JP2014165458A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2014165458A
JP2014165458A JP2013037578A JP2013037578A JP2014165458A JP 2014165458 A JP2014165458 A JP 2014165458A JP 2013037578 A JP2013037578 A JP 2013037578A JP 2013037578 A JP2013037578 A JP 2013037578A JP 2014165458 A JP2014165458 A JP 2014165458A
Authority
JP
Japan
Prior art keywords
insulating film
film
wiring
interlayer insulating
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037578A
Other languages
English (en)
Other versions
JP6075114B2 (ja
Inventor
Isamu Nishimura
勇 西村
Michihiko Mifuji
道彦 三冨士
Kazuma Nishio
和真 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2013037578A priority Critical patent/JP6075114B2/ja
Priority to US14/181,100 priority patent/US9136216B2/en
Publication of JP2014165458A publication Critical patent/JP2014165458A/ja
Priority to US14/824,962 priority patent/US9257387B2/en
Priority to US14/977,337 priority patent/US9673144B2/en
Application granted granted Critical
Publication of JP6075114B2 publication Critical patent/JP6075114B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5228Resistive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7687Thin films associated with contacts of capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • H01L28/24Resistors with an active material comprising a refractory, transition or noble metal, metal compound or metal alloy, e.g. silicides, oxides, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53223Additional layers associated with aluminium layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】実配線へのコンタクト抵抗の増加を防止できながら、薄膜抵抗体へのエッチングダメージをなくすことができる半導体装置およびその製造方法を提供すること。
【解決手段】半導体基板2上に抵抗部12および配線部13が選択的に設けられた半導体装置1において、半導体基板2上に第2層間絶縁膜6を形成し、抵抗部12において、第2層間絶縁膜6上に薄膜抵抗体23を配置する。また、第2層間絶縁膜6には、薄膜抵抗体23に下側から接するビア32,33を埋め込む。また、配線部13において、第2層間絶縁膜6上に実配線22を配置する。さらに、実配線22と同じ階層の第3配線層10に、薄膜抵抗体23を上側から覆うダミー配線24を配置し、薄膜抵抗体23とダミー配線24との間には絶縁膜40を介在させる。
【選択図】図2A

Description

本発明は、薄膜抵抗体を有する半導体装置およびその製法に関する。
高性能アナログデバイスでは、レーザトリミングが可能な薄膜抵抗体(たとえば、TaN、SiCr等)からなる受動部品が必要である。薄膜抵抗体を備える半導体装置として、たとえば、特許文献1〜3に記載されたものがある。
特許文献1は、半導体基板上に形成された薄膜抵抗体と、薄膜抵抗体を覆うように形成された中間金属層と、中間金属層を覆うように形成された絶縁膜と、絶縁膜に形成されたコンタクトホールを介して中間金属層に接続された配線とを含む、半導体装置を開示している。
特許文献2は、シリコン基板上に形成された層間絶縁膜と、層間絶縁膜上に形成された窒化タンタル(TaN)膜と、層間絶縁膜に形成されたビアホールを介して窒化タンタル膜に接続されたビアとを含む、半導体装置を開示している。
特許文献3は、シリコン基板上に形成された層間絶縁膜と、層間絶縁膜上に形成された配線パターンと、互いに対向する一対の配線パターンに交差するように形成され、当該配線パターンに接続されたCrSi薄膜抵抗体とを含む、半導体装置を開示している。
特開2009−147219号公報 特開2011−138993号公報 特開2005−235888号公報
特許文献1や2のように、薄膜抵抗体に対して上側からコンタクトをとる構成では、層間絶縁膜を選択的にエッチングすることによって、薄膜抵抗体に達するビアホール(コンタクトホール)を形成する必要がある。そのため、薄膜抵抗体の上面がエッチングガスやエッチャント等に晒されてダメージを受けるおそれがある。特許文献2のようにウエットエッチングを用いれば、そのダメージは多少軽減されるかもしれないが、この場合、薄膜抵抗体へのビアホールの形成のために別途エッチングマスクを用意しなければならない。そのため、製造プロセスの効率悪化、コストアップを余儀なくされる。
一方、薄膜抵抗体と共に設けられる実配線には、その下側からコンタクトをとることがある。したがって、実配線の下面を形成するバリア膜を薄膜抵抗体として兼用すれば、実配線と薄膜抵抗体のための下側のビアホールを同時に作れ、しかも、薄膜抵抗体が下側ビアホールの形成後に形成されるから、エッチングガス等によるダメージを防げるかもしれない。
しかしながら、下側のビアと接する実配線のバリア膜が、薄膜抵抗体と同じ抵抗値を有する材料になってしまうので、ビアと実配線との間のコンタクト抵抗にばらつきが生じるおそれがある。また、実際に抵抗として使用する薄膜抵抗体上の領域から実配線の主要部(たとえばAl合金配線)を取り除く必要があるところ、この除去のためのエッチング時に、薄膜抵抗体がダメージを受けるおそれがある。
また、特許文献3のように、実配線のパターン上に薄膜抵抗体を形成する構成では、実配線の厚さ分の段差が薄膜抵抗体にできるため、薄膜抵抗体の抵抗値に誤差が生じるおそれがある。
本発明の目的は、実配線へのコンタクト抵抗の増加を防止できながら、薄膜抵抗体へのエッチングダメージをなくすことができる半導体装置およびその製造方法を提供することである。
本発明の他の目的は、前記の目的に加え、さらに抵抗値の誤差を抑制できる半導体装置およびその製造方法を提供することである。
上記目的を達成するための請求項1に記載の発明は、半導体基板上に抵抗部および配線部が選択的に設けられた半導体装置であって、前記半導体基板上に配置された層間絶縁膜と、前記抵抗部において、前記層間絶縁膜上に配置された薄膜抵抗体と、前記層間絶縁膜に埋め込まれ、前記薄膜抵抗体に対して下側から接するビアと、前記配線部において、前記層間絶縁膜上に配置された実配線と、前記実配線と同じ階層の配線層に配置され、前記薄膜抵抗体を上側から覆うダミー配線と、前記薄膜抵抗体と前記ダミー配線との間に介在された絶縁膜とを含む、半導体装置である。
この半導体装置は、請求項14に記載の発明によって製造できる。請求項14に記載の発明は、半導体基板上に抵抗部および配線部が選択的に設けられた半導体装置の製造方法であって、前記半導体基板上に層間絶縁膜を形成する工程と、前記抵抗部において前記層間絶縁膜の表面に選択的に露出するように、前記層間絶縁膜にビアを埋め込む工程と、露出した前記ビアと接するように、前記層間絶縁膜上に薄膜抵抗体を形成する工程と、前記薄膜抵抗体を被覆する絶縁膜を形成する工程と、前記配線部において前記層間絶縁膜上に実配線を形成し、同時に、前記絶縁膜を介して前記薄膜抵抗体を上側から覆うように、ダミー配線を形成する工程とを含む、半導体装置の製造方法である。
この方法によれば、実配線が薄膜抵抗体とは別工程で形成されるので、実配線には配線として好ましい材料を用い、薄膜抵抗体には抵抗として好ましい材料を用いることができる。これにより、実配線へのコンタクト抵抗の増加を防止できる。
また、薄膜抵抗体が、実配線と同じ階層の配線層に配置されたダミー配線によって保護されるので、実配線のパターニング時に薄膜抵抗体がエッチングダメージを受けることを防止できる。また、薄膜抵抗体上に、薄膜抵抗体のトリミング用の開口をエッチングで形成する場合でも、そのエッチングをダミー配線で止めることができるので、当該エッチングによるダメージも防止できる。さらに、トリミング用の開口に露出する部分がダミー配線のようなメタルであれば、絶縁材料が露出している場合に比べて、その後のレーザトリミングを安定して行うことができる。
また、薄膜抵抗体の下側に(コンタクト)ビアを設けた構成であるため、実配線に対して下側から接するビアを層間絶縁膜に形成する際、それらのビアホール用のエッチングマスクを共用できる。したがって、製造プロセスの効率悪化およびコストアップの抑制もできる。
さらに、抵抗部と配線部とが区別され、薄膜抵抗体と層間絶縁膜との間に実配線が介在しないので、薄膜抵抗体の平坦性を保つことができる。これにより、薄膜抵抗体における抵抗値の誤差の発生をなくすか、もしくは低減できる。
請求項2に記載の発明は、前記ダミー配線は、前記薄膜抵抗体を横側から覆うオーバーラップ部を含む、請求項1に記載の半導体装置である。
この構成によれば、薄膜抵抗体の側方からの水分の侵入を、ダミー配線(オーバーラップ部)によって防止できる。
請求項3に記載の発明は、前記絶縁膜は、前記薄膜抵抗体の側面を被覆するサイドウォールを含む、請求項1または2に記載の半導体装置である。
この構成によれば、請求項2に記載の発明と同様に、薄膜抵抗体の側方からの水分の侵入を、サイドウォールによって防止できる。さらに、ダミー配線が上記のようにオーバーラップ部を有する場合、当該オーバーラップ部と薄膜抵抗体との間を確実に絶縁分離できる。
請求項4に記載の発明は、前記層間絶縁膜上に、前記実配線および前記ダミー配線を被覆するように形成された第2層間絶縁膜をさらに含み、前記第2層間絶縁膜には、前記ダミー配線の上面を選択的に露出させるビアホールが形成されている、請求項1〜3のいずれか一項に記載の半導体装置である。
この構成によれば、当該ビアホールを介してレーザ照射することによって、薄膜抵抗体をレーザトリミングすることができる。
請求項5に記載の発明は、前記絶縁膜は、SiO膜からなり、前記半導体装置は、前記ダミー配線と前記SiO膜との間に介在されたTiN層をさらに含む、請求項1〜4に記載の半導体装置である。
この構成によれば、比較的還元性の弱いTiN層を、ダミー配線とSiO膜との間に介在させることによって、ダミー配線とSiO膜との反応を抑制できる。
たとえば、実配線と実配線下のビアとの接続を良好なものとするために、実配線における当該ビアとの接触面を、還元性の高いTi膜で形成する場合がある。この場合に、ダミー配線と実配線とが全く同じ構造であると、ダミー配線のTi膜が、薄膜抵抗体との間の絶縁膜(SiO膜)と反応してTiOが生成し、このTiOを介して薄膜抵抗体−ダミー配線間が導通することがある。
そこで、この請求項5に記載の発明のように、ダミー配線とSiO膜との間にTiN層を介在させれば、ダミー配線とSiO膜との反応を抑制できるので、薄膜抵抗体−ダミー配線間の導通を防止できる。
請求項6に記載の発明のように、前記絶縁膜は、SiO膜からなり、前記層間絶縁膜は、その最表面にSiOに対してエッチング選択比を有する絶縁材料からなるエッチングストッパ部を有していてもよい。この場合、前記エッチングストッパ部は、請求項7に記載の発明のように、SiN膜からなっていてもよい。
前記薄膜抵抗体は、請求項8に記載の発明のように、SiCr、NiCr、TaNまたはTiNからなっていてもよい。また、前記ダミー配線は、請求項9に記載の発明のように、Al合金配線と、当該Al合金配線を上下方向から挟むバリア膜とを含む積層構造からなっていてもよい。
請求項10に記載の発明は、前記半導体基板上にはキャパシタ部がさらに設けられており、前記キャパシタ部において、前記層間絶縁膜上に配置された下部電極と、前記実配線と同じ階層の配線層に配置され、前記下部電極と対向する上部電極と、前記下部電極と前記上部電極との間に介在された容量膜とを含む、請求項1〜9のいずれか一項に記載の半導体装置である。
この構成によれば、下部電極−容量膜−上部電極からなるMIM(Metal Insulator Metal)構造を、抵抗部の薄膜抵抗体、絶縁膜およびダミー配線と同一工程で形成できるので、製造プロセスのプロセス数の増加を防止しながら、薄膜抵抗体とMIM構造とを混載できる。
請求項11に記載の発明は、前記容量膜は、SiO膜からなり、前記半導体装置は、前記上部電極と前記SiO膜との間に介在されたTiN層をさらに含む、請求項10に記載の半導体装置である。
この構成によれば、上部電極とSiO膜との間にTiN層を介在させることによって、請求項5に記載の発明と同様に、上部電極とSiO膜との反応を抑制できるので、下部電極−上部電極間の導通を防止できる。
請求項12に記載の発明は、前記上部電極は、前記下部電極を横側から覆うオーバーラップ部を含む、請求項10または11に記載の半導体装置である。
この構成によれば、下部電極の側方からの水分の侵入を、上部電極(オーバーラップ部)によって防止できる。
請求項13に記載の発明は、前記容量膜は、前記下部電極の側面を被覆するサイドウォールを含む、請求項10〜12のいずれか一項に記載の半導体装置である。
この構成によれば、請求項12に記載の発明と同様に、下部電極の側方からの水分の侵入を、サイドウォールによって防止できる。さらに、上部電極が上記のようにオーバーラップ部を有する場合、当該オーバーラップ部と下部電極との間を確実に絶縁分離できる。
請求項15に記載の発明は、前記絶縁膜を形成する工程は、前記薄膜抵抗体を完全に被覆する下地膜を前記層間絶縁膜上に形成し、その後、当該下地膜を選択的にエッチングすることによって、前記薄膜抵抗体の側方において前記層間絶縁膜の前記表面の一部を露出させるように前記絶縁膜を形成する工程を含み、前記実配線を形成する工程は、前記薄膜抵抗体の前記側方に回り込むようにダミー配線を形成する工程を含む、請求項14に記載の半導体装置の製造方法である。
この方法により、請求項2に記載の半導体装置を製造できる。
請求項16に記載の発明は、前記絶縁膜を形成する工程は、前記薄膜抵抗体を完全に被覆する下地膜を前記層間絶縁膜上に形成し、その後、当該下地膜を選択的にエッチングすることによって、前記薄膜抵抗体の側面を被覆するサイドウォールが残るように前記絶縁膜を形成する工程を含む、請求項14または15に記載の半導体装置の製造方法である。
この方法により、請求項3に記載の半導体装置を製造できる。
請求項17に記載の発明は、前記層間絶縁膜を形成する工程は、その最表面にSiOに対してエッチング選択比を有する絶縁材料からなるエッチングストッパ部が露出するように前記層間絶縁膜を形成する工程を含み、前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含む、請求項15または16に記載の半導体装置の製造方法である。
この方法によれば、下地膜を選択的にエッチングして絶縁膜を形成する際に、層間絶縁膜がオーバーエッチングされることを防止できる。これにより、層間絶縁膜の表面の平坦性を保つことができる。
請求項18に記載の発明は、前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含み、前記半導体装置の製造方法は、前記実配線および前記ダミー配線の形成に先立って、前記絶縁膜を上側から覆うようにTiN層を形成する工程をさらに含む、請求項14〜17のいずれか一項に記載の半導体装置の製造方法である。
この方法により、請求項5に記載の半導体装置を製造できる。
請求項19に記載の発明は、前記半導体基板上にはキャパシタ部がさらに設けられており、前記薄膜抵抗体の形成工程の中で、前記キャパシタ部における前記層間絶縁膜上に下部電極を形成する工程と、前記絶縁膜の形成工程の中で、前記下部電極を被覆する容量膜を形成する工程と、前記実配線の形成工程の中で、前記容量膜を介して前記下部電極を上側から覆うように、上部電極を形成する工程とをさらに含む、請求項14〜18のいずれか一項に記載の半導体装置の製造方法である。
この方法により、請求項10に記載の半導体装置を製造できる。
請求項20に記載の発明は、前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含み、前記半導体装置の製造方法は、前記実配線、前記ダミー配線および前記上部電極の形成に先立って、前記容量膜を上側から覆うようにTiN層を形成する工程をさらに含む、請求項19に記載の半導体装置の製造方法である。
この方法により、請求項11に記載の半導体装置を製造できる。
図1は、本発明の第1実施形態に係る半導体装置の平面図である。 図2Aは、図1におけるIIA−IIA切断面における断面図である。 図2Bは、レーザトリミング後の半導体装置の状態を示す図である。 図3Aは、図2Aの半導体装置の製造工程の一例を説明するための断面図である。 図3Bは、図3Aの次の製造工程を示す図である。 図3Cは、図3Bの次の製造工程を示す図である。 図3Dは、図3Cの次の製造工程を示す図である。 図3Eは、図3Dの次の製造工程を示す図である。 図3Fは、図3Eの次の製造工程を示す図である。 図3Gは、図3Fの次の製造工程を示す図である。 図3Hは、図3Gの次の製造工程を示す図である。 図3Iは、図3Hの次の製造工程を示す図である。 図3Jは、図3Iの次の製造工程を示す図である。 図3Kは、図3Jの次の製造工程を示す図である。 図4は、本発明の第2実施形態に係る半導体装置の断面図である。 図5Aは、図4の半導体装置の製造工程の一例を説明するための断面図である。 図5Bは、図5Aの次の製造工程を示す図である。 図5Cは、図5Bの次の製造工程を示す図である。 図6は、本発明の第3実施形態に係る半導体装置の平面図である。 図7は、図6におけるVII−VII切断面における断面図である。 図8Aは、図7の半導体装置の製造工程の一例を説明するための断面図である。 図8Bは、図8Aの次の製造工程を示す図である。 図8Cは、図8Bの次の製造工程を示す図である。 図8Dは、図8Cの次の製造工程を示す図である。 図8Eは、図8Dの次の製造工程を示す図である。 図8Fは、図8Eの次の製造工程を示す図である。 図8Gは、図8Fの次の製造工程を示す図である。 図8Hは、図8Gの次の製造工程を示す図である。 図8Iは、図8Hの次の製造工程を示す図である。 図8Jは、図8Iの次の製造工程を示す図である。 図8Kは、図8Jの次の製造工程を示す図である。 図9は、本発明の第4実施形態に係る半導体装置の断面図である。 図10Aは、図9の半導体装置の製造工程の一例を説明するための断面図である。 図10Bは、図10Aの次の製造工程を示す図である。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の第1実施形態に係る半導体装置1の平面図である。図2Aは、図1におけるIIA−IIA切断面における断面図である。図2Bは、レーザトリミング後の半導体装置1の状態を示す図である。
半導体装置1は、半導体基板2と、半導体基板2上に積層された複数の層間絶縁膜5〜8とを含む。半導体基板2は、たとえば、その表面3に能動素子や受動素子等の半導体素子4が作り込まれたシリコン基板からなる。
複数の層間絶縁膜5〜8は、この実施形態では、半導体基板2の表面3から順に、第1層間絶縁膜5、本発明の層間絶縁膜の一例としての第2層間絶縁膜6、本発明の第2層間絶縁膜の一例としての第3層間絶縁膜7、および第4層間絶縁膜8を含む。各層間絶縁膜5〜8は、たとえば、酸化シリコン(SiO)膜の単層構造からなる。
各層間絶縁膜5〜8上にはそれぞれ、配線層9〜11が形成されている。この実施形態では、第2層間絶縁膜6上に形成された第2配線層9、第3層間絶縁膜7上に形成された本発明の配線層の一例としての第3配線層10、および第4層間絶縁膜8上に形成された第4配線層11が示されており、第1層間絶縁膜5上の配線層の図示は省略している。各配線層9〜11は、その上層の層間絶縁膜によって被覆されている。
ここで、配線層とは、同一の層間絶縁膜上に配置された複数の配線(導電物)の集合体のことである。また、各層間絶縁膜5〜8および各配線層9〜11は、説明の便宜上、半導体基板2の側から順に「第1」「第2」・・・との名称を付しているが、たとえば、第2配線層9および第3配線層10に着目し、それらの構造の特徴を特定する場合には、第2配線層9を第1配線層、第3配線層10を第2配線層としてもよい。
そして、層間絶縁膜5〜8および配線層9〜11が形成された半導体基板2上の領域には、この実施形態では、抵抗部12および配線部13が互いに隣り合うように選択的に設定されている。
第2配線層9は、この実施形態では、第1層間絶縁膜5の表面に形成され、互いに間隔を空けて平行な一対の実配線14,15を含む。なお、第2配線層9は、第2層間絶縁膜6上の領域において、他の実配線を含んでいてもよい。
一対の一方の実配線14は、抵抗部12に配置されており、抵抗部12と配線部13との境界に沿う直線状に形成されている。一対の他方の実配線15は、一方の実配線14よりも幅広に形成され、抵抗部12と配線部13との間に跨るように、当該境界上に直線状に形成されている。各実配線14,15は、たとえば、第1層間絶縁膜5に埋め込まれたビア(図示せず)によって、半導体基板2上の半導体素子4と電気的に接続されている。また、各実配線14,15は、この実施形態では、Al合金配線16,17(たとえば、Al−Cu合金配線)と、当該Al合金配線16,17を上下方向から挟むバリア膜18〜21とを含む積層構造からなる。下側のバリア膜19,21および上側のバリア膜18,20はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。そして、これら実配線14,15は、第2層間絶縁膜6によって被覆されている。
第3配線層10は、実配線22と、薄膜抵抗体23と、ダミー配線24とを含む。
実配線22は、配線部13に配置されており、第2層間絶縁膜6の表面において、第2配線層9の他方の実配線15上の領域を実配線15に沿う直線状に形成されている。これにより、実配線22および実配線15は、第2層間絶縁膜6の厚さ方向に互いに対向している。そして、実配線22は、第2層間絶縁膜6に埋め込まれたビア25(たとえば、タングステン(W)ビア)によって、実配線15と電気的に接続されている。ビア25は、この実施形態では、実配線22の長手方向に沿って等しい間隔を空けて複数設けられている。また、実配線22は、この実施形態では、実配線14,15と同様に、Al合金配線26(たとえば、Al−Cu合金配線)と、当該Al合金配線26を上下方向から挟むバリア膜27,28とを含む積層構造からなる。下側のバリア膜28および上側のバリア膜27はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
薄膜抵抗体23は、たとえば、5nm〜20nm程度の金属薄膜からなり、抵抗部12において、第2層間絶縁膜6の表面に配置されている。薄膜抵抗体23の材料としては、たとえば、SiCr、NiCr、TaN、TiN等を適用できるが、この実施形態では、TaNが用いられている。薄膜抵抗体23は、抵抗部12と配線部13との境界に沿う直線状に形成され、図1に示すように、第2層間絶縁膜6の表面を法線方向から見た平面視において、下層の実配線14,15の間に跨るように配置されている。
具体的には、薄膜抵抗体23は、第2層間絶縁膜6の厚さ方向に実配線14,15に対向し、互いに間隔を空けて配置された一対のコンタクト部29,30と、一対のコンタクト部29,30に交差するように配置された複数のヒューズ31とを一体的に含む梯子状に形成されている。
一対のコンタクト部29,30は、薄膜抵抗体23の幅方向両端部(一端部および他端部)に形成されている。第2配線層9の一方の実配線14に対向する一方のコンタクト部29は、第2層間絶縁膜6に埋め込まれたビア32(たとえば、タングステン(W)ビア)によって、実配線14と電気的に接続されている。また、第2配線層9の他方の実配線15に対向する他方のコンタクト部30は、第2層間絶縁膜6に埋め込まれたビア33(たとえば、タングステン(W)ビア)によって、実配線15と電気的に接続されている。ビア32,33は、この実施形態では、コンタクト部29,30の長手方向に沿って等しい間隔を空けて複数設けられている。これにより、薄膜抵抗体23は、自身が配置された第3配線層10の下層の第2配線層9(具体的には、実配線15)を介して、同じ階層の第3配線層10の実配線22と電気的に接続されている。
複数のヒューズ31は、この実施形態では、薄膜抵抗体23の長手方向に沿って等しい間隔を空けて設けられている。各ヒューズ31は、薄膜抵抗体23の幅方向に沿う直線状に形成され、当該幅方向に互いに対向するビア32,33の接続部を結ぶように配置されている。そして、各ヒューズ31は、その両端部がコンタクト部29,30の外側に突き出ないように、コンタクト部29,30の内側部にそれぞれ接続されている。各ヒューズ31は、レーザ光によって切断(溶断)できるように構成されている。それによって、複数のヒューズ31のうち不要な部分をヒューズ31の切断によってコンタクト部29,30から電気的に切り離すことができる。
ダミー配線24は、抵抗部12において、薄膜抵抗体23上の領域を薄膜抵抗体23に沿う直線状に形成されている。このダミー配線24は、薄膜抵抗体23の上方に配置され、第2層間絶縁膜6の厚さ方向に薄膜抵抗体23と間隔を空けて対向する対向部34と、当該対向部34から薄膜抵抗体23の側方に引き出され、第2層間絶縁膜6の表面に沿う方向に薄膜抵抗体23と間隔を空けて対向するオーバーラップ部35とを一体的に含む。これにより、ダミー配線24は、ダミー配線24を幅方向に切断する断面視において、薄膜抵抗体23を上側および横側から覆うアーチ状に形成されている。また、ダミー配線24は、この実施形態では、実配線22と同一構造で形成されている。つまり、ダミー配線24は、Al合金配線36(たとえば、Al−Cu合金配線)と、当該Al合金配線36を上下方向から挟むバリア膜37,38とを含む積層構造からなる。下側のバリア膜38および上側のバリア膜37はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
オーバーラップ部35は、薄膜抵抗体23の幅方向両側方において、第2層間絶縁膜6の表面に接するように形成されている。より具体的には、ダミー配線24を構成する積層構造の配線膜の最下層の膜(下側のバリア膜38)の下面が第2層間絶縁膜6の表面に接している。それ以外の膜であるAl合金配線36および上側のバリア膜37は、第2層間絶縁膜6の表面の法線方向に積層されている。オーバーラップ部35の形成によって、薄膜抵抗体23の側方からの水分の侵入を防止できる。しかもこの実施形態では、オーバーラップ部35における第2層間絶縁膜6との界面が、下側のバリア膜38の裏面のみによって形成されていて、当該界面にダミー配線24を構成する積層構造の積層界面がない。そのため、当該積層界面に水分が侵入しても、その水分が薄膜抵抗体23側へと侵入することも防止できる。
薄膜抵抗体23の周囲には、アーチ状のダミー配線24で区画された閉領域39が区画されている。なお、オーバーラップ部35のうち実配線22に遠い側の部分は、図1および図2Aに示すように、その下方の実配線14よりもさらに外側に引き出され、第2層間絶縁膜6の厚さ方向に実配線14と対向していなくてもよい。
薄膜抵抗体23とダミー配線24との間の閉領域39には、絶縁膜40が設けられている。絶縁膜40は、たとえば、厚さが20nm程度の酸化シリコン(SiO)膜からなる。なお、絶縁膜40は、SiOに限られず、いわゆる層間絶縁膜の一般的な材料が用いられる。また、絶縁膜40は、SiOCやSiOF等のLow−k膜(低誘電率膜)であってもよい。Low−k膜の場合、寄生容量の影響を小さくできる。
この絶縁膜40は、ダミー配線24の対向部34と薄膜抵抗体23との間に介在され、薄膜抵抗体23の上面を被覆する平面部41と、ダミー配線24のオーバーラップ部35と薄膜抵抗体23との間に介在され、薄膜抵抗体23の側面を被覆するサイドウォール42とを一体的に含む。サイドウォール42の形成によって、薄膜抵抗体23の側方に、ダミー配線24のオーバーラップ部35と共に二重構造の壁部を形成でき、この壁部によって、薄膜抵抗体23の側方からの水分の侵入を確実に防止できる。さらに、このサイドウォール42によって、ダミー配線24のオーバーラップ部35と薄膜抵抗体23とを確実に絶縁分離できる。
そして、実配線22、薄膜抵抗体23およびダミー配線24は、第3層間絶縁膜7によって被覆されている。
第4配線層11は、この実施形態では、第3層間絶縁膜7の表面に形成された実配線43を含む。なお、第4配線層11は、第3層間絶縁膜7上の領域において、他の実配線を含んでいてもよい。
実配線43は、配線部13に配置されており、第3配線層10の実配線22上の領域を実配線22に沿う直線状に形成されている。これにより、実配線43および実配線22は、第3層間絶縁膜7の厚さ方向に互いに対向している。そして、実配線43は、第3層間絶縁膜7に埋め込まれたビア44(たとえば、タングステン(W)ビア)によって、実配線22と電気的に接続されている。また、実配線43は、この実施形態では、実配線22と同様に、Al合金配線45(たとえば、Al−Cu合金配線)と、当該Al合金配線45を上下方向から挟むバリア膜46,47とを含む積層構造からなる。下側のバリア膜47および上側のバリア膜46はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
そして、実配線43は、第4層間絶縁膜8によって被覆されている。第4層間絶縁膜8上には、たとえば窒化シリコン(SiN)からなるパッシベーション膜48が形成されている。
このパッシベーション膜48の表面から、パッシベーション膜48、第3および第4層間絶縁膜7,8を貫通し、ダミー配線24の上面を選択的に露出させるように、本発明のビアホールの一例としてのヒューズウィンドウ49が形成されている。ヒューズウィンドウ49は、図1に示すように、薄膜抵抗体23の長手方向に沿う直線状に形成されている。そして、薄膜抵抗体23の抵抗値を測定し、その後に所望の抵抗値に応じて複数のヒューズ41から適切に選択した一つまたは複数のヒューズ41を、図2Bに示すように、ヒューズウィンドウ49からダミー配線24を介して照射したレーザ光で溶断すれば、所望の抵抗値へ合わせ込み(レーザトリミング)を行うことができる。
また、パッシベーション膜48の表面からパッシベーション膜48および第4層間絶縁膜8を貫通し、実配線43の一部をパッドとして選択的に露出させるようにパッド開口50が形成されている。
図3A〜図3Kは、図2Aの半導体装置1の製造工程の一例を説明するための断面図である。なお、図3A〜図3Kでは、半導体基板2の図示を省略している。
半導体装置1を製造するには、半導体基板2の表面3に半導体素子4が作り込まれた後(半導体基板2等については図2A参照)、図3Aに示すように、たとえばCVD法によって、半導体基板2上に第1層間絶縁膜5が形成される。次に、たとえばドライエッチングによって、半導体素子4を選択的に露出させるビアホール(図示せず)が第1層間絶縁膜5に形成された後、当該ビアホールに、タングステン(W)からなるビア(図示せず)が埋め込まれる。
次に、図3Aに示すように、たとえばスパッタ法によって、下側のバリア膜19,21のTiN/Ti材料、Al合金配線16,17の材料および上側のバリア膜18,20のTiN/Ti材料が、第1層間絶縁膜5の表面に連続して堆積される。次に、その堆積物上に、実配線14,15を形成すべき領域を選択的に覆うレジスト膜(図示せず)が形成され、当該レジスト膜を介して堆積物がドライエッチングされる。これにより、実配線14,15が同時に形成され、第2配線層9の形成が完了する。
次に、図3Aに示すように、たとえばCVD法によって、第2配線層9を被覆するように、第1層間絶縁膜5上に第2層間絶縁膜6が積層される。次に、図3Aに示すように、たとえばドライエッチングによって、実配線14,15を選択的に露出させるビアホールが第2層間絶縁膜6に形成された後、当該ビアホールに、タングステン(W)からなるビア25,32,33が同時に埋め込まれる。ビア25,32,33は、たとえば、CVD法によってビアホールにタングステン膜を供給した後、当該タングステン膜をエッチバックまたはCMP法によって平坦化することによってビアホールに埋め込まれる。したがって、ビア25,32,33は、第2層間絶縁膜6の表面から選択的に露出することとなる。
次に、図3Bに示すように、たとえばスパッタ法によって、薄膜抵抗体23の材料である金属薄膜51(この実施形態ではTaN)が、第2層間絶縁膜6の表面から露出したビア25,32,33に接するように、第2層間絶縁膜6上に積層される。金属薄膜51の積層に続いて、たとえばCVD法によって、絶縁膜40の下地となる酸化シリコン(SiO)からなる第1下地膜52が、金属薄膜51上に積層される。金属薄膜51は、たとえば5nm〜20nmの厚さで形成され、第1下地膜52は、たとえば20nm程度の厚さで形成される。
次に、図3Cに示すように、第1下地膜52上に、薄膜抵抗体23を形成すべき領域を選択的に覆うレジスト膜53が形成される。
次に、図3Dに示すように、当該レジスト膜53を介して第1下地膜52および金属薄膜51が連続してドライエッチングされる。これにより、金属薄膜51の不要部分が除去されて薄膜抵抗体23が形成される。また、薄膜抵抗体23上には、薄膜抵抗体23の上面を被覆し、薄膜抵抗体23の側面を露出させる絶縁膜40の平面部41が同時に形成される。その後、たとえばアッシングによって、レジスト膜53が除去される。
次に、図3Eに示すように、たとえばCVD法によって、20nm程度の厚さの酸化シリコン(SiO)膜が、平面部41を被覆するように、第2層間絶縁膜6上にさらに積層される。この酸化シリコン膜は、本発明の下地膜の一例としての第2下地膜54であり、第2下地膜54によって、薄膜抵抗体23の露出した側面が完全に被覆される。
次に、図3Fに示すように、たとえばエッチバックによって、第2下地膜54が上面から順に削り取られる。エッチバックは、たとえば、第2層間絶縁膜6の表面においてビア25の上面が露出するまで続けられる。これにより、第2下地膜54のサイドウォール42となる部分以外の部分が除去され、第2層間絶縁膜6の表面においてビア25が選択的に露出する。第2下地膜54の残存した部分は、サイドウォール42として形成される。これにより、絶縁膜40が形成される。
次に、図3Gに示すように、たとえばスパッタ法によって、絶縁膜40を完全に被覆するように、下側のバリア膜28,38のTiN/Ti材料55、Al合金配線26,36のAl合金材料56、および上側のバリア膜27,37のTiN/Ti材料57が、第2層間絶縁膜6の表面に連続して堆積される。
次に、図3Hに示すように、TiN/Ti材料57上に、実配線22およびダミー配線24を形成すべき領域を選択的に覆うレジスト膜58が形成される。
次に、図3Iに示すように、当該レジスト膜58を介して、TiN/Ti材料57、Al合金材料56およびTiN/Ti材料55が連続してドライエッチングされる。これにより、実配線22およびダミー配線24が同時に形成され、第3配線層10の形成が完了する。
次に、図3Jに示すように、たとえばCVD法によって、第3配線層10を被覆するように、第2層間絶縁膜6上に第3層間絶縁膜7が積層される。
次に、図3Kに示すように、たとえばドライエッチングによって、実配線22を選択的に露出させるビアホールが第3層間絶縁膜7に形成された後、当該ビアホールに、タングステン(W)からなるビア44が埋め込まれる。ビア44は、たとえば、CVD法によってビアホールにタングステン膜を供給した後、当該タングステン膜をエッチバックまたはCMP法によって平坦化することによってビアホールに埋め込まれる。したがって、ビア44は、第3層間絶縁膜7の表面から選択的に露出することとなる。
次に、図3Kに示すように、たとえばスパッタ法によって、下側のバリア膜47のTiN/Ti材料、Al合金配線45の材料および上側のバリア膜46のTiN/Ti材料が、第3層間絶縁膜7の表面に連続して堆積される。次に、その堆積物上に、実配線43を形成すべき領域を選択的に覆うレジスト膜(図示せず)が形成され、当該レジスト膜を介して堆積物がドライエッチングされる。これにより、実配線43が形成され、第4配線層11の形成が完了する。
次に、図3Kに示すように、たとえばCVD法によって、第3配線層10を被覆するように、第3層間絶縁膜7上に第4層間絶縁膜8が積層された後、第4層間絶縁膜8上に、パッシベーション膜48が積層される。パッシベーション膜48の形成後、パッシベーション膜48上に、ヒューズウィンドウ49およびパッド開口50を形成すべき領域に開口を有するレジスト膜(図示せず)が形成される。そして、当該レジスト膜を介してパッシベーション膜48等がドライエッチングされることによって、ヒューズウィンドウ49およびパッド開口50が同時に形成される。その後、前述したように、ヒューズウィンドウ49を介したレーザ光の照射によって、所望の抵抗値へ合わせ込み(レーザトリミング)が行われる。以上の工程を経て、図2Aに示す半導体装置1が得られる。
以上のように、この方法によれば、薄膜抵抗体23が配置される第3配線層10において、薄膜抵抗体23が実配線22に先立って形成され(図3B〜図3D)、その後に実配線22が形成される(図3G〜図3I)。このように、薄膜抵抗体23と実配線22とが別工程で形成されるので、実配線22の下面にはタングステンのビア25とのコンタクト材料として好ましいTiN/Ti材料55を用い、薄膜抵抗体23には抵抗として好ましいTaNからなる金属薄膜51を用いることができる。これにより、実配線22とビア25とのコンタクト抵抗の増加を防止できる。
また、薄膜抵抗体23が、実配線22と同じ階層の第3配線層10に配置されたダミー配線24によって保護されるので、図3Iに示す実配線22のパターニング(ドライエッチング)時に、薄膜抵抗体23がエッチングダメージを受けることを防止できる。また、図3Kに示す工程において、薄膜抵抗体23上にヒューズウィンドウ49を形成する際にも、そのドライエッチングをダミー配線24で止めることができるので、当該ドライエッチングによるダメージも防止できる。さらに、ヒューズウィンドウ49に露出する部分がダミー配線24のようなメタルであれば、絶縁材料が露出している場合に比べて、その後のレーザトリミング(図2B参照)を安定して行うことができる。
また、薄膜抵抗体23へのコンタクトを、薄膜抵抗体23の下層の第2配線層9に配置されたビア32,33を利用して形成する構成であるため、実配線22に対して下側から接するビア25を第2層間絶縁膜6に形成する際、それらのビアホール用のエッチングマスクを共用できる。したがって、製造プロセスの効率悪化およびコストアップの抑制もできる。
さらに、抵抗部12と配線部13とが区別され、薄膜抵抗体23と第2層間絶縁膜6との間に実配線が介在しないので、薄膜抵抗体23の平坦性を保つことができる。これにより、薄膜抵抗体23における抵抗値の誤差の発生をなくすか、もしくは低減できる。
図4は、本発明の第2実施形態に係る半導体装置59の断面図である。図4において、前述の図2Aに示された各部と対応する部分には同一の参照符号を付して示す。
この半導体装置59は、前述の半導体装置1の構成に加えて、ダミー配線24と絶縁膜40との間に介在されたTiN層60をさらに含む。TiN層60は、平面視において、薄膜抵抗体23と同一外形を有する薄膜状に形成されている。つまり、TiN層60は、図1において、梯子状の薄膜抵抗体23の隣り合うヒューズ31の間の領域も膜状にした形態を有している。このTiN層60は、絶縁膜40の平面部41を挟んで、薄膜抵抗体23に対向している。
この実施形態に係る半導体装置59の製造工程は、図3A〜図3Kに示した工程と実質的に同様である。ただし、図3Bの工程で、第1下地膜52を形成した後、図5Aに示すように、たとえばスパッタ法によって、TiN材料61が第1下地膜52上に積層される。そして、図5Bに示すように、TiN材料61上にレジスト膜53が形成された後、図5Cに示すように、当該レジスト膜53を介して、TiN材料61、第1下地膜52および金属薄膜51が連続してドライエッチングされる。これにより、薄膜抵抗体23と同一外形を有するTiN層60が形成される。
この後、図3Eに示す工程に倣って、たとえばCVD法によって20nm程度の厚さの酸化シリコン(SiO)膜が積層されることによって、薄膜抵抗体23およびTiN層60が、第2下地膜54で完全に被覆される。次に、図3Fに示す工程に倣って、たとえばエッチバックによって、第2下地膜54が上面から順に削り取られる。エッチバックは、たとえば、TiN層60の上面が露出するまで続けられ、最終的に、薄膜抵抗体23の側面と共に、TiN層60の側面を被覆するサイドウォール42が形成される。これにより、TiN層60は、サイドウォール42に埋め込まれた形状になる。したがって、この半導体装置59のように、ダミー配線24と絶縁膜40との間にTiN層60を介在させても、追加したTiN層60の厚さ分の段差の増加を抑制できる。
この半導体装置59によれば、比較的還元性の弱いTiN層60を、ダミー配線24と絶縁膜40(SiO膜)との間に介在させることによって、ダミー配線24と絶縁膜40との反応を抑制できる。
前述の実施形態およびこの実施形態では、実配線22とビア25との接続を良好なものとするために、実配線22における当該ビア25との接触面(下面)を、還元性の高いTi膜(バリア膜28の下層)で形成している。しかしながら、ダミー配線24と実配線22とが全く同じ構造であるため、ダミー配線24のバリア膜38のTi膜が、薄膜抵抗体23との間の絶縁膜40と反応してTiOが生成し、このTiOを介して薄膜抵抗体23−ダミー配線24間が導通することがある。
そこで、この第2実施形態のように、ダミー配線24と絶縁膜40との間にTiN層60を介在させれば、ダミー配線24と絶縁膜40との反応を抑制できるので、薄膜抵抗体23−ダミー配線24間の導通を防止できる。
むろん、この半導体装置59においても、第1実施形態と同様の効果を実現することもできる。
図6は、本発明の第3実施形態に係る半導体装置62の平面図である。図7は、図6におけるVII−VII切断面における断面図である。図6および図7において、前述の図1、図2Aおよび図4に示された各部と対応する部分には同一の参照符号を付して示す。
この半導体装置62は、前述の半導体装置1,59の構成に加えて、半導体基板2上の領域に、キャパシタ部63をさらに含む。キャパシタ部63は、抵抗部12に対して配線部13の反対側において、抵抗部12と隣り合うように選択的に設定されている。
キャパシタ部63において、第2配線層9は、実配線64を含む。実配線64は、抵抗部12の実配線14とほぼ同じ幅で形成され、抵抗部12とキャパシタ部63との境界に沿って実配線14と平行に形成されている。実配線64は、たとえば、第1層間絶縁膜5に埋め込まれたビア(図示せず)によって、半導体基板2上の半導体素子4と電気的に接続されている。また、実配線64は、この実施形態では、Al合金配線65(たとえば、Al−Cu合金配線)と、当該Al合金配線65を上下方向から挟むバリア膜66,67とを含む積層構造からなる。下側のバリア膜67および上側のバリア膜66はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
キャパシタ部63において、第3配線層10は、下部電極68と、上部電極69とを含む。
下部電極68は、たとえば、5nm〜20nm程度の金属薄膜からなり、キャパシタ部63において、第2層間絶縁膜6の表面に配置されている。下部電極68の材料としては、薄膜抵抗体23と同じ材料、この実施形態では、SiCr、NiCr、TaN、TiN等を適用できるが、この実施形態では、TaNが用いられている。下部電極68は、抵抗部12とキャパシタ部63との境界に沿う直線状に形成され、図6に示すように、第2層間絶縁膜6の表面を法線方向から見た平面視において、下層の実配線64を覆うように配置されている。
具体的には、下部電極68は、第2層間絶縁膜6の厚さ方向に実配線64に対向するコンタクト部70を有している。コンタクト部70は、この実施形態では、下部電極68の幅方向両端部のうち、抵抗部12に近い側の端部に設けられている。そして、このコンタクト部70は、第2層間絶縁膜6に埋め込まれたビア71(たとえば、タングステン(W)ビア)によって、実配線64と電気的に接続されている。ビア71は、この実施形態では、コンタクト部70の長手方向に沿って等しい間隔を空けて複数設けられている。
上部電極69は、キャパシタ部63において、下部電極68上の領域を下部電極68に沿う直線状に形成されている。この上部電極69は、下部電極68の上方に配置され、第2層間絶縁膜6の厚さ方向に下部電極68と間隔を空けて対向する対向部72と、当該対向部72から下部電極68の側方に引き出され、第2層間絶縁膜6の表面に沿う方向に下部電極68と間隔を空けて対向するオーバーラップ部73とを一体的に含む。これにより、上部電極69は、上部電極69を幅方向に切断する断面視において、下部電極68を上側および横側から覆うアーチ状に形成されている。
また、上部電極69は、この実施形態では、実配線22およびダミー配線24と同一構造で形成されている。つまり、上部電極69は、Al合金配線74(たとえば、Al−Cu合金配線)と、当該Al合金配線74を上下方向から挟むバリア膜75,76とを含む積層構造からなる。下側のバリア膜76および上側のバリア膜75はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
オーバーラップ部73は、下部電極68の幅方向両側方において、第2層間絶縁膜6の表面に接するように形成されている。より具体的には、上部電極69を構成する積層構造の配線膜の最下層の膜(下側のバリア膜76)の下面が第2層間絶縁膜6の表面に接している。それ以外の膜であるAl合金配線74および上側のバリア膜75は、第2層間絶縁膜6の表面の法線方向に積層されている。オーバーラップ部73の形成によって、下部電極68の側方からの水分の侵入を防止できる。しかもこの実施形態では、オーバーラップ部73における第2層間絶縁膜6との界面が、下側のバリア膜76の裏面のみによって形成されていて、当該界面に上部電極69を構成する積層構造の積層界面がない。そのため、当該積層界面に水分が侵入しても、その水分が下部電極68側へと侵入することも防止できる。
下部電極68の周囲には、アーチ状の上部電極69で区画された閉領域77が区画されている。下部電極68と上部電極69との間の閉領域77には、容量膜78が設けられている。容量膜78は、絶縁膜40と同じ材料、この実施形態では、厚さが20nm程度の酸化シリコン(SiO)膜からなる。この容量膜78は、上部電極69の対向部72と下部電極68との間に介在され、下部電極68の上面を被覆する平面部79と、上部電極69のオーバーラップ部73と下部電極68との間に介在され、下部電極68の側面を被覆するサイドウォール80とを一体的に含む。サイドウォール80の形成によって、下部電極68の側方に、上部電極69のオーバーラップ部73と共に二重構造の壁部を形成でき、この壁部によって、下部電極68の側方からの水分の侵入を確実に防止できる。さらに、このサイドウォール80によって、上部電極69のオーバーラップ部73と下部電極68とを確実に絶縁分離できる。
これにより、キャパシタ部63には、下部電極68−容量膜78−上部電極69からなるMIM(Metal Insulator Metal)構造のキャパシタが設けられている。
上部電極69と容量膜78との間には、TiN層81が介在されている。TiN層81は、平面視において、下部電極68と同一外形を有する薄膜状に形成されている。このTiN層81は、容量膜78の平面部79を挟んで、下部電極68に対向している。
キャパシタ部63において、第4配線層11は、この実施形態では、第3層間絶縁膜7の表面に形成された実配線82をさらに含む。
実配線82は、第3配線層10の上部電極69上の領域を上部電極69の長手方向に沿う直線状に形成されている。これにより、実配線82および上部電極69は、第3層間絶縁膜7の厚さ方向に互いに対向している。そして、実配線82は、第3層間絶縁膜7に埋め込まれたビア83(たとえば、タングステン(W)ビア)によって、上部電極69と電気的に接続されている。また、実配線82は、この実施形態では、同じ階層の第4配線層11に配置された実配線43と同様に、Al合金配線84(たとえば、Al−Cu合金配線)と、当該Al合金配線84を上下方向から挟むバリア膜85,86とを含む積層構造からなる。下側のバリア膜86および上側のバリア膜85はそれぞれ、TiN/Ti(TiNが上層で、Tiが下層の積層構造)からなる。
また、キャパシタ部63において、パッシベーション膜48の表面からパッシベーション膜48および第4層間絶縁膜8を貫通し、実配線82の一部をパッドとして選択的に露出させるようにパッド開口87が形成されている。
図8A〜図8Kは、図7の半導体装置62の製造工程の一例を説明するための断面図である。なお、図8A〜図8Kでは、半導体基板2の図示を省略している。
半導体装置62を製造するには、半導体基板2の表面3に半導体素子4が作り込まれた後(半導体基板2等については図7参照)、図8Aに示すように、たとえばCVD法によって、半導体基板2上に第1層間絶縁膜5が形成される。次に、たとえばドライエッチングによって、半導体素子4を選択的に露出させるビアホール(図示せず)が第1層間絶縁膜5に形成された後、当該ビアホールに、タングステン(W)からなるビア(図示せず)が埋め込まれる。
次に、図8Aに示すように、たとえばスパッタ法によって、下側のバリア膜19,21,67のTiN/Ti材料、Al合金配線16,17,65の材料および上側のバリア膜18,20,66のTiN/Ti材料が、第1層間絶縁膜5の表面に連続して堆積される。次に、その堆積物上に、実配線14,15,64を形成すべき領域を選択的に覆うレジスト膜(図示せず)が形成され、当該レジスト膜を介して堆積物がドライエッチングされる。これにより、実配線14,15,64が同時に形成され、第2配線層9の形成が完了する。
次に、図8Aに示すように、たとえばCVD法によって、第2配線層9を被覆するように、第1層間絶縁膜5上に第2層間絶縁膜6が積層される。次に、図8Aに示すように、たとえばドライエッチングによって、実配線14,15,64を選択的に露出させるビアホールが第2層間絶縁膜6に形成された後、当該ビアホールに、タングステン(W)からなるビア25,32,33,71が同時に埋め込まれる。ビア25,32,33,71は、たとえば、CVD法によってビアホールにタングステン膜を供給した後、当該タングステン膜をエッチバックまたはCMP法によって平坦化することによってビアホールに埋め込まれる。したがって、ビア25,32,33,71は、第2層間絶縁膜6の表面から選択的に露出することとなる。
次に、図8Bに示すように、たとえばスパッタ法によって、薄膜抵抗体23および下部電極68の材料である金属薄膜88(この実施形態ではTaN)が、第2層間絶縁膜6の表面から露出したビア25,32,33,71に接するように、第2層間絶縁膜6上に積層される。金属薄膜88の積層に続いて、たとえばCVD法によって、絶縁膜40および容量膜78の下地となる酸化シリコン(SiO)からなる第1下地膜89が、金属薄膜88上に積層される。金属薄膜88は、たとえば5nm〜20nmの厚さで形成され、第1下地膜89は、たとえば20nm程度の厚さで形成される。第1下地膜89の形成後、たとえばスパッタ法によって、TiN材料90が第1下地膜89上に積層される。
次に、図8Cに示すように、TiN材料90上に、薄膜抵抗体23および下部電極68を形成すべき領域を選択的に覆うレジスト膜91が形成される。
次に、図8Dに示すように、当該レジスト膜91を介して、TiN材料90、第1下地膜89および金属薄膜88が連続してドライエッチングされる。これにより、金属薄膜88の不要部分が除去されて薄膜抵抗体23および下部電極68が形成される。また、薄膜抵抗体23上には、薄膜抵抗体23の上面を被覆し、薄膜抵抗体23の側面を露出させる絶縁膜40の平面部41が同時に形成され、下部電極68の上には、下部電極68の上面を被覆し、下部電極68の側面を露出させる容量膜78の平面部79が同時に形成される。また、絶縁膜40および容量膜78上にはそれぞれ、薄膜抵抗体23および下部電極68と同一外形を有するTiN層60,81が形成される。その後、たとえばアッシングによって、レジスト膜91が除去される。
次に、図8Eに示すように、たとえばCVD法によって、20nm程度の厚さの酸化シリコン(SiO)膜が、薄膜抵抗体23、絶縁膜40(平面部41)およびTiN層60の積層構造、ならびに下部電極68、容量膜78(平面部79)およびTiN層81の積層構造を完全に被覆するように、第2層間絶縁膜6上にさらに積層される。この酸化シリコン膜は、本発明の下地膜の一例としての第2下地膜92であり、第2下地膜92によって、薄膜抵抗体23および下部電極68の露出した側面が完全に被覆される。
次に、図8Fに示すように、たとえばエッチバックによって、第2下地膜92が上面から順に削り取られる。エッチバックは、たとえば、第2層間絶縁膜6の表面においてビア25の上面が露出するまで続けられる。これにより、第2下地膜92のサイドウォール42,80となる部分以外の部分が除去され、第2層間絶縁膜6の表面においてビア25が選択的に露出する。第2下地膜92の残存した部分は、サイドウォール42,80として形成される。これにより、絶縁膜40および容量膜78が同時に形成される。
次に、図8Gに示すように、たとえばスパッタ法によって、TiN層60,81を完全に被覆するように、下側のバリア膜28,38,76のTiN/Ti材料93、Al合金配線26,36,74のAl合金材料94、および上側のバリア膜27,37,75のTiN/Ti材料95が、第2層間絶縁膜6の表面に連続して堆積される。
次に、図8Hに示すように、TiN/Ti材料95上に、実配線22、ダミー配線24および上部電極69を形成すべき領域を選択的に覆うレジスト膜96が形成される。
次に、図8Iに示すように、当該レジスト膜96を介して、TiN/Ti材料95、Al合金材料94およびTiN/Ti材料93が連続してドライエッチングされる。これにより、実配線22、ダミー配線24および上部電極69が同時に形成され、第3配線層10の形成が完了する。
次に、図8Jに示すように、たとえばCVD法によって、第3配線層10を被覆するように、第2層間絶縁膜6上に第3層間絶縁膜7が積層される。
次に、図8Kに示すように、たとえばドライエッチングによって、実配線22および上部電極69を選択的に露出させるビアホールが第3層間絶縁膜7に形成された後、当該ビアホールに、タングステン(W)からなるビア44,83が埋め込まれる。ビア44,83は、たとえば、CVD法によってビアホールにタングステン膜を供給した後、当該タングステン膜をエッチバックまたはCMP法によって平坦化することによってビアホールに埋め込まれる。したがって、ビア44,83は、第3層間絶縁膜7の表面から選択的に露出することとなる。
次に、図8Kに示すように、たとえばスパッタ法によって、下側のバリア膜47,86のTiN/Ti材料、Al合金配線45,84の材料および上側のバリア膜46,85のTiN/Ti材料が、第3層間絶縁膜7の表面に連続して堆積される。次に、その堆積物上に、実配線43,82を形成すべき領域を選択的に覆うレジスト膜(図示せず)が形成され、当該レジスト膜を介して堆積物がドライエッチングされる。これにより、実配線43,82が同時に形成され、第4配線層11の形成が完了する。
次に、図8Kに示すように、たとえばCVD法によって、第3配線層10を被覆するように、第3層間絶縁膜7上に第4層間絶縁膜8が積層された後、第4層間絶縁膜8上に、パッシベーション膜48が積層される。パッシベーション膜48の形成後、パッシベーション膜48上に、ヒューズウィンドウ49およびパッド開口50,87を形成すべき領域に開口を有するレジスト膜(図示せず)が形成される。そして、当該レジスト膜を介してパッシベーション膜48等がドライエッチングされることによって、ヒューズウィンドウ49およびパッド開口50,87が同時に形成される。その後、前述したように、ヒューズウィンドウ49を介したレーザ光の照射によって、所望の抵抗値へ合わせ込み(レーザトリミング)が行われる。以上の工程を経て、図7に示す半導体装置62が得られる。
以上のように、この方法によれば、下部電極68−容量膜78−上部電極69からなるMIM構造を、抵抗部12の薄膜抵抗体23、絶縁膜40およびダミー配線24と同一工程で形成できるので、製造プロセスのプロセス数の増加を防止しながら、薄膜抵抗体23とMIM構造とを混載できる。
また、比較的還元性の弱いTiN層81を、上部電極69と容量膜78(SiO膜)との間に介在させることによって、上部電極69と容量膜78との反応を抑制できる。これにより、前述の第2実施形態のTiN層60と同様に、上部電極69のバリア膜76のTi膜と容量膜78との反応によるTiOの生成を防止でき、下部電極68−上部電極69間の導通を防止できる。
むろん、この半導体装置62においても、第1および第2実施形態と同様の効果を実現することもできる。
図9は、本発明の第4実施形態に係る半導体装置97の断面図である。図9において、前述の図7に示された各部と対応する部分には同一の参照符号を付して示す。
この半導体装置97は、前述の半導体装置62の構成に加えて、第2層間絶縁膜6が2層構造で形成されている。具体的には、第2層間絶縁膜6は、下層のSiO膜98と、上層の本発明のエッチングストッパ部の一例としてのSiN膜99とを含む。
下層のSiO膜98は、第2配線層9を完全に被覆する厚さで形成されている。つまり、SiO膜98の上面は、第2配線層9の各配線の上面よりも上方に位置している。上層のSiN膜99は、このSiO膜98上に積層され、第2層間絶縁膜6の最表面を形成している。したがって、第2配線層9と第3配線層10とを電気的に接続するビア25,32,33,71は、SiO膜98とSiN膜99との界面を通過するように形成されている。
この実施形態に係る半導体装置97の製造工程は、図8A〜図8Kに示した工程と実質的に同様である。ただし、図3Aの工程で、第2層間絶縁膜6を形成するときに、CVD法によって、SiO膜98およびSiN膜99が、第1層間絶縁膜5側から順に積層される。
この半導体装置97によれば、第2層間絶縁膜6の最表面に、絶縁膜40および容量膜78を構成するSiOに対してエッチング選択比を有する絶縁材料(この実施形態では、SiN)からなるSiN膜99が形成されている。そのため、図10Aおよび図10Bに示すように、図8Eおよび図8Fの工程に倣って第2下地膜92をエッチバックして絶縁膜40および容量膜78を形成する際に、第2層間絶縁膜6がオーバーエッチングされることを防止できる。これにより、第2層間絶縁膜6の表面の平坦性を保つことができる。むろん、この半導体装置97においても、第1〜第3実施形態と同様の効果を実現することもできる。
なお、この実施形態では、第2層間絶縁膜6の最表面が、SiOに対してエッチング選択比を有する絶縁材料であればよいので、たとえば、第2層間絶縁膜6は、最上層にSiN膜を備える3層構造、4層構造等であってもよい。また、最表面を形成する膜は、SiN膜99ではなく、たとえば、SiOx膜(Si組成比が相対的に大きい酸化膜)、SiC膜またはSiCN膜であってもよい。
また、絶縁膜40および容量膜78がSiNからなる場合には、第2層間絶縁膜6は、SiNに対してエッチング選択比を有するSiO膜の単層構造であることが好ましい。これによっても、第2層間絶縁膜6のオーバーエッチングを防止できる。
以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
また、前述の実施形態の開示から把握される特徴は、異なる実施形態間でも互いに組み合わせることができる。また、各実施形態において表した構成要素は、本発明の範囲で組み合わせることができる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 半導体装置
2 半導体基板
6 第2層間絶縁膜
7 第3層間絶縁膜
10 第3配線層
12 抵抗部
13 配線部
22 実配線
23 薄膜抵抗体
24 ダミー配線
32 ビア
33 ビア
35 オーバーラップ部
36 Al合金配線
37 バリア膜
38 バリア膜
40 絶縁膜
49 ヒューズウィンドウ
54 第2下地膜
59 半導体装置
60 TiN層
62 半導体装置
63 キャパシタ部
68 下部電極
69 上部電極
73 オーバーラップ部
78 容量膜
80 サイドウォール
81 TiN層
92 第2下地膜
97 半導体装置
98 SiO
99 SiN膜

Claims (20)

  1. 半導体基板上に抵抗部および配線部が選択的に設けられた半導体装置であって、
    前記半導体基板上に配置された層間絶縁膜と、
    前記抵抗部において、前記層間絶縁膜上に配置された薄膜抵抗体と、
    前記層間絶縁膜に埋め込まれ、前記薄膜抵抗体に対して下側から接するビアと、
    前記配線部において、前記層間絶縁膜上に配置された実配線と、
    前記実配線と同じ階層の配線層に配置され、前記薄膜抵抗体を上側から覆うダミー配線と、
    前記薄膜抵抗体と前記ダミー配線との間に介在された絶縁膜とを含む、半導体装置。
  2. 前記ダミー配線は、前記薄膜抵抗体を横側から覆うオーバーラップ部を含む、請求項1に記載の半導体装置。
  3. 前記絶縁膜は、前記薄膜抵抗体の側面を被覆するサイドウォールを含む、請求項1または2に記載の半導体装置。
  4. 前記層間絶縁膜上に、前記実配線および前記ダミー配線を被覆するように形成された第2層間絶縁膜をさらに含み、
    前記第2層間絶縁膜には、前記ダミー配線の上面を選択的に露出させるビアホールが形成されている、請求項1〜3のいずれか一項に記載の半導体装置。
  5. 前記絶縁膜は、SiO膜からなり、
    前記半導体装置は、前記ダミー配線と前記SiO膜との間に介在されたTiN層をさらに含む、請求項1〜4に記載の半導体装置。
  6. 前記絶縁膜は、SiO膜からなり、
    前記層間絶縁膜は、その最表面にSiOに対してエッチング選択比を有する絶縁材料からなるエッチングストッパ部を有する、請求項1〜5のいずれか一項に記載の半導体装置。
  7. 前記エッチングストッパ部は、SiN膜からなる、請求項6に記載の半導体装置。
  8. 前記薄膜抵抗体は、SiCr、NiCr、TaNまたはTiNからなる、請求項1〜7のいずれか一項に記載の半導体装置。
  9. 前記ダミー配線は、Al合金配線と、当該Al合金配線を上下方向から挟むバリア膜とを含む積層構造からなる、請求項1〜8のいずれか一項に記載の半導体装置。
  10. 前記半導体基板上にはキャパシタ部がさらに設けられており、
    前記キャパシタ部において、前記層間絶縁膜上に配置された下部電極と、
    前記実配線と同じ階層の配線層に配置され、前記下部電極と対向する上部電極と、
    前記下部電極と前記上部電極との間に介在された容量膜とを含む、請求項1〜9のいずれか一項に記載の半導体装置。
  11. 前記容量膜は、SiO膜からなり、
    前記半導体装置は、前記上部電極と前記SiO膜との間に介在されたTiN層をさらに含む、請求項10に記載の半導体装置。
  12. 前記上部電極は、前記下部電極を横側から覆うオーバーラップ部を含む、請求項10または11に記載の半導体装置。
  13. 前記容量膜は、前記下部電極の側面を被覆するサイドウォールを含む、請求項10〜12のいずれか一項に記載の半導体装置。
  14. 半導体基板上に抵抗部および配線部が選択的に設けられた半導体装置の製造方法であって、
    前記半導体基板上に層間絶縁膜を形成する工程と、
    前記抵抗部において前記層間絶縁膜の表面に選択的に露出するように、前記層間絶縁膜にビアを埋め込む工程と、
    露出した前記ビアと接するように、前記層間絶縁膜上に薄膜抵抗体を形成する工程と、
    前記薄膜抵抗体を被覆する絶縁膜を形成する工程と、
    前記配線部において前記層間絶縁膜上に実配線を形成し、同時に、前記絶縁膜を介して前記薄膜抵抗体を上側から覆うように、ダミー配線を形成する工程とを含む、半導体装置の製造方法。
  15. 前記絶縁膜を形成する工程は、前記薄膜抵抗体を完全に被覆する下地膜を前記層間絶縁膜上に形成し、その後、当該下地膜を選択的にエッチングすることによって、前記薄膜抵抗体の側方において前記層間絶縁膜の前記表面の一部を露出させるように前記絶縁膜を形成する工程を含み、
    前記実配線を形成する工程は、前記薄膜抵抗体の前記側方に回り込むようにダミー配線を形成する工程を含む、請求項14に記載の半導体装置の製造方法。
  16. 前記絶縁膜を形成する工程は、前記薄膜抵抗体を完全に被覆する下地膜を前記層間絶縁膜上に形成し、その後、当該下地膜を選択的にエッチングすることによって、前記薄膜抵抗体の側面を被覆するサイドウォールが残るように前記絶縁膜を形成する工程を含む、請求項14または15に記載の半導体装置の製造方法。
  17. 前記層間絶縁膜を形成する工程は、その最表面にSiOに対してエッチング選択比を有する絶縁材料からなるエッチングストッパ部が露出するように前記層間絶縁膜を形成する工程を含み、
    前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含む、請求項15または16に記載の半導体装置の製造方法。
  18. 前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含み、
    前記半導体装置の製造方法は、前記実配線および前記ダミー配線の形成に先立って、前記絶縁膜を上側から覆うようにTiN層を形成する工程をさらに含む、請求項14〜17のいずれか一項に記載の半導体装置の製造方法。
  19. 前記半導体基板上にはキャパシタ部がさらに設けられており、
    前記薄膜抵抗体の形成工程の中で、前記キャパシタ部における前記層間絶縁膜上に下部電極を形成する工程と、
    前記絶縁膜の形成工程の中で、前記下部電極を被覆する容量膜を形成する工程と、
    前記実配線の形成工程の中で、前記容量膜を介して前記下部電極を上側から覆うように、上部電極を形成する工程とをさらに含む、請求項14〜18のいずれか一項に記載の半導体装置の製造方法。
  20. 前記絶縁膜を形成する工程は、SiO膜からなる前記絶縁膜を形成する工程を含み、
    前記半導体装置の製造方法は、前記実配線、前記ダミー配線および前記上部電極の形成に先立って、前記容量膜を上側から覆うようにTiN層を形成する工程をさらに含む、請求項19に記載の半導体装置の製造方法。
JP2013037578A 2013-02-27 2013-02-27 半導体装置および半導体装置の製造方法 Active JP6075114B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013037578A JP6075114B2 (ja) 2013-02-27 2013-02-27 半導体装置および半導体装置の製造方法
US14/181,100 US9136216B2 (en) 2013-02-27 2014-02-14 Semiconductor device and method of manufacturing the same
US14/824,962 US9257387B2 (en) 2013-02-27 2015-08-12 Semiconductor device and method of manufacturing the same
US14/977,337 US9673144B2 (en) 2013-02-27 2015-12-21 Semiconductor device with metal think film and via

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037578A JP6075114B2 (ja) 2013-02-27 2013-02-27 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2014165458A true JP2014165458A (ja) 2014-09-08
JP6075114B2 JP6075114B2 (ja) 2017-02-08

Family

ID=51387294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037578A Active JP6075114B2 (ja) 2013-02-27 2013-02-27 半導体装置および半導体装置の製造方法

Country Status (2)

Country Link
US (3) US9136216B2 (ja)
JP (1) JP6075114B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155604A (ja) * 2019-03-20 2020-09-24 ローム株式会社 電子部品
JP2020161703A (ja) * 2019-03-27 2020-10-01 ローム株式会社 薄膜抵抗およびその製造方法、ならびに、薄膜抵抗を備えた電子部品
DE102022125411A1 (de) 2021-10-08 2023-04-13 Renesas Electronics Corporation Widerstandsmaterial, widerstandselement und verfahren zur herstellung eines widerstandselements

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259184B2 (ja) * 2012-02-03 2018-01-10 ローム株式会社 チップ部品およびその製造方法
JP6075114B2 (ja) * 2013-02-27 2017-02-08 ローム株式会社 半導体装置および半導体装置の製造方法
US9385079B2 (en) * 2014-01-29 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming stacked capacitors with fuse protection
US20160218062A1 (en) * 2015-01-23 2016-07-28 Texas Instruments Incorporated Thin film resistor integration in copper damascene metallization
US9484209B1 (en) * 2015-11-20 2016-11-01 International Business Machines Corporation Flexible and stretchable sensors formed by patterned spalling
JP6793103B2 (ja) 2017-09-29 2020-12-02 ミネベアミツミ株式会社 ひずみゲージ
JP2019066312A (ja) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ
JP2019066454A (ja) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
JP2019066453A (ja) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ
JP2019113411A (ja) * 2017-12-22 2019-07-11 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
US10770393B2 (en) 2018-03-20 2020-09-08 International Business Machines Corporation BEOL thin film resistor
JP2019184344A (ja) 2018-04-05 2019-10-24 ミネベアミツミ株式会社 ひずみゲージ及びその製造方法
US10784193B2 (en) 2018-07-27 2020-09-22 Texas Instruments Incorporated IC with thin film resistor with metal walls
WO2020085247A1 (ja) 2018-10-23 2020-04-30 ミネベアミツミ株式会社 アクセルペダル、ステアリング、6軸センサ、エンジン、バンパー等
US11315876B2 (en) 2020-02-17 2022-04-26 Globalfoundries Singapore Pte. Ltd. Thin film conductive material with conductive etch stop layer
KR20210154294A (ko) * 2020-06-11 2021-12-21 삼성전자주식회사 반도체 장치 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163424A (ja) * 1996-11-26 1998-06-19 Toshiba Microelectron Corp 集積回路装置
JP2000031414A (ja) * 1998-07-14 2000-01-28 Nec Corp 半導体記憶装置及びその製造方法
JP2005235995A (ja) * 2004-02-19 2005-09-02 Ricoh Co Ltd 半導体装置及びその製造方法
WO2008078731A1 (ja) * 2006-12-27 2008-07-03 Nec Corporation 半導体装置及びその製造方法
JP2008192972A (ja) * 2007-02-07 2008-08-21 Matsushita Electric Ind Co Ltd トリミングヒューズ構造とその形成方法、およびトリミングヒューズのトリミング方法
WO2008114418A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
JP2010080773A (ja) * 2008-09-26 2010-04-08 Rohm Co Ltd 半導体装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131155A (ja) * 1993-11-01 1995-05-19 Hitachi Ltd 多層配線基板の製造方法及び多層配線基板
US5968610A (en) * 1997-04-02 1999-10-19 United Microelectronics Corp. Multi-step high density plasma chemical vapor deposition process
US6838766B2 (en) * 2000-03-21 2005-01-04 Sanyo Electric Co., Ltd. Semiconductor device
KR100346841B1 (ko) * 2000-11-23 2002-08-03 삼성전자 주식회사 저항 소자를 구비하는 반도체 집적 회로 및 그의 제조 방법
JP2003068740A (ja) * 2001-08-30 2003-03-07 Hitachi Ltd 半導体集積回路装置およびその製造方法
US20030116826A1 (en) * 2001-12-20 2003-06-26 Chen-Chiu Hsue Interconnect structure capped with a metallic barrier layer and method fabrication thereof
JP4572054B2 (ja) * 2002-01-24 2010-10-27 寛治 大塚 回路構造及び半導体集積回路
JP2004071927A (ja) * 2002-08-08 2004-03-04 Renesas Technology Corp 半導体装置
JP4610205B2 (ja) 2004-02-18 2011-01-12 株式会社リコー 半導体装置
US7427550B2 (en) * 2006-06-29 2008-09-23 International Business Machines Corporation Methods of fabricating passive element without planarizing
US7633112B2 (en) * 2006-08-24 2009-12-15 Samsung Electronics Co., Ltd. Metal-insulator-metal capacitor and method of manufacturing the same
JP4333714B2 (ja) * 2006-08-31 2009-09-16 セイコーエプソン株式会社 半導体装置の設計方法および半導体装置の設計プログラム
JP5251107B2 (ja) 2007-12-17 2013-07-31 三菱電機株式会社 半導体装置
JP2010040704A (ja) * 2008-08-04 2010-02-18 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体装置
JP2011138993A (ja) 2009-12-29 2011-07-14 Yamaha Corp 薄膜抵抗体を備えた半導体装置の製造方法
WO2014050636A1 (ja) * 2012-09-26 2014-04-03 シャープ株式会社 半導体装置、表示パネル、及び半導体装置の製造方法
JP6075114B2 (ja) * 2013-02-27 2017-02-08 ローム株式会社 半導体装置および半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163424A (ja) * 1996-11-26 1998-06-19 Toshiba Microelectron Corp 集積回路装置
JP2000031414A (ja) * 1998-07-14 2000-01-28 Nec Corp 半導体記憶装置及びその製造方法
JP2005235995A (ja) * 2004-02-19 2005-09-02 Ricoh Co Ltd 半導体装置及びその製造方法
WO2008078731A1 (ja) * 2006-12-27 2008-07-03 Nec Corporation 半導体装置及びその製造方法
JP2008192972A (ja) * 2007-02-07 2008-08-21 Matsushita Electric Ind Co Ltd トリミングヒューズ構造とその形成方法、およびトリミングヒューズのトリミング方法
WO2008114418A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
JP2010080773A (ja) * 2008-09-26 2010-04-08 Rohm Co Ltd 半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155604A (ja) * 2019-03-20 2020-09-24 ローム株式会社 電子部品
JP7232679B2 (ja) 2019-03-20 2023-03-03 ローム株式会社 電子部品
JP2020161703A (ja) * 2019-03-27 2020-10-01 ローム株式会社 薄膜抵抗およびその製造方法、ならびに、薄膜抵抗を備えた電子部品
JP7440212B2 (ja) 2019-03-27 2024-02-28 ローム株式会社 薄膜抵抗およびその製造方法、ならびに、薄膜抵抗を備えた電子部品
DE102022125411A1 (de) 2021-10-08 2023-04-13 Renesas Electronics Corporation Widerstandsmaterial, widerstandselement und verfahren zur herstellung eines widerstandselements
KR20230051082A (ko) 2021-10-08 2023-04-17 르네사스 일렉트로닉스 가부시키가이샤 저항 재료, 저항 소자 및 저항 소자의 제조 방법

Also Published As

Publication number Publication date
US9257387B2 (en) 2016-02-09
US20150348900A1 (en) 2015-12-03
US9673144B2 (en) 2017-06-06
US9136216B2 (en) 2015-09-15
JP6075114B2 (ja) 2017-02-08
US20160111365A1 (en) 2016-04-21
US20140239445A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP6075114B2 (ja) 半導体装置および半導体装置の製造方法
JP5055768B2 (ja) 半導体装置及びその製造方法
US9659861B2 (en) Semiconductor device and fabrication method thereof
JP4417202B2 (ja) 半導体装置
JP2007123328A (ja) 半導体装置およびその製造方法
US8264062B2 (en) Semiconductor device having capacitor capable of reducing additional processes and its manufacture method
TW201448162A (zh) 半導體裝置
KR100491232B1 (ko) 반도체 장치
JP5537137B2 (ja) 半導体装置および半導体装置の製造方法
JP5507178B2 (ja) 半導体集積回路装置およびその製造方法
JP2007019128A (ja) 半導体装置
JP5214913B2 (ja) 半導体装置
JP2017212299A (ja) 半導体装置およびその製造方法
JP5521422B2 (ja) 半導体装置
WO2019198613A1 (ja) 半導体装置およびその製造方法
KR100709450B1 (ko) 반도체 소자의 형성 방법
JP2011049252A (ja) 半導体装置およびその製造方法
JP6956496B2 (ja) 半導体装置
US8357991B2 (en) Semiconductor device having interconnect structure for MIM capacitor and fuse elements
JP5632766B2 (ja) 半導体装置
JP2014175525A (ja) 半導体装置及びその製造方法
JP6149578B2 (ja) 電子デバイスの製造方法
JP5722651B2 (ja) 半導体装置およびその製造方法
KR20110067759A (ko) 에어갭을 이용한 반도체 소자의 층간절연막 형성방법
JP2017208419A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250