 조절하는 구성을 선택할 수 있다. 이는, 빔스팟의 크기와 유효빔스팟의 크기는 조형광선의 스펙(출력 등), 조형광선의 경로의 길이 및 조형광선의 조형평면으로의 입사각도 등을 추가적인 변수로 갖는 상호 함수 관계에 있게 될 것이므로, 이러한 상호 함수에 관한 관계식 등이 알려진 경우에는, 유효빔스팟의 크기를 제어하는 대신, 빔스팟의 크기를 제어함을 통해 간접적으로 유효빔스팟의 크기를 제어하는 방식을 적용하는 것을 배제하지는 않는다는 것이다.
빔스팟크기조절광학모듈(50)은, 입력되는 조형광선의 빔스팟크기에 대하여 축소 또는 확대된 빔스팟크기를 갖는 출력광을 생성하는 기능을 구비하고, 제1렌즈와 제2렌즈를 포함하여 이루어지는 빔 익스팬더(beam expander)일 수 있다. 원래 빔 익스팬더는 입력평행광과 출력평행광의 두께의 비율을 조절하기 위한 광학시스템이다.
본 발명에서 빔스팟크기조절광학모듈(50)로서 적용되는 빔 익스팬더의 구성은, 공지의 구성을 적용할 수 있으며, 다만, 조형평면의 각부에 이르는 조형광선에 대한 빔스팟(유효빔스팟)의 크기를 개별적이면서 종합적으로 제어하여야 하므로, 입력광에 대한 출력광의 빔스팟의 확대 또는 축소의 비율을 실시간으로 제어할 수 있어야 한다. 이러한 제어는 후술하는 제어부에 의해 수행된다.
도 10에 도시된 일실시예를 참조하면, 빔 익스팬더의 빔스팟크기 축소 또는 확대의 비율은 상기 제1렌즈와 상기 제2렌즈 사이의 거리를 변경함으로써 조절될 수 있다. 다만, 도시된 실시예의 축소 또는 확대의 비율은 설명을 위해 과장되게 표현되었음을 밝힌다. 일반적으로 빔 익스팬더는 두 개의 렌즈의 초점거리를 일치하게 함으로써, 변환 손실을 최소화하도록 하지만, 본 발명에서 두 개의 렌즈가 고정초점거리렌즈인 경우에는, 두 렌즈 간의 거리가 가변적이어야 하므로, 불가피하게 두 개의 렌즈의 초점거리가 일치할 수는 없게 된다. 제1렌즈와 제2렌즈의 크기, 각 렌즈의 굴절률은, 구현하고자 하는 빔스팟크기의 축소 또는 확대의 비율의 범위를 고려하여 결정되어야 한다. 또한, 제1렌즈와 제 2렌즈 간의 거리의 최대값이 너무 커지면, 빔 익스팬더가 발생시키는 진동이 커져, 결과적으로 조형광선의 제어 정밀도가 저하될 수 있음을 감안하여야 한다.
또한, 도 11을 참조하면, 상기 제1렌즈와 상기 제2렌즈 중 하나 이상은 가변초점거리렌즈이고, 상기 빔 익스팬더의 빔스팟크기 축소 또는 확대의 비율은, 상기 제1렌즈 및 상기 제2렌즈 중 하나 이상의 초점거리를 변경함으로써 조절될 수 있다.
가변초점거리렌즈는, 공지의 것을 적용 가능하며, 렌즈의 두께, 곡률 등을 실시간으로 변동하게 함으로써 초점거리를 변동시킨다. 일례로, 수축 팽창하는 폴리머 재질로 된 것일 수 있으며, 이러한 재질로 된 가변초점거리렌즈는, 폴리머 재질을 체임버 내부에 장입하고, 이러한 체임버에 일반적인 액추에이터에 의한 물리력 또는 보이스 코일 및 피에조 모터 등의 전기력에 의한 힘을 가하여 렌즈의 두께, 곡률 등을 제어할 수 있게 된다. 물론, 이러한 액추에이터 및 전기소자 등에 의한 무브먼트가 너무 커지면, 먼지가 침입한다든지 내구성 저하가 발생할 수 있고, 근본적으로는 조형광선의 제어 정밀도에 악영향을 줄 수 있음을 감안하여야 한다.
또한, 가변초점거리렌즈의 일실시예로서, 통전되는 전류의 크기 등에 따라, 굴절률이 변화하는 소재를 채택한 것을 적용할 수 있으며, 이는 굴절률에 따라 초점거리가 변동되는 현상을 이용하고자 하는 것이다.
본 발명에서의 제어부는, 상기 조형광선의 구동, 상기 제1광가이드부(20) 및 상기 제2광가이드부(30)의 구동을 연동제어하는 기본적 기능 외에, 이들 구성요소와 빔스팟크기조절광학모듈(50)을 함께 연동하여 제어하는 기능을 수행한다.
조형광원부(15)는 조형광선을 생성하고 후술할 제1광가이드부(20)로 입사시키는 기능을 수행한다. 조형광선은, 사용되는 조형재료를 경화시키는데 필요한 에너지를 가지고 있으면 족하므로, 자외선(UV lay), 레이저(laser) 등 빛의 종류에 한정되지 않는다. 다만, 레이저를 이용하면, 높은 에너지를 집속할 수 있을 뿐만 아니라, 그 출력세기 및 온오프제어가 용이하여, 조형광선으로서의 용도에 적합하여 바람직하다. 레이저의 출력 및 파장은, 사용하는 조형재료에 대응하여 결정되어야 한다. 레이저를 생성하기 위해 레이저다이오드(LD) 또는, VCSEL 등의 소자(device)를 사용할 수 있으나 이에 한정되는 것은 아니며, 조형광선으로서 단일채널의 광선이 필요하다고 하여 반드시 단일한 소자를 사용할 필요는 없고, 복수의 소자를 사용하여 레이저 어레이(array)를 생성한 뒤, 릴레이모듈(relay module) 등을 이용하여, 하나의 레이저광으로 집속하여 사용하는 것도 가능할 것이다. 또한, 다양한 광변조모듈 또는 집속렌즈, 프리즘 등의 광학요소을 적용하여 조형광선의 품질을 개선하거나 헤드장치를 소형화하는 구성을 디자인하는 것도 고려할 수 있다.
제1광가이드부(20) 및 제2광가이드부(30)는, 서로 평행하지 않도록 조형평면(10) 상부의 공간상에 위치하며, 이들 요소는, 조형평면(10)에 대한 스캐닝에 있어, 빠진 부위가 발생하지 않도록 조형광선의 조사위치를 시간에 대해 연속적으로 결정한다. 조형광선의 관점에서는, 조형광원부(15)로부터의 조형광선이 제1광가이드부(20)에 의해 1차반사하여 제2광가이드부(30)로 입사한 후, 2차반사되어 조형평면(10) 상에 입사되는 것이다. 본 발명에서는 제1광가이드부(20) 및 제2광가이드부(30) 중 하나 이상은, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 것을 제안한다. 폴리곤미러는 회전축에 대해 수직한 단면의 형상이 다각형으로 되고, 측면표면이 조형광선을 반사할 수 있도록 구성되어야 한다. 더욱 바람직하게는 상기 단면형상이 정다각형인 폴리곤미러를 채택하면, 폴리곤미러의 회전속도 및 회전방향을 정밀제어하는 것이 용이하므로 유리하다. 폴리곤미러의 단면은, 정사각형, 정오각형, 정육각형, 정팔각형 등으로 하는 것이 가능하나, 이에 한정되는 것은 아니다. 후술하는 바와 같이 라인스캔(line scan) 하나의 수행은, 폴리곤미러의 측면반사면 하나에 의해 수행되므로, 폴리곤미러 단면의 정다각형의 변수가 적을수록(일례로 정사각형) 라인스캔(line scan)의 길이를 길게 할 수 있다는 장점이 있으나, 라인스캔(line scan) 하나의 수행을 위해 폴리곤미러의 회전각변위가 더 커져야 하므로, 같은 조형속도를 내기 위해 폴리곤미러의 회전속도를 더 크게 해야 한다는 단점이 있게 된다. 따라서, 조형평면(10)의 크기에 따라 적절한 모양의 폴리곤미러를 선택하여 이러한 장점과 단점을 절충하는 것이 필요하다. 또한, 측면의 반사면은 서로 동일한 모양과 크기를 갖는 직사각형 또는 사다리꼴일 수 있으며. 이렇게 되면, 폴리곤미러의 전체적인 형상은 정다각기둥 또는 정다각뿔대가 될 수 있다. 폴리곤미러의 회전축의 설치각도 및 조형광선의 입사각도, 제1광가이드부(20) 및 제2광가이드부(30) 간의 상호 위치, 또는 본 발명의 헤드장치의 크기 등에 따라, 폴리곤미러를 정다각기둥 또는 정다각뿔대 중의 하나의 형상으로 구성할 수 있다. 도 2 내지 도 8에서의 실시예에서, 제1광가이드부(20)는 정팔각기둥의 형상으로, 제2광가이드부(30)는 정육각기둥의 형상으로 구현되어 있다.
폴리곤미러의 회전축은, 다양한 방법으로 조형평면(10)의 상부의 소정의 위치에 설치될 수 있다. 또한, 폴리곤미러는 측면 뿐만 아니라 상면 또는 하면도 반사면 처리하는 것이 필요할 수 있는데, 이에 대하여는 제1광센서(41)부와 관련되므로, 후술하기로 한다. 또한, 이러한 폴리곤미러는, 제1광가이드부(20) 및 상기 제2광가이드부(30) 모두에 적용될 수도 있으나, 이들 중 하나에만 적용하는 것도 가능하다.
제1광가이드부(20)는 조형광선의 입사를 최초로 받는데, 조형광원부(15)로부터 입사되는 조형광선의 입사방향은 정해진(fixed) 경우가 대부분이며, 따라서, 제1광가이드부(20)의 회전축방향 길이는 상대적으로 짧아도 된다. 반면 제2광가이드부(30)는 제1광가이드부(20)로부터 1차반사된 조형광선을 2차반사하는 구조로서, 그 회전축방향 길이는 상대적으로 길게 설정되어야 함을 고려한다.
제어부(40)는, 조형광원부(15), 제1광가이드부(20) 및 제2광가이드부(30)를 연동제어하는데, 구체적인 제어대상은, 조형광선의 온오프와 출력값, 제1광가이드부(20) 및 제2광가이드부(30)의 구동 등이 될 것이다. 제1광가이드부(20) 및 제2광가이드부(30)의 회전각제어에 따라 조형광선의 조형평면(10)에 대해 조사 위치가 특정되고, 이렇게 특정된 조사 위치에서 조형레이어 이미지정보에 의거하여 조형광선의 온오프가 제어되어야 조형레이어가 형성될 수 있다. 제어부(40)는, 크게 제어변수에 대해 적절한 제어신호를 발생시키는 처리부 및 처리부에서 발생한 제어신호를 처리하여 해당 구성요소의 구동을 발생시키는 구동부로 이루어진다. 처리부는 회로 등 하드웨어로 구현하거나, 프로그램 등 소프트웨어적으로 구성할 수 있다. 조형광선의 온오프제어는, 조형광선생성소자 ?LD 또는 VCSEL 등- 의 온오프를 제어하는 구성을 취할 수도 있으며, 조형광선생성소자에 의해 생성되는 조형광선을 시간에 따라 선택적으로 통과 또는 차단하는 셔터(shutter)등의 부가적인 구성요소를 두고 이들을 제어하는 것을 통해 구현할 수 있으나, 이러한 구성에 한정되는 것은 아니다.
제어부(40)의 제1광가이드부(20) 및 제2광가이드부(30)의 제어는 폴리곤미러의 회전제어에 의해 이루어지며, 주된 제어변수는 폴리곤미러의 회전각속도, 회전각변위 및 회전각가속도가 된다. 제어부(40)의 제어신호에 대하여 이러한 제어변수들이 작은 지연시간(lead time) 내에 작은 오차를 갖고 추종하는 것이 필요하며, 이를 위해 전동식 제어방법을 이용하는 것이 바람직하다. 더욱 바람직하게는 시간에 따라 변화하는 제어신호(전기신호)에 대응하여 상기 회전각속도, 회전각변위, 회전각가속도를 구현할 수 있는 전동서보모터 (electric servo-motor)를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 제어부(40)는, 전술한 바와 같은 제1광가이드부(20) 및 제2광가이드부(30)를 구성하는 폴리곤미러의 구동을 제어함에 있어, 소정의 지점에 입사되는 조형광선을 감지하여, 상기 제1축(1) 또는 상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan) 각각의 시작 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제1광가이드부(20) 또는 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제1광센서(41)를 더 포함할 수 있다. 후술할 ‘제1-1배치’에 적용가능한 제1광센서(41)의 일실시예가 도 7에 나타나 있다. ‘제1-1배치’에서는 제1폴리곤미러(21)가 단방향으로 회전하면서 라인스캔(line scan)을 수행하는데, 제1폴리곤미러(21)에 반사된 조형광선의 제2폴리곤미러(31)의 측면(반사면)로의 입사점은 위에서 아래방향으로 형성된다. 하나의 라인스캔(line scan)이 종료되고 다음의 라인스캔(line scan)이 시작되기 직전, 조형광선이 제2폴리곤미러(31)의 상면에 반사되도록 하고, 이에 대응하는 경로에 제1광센서(41)를 설치하는 것을 고려한다(도 7 (a)). 상기 실시예에서는 제1광가이드부(20)가 라인 스캔(line scan)을 담당하는 요소이기 때문에, 제1광센서(41)에 의한 동기화제어는 제1광가이드부(20) 및 조형광원부(15)를 대상으로 하지만, 제2광가이드부(30)가 라인스캔을 담당하는 요소가 되는 구성(일례로 제2-1배치)에서는 제1광센서(41)에 의한 동기화제어는 제2광가이드부(30) 및 조형광원부(15)를 그 대상으로 하게 될 것이다.
도 7(b)에서는, 제2광가이드부(30)(제2폴리곤미러(31)) 의 모서리를 소정의 경사각을 갖는 경사면을 구비하도록 탬퍼링 가공하고, 이러한 경사면에 반사된 조형광선을 검지하는 구성의 일실시예를 보여주고 있다. 다만, 제1-1배치에서는 제2폴리곤미러(31)가 소정의 각도만큼의 각변위가 이루어지므로, 상기 탬퍼링 경사면에 반사하는 조형광선을 각 라인스캔(line scan)마다 계속 검지하기 위해서는 제1광센서(41)는, 도 7(b)에 도시된 바와 같이 복수개의 어레이 형태로 배치하여야 할 것이다. 이러한 제1광센서(41)의 출력신호는 처리부에 전달되어 라인스캔(line scan)의 시작 타이밍을 결정할 수 있고, 이러한 시작 타이밍을 이용하여, 조형광원부(15) 및 제1광가이드부(20)(제1폴리곤미러(21))를 동기화할 수 있다. 물론, 제어부(40)에서 제1광가이드부(20)(제1폴리곤미러(21))의 각변위만을 정밀하게 제어하는 것을 통해 제어를 수행할 수도 있지만, 서보모터 등의 기구적 구성요소에 내재하는 공정오차 및 응답지연을 감안할 때, 제1광센서(41) 등의 추가 요소를 통해, 이러한 오차 등을 보정하는 효과를 얻을 수 있다는 것이다. 결론적으로, 제1광가이드부(20)(제1폴리곤미러(21)) 및 조형광원부(15)는, 제어부(40)가 제1광센서(41)의 생성신호를 포함하여 처리한 후에 생성하는 제1광가이드부(20)구동신호 및 조형광원부(15)구동신호에 의해 서로 연동구동될 수 있다.
또한, 상기 제어부(40)는, 소정의 지점에 입사되는 조형광선을 감지하여, 상기 제1축(1) 또는 상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan) 각각의 종료 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제1광가이드부(20) 또는 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제4광센서(44)를 더 포함할 수 있다. 일례로, 도 7(c)에서는 제2광가이드부(30)(제2폴리곤미러(31))의 하단에 선택적으로 제4광센서(44)를 더 설치하여, 각 라인스캔(line scan)의 종료 타이밍을 결정케하는 구성의 일실시예가 나타나 있다.
또한, 제어부(40)는, 조형평면(10)의 소정의 위치로 입사되는 조형광선을 감지하여, 상기 조형평면(10)에의 조형광선 조사에 대하여 최초 시작 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제2광센서(42)를 더 포함할 수 있다. 또한, 조형평면(10)의 소정의 위치로 입사되는 조형광선을 감지하여, 조형평면(10)에의 조형광선 조사에 대하여 최종 종료 타이밍을 결정하는 기능을 구비하는 제3광센서(43)를 선택적으로 더 설치할 수 있다. 하나의 조형평면(10) 전체를 스캐닝함에 있어, 그 최초 시작 타이밍과 최종 종료 타이밍은, 제1광가이드부(20) 또는 제2광가이드부(30) 중 각 라인스캔(line scan)의 이격(stepping)을 담당하는 요소의 구동과 직접 관계가 있다. 도8에는 ‘제1-1배치’에 대하여 설치되는 제2광센서(42) 및 제3광센서(43)의 일실시예가 도시되어 있는데, 조형평면(10)에 대한 조형광선의 조사(스캐닝)에 있어서의 최초 시작 타이밍과 최종 종료 타이밍을 제2광센서(42) 및 제3광센서(43)에 의해 결정한다. 여기서는 제2광가이드부(30)(제2폴리곤미러(31))가 라인스캔(line scan)의 이격(stepping)을 담당하는 요소이므로, 처리부가 제2광센서(42) 및 제3광센서(43)의 신호를 접수하여 처리한 후에 생성하는 제2광가이드부(30)구동신호 및 조형광원부(15)구동신호에 의해 제2광가이드부(30)와 조형광원부(15)가 서로 연동구동된다. 상기 실시예에서는 제2광가이드부(30)가 이격(stepping)을 담당하는 요소이기 때문에, 제1광센서(41)에 의한 동기화제어는 제2광가이드부(30) 및 조형광원부(15)를 대상으로 하지만, 제1광가이드부(20)가 이격을 담당하는 요소가 되는 구성(일례로 제2-1배치)에서는 제1광센서(41)에 의한 동기화제어는 제1광가이드부(20) 및 조형광원부(15)를 그 대상으로 하게 될 것이다.
또한, 본 발명의 입체조형장비의 헤드장치는, 조형평면(10)을 이루는 모든 지점에서 상기 조형광선이 조형평면(10)에 대해 수직하게 입사하게 하는 기능을 구비하는 조형광선입사각보정부(50)를 더 구비할 수 있다. 이는 전술한 바와 같이 조형광선출력밀도를 각 입사지점에 따라 균일하게 하기 위한 것이다. 도 9에 도시된 일실시예에서의 조형광선입사각보정부(50)는, 조형평면(10)의 상부에 설치되는 렌즈로서, 제2광가이드부(30)로부터 2차반사된 조형광선의 입사각이 각 지점별로 상이함에도 불구하고, 두 번의 굴절과정을 통하고 나면, 조형평면(10)상에 수직으로 입사하도록 유도하는 기능을 한다.
이하, 전술한 주요구성요소들을 공간상에 배치하여, 소정의 스캐닝패턴을 구현하는 것에 대해 설명하기로 한다. 조형평면(10)상에 스캐닝패턴의 일례로, 복수 회의 라인스캔(line scan) 각각이 서로 소정의 간격만큼 이격(stepping)하면서 이루어지는 것을 고려할 수 있는데, 이러한 패턴은 전술한 바와 같이 스캐닝 속도의 향상을 위한 것이다. 나아가, 스캐닝패턴에 있어서, 라인스캔(line scan)의 방향 및 이격(stepping)의 방향은 조형광선의 입사방향과 함께 고려하여야 하며, 여기서는, 그 기준으로서 제1축(1), 제2축(2) 및 제3축(3)을 사용하여 설명한다.
조형광선은 제2축(2)과 소정의 각도를 이루며 제1광가이드부(20)로 입사되고, 스캐닝패턴은, 제2축(2)과 평행한 방향을 갖는 복수 회의 라인스캔(line scan) 각각이 제1축(1)방향으로 소정의 간격만큼 이격(stepping)하면서 이루어지는 패턴일 수 있다. (이하 제1스캐닝패턴이라 한다.) 도 3 및 도 6에 제1스캐닝패턴의 일실시예가 도시되어 있다.
또한, 조형광선은 제2축(2)과 소정의 각도를 이루며 상기 제1광가이드부(20)로 입사되고,
스캐닝패턴은, 제1축(1)과 평행한 방향을 갖는 복수 회의 라인스캔(line scan) 각각이 제2축(2)방향으로 소정의 간격만큼 이격(stepping)하면서 이루어지는 패턴일 수도 있다.(이하 제2스캐닝패턴이라 한다.) 이러한 패턴에 대하여는 도 4내지 도5에 그 일실시예가 도시되어 있다.
제1스캐닝패턴 및 제2스캐닝패턴에서의 조형광선은, 제2축(2)과 평행하게 입사되는 것도 가능하며, 제2축(2)과 제3축(3)으로 이루어지는 평면에 포함되지 않도록 하는 방향으로 입사될 수도 있다. 조형광선의 입사 방향은, 제1광가이드부(20) 및 제2광가이드부(30)의 설치위치와 관련하여 결정할 수 있다.
이하, 제1스캐닝패턴 및 제2스캐닝패턴을 구현하기 위해, 제1광가이드부(20), 제2광가이드부(30), 조형광원부(15) 등 주요 구성요소의 공간상 배치 구성에 대해 제안하기로 한다. 이러한 제안은, 최소의 구성요소를 사용하여 요구되는 기능을 구현하기 위한 것이므로, 반사경, 프리즘 기타 광학요소들을 사용하여, 배치의 일부를 변경, 변형하여 더 복잡하게 되도록 구성하는 것은 본 발명의 구성과 동일 내지 균등한 범위에 있는 것이라고 할 수 있을 것이다.
제1스캐닝패턴을 구현하기 위해, 본 발명의 입체조형장비의 헤드장치에서는 두 가지의 구성요소 배치(configuration)를 제안한다.
먼저, ‘제1-1배치’ 에 대하여, 제1광가이드부(20)는, 제1폴리곤미러(21)를 포함하여 이루어지며, 제1폴리곤미러(21)는 제1축(1)과 평행한 제4축(4)을 회전중심축으로 하여 설치되고, 제2광가이드부(30)는, 제2폴리곤미러(31)를 포함하여 이루어지며, 제2폴리곤미러(31)는 제3축(3)과 평행한 제5축(5)을 회전중심축으로 하여 설치되며, 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan)은, 제1폴리곤미러(21)가 회전함으로써 이루어지고, 제1축(1)방향으로 소정의 간격만큼의 이격(stepping)은, 제2폴리곤미러(31)가 회전함으로써 이루어지도록 한다. 이격(stepping)의 간격에 대하여는, 그 값이 너무 작으면, 라인스캔(line scan)되어 경화가 이미 진행된 부위에 다시 조형광선이 조사되므로, 비효율적이고, 그 값이 너무 크면, 조형광선이 조사되지 않는 부분이 생기게 됨을 감안하여야 한다. 전술한 바와 같이, 라인스캔(line scan) 하나는, 회전하면서 조형광선의 입사각이 계속 변화하는 제1폴리곤미러(21)의 하나의 측반사면에 의해 수행되므로, 제1폴리곤미러(21)가 단방향으로 계속 회전하는 경우, 조형광선이 하나의 측반사면에서 인접한 다른 측반사면으로 넘어가는 동안의 제어는, 조형광원부의 출력을 오프(off)하거나, 셔터(shutter) 등의 추가구성요소를 이용하여 조형광선을 차단하거나, 조형평면 근처에 설치한 차단막을 이용하는 방식 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 이러한 구성의 일실시예가 도3에 도시되어 있다.
또한, 제1폴리곤미러(21)가 순방향 및 역방향으로 교번적 회전하는 경우에는, 모든 라인스캔(line scan)에 있어, 제1폴리곤미러(21)의 측반사면 하나만을 이용하게 된다. 그러한 구성의 일실시예가 도 9에 도시되어 있으나, 이러한 구성은 바람직한 것은 아니다. 이에 대하여는 후술한다.
다음으로, 제1-2배치에 대하여, 이러한 구성의 일실시예가 도6에 도시되어 있다. 제1광가이드부(20)는, 제7폴리곤미러(24)를 포함하여 이루어지며 제7폴리곤미러(24)는 제3축(3)과 평행한 제10축(10x)을 회전중심축으로 하여 설치되고, 제2광가이드부(30)는, 제8폴리곤미러(34)를 포함하여 이루어지며, 상기 제8폴리곤미러(34)는 제1축(1)과 평행한 제11축(11x)을 회전중심축으로 하여 설치되며, 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan)은, 제8폴리곤미러(34)가 회전함으로써 이루어지고, 제1축(1)방향으로 소정의 간격만큼의 이격(stepping)은, 제7폴리곤미러(24)가 회전함으로써 이루어지도록 한다. 전술한 바와 같이, 라인스캔(line scan) 하나는, 회전하면서 조형광선의 입사각이 계속 변화하는 제8폴리곤미러(34)의 하나의 측반사면에 의해 수행되고, 제8폴리곤미러(34)가 단방향으로 계속 회전하므로, 조형광선이 하나의 측반사면에서 인접한 다른 측반사면으로 넘어가는 동안의 제어는, 조형광원부의 출력을 오프(off)하거나, 셔터(shutter) 등의 추가구성요소를 이용하여 조형광선을 차단하거나, 조형평면 근처에 설치한 차단막을 이용하는 방식 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 또한, 제7폴리곤미러(24)가 순방향 및 역방향으로 교번적 회전하는 경우에는, 모든 라인스캔(line scan)에 있어, 제7폴리곤미러(24)의 측반사면 하나만을 이용하게 된다.
제2스캐닝패턴을 구현하기 위해, 본 발명의 입체조형장비의 헤드장치에서는 두 가지의 구성요소 배치(configuration)를 제안한다.
먼저 ‘제2-1배치’에 대하여, 이러한 구성의 일실시예가 도4에 도시되어 있다. 제1광가이드부(20)는, 제3폴리곤미러(22)를 포함하여 이루어지며 제3폴리곤미러(22)는 제1축(1)과 평행한 제6축(6)을 회전중심축으로 하여 설치되고, 제2광가이드부(30)는, 제4폴리곤미러(32)를 포함하여 이루어지며, 제4폴리곤미러(32)는 상기 제3축(3)과 평행한 제7축(7)을 회전중심축으로 하여 설치되며, 제1축(1)과 평행한 방향의 라인스캔(line scan)은, 제4폴리곤미러(32)가 회전함으로써 이루어지고, 제2축(2)방향으로 소정의 간격만큼의 이격(stepping)은, 제3폴리곤미러(22)가 회전함으로써 이루어지도록 한다. 라인스캔(line scan) 하나는, 회전하면서 조형광선의 입사각이 계속 변화하는 제4폴리곤미러(32)의 하나의 측반사면에 의해 수행되므로, 제4폴리곤미러(32)가 단방향으로 계속 회전하도록 하는 경우, 조형광선이 하나의 측반사면에서 인접한 다른 측반사면으로 넘어가는 동안의 제어는, 조형광원부의 출력을 오프(off)하거나, 셔터(shutter) 등의 추가구성요소를 이용하여 조형광선을 차단하거나, 조형평면 근처에 설치한 차단막을 이용하는 방식 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 그리고, 제2축(2)방향으로의 각 라인스캔(line scan)의 이격(stepping)은, 제3폴리곤미러(22)가 소정의 각변위만큼의 회전하고, 그 결과 제4폴리곤미러(32)의 측반사면에의 조형광선의 반사위치가 이격(stepping)됨에 따라 발생하게 된다. 또한, 제4폴리곤미러(32)가 순방향 및 역방향으로 교번적 회전하도록 하는 경우에는, 모든 라인스캔(line scan)에 있어, 제4폴리곤미러(32)의 측반사면 하나만을 이용하게 된다.(다만, 이러한 구성은 바람직한 것은 아니다. 이에 대하여는 후술한다.)
다음으로 ‘제2-2배치’ 에 대하여, 이러한 구성의 일실시예가 도5에 도시되어 있다. 제1광가이드부(20)는, 제5폴리곤미러(23)를 포함하여 이루어지며, 제5폴리곤미러(23)는 제3축(3)과 소정의 각도를 이루는 제8축(8)을 회전중심축으로 하여 설치되고, 제2광가이드부(30)는, 제6폴리곤미러(33)를 포함하여 이루어지며, 제6폴리곤미러(33)는 제1축(1)과 평행한 제9축(9)을 회전중심축으로 하여 설치되며, 제1축(1)과 평행한 방향으로의 복수 회의 라인스캔(line scan)은, 제5폴리곤미러(23)가 회전함으로써 수행되고, 제2축(2)방향으로 소정의 간격만큼의 이격(stepping)은, 제6폴리곤미러(33)가 회전함으로써 수행되도록 한다. 라인스캔(line scan) 하나는, 회전하면서 조형광선의 입사각이 계속 변화하는 제5폴리곤미러(23)의 하나의 측반사면에 의해 수행되므로, 제5폴리곤미러(23)가 단방향으로 계속 회전하도록 하는 경우, 조형광선이 제5폴리곤미러(23)의 하나의 측반사면에서 인접한 다른 측반사면으로 넘어가는 동안의 제어는, 조형광원부의 출력을 오프(off)하거나, 셔터(shutter) 등의 추가구성요소를 이용하여 조형광선을 차단하거나, 조형평면 근처에 설치한 차단막을 이용하는 방식 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 그리고, 제2축(2)방향으로의 각 라인스캔(line scan)의 이격(stepping)은, 제6폴리곤미러(33)가 소정의 각변위만큼의 회전함에 따라 조형광선의 반사위치가 이격(stepping)되어 발생하게 된다. 또한, 제5폴리곤미러(23)가 순방향 및 역방향으로 교번적 회전하도록 하는 경우에는, 모든 라인스캔(line scan)에 있어, 제5폴리곤미러(23)의 측반사면 하나만을 이용하게 된다.
이하, 본 발명의 입체조형장비의 헤드장치를 이용하여 조형평면(10)을 스캐닝하는 방법에 대해 설명하기로 한다. 이를 위해, 전술한 조형평면(10)에는 실제로 조형재료가 공급되어 위치한다는 것을 전제한다. 하나의 조형평면(10)에 대해 조형광선의 스캐닝이 완료되고 나면, 하나의 조형레이어가 형성되는 것이며, 이러한 조형레이어가 적층되어 하나의 입체조형물을 형성하게 된다. 조형평면(10)의 스캐닝에 있어, 조형광선이 조사되지 않는 부분이 있어서는 안되며, 스캐닝 소요시간을 최소화할 수 있는 최적의 경로를 통해 스캐닝을 수행하는 것이 바람직하다.
우선, ‘제1-1배치’ 를 갖는 입체조형장비의 헤드장치를 이용한 조형평면(10)을 스캐닝하는 방법에 대해 설명하기로 한다. 첫째, 제1폴리곤미러(21)가 일방향으로 회전하고, 조형광원부(15)가 상기 제1폴리곤미러(21)에 조형광선을 입사하는 것을 시작한다. 둘째, 제1폴리곤미러(21)가 소정의 속도로 계속 회전을 하는 동안, 제1폴리곤미러(21)에 1차반사된 조형광선이 제2폴리곤미러(31)에서 2차반사된 후 조형평면(10)에 대해 제2축(2)과 평행한 방향으로 라인스캔(line scan)을 수행한다. 셋째, 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 둘째 단계에서의 라인스캔(line scan)이 종료된다. 이때의 제어는, 조형광원부의 출력오프(off), 셔터(shutter) 등의 추가구성요소의 이용, 조형평면 근처에 설치한 차단막의 이용 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 넷째, 둘째단계에서의 라인스캔(line scan)에 이어, 제1축(1)방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(line scan)을 수행하기 위해, 제2폴리곤미러(31)가 소정의 각변위만큼 회전하고, 제1폴리곤미러(21)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전한다. 이 때, 제2폴리곤미러(31)의 회전과 제1폴리곤미러(21)의 회전을 동시에 이루어지도록 한다면, 전체 조형시간을 감축할 수 있다. 다섯째, 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 첫째단계 내지 상기 넷째단계를 반복하여 수행한다. 이러한 방법에서는, 제1폴리곤미러(21)는 소정의 단방향으로만 회전하는 것이 바람직하다. 제1폴리곤미러(21)를 이렇게 단방향으로만 회전하도록 한다면, 하나의 라인스캔과 다음의 라인스캔 사이에 소요되는 시간을 최소화할 수 있고, 제1폴리곤미러(21)를 정지상태로부터 가속하는데 필요한 시간도 최소화할 수 있으므로, 전체적인 조형소요시간을 감축할 수 있다. 물론, 제1폴리곤미러(21)를 도 9에 도시된 경우와 같이 순방향 및 역방향으로 교번적 회전을 하도록 구성할 수도 있지만, 이러한 구성 하에서는 제1폴리곤미러(21)가 순방향회전-정지-역방향회전-정지의 과정을 반복하면서 라인스캔 당 소요시간이 커지게 되어 본 발명을 적용하는 실익이 감소 한다. 또한, 제1폴리곤미러(21)를 구동하기 위한 전동모터요소도 더 복잡해지게 될 뿐만 아니라, 상기 과정의 반복과정에서 진동, 소음이 더 심각하게 발생할 가능성이 큼을 감안하여야 한다. 제2폴리곤미러(31)의 경우도, 하나의 조형평면(10)에 대해 조사를 수행하는 과정 내에서는 계속 단일방향으로 회전하도록 하여야 하는 것은 자명하다. 다만, 하나의 조형평면(10)에 대해 조사를 완료하고 난 후, 다음 조형평면(10)을 조사할 때, 직전 조형평면(10) 조사과정에서의 회전방향과 같은방향으로 회전하도록 할 수도 있고, 반대방향으로 회전하도록 할 수도 있다. 이는, 제2폴리곤미러(31)의 경우, 라인스캔이 이루어지는 동안에는 정지상태에 있어야 하므로, 상기 제1폴리곤미러(21)에서와 같은 문제가 생기지 않기 때문이다. 다만, 후자의 경우에는 제2폴리곤미러(31)를 반드시 폴리곤형태의 미러로 구성할 필요는 없을 것이다.
우선, ‘제1-2배치’를 갖는 입체조형장비의 헤드장치를 이용한 조형평면(10)을 스캐닝하는 방법에 대해 설명하기로 한다. 이에 대하여는 도6에 그 절차의 실시예가 도시되어 있다. 첫째, 제8폴리곤미러(34)가 일방향으로 회전하고, 조형광원부(15)가 상기 제7폴리곤미러(24)에 조형광선을 입사하는 것을 시작한다. 둘째, 제8폴리곤미러(34)가 소정의 속도로 계속 회전을 하는 동안, 제7폴리곤미러(24)에 1차반사된 조형광선이 제8폴리곤미러(34)에서 2차반사된 후 조형평면(10)에 대해 제2축(2)과 평행한 방향으로 라인스캔(line scan)을 수행한다. 셋째, 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 둘째 단계에서의 라인스캔(line scan)이 종료된다. 이때의 제어는, 조형광원부의 출력오프(off), 셔터(shutter) 등의 추가구성요소의 이용, 조형평면 근처에 설치한 차단막의 이용 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 넷째, 둘째단계에서의 라인스캔(line scan)에 이어, 제1축(1)방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(line scan)을 수행하기 위해, 제7폴리곤미러(24)가 소정의 각변위만큼 회전하고, 제8폴리곤미러(34)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전한다. 이 때, 제8폴리곤미러(34)의 회전과 제7폴리곤미러(24)의 회전을 동시에 이루어지도록 한다면, 전체 조형시간을 감축할 수 있다. 다섯째, 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 첫째단계 내지 상기 넷째단계를 반복하여 수행한다. 이러한 방법에서는, 제8폴리곤미러(34)는 소정의 단방향으로만 회전하는 것이 바람직하다. 제8폴리곤미러(34)를 이렇게 단방향으로만 회전하도록 한다면, 하나의 라인스캔과 다음의 라인스캔 사이에 소요되는 시간을 최소화할 수 있고, 제8폴리곤미러(34)를 정지상태로부터 가속하는데 필요한 시간도 최소화할 수 있으므로, 전체적인 조형소요시간을 감축할 수 있다. 물론, 제8폴리곤미러(34)를 순방향 및 역방향으로 교번적 회전을 하도록 구성할 수도 있지만, 이러한 구성 하에서는 제8폴리곤미러(34)가 순방향회전-정지-역방향회전-정지의 과정을 반복하면서 라인스캔 당 소요시간이 커지게 되어 본 발명을 적용하는 실익이 감소 한다. 또한, 제8폴리곤미러(34)를 구동하기 위한 전동모터요소도 더 복잡해지게 될 뿐만 아니라, 상기 과정의 반복과정에서 진동, 소음이 더 심각하게 발생할 가능성이 큼을 감안하여야 한다. 제7폴리곤미러(24)의 경우도, 하나의 조형평면(10)에 대해 조사를 수행하는 과정 내에서는 계속 단일방향으로 회전하도록 하여야 하는 것은 자명하다. 다만, 하나의 조형평면(10)에 대해 조사를 완료하고 난 후, 다음 조형평면(10)을 조사할 때, 직전 조형평면(10) 조사과정에서의 회전방향과 같은방향으로 회전하도록 할 수도 있고, 반대방향으로 회전하도록 할 수도 있다. 이는, 제7폴리곤미러(24)의 경우, 라인스캔이 이루어지는 동안에는 정지상태에 있어야 하므로, 상기 제8폴리곤미러(34)에서와 같은 문제가 생기지 않기 때문이다. 다만, 후자의 경우에는 제7폴리곤미러(24)를 반드시 폴리곤형태의 미러로 구성할 필요는 없을 것이다.
다음으로는, 제2-1배치를 갖는 입체조형장비의 헤드장치를 이용한 조형평면(10)을 스캐닝하는 방법에 대해 설명하기로 한다. 첫째, 제4폴리곤미러(32)가 일방향으로 회전하고, 조형광원부(15)가 상기 제3폴리곤미러(22)에 조형광선을 입사하는 것을 시작한다. 둘째, 제4폴리곤미러(32)가 소정의 속도로 계속 회전을 하는 동안, 제3폴리곤미러(22)에 1차반사된 조형광선이 제4폴리곤미러(32)에서 2차반사된 후 조형평면(10)에 대해 제1축(1)과 평행한 방향으로 라인스캔(line scan)을 수행한다. 셋째, 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 둘째단계에서의 라인스캔(line scan)이 종료된다. 이때의 제어는, 조형광원부의 출력오프(off), 셔터(shutter) 등의 추가구성요소의 이용, 조형평면 근처에 설치한 차단막의 이용 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 넷째, 둘째단계에서의 라인스캔(line scan)에 이어, 제2축(2)방향으로 소정의 간격만큼 이격(stepping)한 상태에서 다음번 라인스캔(line scan)을 수행하기 위해, 제3폴리곤미러(22)가 소정의 각변위만큼 회전하고, 제4폴리곤미러(32)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전한다. 이 때, 제3폴리곤미러(22)의 회전과 제4폴리곤미러(32)의 회전을 동시에 이루어지도록 한다면, 전체 조형시간을 감축할 수 있다. 다섯째, 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 첫번째단계 내지 넷째단계를 반복하여 수행한다. 이 방법에서, 제4폴리곤미러(32)는 소정의 단방향으로만 회전하도록 하는 것이 바람직하며, 제3폴리곤미러(22)도 하나의 조형평면(10)에 대해 조사하는 과정중에서는 계속하여 동일한 방향으로 회전하도록 하여야 하나, 다음 조형평면(10)에 대한 조사가 시작될 때는 직전 조형평면(10)에 대한 조사에서의 회전방향과 같은방향으로 회전을 시작할 수도 있고, 다른 방향으로 회전하게 할 수도 있다. 후자의 경우에는 제3폴리곤미러(22)를 반드시 폴리곤형태의 미러로 구성할 필요는 없을 것이다.
다음으로는, 제2-2배치를 갖는 입체조형장비의 헤드장치를 이용한 조형평면(10)을 스캐닝하는 방법에 대해 설명하기로 한다. 첫째, 제5폴리곤미러(23)가 일방향으로 회전하고, 조형광원부(15)가 상기 제5폴리곤미러(23)에 조형광선을 입사하는 것을 시작한다. 둘째, 제5폴리곤미러(23)가 소정의 속도로 계속 회전을 하는 동안, 제5폴리곤미러(23)에 1차반사된 조형광선이 제6폴리곤미러(33)에서 2차반사된 후 조형평면(10)에 대해 제1축(1)과 평행한 방향으로 라인스캔(line scan)을 수행한다. 셋째, 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 둘째단계에서의 라인스캔(line scan)이 종료된다. 이때의 제어는, 조형광원부의 출력오프(off), 셔터(shutter) 등의 추가구성요소의 이용, 조형평면 근처에 설치한 차단막의 이용 등을 적용할 수도 있고, 조형광선이 조형평면에 입사되더라도 조형재료의 경화 또는 소결작용이 일어나지 않을정도까지 조형광선의 출력을 낮추는 방법 등을 고려할 수 있다. 넷째, 둘째단계에서의 라인스캔(line scan)에 이어, 제2축(2)방향으로 소정의 간격만큼 이격(stepping)한 상태에서 다음번 라인스캔(line scan)을 수행하기 위해, 제6폴리곤미러(33)가 소정의 각변위만큼 회전하고, 제5폴리곤미러(23)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전한다. 이 때, 제5폴리곤미러(23)의 회전과 제6폴리곤미러(33)의 회전을 동시에 이루어지도록 한다면, 전체 조형시간을 감축할 수 있다. 다섯째, 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 첫번째단계 내지 넷째단계를 반복하여 수행한다. 이 방법에서, 제5폴리곤미러(23)는 소정의 단방향으로만 회전하도록 하는 것이 바람직하며, 제6폴리곤미러(33)도 하나의 조형평면(10)에 대해 조사하는 과정중에서는 계속하여 동일한 방향으로 회전하도록 하여야 하나, 다음 조형평면(10)에 대한 조사가 시작될 때는 직전 조형평면(10)에 대한 조사에서의 회전방향과 같은방향으로 회전을 시작할 수도 있고, 다른 방향으로 회전하게 할 수도 있다. 후자의 경우에는 제6폴리곤미러(33)를 반드시 폴리곤형태의 미러로 구성할 필요는 없을 것이다.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시 예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시 예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.
1 : 제1축
2 : 제2축
3 : 제3축
4 : 제4축
5: 제5축
6 : 제6축
7 : 제7축
8 : 제8축
9 : 제9축
10x : 제10축
11x : 제11축
10 : 조형평면
11 : 조형광선
12 : 라인스캔(line scan)
15 : 조형광원부
16 : 조형광선의 강도프로파일
17 : 조형광선의 최대 유효빔스팟 크기
18 : 조형광선의 빔스팟 크기
19 : 조형광선의 유효빔스팟
20: 제1광가이드부
21 : 제1폴리곤미러
22 : 제3폴리곤미러
23 : 제 5폴리곤미러
24 : 제 7폴리곤미러
30 : 제2광가이드부
31 : 제2폴리곤미러
32 : 제4폴리곤미러
33 : 제6폴리곤미러
34 : 제 8폴리곤미러
40 : 제어부
41 : 제1광센서
42 : 제2광센서
43 : 제3광센서
44 : 제4광센서
50 : 빔스팟크기조절광학모듈
51 : 제 1렌즈
52 : 제2렌즈
53 : 제1렌즈(가변초점거리렌즈)
54 : 제2렌즈(가변초점거리렌즈)

Claims (33)

  1. 제3축(3)에 대해 수직하고, 서로 수직한 제1축(1)과 제2축(2)을 포함하여 이루어지는 조형평면(10) 전면에 걸쳐 소정의 스캐닝패턴으로 조형광선을 조사하는 입체조형장비의 헤드장치에 있어서,
    상기 조형광선을 생성하는 조형광원부(15);
    상기 조형평면(10) 상부의 소정의 위치에 설치되고, 상기 조형광원부(15)로부터의 조형광선을 1차반사하여 제2광가이드부(30)로 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제1광가이드부(20);
    상기 조형평면(10) 상부의 소정의 위치에 설치되고, 상기 제1광가이드부(20)로부터 입사받은 조형광선을 2차반사하여 상기 조형평면(10) 상에 입사시키는 기능을 구비하고, 측면이 소정의 개수의 광반사면을 구비하고, 소정의 회전축을 중심으로 단방향으로 회전하는 폴리곤미러(polygon mirror)를 포함하여 이루어지는 제2광가이드부(30);
    상기 조형광선을 입력받고, 상기 조형광선의 에너지밀도가 상기 조형평면상의 모든 조사위치에 대하여 균일하게 되도록 상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기를 조절하는 기능을 수행하는 빔스팟크기조절광학모듈(50);
    상기 조형광선의 구동, 상기 제1광가이드부(20) 및 상기 제2광가이드부(30)의 구동, 및 상기 빔스팟크기조절광학모듈(50)을 연동하여 제어하는 제어부(40);
    를 포함하여 이루어지는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  2. 청구항 1에 있어서,
    상기 조형광선에 대한 조형임계강도레벨을 상회하는 영역으로서의 유효빔스팟(beam spot)크기 조절은, 상기 조형광선과 조형평면이 교차하는 영역으로서의 빔스팟(beam spot) 크기를 조절하는 것을 통해 이루어지는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  3. 청구항 1에 있어서,
    상기 빔스팟크기조절광학모듈(50)은, 상기 입력되는 조형광선의 빔스팟크기에 대하여 축소 또는 확대된 빔스팟크기를 갖는 출력광을 생성하는 기능을 구비하고, 제1렌즈와 제2렌즈를 포함하여 이루어지는 빔 익스팬더(beam expander)인 것을 특징으로 하는 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  4. 청구항 3에 있어서,
    상기 빔 익스팬더의 빔스팟크기 축소 또는 확대의 비율은 상기 제1렌즈와 상기 제2렌즈 사이의 거리를 변경함으로써 조절되는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  5. 청구항 3에 있어서,
    상기 제1렌즈와 상기 제2렌즈 중 하나 이상은 가변초점거리렌즈이고, 상기 빔 익스팬더의 빔스팟크기 축소 또는 확대의 비율은, 상기 제1렌즈 및 상기 제2렌즈 중 하나 이상의 가변초점거리렌즈의 초점거리를 변경함으로써 조절되는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  6. 청구항 1에 있어서,
    상기 빔스팟크기조절광학모듈은, 상기 조형평면의 중심에서부터의 거리에 관계없이, 상기 조형평면의 모든 지점에 대하여, 상기 조형광선의 유효빔스팟의 크기가 유지되도록 조절하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  7. 청구항 1에 있어서,
    상기 제어부(40)는, 소정의 지점에 입사되는 조형광선을 감지하여, 상기 제1축(1) 또는 상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan) 각각의 시작 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제1광가이드부(20) 또는 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제1광센서(41)를 더 포함하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  8. 청구항 7에 있어서,
    상기 제어부(40)는, 소정의 지점에 입사되는 조형광선을 감지하여, 상기 제1축(1) 또는 상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan) 각각의 종료 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제1광가이드부(20) 또는 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제4광센서(44)를 더 포함하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  9. 청구항 1에 있어서,
    상기 제어부(40)는, 상기 조형평면(10)의 소정의 위치로 입사되는 조형광선을 감지하여, 상기 조형평면(10)에의 조형광선 조사에 대하여 최초 시작 타이밍을 결정하고, 상기 조형광원부(15) 및 상기 제1광가이드부(20) 또는 상기 제2광가이드부(30)의 구동을 동기화하는 기능을 구비하는 제2광센서(42)를 더 포함하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  10. 청구항 9에 있어서,
    상기 제어부(40)는, 상기 조형평면(10)의 소정의 위치로 입사되는 조형광선을 감지하여, 상기 조형평면(10)에의 조형광선 조사에 대하여 최종 종료 타이밍을 결정하는 기능을 구비하는 제3광센서(43)를 더 포함하는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  11. 청구항 1에 있어서,
    상기 조형광선은 상기 제2축(2)과 소정의 각도를 이루며 상기 제1광가이드부(20)로 입사되고,
    상기 스캐닝패턴은, 상기 제2축(2)과 평행한 방향을 갖는 복수 회의 라인스캔(line scan) 각각이 상기 제1축(1)방향으로 소정의 간격만큼 이격(stepping)하면서 이루어지는 패턴인 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.
  12. 청구항 11에 있어서,
    상기 제1광가이드부(20)는, 제1폴리곤미러(21)를 포함하여 이루어지며 상기 제1폴리곤미러(21)는 상기 제1축(1)과 평행한 제4축(4)을 회전중심축으로 하여 설치되고,
    상기 제2광가이드부(30)는, 제2폴리곤미러(31)를 포함하여 이루어지며, 상기 제2폴리곤미러(31)는 상기 제3축(3)과 평행한 제5축(5)을 회전중심축으로 하여 설치되며,
    상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan)은, 상기 제1폴리곤미러(21)가 회전함으로써 이루어지고, 상기 제1축(1)방향으로 소정의 간격만큼의 이격(stepping)은, 상기 제2폴리곤미러(31)가 회전함으로써 이루어지는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  13. 청구항 12의 입체조형장비의 헤드장치를 사용하여 조형평면(10)을 스캐닝하는 방법에 있어서,
    (i) 상기 제1폴리곤미러(21)가 일방향으로 회전하고, 상기 조형광원부(15)가 상기 제1폴리곤미러(21)에 조형광선을 입사하는 것을 시작하는 단계(s10);
    (ii) 상기 제1폴리곤미러(21)가 소정의 속도로 계속 회전을 하는 동안, 상기 제1폴리곤미러(21)에 1차반사된 조형광선이 상기 제2폴리곤미러(31)에서 2차반사된 후 상기 조형평면(10)에 대해 상기 제2축(2)과 평행한 방향으로 라인스캔(line scan)을 하는 단계(s20);
    (iii) 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 상기 (ii)단계에서의 라인스캔(line scan)이 종료되는 단계(s30);
    (iv) 상기 (ii)단계에서의 라인스캔(line scan)에 이어, 상기 제1축(1)방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(line scan)을 수행하기 위해, 상기 제2폴리곤미러(31)가 소정의 각변위만큼 회전하고, 상기 제1폴리곤미러(21)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전하는 단계(s40);
    (v) 상기 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 (i)단계 내지 상기 (iv)단계를 반복하여 수행하는 단계(s50);
    를 포함하여 이루어지고,
    상기 제1폴리곤미러(21)는 소정의 단방향으로만 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.

  14. 청구항 13에 있어서,
    상기 (v)단계 이후, 상기 제2폴리곤미러(31)는, 상기 (v) 단계에서의 회전방향과 같은방향으로 회전을 준비하는 단계(s55);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.

  15. 청구항 13에 있어서,
    상기 (v)단계 이후, 상기 제2폴리곤미러(31)는, 상기 (v) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계(s55);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.

  16. 청구항 13에 있어서,
    상기 (iv)단계에서의 상기 제2폴리곤미러(31)의 회전과 상기 제1폴리곤미러(21)의 회전은 동시에 이루어지는 것을 특징으로 하는 조형평면의 스캐닝방법.

  17. 청구항 1에 있어서,
    상기 조형광선은 상기 제2축(2)과 소정의 각도를 이루며 상기 제1광가이드부(20)로 입사되고,
    상기 스캐닝패턴은, 상기 제1축(1)과 평행한 방향을 갖는 복수 회의 라인스캔(line scan) 각각이 상기 제2축(2)방향으로 소정의 간격만큼 이격(stepping)하면서 이루어지는 패턴인 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.

  18. 청구항 17에 있어서,
    상기 제1광가이드부(20)는, 제3폴리곤미러(22)를 포함하여 이루어지며 상기 제3폴리곤미러(22)는 상기 제1축(1)과 평행한 제6축(6)을 회전중심축으로 하여 설치되고,
    상기 제2광가이드부(30)는, 제4폴리곤미러(32)를 포함하여 이루어지며, 상기 제4폴리곤미러(32)는 상기 제3축(3)과 평행한 제7축(7)을 회전중심축으로 하여 설치되며,
    상기 제1축(1)과 평행한 방향의 라인스캔(line scan)은, 상기 제4폴리곤미러(32)가 회전함으로써 이루어지고, 상기 제2축(2)방향으로 소정의 간격만큼의 이격(stepping)은, 상기 제3폴리곤미러(22)가 회전함으로써 이루어지는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.



  19. 청구항 18의 입체조형장비의 헤드장치를 사용하여 조형평면(10)을 스캐닝하는 방법에 있어서,
    (i) 상기 제4폴리곤미러(32)가 일방향으로 회전하고, 상기 조형광원부(15)가 상기 제3폴리곤미러(22)에 조형광선을 입사하는 것을 시작하는 단계(s100);
    (ii) 상기 제4폴리곤미러(32)가 소정의 속도로 계속 회전을 하는 동안, 상기 제3폴리곤미러(22)에 1차반사된 조형광선이 상기 제4폴리곤미러(32)에서 2차반사된 후 상기 조형평면(10)에 대해 상기 제1축(1)과 평행한 방향으로 라인스캔(line scan)을 하는 단계(s200);
    (iii) 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 상기 (ii)단계에서의 라인스캔(line scan)이 종료되는 단계(300);
    (iv) 상기 (ii)단계에서의 라인스캔(line scan)에 이어, 상기 제2축(2)방향으로 소정의 간격만큼 이격(stepping)한 상태에서 다음번 라인스캔(line scan)을 수행하기 위해, 상기 제3폴리곤미러(22)가 소정의 각변위만큼 회전하고, 상기 제4폴리곤미러(32)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전하는 단계(s400);
    (v) 상기 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 (i)단계 내지 상기 (iv)단계를 반복하여 수행하는 단계(s500);
    를 포함하여 이루어지고,
    상기 제4폴리곤미러(32)는 소정의 단방향으로만 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.


  20. 청구항 19에 있어서,
    상기 (v)단계 이후, 상기 제3폴리곤미러(22)는, 상기 (v) 단계에서의 회전방향과 같은방향으로 회전을 준비하는 단계(s550);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.


  21. 청구항 19에 있어서,
    상기 (v)단계 이후, 상기 제3폴리곤미러(22)는, 상기 (v) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계(s550);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.


  22. 청구항 19에 있어서,
    상기 (iv)단계에서의 상기 제3폴리곤미러(22)의 회전과 상기 제4폴리곤미러(32)의 회전은 동시에 이루어지는 것을 특징으로 하는 조형평면의 스캐닝방법.


  23. 청구항 17에 있어서,
    상기 제1광가이드부(20)는, 제5폴리곤미러(23)를 포함하여 이루어지며, 상기 제5폴리곤미러(23)는 상기 제3축(3)과 소정의 각도를 이루는 제8축(8)을 회전중심축으로 하여 설치되고,
    상기 제2광가이드부(30)는, 제6폴리곤미러(33)를 포함하여 이루어지며, 상기 제6폴리곤미러(33)는 상기 제1축(1)과 평행한 제9축(9)을 회전중심축으로 하여 설치되며,
    상기 제1축(1)과 평행한 방향으로의 복수 회의 라인스캔(line scan)은, 상기 제5폴리곤미러(23)가 회전함으로써 수행되고, 상기 제2축(2)방향으로 소정의 간격만큼의 이격(stepping)은, 상기 제6폴리곤미러(33)가 회전함으로써 수행되는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.


  24. 청구항 23의 입체조형장비의 헤드장치를 사용하여 조형평면(10)을 스캐닝하는 방법에 있어서,
    (i) 상기 제5폴리곤미러(23)가 일방향으로 회전하고, 상기 조형광원부(15)가 상기 제5폴리곤미러(23)에 조형광선을 입사하는 것을 시작하는 단계(s1000);
    (ii) 상기 제5폴리곤미러(23)가 소정의 속도로 계속 회전을 하는 동안, 상기 제5폴리곤미러(23)에 1차반사된 조형광선이 상기 제6폴리곤미러(33)에서 2차반사된 후 상기 조형평면(10)에 대해 상기 제1축(1)과 평행한 방향으로 라인스캔(line scan)을 하는 단계(s2000);
    (iii) 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 상기 (ii)단계에서의 라인스캔(line scan)이 종료되는 단계(s3000);
    (iv) 상기 (ii)단계에서의 라인스캔(line scan)에 이어, 상기 제2축(2)방향으로 소정의 간격만큼 이격(stepping)한 상태에서 다음번 라인스캔(line scan)을 수행하기 위해, 상기 제6폴리곤미러(33)가 소정의 각변위만큼 회전하고, 상기 제5폴리곤미러(23)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전하는 단계(s4000);
    (v) 상기 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 (i)단계 내지 상기 (iv)단계를 반복하여 수행하는 단계(s5000);
    를 포함하여 이루어지고,
    상기 제5폴리곤미러(23)는 소정의 단방향으로만 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.


  25. 청구항 24에 있어서,
    상기 (v)단계 이후, 상기 제6폴리곤미러(33)는, 상기 (v) 단계에서의 회전방향과 같은방향으로 회전을 준비하는 단계(s5500);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.


  26. 청구항 24에 있어서,
    상기 (v)단계 이후, 상기 제6폴리곤미러(33)는, 상기 (v) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계(s5500);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.


  27. 청구항 24에 있어서,
    상기 (iv)단계에서의 상기 제5폴리곤미러(23)의 회전과 상기 제6폴리곤미러(33)의 회전은 동시에 이루어지는 것을 특징으로 하는 조형평면의 스캐닝방법.


  28. 청구항 11에 있어서,
    상기 제1광가이드부(20)는, 제7폴리곤미러(24)를 포함하여 이루어지며 상기 제7폴리곤미러(24)는 상기 제3축(3)과 평행한 제10축(10x)을 회전중심축으로 하여 설치되고,
    상기 제2광가이드부(30)는, 제8폴리곤미러(34)를 포함하여 이루어지며, 상기 제8폴리곤미러(34)는 상기 제1축(1)과 평행한 제11축(11x)을 회전중심축으로 하여 설치되며,
    상기 제2축(2)과 평행한 방향의 복수 회의 라인스캔(line scan)은, 상기 제8폴리곤미러(34)가 회전함으로써 이루어지고, 상기 제1축(1)방향으로 소정의 간격만큼의 이격(stepping)은, 상기 제7폴리곤미러(24)가 회전함으로써 이루어지는 것을 특징으로 하는 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치.


  29. 청구항 28의 입체조형장비의 헤드장치를 사용하여 조형평면을 스캐닝하는 방법에 있어서,
    (i) 상기 제8폴리곤미러(34)가 일방향으로 회전하고, 상기 조형광원부(15)가 상기 제7폴리곤미러(24)에 조형광선을 입사하는 것을 시작하는 단계(s10000);
    (ii) 상기 제8폴리곤미러(34)가 소정의 속도로 계속 회전을 하는 동안, 상기 제7폴리곤미러(24)에 1차반사된 조형광선이 상기 제8폴리곤미러(34)에서 2차반사된 후 상기 조형평면(10)에 대해 상기 제2축(2)과 평행한 방향으로 라인스캔(line scan)을 하는 단계(s20000);
    (iii) 상기 조형광선(11)이 상기 조형평면(10)에 조사되지 않도록 제어되어 상기 (ii)단계에서의 라인스캔(line scan)이 종료되는 단계(s30000);
    (iv) 상기 (ii)단계에서의 라인스캔(line scan)에 이어, 상기 제1축(1)방향으로 소정의 간격만큼 이격(stepping)한 후에 다음번 라인스캔(line scan)을 수행하기 위해, 상기 제7폴리곤미러(24)가 소정의 각변위만큼 회전하고, 상기 제8폴리곤미러(34)가 직전반사면에 인접한 다음반사면이 소정의 위치에 올 때까지 같은 방향으로 계속 회전하는 단계(s40000);
    (v) 상기 조형평면(10)의 전면에 대해 조형광선의 조사가 완료될 때까지 상기 (i)단계 내지 상기 (iv)단계를 반복하여 수행하는 단계(s50000);
    를 포함하여 이루어지고,
    상기 제8폴리곤미러(34)는 소정의 단방향으로만 회전하는 것을 특징으로 하는 특징으로 하는 조형평면의 스캐닝방법.


  30. 청구항 29에 있어서,
    상기 (v)단계 이후, 상기 제7폴리곤미러(24)는, 상기 (v) 단계에서의 회전방향과 같은방향으로 회전을 준비하는 단계(s55000);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.

  31. 청구항 29에 있어서,
    상기 (v)단계 이후, 상기 제7폴리곤미러(24)는, 상기 (v) 단계에서의 회전방향과 반대방향으로 회전을 준비하는 단계(s55000);를 더 포함하는 것을 특징으로 하는 조형평면의 스캐닝방법.

  32. 청구항 29에 있어서,
    상기 (iv)단계에서의 상기 제7폴리곤미러(24)의 회전과 상기 제8폴리곤미러(34)의 회전은 동시에 이루어지는 것을 특징으로 하는 조형평면의 스캐닝방법.

  33. 조형재료를 공급받아 조형레이어를 형성하고 적층하여 입체조형물을 조형하는 입체조형장치에 있어서,
    조형광선의 조사는, 청구항 1 내지 청구항 12, 청구항 17, 청구항 18, 청구항 23, 및 청구항 28 중 선택되는 어느 하나의 항의 헤드장치를 이용하여 이루어지는 것을 특징으로 하는 입체조형장치.
KR1020150175154A 2015-12-09 2015-12-09 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치. KR101704547B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150175154A KR101704547B1 (ko) 2015-12-09 2015-12-09 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150175154A KR101704547B1 (ko) 2015-12-09 2015-12-09 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.

Publications (1)

Publication Number Publication Date
KR101704547B1 true KR101704547B1 (ko) 2017-02-22

Family

ID=58314579

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150175154A KR101704547B1 (ko) 2015-12-09 2015-12-09 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.

Country Status (1)

Country Link
KR (1) KR101704547B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145016A (ja) * 1986-12-10 1988-06-17 Fujitsu Ltd 立体形状形成装置
US8605761B2 (en) 2010-01-18 2013-12-10 Optical Physics Company Multi-beam laser control system and method
KR20140047103A (ko) * 2011-06-28 2014-04-21 글로벌 필트레이션 시스템즈, 에이 디비에이 오브 걸프 필트레이션 시스템즈 인코포레이티드 선형 응고를 이용하여 3차원 물체를 형성하는 장치 및 방법
JP2014085646A (ja) * 2012-10-26 2014-05-12 Univ Of Tokyo 光走査装置及び計測システム
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145016A (ja) * 1986-12-10 1988-06-17 Fujitsu Ltd 立体形状形成装置
US8605761B2 (en) 2010-01-18 2013-12-10 Optical Physics Company Multi-beam laser control system and method
KR20140047103A (ko) * 2011-06-28 2014-04-21 글로벌 필트레이션 시스템즈, 에이 디비에이 오브 걸프 필트레이션 시스템즈 인코포레이티드 선형 응고를 이용하여 3차원 물체를 형성하는 장치 및 방법
JP2014085646A (ja) * 2012-10-26 2014-05-12 Univ Of Tokyo 光走査装置及び計測システム
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing

Similar Documents

Publication Publication Date Title
KR101590774B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
KR101697530B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 에너지밀도 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
KR101704553B1 (ko) 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면 스캐닝 방법
EP3213905B1 (en) Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
EP3162542B1 (en) Method for calibrating a light of a three-dimensional object generating apparatus
EP2067607B1 (en) Optical shaping apparatus and optical shaping method
US8348655B2 (en) Optical molding apparatus, optical molding method, and optically molded product
RU2671740C1 (ru) Стереолитографическое устройство с улучшенным оптическим блоком
JP2008162188A (ja) 光造形装置
KR101850222B1 (ko) 삼차원 프린터의 축 오차 보정 장치 및 방법
JP2009113294A (ja) 光造形装置及び光造形方法
KR102031070B1 (ko) Dlp 미러를 이용한 3d 프린터
JP2009083240A (ja) 光造形装置
KR101704547B1 (ko) 단방향으로 회전하는 폴리곤미러를 구비하고 조형광선의 빔스팟크기 조절기능을 갖는 입체조형장비의 헤드장치 및 이를 이용하는 조형평면의 스캐닝방법 및 이를 이용하는 입체조형장치.
KR101849999B1 (ko) 조형광원어레이 및 폴리곤미러를 구비하는 입체조형장비의 멀티헤드장치 및 이를 이용하는 멀티 조형평면 스캐닝 방법
KR20210124341A (ko) 광원 디바이스, 검출 디바이스, 및 전자 장치
KR101948587B1 (ko) 유리섬유를 이용한 3d프린터
KR101740266B1 (ko) 가공속도가 향상된 3차원 구조물 가공장치
JP2000043148A (ja) 光造形方法及びその装置
KR101819470B1 (ko) 입체조형장비를 위한 광원조사위치 센싱장치 및 이를 이용한 제어방법
US11911969B2 (en) 3D printer with adjustable light transmission rate and control method thereof
CN114228153B (zh) 双激光头标定方法
JP2009160859A (ja) 光造形装置および光造形方法、並びに光造形物
KR20220004140A (ko) 물체를 층층이 적층 제조하기 위한 적층 제조 기계
JP2001166106A (ja) 樹脂接合型光学素子の製造方法および製造装置

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 4