JP2014157930A - ダイオード及びダイオードを内蔵する半導体装置 - Google Patents

ダイオード及びダイオードを内蔵する半導体装置 Download PDF

Info

Publication number
JP2014157930A
JP2014157930A JP2013028073A JP2013028073A JP2014157930A JP 2014157930 A JP2014157930 A JP 2014157930A JP 2013028073 A JP2013028073 A JP 2013028073A JP 2013028073 A JP2013028073 A JP 2013028073A JP 2014157930 A JP2014157930 A JP 2014157930A
Authority
JP
Japan
Prior art keywords
region
type semiconductor
barrier
electrode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013028073A
Other languages
English (en)
Other versions
JP5981859B2 (ja
Inventor
Yusuke Yamashita
侑佑 山下
Satoru Machida
悟 町田
Jun Saito
順 斎藤
Masaru Senoo
賢 妹尾
Jun Ogawara
淳 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2013028073A priority Critical patent/JP5981859B2/ja
Priority to US14/155,998 priority patent/US9276137B2/en
Publication of JP2014157930A publication Critical patent/JP2014157930A/ja
Application granted granted Critical
Publication of JP5981859B2 publication Critical patent/JP5981859B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】 ダイオードにおけるスイッチング時の損失を低減することが可能な技術を開示する。
【解決手段】 ダイオード2は、カソード電極20、n+カソード領域6、nドリフト領域10、pアノード領域14、及び金属からなるアノード電極22を備えている。ダイオード2はさらに、ドリフト領域10とアノード領域14の間に形成されたnバリア領域12、バリア領域12とアノード電極22の間を伸びているとともにアノード電極22に接触して形成されたnピラー領域16、及びピラー領域16とアノード電極22の間に位置しているとともにピラー領域16とアノード電極22に接触して形成されたpバリアハイト調整領域17を備えている。ダイオード2では、バリアハイト調整領域17とアノード電極22がショットキー接合している。
【選択図】 図1

Description

本明細書で開示される技術は、ダイオード及びダイオードを内蔵する半導体装置に関する。
PNダイオードの逆回復特性を向上し、スイッチング損失を低減する技術が従来から開発されている。特許文献1には、PINダイオードとショットキーダイオードを組み合わせたMPSダイオードが開示されている。特許文献1の技術では、pアノード領域のサイズをリーチスルー限界まで小さくすることで、pアノード領域からnドリフト領域への正孔注入を抑制し、スイッチング損失の低減を図っている。特許文献2には、pアノード領域とnドリフト領域の間にnドリフト領域よりも高濃度のn型不純物を有するnバリア領域を設けたPINダイオードが開示されている。特許文献2の技術では、nバリア領域によってpアノード領域からnドリフト領域への正孔注入を抑制し、スイッチング損失の低減を図っている。
特開2003−163357号公報 特開2000−323488号公報
特許文献1や特許文献2の技術でも、わずかではあるが、pアノード領域からnドリフト領域への正孔注入が存在し、それによるスイッチング損失が存在する。nドリフト領域への正孔注入をさらに抑制することが出来れば、ダイオードのスイッチング損失をさらに低減することが可能となる。
本明細書では上記の課題を解決する技術を提供する。本明細書では、ダイオードにおけるスイッチング時の損失を低減することが可能な技術を開示する。
本明細書で開示するダイオードは、カソード電極と、第1導電型の半導体からなるカソード領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるアノード領域と、金属からなるアノード電極を備えている。そのダイオードは、ドリフト領域とアノード領域の間に形成された、ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、バリア領域とアノード電極の間を伸びており、前記バリア領域に接触して形成された、第1導電型の半導体からなるピラー領域と、ピラー領域とアノード電極の間に位置しており、ピラー領域とアノード電極に接触して形成された、バリアハイト調整領域と、を備えている。バリアハイト調整領域は、アノード領域よりも濃度が低い第2導電型の半導体、ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。ダイオードでは、バリアハイト調整領域とアノード電極がショットキー接合している。このダイオードは、ディスクリートとして構成されてもよく、他の半導体素子に内蔵するように構成されてもよい。例えば、このダイオードは、IGBT又はMOSFETに内蔵するように構成されてもよい。
上記のダイオードでは、アノード電極とカソード電極の間に順バイアスが印加されると、アノード電極とバリア領域が、バリアハイト調整領域とピラー領域を介して短絡する。このため、バリア領域とアノード電極の電位差は、アノード電極とバリアハイト調整領域のショットキー界面での電圧降下とほぼ等しくなる。ショットキー界面での電圧降下は、アノード領域とバリア領域の間のpn接合のビルトイン電圧よりも十分に小さいので、アノード領域からドリフト領域への正孔の注入が抑制される。
次いで、アノード電極とカソード電極の間の電圧が順バイアスから逆バイアスに切り替わると、アノード電極とバリアハイト調整領域の間のショットキー界面によって逆電流が制限される。特に、上記のダイオードでは、バリアハイト調整領域が設けられていることにより、アノード電極とバリアハイト調整領域の間のショットキー界面でのバリア障壁が高く調整されているので、逆電流が良好に制限される。また、上記のダイオードでは、順バイアスの印加時においてアノード領域からドリフト領域への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。上記のダイオードによれば、ドリフト領域のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とアノード電極の間のショットキー界面から伸びる空乏層だけでなく、アノード領域とバリア領域の間のpn接合の界面から伸びる空乏層によっても電界が分担される。これにより、バリアハイト調整領域とアノード電極の間のショットキー界面にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧を向上することが出来る。
上記のダイオードは、前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とアノード電極の間のショットキー界面で逆電流が制限されるだけでなく、ドリフト領域と電界進展防止領域の間のpn接合によっても逆電流が制限される。上記のダイオードによれば、逆バイアスの印加時のリーク電流を低減することができる。
また、上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とアノード電極の間のショットキー界面から伸びる空乏層と、アノード領域とバリア領域の間のpn接合の界面から伸びる空乏層だけでなく、ドリフト領域と電界進展防止領域の間のpn接合の界面でも電界が分担される。これにより、バリアハイト調整領域とアノード電極の間のショットキー界面にかかる電界と、アノード領域とバリア領域の間のpn接合にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧をさらに向上することが出来る。
上記のダイオードは、前記アノード領域から前記ドリフト領域まで達するトレンチが形成されており、前記トレンチの内部に絶縁膜で被覆されたトレンチ電極が形成されていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加される際に、ドリフト領域の内部におけるトレンチ電極の先端近傍の箇所に電界集中が生じ、これによってバリアハイト調整領域とアノード電極の間のショットキー界面や、アノード領域とバリア領域の間のpn接合の界面にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧をさらに向上することが出来る。
上記のダイオードは、前記カソード領域に部分的に形成された、第2導電型の半導体からなるカソードショート領域をさらに備えていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に順バイアスが印加される際に、カソードショート領域が存在することにより、カソード領域からドリフト領域への電子の注入が抑制される。これにより、順バイアスから逆バイアスへ切り替わる際の逆回復電流をさらに小さくし、逆回復時間をさらに短くすることができる。上記のダイオードによれば、スイッチング損失をさらに低減することが出来る。
本明細書はさらに、上記のダイオードとIGBTが一体化された半導体装置を開示する。その半導体装置では、前記IGBTが、コレクタ電極と、第2導電型の半導体からなるコレクタ領域と、ドリフト領域から連続しており、第1導電型の半導体からなる第2ドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるエミッタ領域と、金属からなるエミッタ電極と、エミッタ領域と第2ドリフト領域の間のボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えている。その半導体装置では、IGBTが、第2ドリフト領域とボディ領域の間に形成された、第2ドリフト領域よりも濃度が高い第1導電型の半導体からなる第2バリア領域と、第2バリア領域とエミッタ電極の間を伸びており、第2バリア領域に接触して形成された、第1導電型の半導体からなる第2ピラー領域と、第2ピラー領域とエミッタ電極の間に位置しており、第2ピラー領域とエミッタ電極に接触して形成された、第2バリアハイト調整領域と、を備えている。第2バリアハイト調整領域は、ボディ領域よりも濃度が低い第2導電型の半導体、第2ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。半導体装置では、前記第2バリアハイト調整領域とエミッタ電極がショットキー接合している。
上記の半導体装置では、ダイオードとIGBTの寄生ダイオードの双方について、スイッチング損失を低減し、かつ逆バイアスに対する耐圧を向上することができる。
上記の半導体装置は、第2バリア領域と第2ドリフト領域の間に形成された、第2導電型の半導体からなる第2電界進展防止領域をさらに備えることが好ましい。
上記の半導体装置では、IGBTの寄生ダイオードについて、逆バイアスに対する耐圧をさらに向上し、かつ逆バイアス時のリーク電流を低減することができる。また、IGBTの駆動時に、コレクタ電極からエミッタ電極へ流れる電流が電界進展防止領域とドリフト領域の間のpn接合によって抑制されるため、IGBTの飽和電流を低減することができる。
本明細書はさらに、MOSFETを含む半導体装置を開示する。その半導体装置は、ドレイン電極と、第1導電型の半導体からなるドレイン領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるソース領域と、金属からなるソース電極と、ソース領域とドリフト領域の間のボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えている。その半導体装置は、ドリフト領域とボディ領域の間に形成された、ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、バリア領域とソース電極の間を伸びており、バリア領域に接触して形成された、第1導電型の半導体からなるピラー領域と、ピラー領域とソース電極の間に位置しており、ピラー領域とソース電極に接触して形成された、バリアハイト調整領域と、を備えている。バリアハイト調整領域は、ボディ領域よりも濃度が低い第2導電型の半導体、ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。その半導体装置では、バリアハイト調整領域とソース電極がショットキー接合している。
上記の半導体装置によれば、寄生ダイオードのスイッチング損失を低減し、かつ逆バイアスに対する耐圧を向上することができる。
上記の半導体装置は、前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることが好ましい。
上記の半導体装置では、逆バイアスに対する耐圧をさらに向上し、かつ逆バイアス時のリーク電流を低減することができる。
本明細書が開示する別のダイオードは、カソード電極と、第1導電型の半導体からなるカソード領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるアノード領域と、金属からなるアノード電極を備えている。そのダイオードは、ドリフト領域とアノード領域の間に形成された、ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、バリア領域とアノード電極の間を伸びており、アノード電極に接触して形成された、金属からなるピラー電極と、バリア領域とピラー電極の間に位置しており、バリア領域とピラー電極に接触して形成された、バリアハイト調整領域と、
を備えている。バリアハイト調整領域は、アノード領域よりも濃度が低い第2導電型の半導体、バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。そのダイオードでは、前記バリアハイト調整領域と前記ピラー電極がショットキー接合している。
上記のダイオードでは、アノード電極とカソード電極の間に順バイアスが印加されると、アノード電極とバリア領域が、ピラー電極とバリアハイト調整領域を介して短絡する。このとき、バリア領域とアノード電極の電位差は、ピラー電極とバリアハイト調整領域のショットキー界面での電圧降下とほぼ等しくなる。ショットキー界面での電圧降下は、アノード領域とバリア領域の間のpn接合のビルトイン電圧よりも十分に小さいので、アノード領域からドリフト領域への正孔の注入が抑制される。
次いで、アノード電極とカソード電極の間の電圧が順バイアスから逆バイアスに切り替わると、ピラー電極とバリアハイト調整領域の間のショットキー界面によって逆電流が制限される。特に、上記のダイオードでは、バリアハイト調整領域が設けられていることにより、ピラー電極とバリアハイト調整領域の間のショットキー界面でのバリア障壁が高く調整されているので、逆電流が良好に制限される。また、上記のダイオードでは、順バイアスの印加時においてアノード領域からドリフト領域への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。上記のダイオードによれば、ドリフト領域のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とピラー電極の間のショットキー界面から伸びる空乏層だけでなく、アノード領域とバリア領域の間のpn接合の界面から伸びる空乏層によっても電界が分担される。これにより、バリアハイト調整領域とピラー電極の間のショットキー界面にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧を向上することが出来る。
さらに、上記のダイオードでは、ピラー電極が金属製である。このような構成とすることによって、アノード領域の厚みを小さくすることなく、順バイアスの印加時におけるバリア領域とアノード電極の間の電位差を小さくすることが出来る。上記のダイオードによれば、逆バイアスに対するリーチスルーの発生を抑え、耐圧を低下させることなく、スイッチング損失を低減することが出来る。
上記のダイオードは、前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とピラー電極の間のショットキー界面で逆電流が制限されるだけでなく、ドリフト領域と電界進展防止領域の間のpn接合によっても逆電流が制限される。上記のダイオードによれば、逆バイアスの印加時のリーク電流を低減することができる。
また、上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加されると、バリアハイト調整領域とピラー電極の間のショットキー界面から伸びる空乏層と、アノード領域とバリア領域の間のpn接合の界面から伸びる空乏層だけでなく、ドリフト領域と電界進展防止領域の間のpn接合の界面でも電界が分担される。これにより、バリアハイト調整領域とピラー電極の間のショットキー界面にかかる電界と、アノード領域とバリア領域の間のpn接合にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧をさらに向上することが出来る。
上記のダイオードは、前記アノード領域から前記ドリフト領域まで達するトレンチが形成されており、前記トレンチの内部に絶縁膜で被覆されたトレンチ電極が形成されていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に逆バイアスが印加される際に、ドリフト領域の内部におけるトレンチ電極の先端近傍の箇所に電界集中が生じ、これによってバリアハイト調整領域とピラー電極の間のショットキー界面や、アノード領域とバリア領域の間のpn接合の界面にかかる電界が軽減される。上記のダイオードによれば、逆バイアスに対する耐圧をさらに向上することが出来る。
上記のダイオードは、前記カソード領域に部分的に形成された、第2導電型の半導体からなるカソードショート領域をさらに備えていることが好ましい。
上記のダイオードでは、アノード電極とカソード電極の間に順バイアスが印加される際に、カソードショート領域が存在することにより、カソード領域からドリフト領域への電子の注入が抑制される。これにより、順バイアスから逆バイアスへ切り替わる際の逆回復電流をさらに小さくし、逆回復時間をさらに短くすることができる。上記のダイオードによれば、スイッチング損失をさらに低減することが出来る。
本明細書はさらに、上記のダイオードとIGBTが一体化された別の半導体装置を開示する。その半導体装置では、前記IGBTが、コレクタ電極と、第2導電型の半導体からなるコレクタ領域と、ドリフト領域から連続しており、第1導電型の半導体からなる第2ドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるエミッタ領域と、金属からなるエミッタ電極と、エミッタ領域と第2ドリフト領域の間のボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えている。その半導体装置では、前記IGBTが、第2ドリフト領域とボディ領域の間に形成された、第2ドリフト領域よりも濃度が高い第1導電型の半導体からなる第2バリア領域と、第2バリア領域とエミッタ電極の間を伸びており、エミッタ電極に接触して形成された、金属からなる第2ピラー電極と、第2バリア領域と第2ピラー電極の間に位置しており、第2バリア領域と第2ピラー電極に接触して形成された、第2バリアハイト調整領域と、を備えている。第2バリアハイト調整領域は、ボディ領域よりも濃度が低い第2導電型の半導体、第2バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。その半導体装置では、第2バリアハイト調整領域と第2ピラー電極がショットキー接合している。
上記の半導体装置では、ダイオードとIGBTの寄生ダイオードの双方について、スイッチング損失を低減し、かつ逆バイアスに対する耐圧を向上することができる。
上記の半導体装置は、前記第2バリア領域と前記第2ドリフト領域の間に形成された、第2導電型の半導体からなる第2電界進展防止領域をさらに備えることが好ましい。
上記の半導体装置では、IGBTの寄生ダイオードについて、逆バイアスに対する耐圧をさらに向上し、かつ逆バイアス時のリーク電流を低減することができる。また、IGBTの駆動時に、コレクタ電極からエミッタ電極へ流れる電流が電界進展防止領域とドリフト領域の間のpn接合によって抑制されるため、IGBTの飽和電流を低減することができる。
本明細書はさらに、MOSFETを含む別の半導体装置を開示する。その半導体装置は、ドレイン電極と、第1導電型の半導体からなるドレイン領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるソース領域と、ソース電極と、ソース領域とドリフト領域の間のボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えている。その半導体装置は、ドリフト領域とボディ領域の間に形成された、ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、バリア領域とソース電極の間を伸びており、ソース電極に接触して形成された、第1導電型の半導体からなるピラー電極と、バリア領域とピラー電極の間に位置しており、バリア領域とピラー電極に接触して形成された、バリアハイト調整領域と、を備えている。バリアハイト調整領域は、ボディ領域よりも濃度が低い第2導電型の半導体、バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでいる。半導体装置では、前記バリアハイト調整領域とピラー電極がショットキー接合している。
上記の半導体装置によれば、寄生ダイオードのスイッチング損失を低減し、かつ逆バイアスに対する耐圧を向上することができる。
上記の半導体装置は、バリア領域とドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることが好ましい。
上記の半導体装置では、逆バイアスに対する耐圧をさらに向上し、かつ逆バイアス時のリーク電流を低減することができる。
本明細書が開示する技術によれば、ダイオードにおけるスイッチング時の損失を低減することができる。
実施例1のダイオード2の構成を模式的に示す図である。 実施例1のダイオード2のアノード電極22とバリアハイト調整領域17のショットキー界面近傍のエネルギーバンド図を示す図である。 比較例のダイオードのアノード電極とピラー領域のショットキー界面近傍のエネルギーバンド図を示す図である。 実施例2のダイオード32の構成を模式的に示す図である。 実施例3のダイオード42の構成を模式的に示す図である。 実施例4のダイオード52の構成を模式的に示す図である。 実施例4のダイオード52の他の構成を模式的に示す図である。 実施例5のダイオード62の構成を模式的に示す図である。 実施例1のダイオード2の変形例の構成を模式的に示す図である。 実施例2のダイオード32の変形例の構成を模式的に示す図である。 実施例3のダイオード42の変形例の構成を模式的に示す図である。 実施例6の半導体装置72の構成を模式的に示す図である。 実施例7の半導体装置82の構成を模式的に示す図である。 実施例8の半導体装置102の構成を模式的に示す図である。 実施例9の半導体装置162の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。 実施例10の半導体装置172の構成を模式的に示す図である。 実施例11の半導体装置182の構成を模式的に示す図である。 実施例12の半導体装置202の構成を模式的に示す図である。 実施例13の半導体装置232の構成を模式的に示す図である。 実施例14の半導体装置242の構成を模式的に示す図である。 実施例15の半導体装置252の構成を模式的に示す図である。 実施例16のダイオード302の構成を模式的に示す図である。 実施例17のダイオード304の構成を模式的に示す図である。 その他の実施例のダイオード306の構成を模式的に示す図である。 その他の実施例のダイオード308の構成を模式的に示す図である。 その他の実施例のダイオード310の構成を模式的に示す図である。 その他の実施例のダイオード312の構成を模式的に示す図である。 その他の実施例のダイオード314の構成を模式的に示す図である。 その他の実施例のダイオード316の構成を模式的に示す図である。 その他の実施例の半導体装置318の構成を模式的に示す図である。 その他の実施例の半導体装置320の構成を模式的に示す図である。 その他の実施例の半導体装置322の構成を模式的に示す図である。 その他の実施例の半導体装置324の構成を模式的に示す図である。 その他の実施例の半導体装置326の構成を模式的に示す図である。 その他の実施例の半導体装置328の構成を模式的に示す図である。 その他の実施例の半導体装置330の構成を模式的に示す図である。 その他の実施例の半導体装置332の構成を模式的に示す図である。 その他の実施例の半導体装置334の構成を模式的に示す図である。 その他の実施例の半導体装置336の構成を模式的に示す図である。 実施例8の半導体装置102の他の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。 その他の実施例の半導体装置322の他の構成を模式的に示す図である。 その他の実施例の半導体装置324の他の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。 実施例9の半導体装置162の他の構成を模式的に示す図である。
(実施例1)
図1に示すように、本実施例のダイオード2は、シリコンの半導体基板4を用いて形成されている。半導体基板4には、高濃度n型半導体領域であるnカソード領域6と、n型半導体領域であるnバッファ領域8と、低濃度n型半導体領域であるnドリフト領域10と、n型半導体領域であるnバリア領域12と、p型半導体領域であるpアノード領域14が順に積層されている。本実施例では、n型半導体領域には不純物として例えばリンが添加されており、p型半導体領域には不純物として例えばボロンが添加されている。本実施例では、nカソード領域6の不純物濃度は1×1017〜5×1020[cm-3]程度であり、nバッファ領域8の不純物濃度は1×1016〜1×1019[cm-3]程度であり、nドリフト領域10の不純物濃度は1×1012〜1×1015[cm-3]程度であり、nバリア領域12の不純物濃度は1×1015〜1×1018[cm-3]程度であり、pアノード領域14の不純物濃度は1×1016〜1×1019[cm-3]程度である。また、nバリア領域12の厚みは0.5〜3.0[μm]程度である。
半導体基板4の上側表面には、n型半導体領域であるnピラー領域16と低濃度p型半導体であるpバリアハイト調整領域17の組合せが、所定の間隔を隔てて複数形成されている。nピラー領域16の不純物濃度は1×1016〜1×1019[cm-3]程度である。pバリアハイト調整領域17の不純物濃度は、pアノード領域14よりも薄く調整されており、1×1014〜1×1017[cm-3]程度である。また、pバリアハイト調整領域17の厚みは薄く形成されており、0.01〜0.5[μm]程度である。nピラー領域16とpバリアハイト調整領域17の組合せは、pアノード領域14を貫通して、nバリア領域12の上側表面まで達するように形成されている。nピラー領域16は、nバリア領域12とアノード電極22の間を伸びており、nバリア領域12に接触して形成されている。pバリアハイト調整領域17は、nピラー領域16とアノード電極22の間に位置しており、nピラー領域16とアノード電極22に接触して形成されている。なお、pバリアハイト領域17は、nピラー領域16の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。n型半導体領域の場合、バリアハイト調整領域の不純物濃度は1×1014〜1×1017[cm-3]程度に調整されてもよい。i型半導体の場合、バリアハイト調整領域には不純物が添加されていないノンドープであってもよい。また、pアノード領域14の上側表面には、高濃度p型半導体領域であるpコンタクト領域18が所定の間隔を隔てて複数形成されている。pコンタクト領域18の不純物濃度は1×1017〜1×1020[cm-3]程度である。半導体基板4の上側表面には、pアノード領域14と、pバリアハイト調整領域17、pコンタクト領域18が露出している。
半導体基板4の下側表面には、金属製のカソード電極20が形成されている。カソード電極20は、nカソード領域6とオーミック接合によって接合している。半導体基板4の上側表面には、金属製のアノード電極22が形成されている。アノード電極22は、pアノード領域14およびpコンタクト領域18とオーミック接合によって接合している。アノード電極22は、ショットキー界面24を介して、pバリアハイト調整領域17とショットキー接合している。
図2Aに、pバリアハイト調整領域17とアノード電極22のショットキー界面24近傍のエネルギーバンド図を示す。図2Bに、pバリアハイト調整領域17が設けられていない例、すなわち、nピラー領域16とエミッタ電極22がショットキー接合した場合のショットキー界面近傍のエネルギーバンド図を示す。図2A及び図2Bに示されるように、pバリアハイト調整領域17が設けられていることにより、pバリアハイト調整領域17とアノード電極22のショットキー接合のバリア高さ(φ)が高く調整される。本実施例では、ショットキー接合のバリア高さは0.5〜0.9[eV]程度である。
ダイオード2の動作について説明する。アノード電極22とカソード電極20の間に順バイアスが印加されると、アノード電極22とnバリア領域12が、pバリアハイト調整領域17とnピラー領域16を介して短絡する。このため、nバリア領域12とアノード電極22の電位差はショットキー界面24での電圧降下とほぼ等しくなる。ショットキー界面24での電圧降下は、pアノード領域14とnバリア領域12の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入が抑制される。アノード電極22とカソード電極20の間には、主にアノード電極22とpバリアハイト調整領域17の間のショットキー界面24、nピラー領域16、nバリア領域12、nドリフト領域10、nバッファ領域8、nカソード領域6を経由する順電流が流れる。
次いで、アノード電極22とカソード電極20の間の電圧が順バイアスから逆バイアスに切り替わると、アノード電極22とpバリアハイト調整領域17の間のショットキー界面24によって逆電流が制限される。特に、本実施例のダイオード2では、pバリアハイト調整領域17が設けられていることにより、pバリアハイト調整領域17とアノード電極22のショットキー接合のバリア高さが高く調整され、逆電流が良好に制限される。また、上述したように、本実施例のダイオード2では、順バイアスの印加時においてpコンタクト領域18およびpアノード領域14からnドリフト領域10への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。本実施例のダイオード2によれば、nドリフト領域10のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、本実施例のダイオード2では、アノード電極22とカソード電極20の間に逆バイアスが印加されると、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24から伸びる空乏層だけでなく、pアノード領域14とnバリア領域12の間のpn接合の界面から伸びる空乏層によっても電界が分担される。これにより、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24にかかる電界が軽減される。本実施例のダイオード2によれば、逆バイアスに対する耐圧を向上することが出来る。
本実施例のダイオード2では、nピラー領域16における不純物濃度が、nバリア領域12における不純物濃度よりも高い。このような構成とすることによって、pアノード領域14の厚みを小さくすることなく、順バイアスの印加時におけるnバリア領域12とアノード電極22の間の電位差を小さくすることが出来る。例えば、pバリアハイト調整領域17が設けられていない例、すなわち、nピラー領域16とアノード電極22を接合させる場合、nピラー領域16とアノード電極22をショットキー接合させるためにnピラー領域16の不純物濃度をある程度低く抑えなければならない。一方、本実施例のダイオード2では、pバリアハイト調整領域17が設けられていることにより、nピラー領域16の不純物濃度を高くすることができる。本実施例のダイオード2によれば、逆バイアスに対するリーチスルーの発生を抑え、耐圧を低下させることなく、スイッチング損失を低減することが出来る。
(実施例2)
図3に示すように、本実施例のダイオード32は、シリコンの半導体基板34を用いて形成されている。半導体基板34には、高濃度n型半導体領域であるnカソード領域6と、n型半導体領域であるnバッファ領域8と、低濃度n型半導体領域であるnドリフト領域10と、p型半導体領域であるp電界進展防止領域36と、n型半導体領域であるnバリア領域12と、p型半導体領域であるpアノード領域14が順に積層されている。本実施例では、p電界進展防止領域36の不純物濃度は1×1015〜1×1019[cm-3]程度である。また、p電界進展防止領域36の厚みは0.5〜3.0[μm]程度である。
半導体基板34の上側表面には、n型半導体領域であるnピラー領域16と低濃度p型半導体であるpバリアハイト調整領域17の組合せが、所定の間隔を隔てて複数形成されている。nピラー領域16とpバリアハイト調整領域17の組合せは、pアノード領域14を貫通して、nバリア領域12の上側表面まで達するように形成されている。nピラー領域16は、nバリア領域12とアノード電極22の間を伸びており、nバリア領域12に接触して形成されている。pバリアハイト調整領域17は、nピラー領域16とアノード電極22の間に位置しており、nピラー領域16とアノード電極22に接触して形成されている。なお、pバリアハイト領域17は、nピラー領域16の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。また、pアノード領域14の上側表面には、高濃度p型半導体領域であるpコンタクト領域18が所定の間隔を隔てて複数形成されている。半導体基板34の上側表面には、pアノード領域14と、pバリアハイト調整領域17、pコンタクト領域18が露出している。
半導体基板34の下側表面には、金属製のカソード電極20が形成されている。カソード電極20は、nカソード領域6とオーミック接合によって接合している。半導体基板34の上側表面には、金属製のアノード電極22が形成されている。アノード電極22は、pアノード領域14およびpコンタクト領域18とオーミック接合によって接合している。アノード電極22は、ショットキー界面24を介して、pバリアハイト調整領域17とショットキー接合している。
ダイオード32の動作について説明する。アノード電極22とカソード電極20の間に順バイアスが印加されると、アノード電極22とnバリア領域12が、pバリアハイト調整領域17とnピラー領域16を介して短絡する。このため、nバリア領域12とアノード電極22の電位差はショットキー界面24での電圧降下とほぼ等しくなる。ショットキー界面24での電圧降下は、pアノード領域14とnバリア領域12の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入が抑制される。アノード電極22とカソード電極20の間には、主にアノード電極22とpバリアハイト調整領域17の間のショットキー界面24、nピラー領域16、nバリア領域12、p電界進展防止領域36、nドリフト領域10、nバッファ領域8、nカソード領域6を経由する順電流が流れる。なお、nバリア領域12とp電界進展防止領域36の間にはpn接合が存在するが、p電界進展防止領域36のp型不純物濃度は低く、p電界進展防止領域36の厚みは薄いため、アノード電極22とカソード電極20の間の順電流に及ぼす影響は少ない。
次いで、アノード電極22とカソード電極20の間の電圧が順バイアスから逆バイアスに切り替わると、アノード電極22とpバリアハイト調整領域17の間のショットキー界面24によって逆電流が制限される。特に、本実施例のダイオード32では、pバリアハイト調整領域17が設けられていることにより、pバリアハイト調整領域17とアノード電極22のショットキー接合のバリア高さが高く調整され、逆電流が良好に制限される。また、nドリフト領域10とp電界進展防止領域36の間のpn接合によっても逆電流が制限される。上述したように、本実施例のダイオード32では、順バイアスの印加時においてpコンタクト領域18およびpアノード領域14からnドリフト領域10への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。本実施例のダイオード32によれば、nドリフト領域10のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、本実施例のダイオード32では、アノード電極22とカソード電極20の間に逆バイアスが印加されると、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24から伸びる空乏層だけでなく、pアノード領域14とnバリア領域12の間のpn接合の界面から伸びる空乏層と、nドリフト領域10とp電界進展防止領域36の間のpn接合の界面でも電界が分担される。これにより、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24にかかる電界と、pアノード領域14とnバリア領域12の間のpn接合にかかる電界が軽減される。本実施例のダイオード32によれば、逆バイアスに対する耐圧を向上することが出来る。
(実施例3)
図4に示すように、本実施例のダイオード42は、実施例1のダイオード2と同様に、シリコンの半導体基板4を用いて形成されている。半導体基板4には、高濃度n型半導体領域であるnカソード領域6と、n型半導体領域であるnバッファ領域8と、低濃度n型半導体領域であるnドリフト領域10と、n型半導体領域であるnバリア領域12と、p型半導体領域であるpアノード領域14が順に積層されている。半導体基板4の上側表面には、n型半導体領域であるnピラー領域16と低濃度p型半導体であるpバリアハイト調整領域17の組合せが、所定の間隔を隔てて複数形成されている。nピラー領域16とpバリアハイト調整領域17の組合せは、pアノード領域14を貫通して、nバリア領域12の上側表面まで達するように形成されている。nピラー領域16は、nバリア領域12とアノード電極22の間を伸びており、nバリア領域12に接触して形成されている。pバリアハイト調整領域17は、nピラー領域16とアノード電極22の間に位置しており、nピラー領域16とアノード電極22に接触して形成されている。なお、pバリアハイト領域17は、nピラー領域16の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。また、半導体基板4の上側には、複数のトレンチ44が所定の間隔で形成されている。それぞれのトレンチ44は、pアノード領域14の上側表面からnバリア領域12を貫通してnドリフト領域10の内部まで達している。トレンチ44の内部には、絶縁膜46によって被覆されたトレンチ電極48が充填されている。また、pアノード領域14の上側表面には、高濃度p型半導体領域であるpコンタクト領域18が所定の間隔を隔てて複数形成されている。
半導体基板4の下側表面には、金属製のカソード電極20が形成されている。カソード電極20は、nカソード領域6とオーミック接合によって接合している。半導体基板4の上側表面には、金属製のアノード電極22が形成されている。アノード電極22は、pアノード領域14およびpコンタクト領域18とオーミック接合によって接合している。アノード電極22は、ショットキー界面24を介して、pバリアハイト調整領域17とショットキー接合している。
本実施例のダイオード42の動作は、実施例1のダイオード2の動作とほぼ同じである。本実施例のダイオード42では、アノード電極22とカソード電極20の間に逆バイアスが印加される際に、トレンチ電極48に印加される電圧を調整することで、耐圧を向上することができる。例えば、逆バイアスの印加時にトレンチ電極48とアノード電極22がほぼ同電位となるようにトレンチ電極48に印加される電圧を調整すると、nドリフト領域10の内部におけるトレンチ電極48の先端近傍の箇所に電界集中が生じ、これによって、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24や、pアノード領域14とnバリア領域12の間のpn接合の界面にかかる電界が軽減される。なお、トレンチ電極48の電位は必ずしもアノード電極22と同電位にする必要はない。逆バイアスの印加時に、トレンチ電極48の電位を、カソード電極20の電位より低くなるようにすることで、トレンチ電極48の先端近傍の箇所に電界集中が生じ、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24や、pアノード領域14とnバリア領域12の間のpn接合の界面にかかる電界を軽減することができる。本実施例のダイオード42によれば、逆バイアスに対する耐圧を向上することができる。
(実施例4)
図5に示すように、本実施例のダイオード52は、実施例2のダイオード32と同様に、シリコンの半導体基板34を用いて形成されている。半導体基板34には、高濃度n型半導体領域であるnカソード領域6と、n型半導体領域であるnバッファ領域8と、低濃度n型半導体領域であるnドリフト領域10と、p型半導体領域であるp電界進展防止領域36と、n型半導体領域であるnバリア領域12と、p型半導体領域であるpアノード領域14が順に積層されている。半導体基板34の上側表面には、n型半導体領域であるnピラー領域16と低濃度p型半導体であるpバリアハイト調整領域17の組合せが、所定の間隔を隔てて複数形成されている。nピラー領域16とpバリアハイト調整領域17の組合せは、pアノード領域14を貫通して、nバリア領域12の上側表面まで達するように形成されている。nピラー領域16は、nバリア領域12とアノード電極22の間を伸びており、nバリア領域12に接触して形成されている。pバリアハイト調整領域17は、nピラー領域16とアノード電極22の間に位置しており、nピラー領域16とアノード電極22に接触して形成されている。なお、pバリアハイト領域17は、nピラー領域16の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。また、半導体基板34の上側には、複数のトレンチ44が所定の間隔で形成されている。それぞれのトレンチ44は、pアノード領域14の上側表面からnバリア領域12とp電界進展防止領域36を貫通してnドリフト領域10の内部まで達している。トレンチ44の内部には、絶縁膜46によって被覆されたトレンチ電極48が充填されている。また、pアノード領域14の上側表面には、高濃度p型半導体領域であるpコンタクト領域18が所定の間隔を隔てて複数形成されている。
半導体基板34の下側表面には、金属製のカソード電極20が形成されている。カソード電極20は、nカソード領域6とオーミック接合によって接合している。半導体基板34の上側表面には、金属製のアノード電極22が形成されている。アノード電極22は、pアノード領域14およびpコンタクト領域18とオーミック接合によって接合している。アノード電極22は、ショットキー界面24を介して、pバリアハイト調整領域17とショットキー接合によって接合している。
本実施例のダイオード52の動作は、実施例2のダイオード32の動作とほぼ同じである。本実施例のダイオード52では、実施例3のダイオード42と同様に、アノード電極22とカソード電極20の間に逆バイアスが印加される際に、トレンチ電極48に印加される電圧を調整することで、耐圧を向上することができる。例えば、逆バイアスの印加時にトレンチ電極48とアノード電極22がほぼ同電位となるようにトレンチ電極48に印加される電圧を調整すると、nドリフト領域10の内部におけるトレンチ電極48の先端近傍の箇所に電界集中が生じ、これによって、pバリアハイト調整領域17とアノード電極22の間のショットキー界面24や、pアノード領域14とnバリア領域12の間のpn接合の界面や、nドリフト領域10とp電界進展防止領域36の間のpn接合の界面にかかる電界が軽減される。本実施例のダイオード52によれば、逆バイアスに対する耐圧を向上することができる。
なお、本実施例のダイオード52の各構成要素は、図6に示すように、3次元的に配置することもできる。図6では、各構成要素の配置を明瞭にするために、カソード電極20およびアノード電極22を図示していない。
(実施例5)
図7に示すように、本実施例のダイオード62は、実施例4のダイオード52とほぼ同様の構成を備えている。本実施例のダイオード62では、nカソード領域6に、高濃度p型半導体領域であるpカソードショート領域64が、所定の間隔を隔てて複数形成されている点で、実施例4のダイオード52と異なる。本実施例では、pカソードショート領域64の不純物濃度は1×1017〜5×1020[cm-3]程度である。
本実施例のダイオード62の動作は、実施例4のダイオード52とほぼ同じである。本実施例のダイオード62では、アノード電極22とカソード電極20の間に順バイアスが印加される際に、pカソードショート領域64が形成されていることで、nカソード領域6からnドリフト領域10への電子の注入が抑制される。本実施例のダイオード62によれば、順バイアスの印加時において、pコンタクト領域18およびpアノード領域14からnドリフト領域10への正孔の注入が抑制されているだけでなく、nカソード領域6からnドリフト領域10への電子の注入も抑制されているので、逆回復電流をさらに小さくし、逆回復時間をさらに短くすることができる。本実施例のダイオード62によれば、さらにスイッチング損失を小さくすることが出来る。
なお、上記のようにpカソードショート領域64を設けることによる逆回復特性の改善は、他の形態のダイオードにおいても効果的である。すなわち、図8に示すダイオード66のように、実施例1のダイオード2において、nカソード領域6にpカソードショート領域64を設けた構成とすることもできるし、図9に示すダイオード68のように、実施例2のダイオード32において、nカソード領域6にpカソードショート領域64を設けた構成とすることもできるし、図10に示すダイオード70のように、実施例3のダイオード42において、nカソード領域6にpカソードショート領域64を設けた構成とすることもできる。
(実施例6)
図11に示すように、本実施例の半導体装置72は、実施例3のダイオード42とほぼ同様の構成を備えている。半導体装置72では、pアノード領域14の上側表面において、トレンチ44に隣接する箇所に、高濃度n型半導体領域であるnエミッタ領域74が形成されている。本実施例では、nエミッタ領域74の不純物濃度は1×1017〜5×1020[cm-3]程度である。nエミッタ領域74は、アノード電極22とオーミック接合によって接合している。
本実施例の半導体装置72は、ドレイン電極に相当するカソード電極20と、ドレイン領域に相当するnカソード領域6と、nバッファ領域8と、nドリフト領域10と、ボディ領域に相当するpアノード領域14と、ソース領域に相当するnエミッタ領域74と、ソース電極に相当するアノード電極22と、nエミッタ領域74とnドリフト領域10の間のpアノード領域14に対して絶縁膜46を挟んで対向する、ゲート電極に相当するトレンチ電極48を備える縦型のMOSFETの構造を有している。
実施例3のダイオード42と同様に、本実施例の半導体装置72によれば、MOSFETの寄生ダイオードの逆回復特性を改善して、スイッチング損失を低減することができる。また、実施例3のダイオード42と同様に、本実施例の半導体装置72によれば、逆バイアスに対する耐圧を向上することができる。
(実施例7)
図12に示すように、本実施例の半導体装置82は、実施例4のダイオード52とほぼ同様の構成を備えている。半導体装置82では、pアノード領域14の上側表面において、トレンチ44に隣接する箇所に、nエミッタ領域74が形成されている。nエミッタ領域74は、アノード電極22とオーミック接合によって接合している。
本実施例の半導体装置82は、ドレイン電極に相当するカソード電極20と、ドレイン領域に相当するnカソード領域6と、nバッファ領域8と、nドリフト領域10と、ボディ領域に相当するpアノード領域14と、ソース領域に相当するnエミッタ領域74と、ソース電極に相当するアノード電極22と、nエミッタ領域74とnドリフト領域10の間のpアノード領域14に対して絶縁膜46を挟んで対向する、ゲート電極に相当するトレンチ電極48を備える縦型のMOSFETの構造を有している。
実施例4のダイオード52と同様に、本実施例の半導体装置82によれば、MOSFETの寄生ダイオードの逆回復特性を改善して、スイッチング損失を低減することができる。また、実施例4のダイオード52と同様に、本実施例の半導体装置82によれば、逆バイアスに対する耐圧を向上し、逆バイアス時のリーク電流を抑制することができる。
(実施例8)
図13に示すように、本実施例の半導体装置102は、シリコンの半導体基板104を用いて形成されている。半導体装置102は、IGBT領域106と、ダイオード領域108を備えている。IGBT領域106において、半導体基板104は、高濃度p型半導体領域であるpコレクタ領域110と、n型半導体領域であるnバッファ領域112と、低濃度n型半導体領域であるnドリフト領域114と、n型半導体領域であるnバリア領域116と、p型半導体領域であるpボディ領域118が順に積層されている。本実施例では、pコレクタ領域110の不純物濃度は1×1017〜5×1020[cm-3]程度であり、nバッファ領域112の不純物濃度は1×1016〜1×1019[cm-3]程度であり、nドリフト領域114の不純物濃度は1×1012〜1×1015[cm-3]程度であり、nバリア領域116の不純物濃度は1×1015〜1×1018[cm-3]程度であり、pボディ領域118の不純物濃度は1×1016〜1×1019[cm-3]程度である。また、nバリア領域116の厚みは0.5〜3.0[μm]程度である。ダイオード領域108において、半導体基板104は、高濃度n型半導体領域であるnカソード領域120と、nバッファ領域112と、nドリフト領域114と、nバリア領域122と、p型半導体領域であるpアノード領域124が順に積層されている。本実施例では、nカソード領域120の不純物濃度は1×1017〜5×1020[cm-3]程度であり、nバリア領域122の不純物濃度は1×1015〜1×1018[cm-3]程度であり、pアノード領域124の不純物濃度は1×1016〜1×1019[cm-3]程度である。また、nバリア領域122の厚みは0.5〜3.0[μm]程度である。半導体基板4の上側には、複数のトレンチ126が所定の間隔で形成されている。
IGBT領域106において、トレンチ126は、pボディ領域118の上側表面からnバリア領域116を貫通して、nドリフト領域114の内部まで達している。トレンチ126の内部には、絶縁膜128で被覆されたゲート電極130が充填されている。pボディ領域118の上側表面において、トレンチ126に隣接する箇所には、高濃度n型半導体領域であるnエミッタ領域132が形成されている。nエミッタ領域132の不純物濃度は1×1017〜5×1020[cm-3]程度である。また、pボディ領域118の上側表面には、n型半導体領域であるnピラー領域134と低濃度p型半導体であるpバリアハイト調整領域137の組合せが形成されている。nピラー領域134の不純物濃度は1×1016〜1×1019[cm-3]程度である。pバリアハイト調整領域137の不純物濃度は、pボディ領域118よりも薄く調整されており、1×1014〜1×1017[cm-3]程度である。また、pバリアハイト調整領域137の厚みは薄く形成されており、0.01〜0.5[μm]程度である。nピラー領域134とpバリアハイト調整領域137の組合せは、pボディ領域118を貫通して、nバリア領域116の上側表面まで達するように形成されている。nピラー領域134は、nバリア領域116とエミッタ電極148の間を伸びており、nバリア領域116に接触して形成されている。pバリアハイト調整領域137は、nピラー領域134とエミッタ電極148の間に位置しており、nピラー領域134とエミッタ電極148に接触して形成されている。なお、pバリアハイト領域137は、nピラー領域134の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。さらに、pボディ領域118の上側表面には、高濃度p型半導体領域であるpコンタクト領域136が形成されている。pコンタクト領域136の不純物濃度は1×1017〜1×1020[cm-3]程度である。
ダイオード領域108において、トレンチ126は、pアノード領域124の上側表面からnバリア領域122を貫通して、nドリフト領域114の内部まで達している。トレンチ126の内部には、絶縁膜138で被覆されたゲート電極140が充填されている。pアノード領域124の上側表面には、n型半導体領域であるnピラー領域142と低濃度p型半導体であるpバリアハイト調整領域147の組合せが形成されている。nピラー領域142の不純物濃度は1×1016〜1×1019[cm-3]程度である。pバリアハイト調整領域147の不純物濃度は、pアノード領域124よりも薄く調整されており、1×1014〜1×1017[cm-3]程度である。た、pバリアハイト調整領域147の厚みは薄く形成されており、0.01〜0.5[μm]程度である。nピラー領域142とpバリアハイト調整領域147の組合せは、pアノード領域124を貫通して、nバリア領域122の上側表面まで達するように形成されている。nピラー領域142は、nバリア領域122とアノード電極148の間を伸びており、nバリア領域122に接触して形成されている。pバリアハイト調整領域147は、nピラー領域142とアノード電極148の間に位置しており、nピラー領域142とアノード電極148に接触して形成されている。なお、pバリアハイト領域147は、nピラー領域142の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。また、pアノード領域124の上側表面には、高濃度p型半導体領域であるpコンタクト領域144が形成されている。pコンタクト領域144の不純物濃度は1×1017〜1×1020[cm-3]程度である。
半導体基板104の下側表面には、金属製のコレクタ/カソード電極146が形成されている。コレクタ/カソード電極146は、pコレクタ領域110およびnカソード領域120とオーミック接合によって接合している。コレクタ/カソード電極146は、IGBT領域106においてはコレクタ電極として機能し、ダイオード領域108においてはカソード電極として機能する。
半導体基板104の上側表面には、金属製のエミッタ/アノード電極148が形成されている。エミッタ/アノード電極148は、ショットキー界面150を介してpバリアハイト調整領域137とショットキー接合しており、ショットキー界面152を介してpバリアハイト調整領域147とショットキー接合している。本実施例では、ショットキー界面150およびショットキー界面152のバリア高さは、何れも0.5〜0.9[eV]程度である。また、エミッタ/アノード電極148は、IGBT領域106のnエミッタ領域132およびpコンタクト領域136、およびダイオード領域108のpコンタクト領域144とオーミック接合によって接合している。エミッタ/アノード電極148は、IGBT領域106においてはエミッタ電極として機能し、ダイオード領域108においてはアノード電極として機能する。
IGBT領域106のゲート電極130は図示しない第1ゲート電極端子に導通している。ダイオード領域108のゲート電極140は、図示しない第2ゲート電極端子に導通している。
以上のように、半導体装置102は、トレンチ型のIGBTとして機能するIGBT領域106とフリーホイーリングダイオードとして機能するダイオード領域108が逆並列に接続された構造を有している。
半導体装置102の動作について説明する。ゲート電極130に電圧が印加されておらず、従ってIGBT領域106が駆動していない場合には、IGBT領域106は寄生ダイオードとして機能する。この状態で、エミッタ/アノード電極148とコレクタ/カソード電極146の間に順バイアスが印加されると、ダイオード領域108では、エミッタ/アノード電極148とnバリア領域122がpバリアハイト調整領域147とnピラー領域142を介して短絡する。このため、nバリア領域122とエミッタ/アノード電極148の電位差はショットキー界面152での電圧降下とほぼ等しくなる。ショットキー界面152での電圧降下は、pアノード領域124とnバリア領域122の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域144やpアノード領域124からnドリフト領域114への正孔の注入が抑制される。IGBT領域106では、エミッタ/アノード電極148とnバリア領域116がpバリアハイト調整領域137とnピラー領域134を介して短絡する。このため、nバリア領域116とエミッタ/アノード電極148の電位差はショットキー界面150での電圧降下とほぼ等しくなる。ショットキー界面150での電圧降下は、pボディ領域118とnバリア領域116の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域136やpボディ領域118からnドリフト領域114への正孔の注入が抑制される。エミッタ/アノード電極148とコレクタ/カソード電極146の間には、主にダイオード領域108のショットキー界面152、nピラー領域142、nバリア領域122、nドリフト領域114、nバッファ領域112、nカソード領域120を経由する順電流と、IGBT領域106のショットキー界面150、nピラー領域134、nバリア領域116、nドリフト領域114、nバッファ領域112、nカソード領域120を経由する順電流が流れる。
次いで、エミッタ/アノード電極148とコレクタ/カソード電極146の間の電圧が順バイアスから逆バイアスに切り替わると、ダイオード領域108ではショットキー界面152によって、IGBT領域106ではショットキー界面150によって、逆電流が制限される。特に、本実施例の半導体装置102では、pバリアハイト調整領域137,147が設けられていることにより、ショットキー界面150,152のバリア高さが高く調整され、逆電流が良好に制限される。上述したように、ダイオード領域108では、順バイアスの印加時においてpコンタクト領域144およびpアノード領域124からnドリフト領域114への正孔の注入が抑制されており、IGBT領域106では、順バイアスの印加時においてpコンタクト領域136およびpボディ領域118からnドリフト領域114への正孔の注入が抑制されている。従って、半導体装置102は、逆回復電流が小さく、逆回復時間が短い。本実施例の半導体装置102によれば、nドリフト領域114のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、本実施例の半導体装置102では、エミッタ/アノード電極148とコレクタ/カソード電極146の間に逆バイアスが印加されると、IGBT領域106では、ショットキー界面150から伸びる空乏層だけでなく、pボディ領域118とnバリア領域116の間のpn接合の界面から伸びる空乏層によっても電界が分担される。さらに、nドリフト領域114のトレンチ126の先端部近傍に電界が集中することで、ショットキー界面150にかかる電界と、pボディ領域118とnバリア領域116の間のpn接合にかかる電界が軽減される。同様に、ダイオード領域108では、ショットキー界面152から伸びる空乏層だけでなく、pアノード領域124とnバリア領域122の間のpn接合の界面から伸びる空乏層によっても電界が分担される。さらに、nドリフト領域114のトレンチ126の先端部近傍に電界が集中することで、ショットキー界面152にかかる電界と、pアノード領域124とnバリア領域122の間のpn接合にかかる電界が軽減される。本実施例の半導体装置102によれば、逆バイアスに対する耐圧を向上することができる。
なお、図40に示すように、本実施例の半導体装置102において、IGBT領域106にはnバリア領域116、nピラー領域134、pバリアハイト調整領域137を形成するものの、ダイオード領域108にはnバリア領域122、nピラー領域142、pバリアハイト調整領域147を形成しない構成とすることもできる。このような構成とした場合でも、IGBT領域106におけるスイッチング損失を低減し、逆バイアスに対する耐圧を向上することができる。また、これとは逆に、本実施例の半導体装置102において、ダイオード領域108にはnバリア領域122、nピラー領域142、pバリアハイト調整領域147を形成するものの、IGBT領域106にはnバリア領域116、nピラー領域134、pバリアハイト調整領域137を形成しない構成とすることもできる。このような構成とした場合でも、ダイオード領域108における逆回復電流を低減し、逆バイアスに対する耐圧を向上することができる。
(実施例9)
図14に示すように、本実施例の半導体装置162は、実施例8の半導体装置102とほぼ同様の構成を備えている。半導体装置162は、シリコンの半導体基板164を用いて形成されている。半導体基板164は、実施例8の半導体基板104とほぼ同様の構成を備えている。半導体基板164では、IGBT領域106において、nドリフト領域114とnバリア領域116の間に、p型半導体領域であるp電界進展防止領域166が形成されており、ダイオード領域108において、nドリフト領域114とnバリア領域122の間に、p型半導体領域であるp電界進展防止領域168が形成されている。p電界進展防止領域166およびp電界進展防止領域168の不純物濃度は1×1015〜1×1019[cm-3]程度である。また、p電界進展防止領域166およびp電界進展防止領域168の厚みは0.5〜3.0[μm]程度である。IGBT領域106において、トレンチ126は、pボディ領域118の上側表面からnバリア領域116およびp電界進展防止領域166を貫通して、nドリフト領域114の内部まで達している。ダイオード領域108において、トレンチ126は、pアノード領域124の上側表面からnバリア領域122およびp電界進展防止領域168を貫通して、nドリフト領域114の内部まで達している。
本実施例の半導体装置162によれば、実施例8の半導体装置102と同様に、エミッタ/アノード電極148とコレクタ/カソード電極146の間に順バイアスが印加される際に、ダイオード領域108では、pコンタクト領域144およびpアノード領域124からnドリフト領域114への正孔の注入が抑制されており、IGBT領域106では、pコンタクト領域136およびpボディ領域118からnドリフト領域114への正孔の注入が抑制されている。従って、順バイアスから逆バイアスへ切り換わる際の、逆回復電流を小さくし、逆回復時間を短くすることができる。従って、スイッチング損失を小さくすることが出来る。
また、本実施例の半導体装置162によれば、エミッタ/アノード電極148とコレクタ/カソード電極146の間に逆バイアスが印加されると、IGBT領域106では、ショットキー界面150から伸びる空乏層と、pボディ領域118とnバリア領域116の間のpn接合の界面から伸びる空乏層だけでなく、nドリフト領域114とp電界進展防止領域166の間のpn接合の界面から伸びる空乏層によっても電界が分担される。さらに、nドリフト領域114のトレンチ126の先端部近傍に電界が集中することで、ショットキー界面150にかかる電界と、pボディ領域118とnバリア領域116の間のpn接合にかかる電界と、nドリフト領域114とp電界進展防止領域166の間のpn接合にかかる電界が軽減される。同様に、ダイオード領域108では、ショットキー界面152から伸びる空乏層と、pアノード領域124とnバリア領域122の間のpn接合の界面から伸びる空乏層だけでなく、nドリフト領域114とp電界進展防止領域168の間のpn接合の界面から伸びる空乏層によっても電界が分担される。さらに、nドリフト領域114のトレンチ126の先端部近傍に電界が集中することで、ショットキー界面152にかかる電界と、pアノード領域124とnバリア領域122の間のpn接合にかかる電界と、nドリフト領域114とp電界進展防止領域168の間のpn接合にかかる電界が軽減される。本実施例の半導体装置162によれば、逆バイアスに対する耐圧を向上することができる。
また、本実施例の半導体装置162によれば、エミッタ/アノード電極148とコレクタ/カソード電極146の間に逆バイアスが印加される際に、ダイオード領域108ではp電界進展防止領域168とnドリフト領域114の間のpn接合によって逆電流が制限されるので、ショットキー界面152を通過するリーク電流が低減し、IGBT領域106では、p電界進展防止領域166とnドリフト領域114の間のpn接合によって逆電流が制限されるので、ショットキー界面150を通過するリーク電流が低減する。本実施例の半導体装置162によれば、逆バイアス印加時のリーク電流を低減することができる。
さらに、本実施例の半導体装置162では、IGBT領域106のゲート電極130に電圧を印加してIGBT領域106を駆動する場合に、IGBT領域106においてコレクタ/カソード電極146からエミッタ/アノード電極148へ流れる電流がp電界進展防止領域166によって抑制されるため、IGBT領域106の飽和電流を低減することが出来る。
なお、本実施例の半導体装置162の各構成要素は、図15や図44に示すように、3次元的に配置することもできる。図15および図44では、各構成要素の配置を明瞭にするために、コレクタ/カソード電極146およびエミッタ/アノード電極148を図示していない。
また、本実施例の半導体装置162の各構成要素は、図45、図46あるいは図47に示すように、3次元的に配置することもできる。図45,図46および図47では、各構成要素の配置を明瞭にするために、コレクタ/カソード電極146およびエミッタ/アノード電極148を図示していない。図45,図46および図47に示す配置では、半導体装置162を上面から平面視したときに、ゲート電極130やゲート電極140が縦横に交差しており、ゲート電極130,140の内側コーナー部に対して、pボディ領域118やpアノード領域124が絶縁膜128,138を挟んで対向するように配置されている。このような構成とすると、IGBT領域106やダイオード領域108にオン電流が流れる際に、ゲート電極130,140の内側コーナー部近傍のnドリフト領域114の正孔濃度が増加するため、伝導度変調効果を増大させることができる。IGBT領域106やダイオード領域108のオン抵抗を低減することができる。
なお、図41に示すように、本実施例の半導体装置162において、IGBT領域106にはp電界進展防止領域166、nバリア領域116、nピラー領域134、pバリアハイト調整領域137を形成するものの、ダイオード領域108にはp電界進展防止領域168、nバリア領域122、nピラー領域142、pバリアハイト調整領域147を形成しない構成とすることもできる。このような構成とした場合でも、IGBT領域106におけるスイッチング損失を低減し、逆バイアスに対する耐圧を向上することができる。また、IGBT領域106における逆バイアス印加時のリーク電流を低減し、飽和電流を低減することが出来る。また、これとは逆に、本実施例の半導体装置162において、ダイオード領域108にはp電界進展防止領域168、nバリア領域122、nピラー領域142、pバリアハイト調整領域147を形成するものの、IGBT領域106にはp電界進展防止領域166、nバリア領域116、nピラー領域134、pバリアハイト調整領域137を形成しない構成とすることもできる。このような構成とした場合でも、ダイオード領域108における逆回復電流を低減し、逆バイアスに対する耐圧を向上することができる。
(実施例10)
図16に示すように、本実施例の半導体装置172は、実施例8の半導体装置102とほぼ同様の構成を備えている。本実施例の半導体装置172では、ダイオード領域108のnカソード領域120に、高濃度p型半導体領域であるpカソードショート領域174が、所定の間隔を隔てて複数形成されている点で、実施例8の半導体装置102と異なる。本実施例では、pカソードショート領域174の不純物濃度は1×1017〜5×1020[cm-3]程度である。本実施例の半導体装置172によれば、順バイアスの印加時において、nカソード領域120からnドリフト領域114への電子の注入が抑制されているので、実施例8の半導体装置102に比べて、逆回復電流をさらに小さくし、逆回復時間をさらに短くすることができる。本実施例の半導体装置172によれば、さらにスイッチング損失を小さくすることが出来る。
(実施例11)
図17に示すように、本実施例の半導体装置182は、実施例9の半導体装置162とほぼ同様の構成を備えている。本実施例の半導体装置182では、ダイオード領域108のnカソード領域120に、pカソードショート領域174が、所定の間隔を隔てて複数形成されている点で、実施例9の半導体装置162と異なる。本実施例の半導体装置182によれば、順バイアスの印加時において、nカソード領域120からnドリフト領域114への電子の注入が抑制されているので、実施例9の半導体装置162に比べて、逆回復電流をさらに小さくし、逆回復時間をさらに短くすることができる。本実施例の半導体装置182によれば、さらにスイッチング損失を小さくすることが出来る。
(実施例12)
図18に示すように、本実施例の半導体装置202は、シリコンの半導体基板204を用いて形成されている。半導体基板204は、高濃度n型半導体領域であるnカソード領域206と、n型半導体領域であるnバッファ領域208と、低濃度n型半導体領域であるnドリフト領域210が順に積層されている。本実施例では、nカソード領域206の不純物濃度は1×1017〜5×1020[cm-3]程度であり、nバッファ領域208の不純物濃度は1×1016〜1×1019[cm-3]程度であり、nドリフト領域210の不純物濃度は1×1012〜1×1015[cm-3]程度である。
ドリフト領域210の上側表面には、n型半導体領域であるnバリア領域212が、所定の間隔を隔てて複数形成されている。nバリア領域212の上型表面には、p型半導体領域であるpアノード領域214が部分的に形成されている。pアノード領域214の上側表面には、n型半導体領域であるnピラー領域216と低濃度p型半導体であるpバリアハイト調整領域217の組合せが形成されている。nピラー領域216とpバリアハイト調整領域217の組合せは、pアノード領域214を貫通して、nバリア領域212の上側表面まで達するように形成されている。nピラー領域216は、nバリア領域212とアノード電極224の間を伸びており、nバリア領域212に接触して形成されている。pバリアハイト調整領域217は、nピラー領域216とアノード電極224の間に位置しており、nピラー領域216とアノード電極224に接触して形成されている。なお、pバリアハイト領域217は、nピラー領域216の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。また、pアノード領域214の上側表面には、高濃度p型半導体領域であるpコンタクト領域218と、高濃度n型半導体領域であるnエミッタ領域220がそれぞれ形成されている。本実施例では、nバリア領域212の不純物濃度は1×1015〜1×1018[cm-3]程度であり、pアノード領域214の不純物濃度は1×1016〜1×1019[cm-3]程度であり、nピラー領域216の不純物濃度は1×1016〜1×1019[cm-3]程度であり、pバリアハイト調整領域217の不純物濃度は、pアノード領域214よりも薄く調整されており、1×1014〜1×1017[cm-3]程度であり、pコンタクト領域218の不純物濃度は1×1017〜1×1020[cm-3]程度であり、nエミッタ領域220の不純物濃度は1×1017〜1×1020[cm-3]程度である。また、nバリア領域212の厚さは0.5〜3.0[μm]程度であり、pバリアハイト調整領域217の厚さは0.01〜0.5[μm]程度である。なお、pバリアハイト調整領域217をn型半導体領域で構成した場合、バリアハイト調整領域の不純物濃度は1×1014〜1×1017[cm-3]程度に調整されてもよい。pバリアハイト調整領域217をi型半導体の場合、バリアハイト調整領域には不純物が添加されていないノンドープであってもよい。
半導体基板204の下側表面には、金属製のカソード電極222が形成されている。カソード電極222は、nカソード領域206とオーミック接合によって接合している。半導体基板204の上側表面には、金属製のアノード電極224と、金属製のゲート電極226が形成されている。アノード電極224は、ショットキー界面228を介して、pバリアハイト調整領域217とショットキー接合している。本実施例では、ショットキー接合のバリア高さは0.5〜0.9[eV]程度である。また、アノード電極224は、pアノード領域214、pコンタクト領域218およびnエミッタ領域220の一部とオーミック接合によって接合している。ゲート電極226は、絶縁膜230を介してnドリフト領域210、nバリア領域212、pアノード領域214およびnエミッタ領域220の一部と対向するように配置されている。ゲート電極226は、図示しないゲート電極端子に導通している。
本実施例の半導体装置202は、ドレイン電極に相当するカソード電極222と、ドレイン領域に相当するnカソード領域206と、nバッファ領域208と、nドリフト領域210と、ボディ領域に相当するpアノード領域214と、ソース領域に相当するnエミッタ領域220と、ソース電極に相当するアノード電極224と、nエミッタ領域220とnドリフト領域210の間のpアノード領域214に対して絶縁膜230を挟んで対向するゲート電極226を備える縦型のMOSFETの構造を有している。
本実施例の半導体装置202では、nドリフト領域210とpアノード領域214の間にnバリア領域212が形成されており、アノード電極224とショットキー界面228を介してショットキー接合するpバリアハイト調整領域217を介してnバリア領域212がアノード電極224と導通している。このような構成とすることによって、アノード電極224とカソード電極222の間の寄生ダイオードについて、逆回復特性を改善して、スイッチング損失を低減することができる。また、アノード電極224とカソード電極222の間の逆バイアスに対する耐圧を向上することができる。
(実施例13)
図19に示すように、本実施例の半導体装置232は、実施例12の半導体装置202とほぼ同様の構成を備えている。本実施例の半導体装置232も、実施例12の半導体装置202と同様に、縦型のMOSFETの構造を有している。本実施例の半導体装置232では、nドリフト領域210とnバリア領域212の間に、p型半導体領域であるp電界進展防止領域234が形成されている。p電界進展防止領域234の不純物濃度は1×1015〜1×1019[cm-3]程度である。また、p電界進展防止領域234厚さは0.5〜3.0[μm]程度である。
本実施例の半導体装置232によれば、実施例12の半導体装置202と同様に、アノード電極224とカソード電極222の間の寄生ダイオードについて、逆回復特性を改善して、スイッチング損失を低減することができる。
また、本実施例の半導体装置232では、nドリフト領域210とnバリア領域212の間にp電界進展防止領域234が形成されているので、実施例12の半導体装置202に比べて、アノード電極224とカソード電極222の間の逆バイアスに対する耐圧を向上し、逆バイアス時のリーク電流を低減することができる。
(実施例14)
図20に示すように、本実施例の半導体装置242は、実施例12の半導体装置202とほぼ同様の構成を備えている。本実施例の半導体装置242では、nカソード領域206において、高濃度p型半導体領域であるpコレクタ領域244が部分的に形成されている。本実施例では、pコレクタ領域244の不純物濃度は1×1017〜5×1020[cm-3]程度である。
半導体装置242は、プレーナ型のIGBTとフリーホイーリングダイオードが逆並列に接続された構造を有している。すなわち、コレクタ電極に相当するカソード電極222と、pコレクタ領域244と、nバッファ領域208と、nドリフト領域210と、pアノード領域214と、nエミッタ領域220と、エミッタ電極に相当するアノード電極224と、絶縁膜230と、ゲート電極226によって、プレーナ型のIGBTを構成しており、カソード電極222と、nカソード領域206と、nバッファ領域208と、nドリフト領域210と、pアノード領域214と、pコンタクト領域218と、アノード電極224によって、フリーホイーリングダイオードを構成している。本実施例の半導体装置242は、上記のようなIGBTとダイオードのそれぞれについて、nドリフト領域210とpアノード領域214の間に形成されたnバリア領域212と、nバリア領域212とアノード電極224を接続するように形成されており、アノード電極224とショットキー接合するpバリアハイト調整領域217が付加された構成を有している。
本実施例の半導体装置242では、アノード電極224とカソード電極222の間に順バイアスが印加される際に、pアノード領域214およびpコンタクト領域218からnドリフト領域210への正孔の注入が抑制される。従って、逆回復特性を向上し、スイッチング損失を低減することができる。
また、本実施例の半導体装置242では、アノード電極224とカソード電極222の間に逆バイアスが印加されると、ショットキー界面228から伸びる空乏層だけでなく、pアノード領域214とnバリア領域212の間のpn接合の界面から伸びる空乏層によっても電界が分担される。従って、逆バイアスに対する耐圧を向上することができる。
(実施例15)
図21に示すように、本実施例の半導体装置252は、実施例14の半導体装置242とほぼ同様の構成を備えている。本実施例の半導体装置252では、nドリフト領域210とnバリア領域212の間に、p型半導体領域であるp電界進展防止領域234が形成されている。p電界進展防止領域234の不純物濃度は1×1015〜1×1019[cm-3]程度である。また、p電界進展防止領域234厚さは0.5〜3.0[μm]程度である。半導体装置252は、プレーナ型のIGBTとフリーホイーリングダイオードが逆並列に接続された構造を有している。
本実施例の半導体装置252によれば、アノード電極224とカソード電極222の間に順バイアスが印加される際に、pアノード領域214およびpコンタクト領域218からnドリフト領域210への正孔の注入が抑制される。従って、逆回復特性を向上し、スイッチング損失を低減することができる。
また、本実施例の半導体装置252では、アノード電極224とカソード電極222の間に逆バイアスが印加されると、ショットキー界面228から伸びる空乏層と、pアノード領域214とnバリア領域212の間のpn接合の界面から伸びる空乏層だけでなく、p電界進展防止領域234とnドリフト領域210の間のpn接合から伸びる空乏層によっても電界が分担される。従って、逆バイアスに対する耐圧を向上することができる。
また、本実施例の半導体装置252では、p電界進展防止領域234とnドリフト領域210の間のpn接合によって、逆電流が制限される。従って、ショットキー界面228を通過するリーク電流が低減される。
さらに、本実施例の半導体装置252では、ゲート電極226に電圧を印加してIGBTを駆動する場合に、コレクタ電極に相当するカソード電極222からエミッタ電極に相当するアノード電極224へ流れる電流がp電界進展防止領域234によって抑制されるため、IGBTの飽和電流を低減することができる。
(実施例16)
図22に示すように、本実施例のダイオード302は、実施例1のダイオード2とほぼ同様の構成を備えている。本実施例のダイオード302は、nピラー領域16とpバリアハイト調整領域17の組合せの代わりに、金属製のピラー電極16aと低濃度p型半導体のpバリアハイト調整領域17aの組合せを備えている。ピラー電極16aは、nバリア領域12とアノード電極22の間を伸びており、アノード電極22に接触して形成されている。pバリアハイト調整領域17aは、ピラー電極16aとnバリア領域12の間に位置しており、ピラー電極16aとnバリア領域12に接触して形成されている。なお、pバリアハイト領域17aは、nバリア領域12の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。ピラー電極16aとpバリアハイト調整領域17aの組合せは、半導体基板4の上側表面にpアノード領域14を貫通してnバリア領域12まで達するトレンチを形成し、そのトレンチ内に露出するnバリア領域12の表面にイオン注入法を利用してpバリアハイト調整領域17aを形成した後に、そのトレンチに金属を充填することで形成される。ピラー電極16aはアノード電極22と導通している。ピラー電極16aは、pバリアハイト調整領域17aとショットキー界面24aを介してショットキー接合している。
本実施例のダイオード302では、アノード電極22とカソード電極20の間に順バイアスが印加されると、ピラー電極16aとnバリア領域12が短絡する。このとき、nバリア領域12とアノード電極22の電位差はショットキー界面24aでの電圧降下とほぼ等しくなる。ショットキー界面24aでの電圧降下は、pアノード領域14とnバリア領域12の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入が抑制される。
次いで、アノード電極22とカソード電極20の間の電圧が順バイアスから逆バイアスに切り替わると、ピラー電極16aとpバリアハイト調整領域17aの間のショットキー界面24aによって逆電流が制限される。特に、本実施例のダイオード302では、pバリアハイト調整領域17aが設けられていることにより、ショットキー界面24aのバリア高さが高く調整され、逆電流が良好に制限される。本実施例のダイオード302では、順バイアスの印加時においてpコンタクト領域18およびpアノード領域14からnドリフト領域10への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。本実施例のダイオード302によれば、nドリフト領域10のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、本実施例のダイオード302では、アノード電極22とカソード電極20の間に逆バイアスが印加されると、pバリアハイト調整領域17aとピラー電極16aの間のショットキー界面24aから伸びる空乏層だけでなく、pアノード領域14とnバリア領域12の間のpn接合の界面から伸びる空乏層によっても電界が分担される。これにより、pバリアハイト調整領域17aとピラー電極16aの間のショットキー界面24aにかかる電界が軽減される。本実施例のダイオード302によれば、逆バイアスに対する耐圧を向上することが出来る。
また、本実施例のダイオード302では、順バイアスの印加時におけるnバリア領域12とアノード電極22の間の電位差を、実施例1のダイオード2に比べて、より小さくすることができる。pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入をさらに抑制し、スイッチング損失をさらに低減することができる。
(実施例17)
図23に示すように、本実施例のダイオード304は、実施例2のダイオード32とほぼ同様の構成を備えている。本実施例のダイオード304は、nピラー領域16とpバリアハイト調整領域17の組合せの代わりに、金属製のピラー電極16aと低濃度p型半導体のpバリアハイト調整領域17aの組合せを備えている。ピラー電極16aは、nバリア領域12とアノード電極22の間を伸びており、アノード電極22に接触して形成されている。pバリアハイト調整領域17aは、ピラー電極16aとnバリア領域12の間に位置しており、ピラー電極16aとnバリア領域12に接触して形成されている。なお、pバリアハイト領域17aは、バリア領域12の不純物濃度よりも薄いn型半導体領域であってもよく、i型半導体であってもよい。ピラー電極16aとpバリアハイト調整領域17aの組合せは、半導体基板4の上側表面にpアノード領域14を貫通してnバリア領域12まで達するトレンチを形成し、そのトレンチ内に露出するnバリア領域12の表面にイオン注入法を利用してバリアハイト調整領域17aを形成した後に、そのトレンチに金属を充填することで形成される。ピラー電極16aはアノード電極22と導通している。ピラー電極16aは、pバリアハイト調整領域17aとショットキー界面24aを介してショットキー接合している。
ダイオード304の動作について説明する。アノード電極22とカソード電極20の間に順バイアスが印加されると、ピラー電極16aとnバリア領域12が短絡する。このとき、nバリア領域12とアノード電極22の電位差はショットキー界面24aでの電圧降下とほぼ等しくなる。ショットキー界面24aでの電圧降下は、pアノード領域14とnバリア領域12の間のpn接合のビルトイン電圧よりも十分に小さいので、pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入が抑制される。なお、nバリア領域12とp電界進展防止領域36の間にはpn接合が存在するが、p電界進展防止領域36のp型不純物濃度は低く、p電界進展防止領域36の厚みは薄いため、アノード電極22とカソード電極20の間の順電流に及ぼす影響は少ない。
次いで、アノード電極22とカソード電極20の間の電圧が順バイアスから逆バイアスに切り替わると、ピラー電極16aとpバリアハイト調整領域17aの間のショットキー界面24aによって逆電流が制限される。また、nドリフト領域10とp電界進展防止領域36の間のpn接合によっても逆電流が制限される。上述したように、本実施例のダイオード304では、順バイアスの印加時においてpコンタクト領域18およびpアノード領域14からnドリフト領域10への正孔の注入が抑制されているから、逆回復電流が小さく、逆回復時間が短い。本実施例のダイオード304によれば、nドリフト領域10のライフタイム制御を行うことなく、スイッチング損失を小さくすることが出来る。
また、本実施例のダイオード304では、アノード電極22とカソード電極20の間に逆バイアスが印加されると、pバリアハイト調整領域17aとピラー電極16aの間のショットキー界面24aから伸びる空乏層と、pアノード領域14とnバリア領域12の間のpn接合の界面から伸びる空乏層だけでなく、nドリフト領域10とp電界進展防止領域36の間のpn接合の界面でも電界が分担される。これにより、pバリアハイト調整領域17aとピラー電極16aの間のショットキー界面24aにかかる電界と、pアノード領域14とnバリア領域12の間のpn接合にかかる電界が軽減される。本実施例のダイオード304によれば、逆バイアスに対する耐圧を向上することが出来る。
また、本実施例のダイオード304では、順バイアスの印加時におけるnバリア領域12とアノード電極22の間の電位差を、実施例2のダイオード32に比べて、より小さくすることができる。pコンタクト領域18やpアノード領域14からnドリフト領域10への正孔の注入をさらに抑制し、スイッチング損失をさらに低減することができる。
(その他の実施例)
図4に示すダイオード42、図5に示すダイオード52、図7に示すダイオード62、図8に示すダイオード66、図9に示すダイオード68、図10に示すダイオード70のそれぞれにおいて、nピラー領域16を上述のピラー電極16aで置き換えることによって、図24に示すダイオード306、図25に示すダイオード308、図26に示すダイオード310、図27に示すダイオード312、図28に示すダイオード314、図29に示すダイオード316のように構成することもできる。
また、図11に示す半導体装置72、図12に示す半導体装置82のそれぞれにおいて、nピラー領域16とpバリアハイト調整領域17の組合せを上述のピラー電極16aとpバリアハイト調整領域17aの組合せで置き換えることによって、図30に示す半導体装置318、図31に示す半導体装置320のように構成することもできる。
また、図13および図40に示す半導体装置102、図14および図41に示す半導体装置162、図16に示す半導体装置172、図17に示す半導体装置182のそれぞれにおいて、nピラー領域134、142とpバリアハイト調整領域137、147の組合せを金属製のピラー電極134a、142aと低濃度p型半導体のpバリアハイト調整領域137a、147aの組合せで置き換えることによって、図32および図42に示す半導体装置322、図33および図43に示す半導体装置324、図34に示す半導体装置326、図35に示す半導体装置328のように構成することもできる。ここで、ピラー電極134aは、エミッタ/アノード電極148と導通しており、pボディ領域118を貫通している。pバリアハイト調整領域137aは、nバリア領域116とショットキー界面150aを介してショットキー接合している。ピラー電極142aは、エミッタ/アノード電極148と導通しており、pアノード領域124を貫通している。pバリアハイト調整領域147aは、nバリア領域122とショットキー界面152aを介してショットキー接合している。
また、図18に示す半導体装置202、図19に示す半導体装置232、図20に示す半導体装置242、図21に示す半導体装置252のそれぞれにおいて、nピラー領域216とバリアハイト調整領域217の組合せを金属製のピラー電極216aと低濃度p型半導体のpバリアハイト調整領域217aの組合せで置き換えることによって、図36に示す半導体装置330、図37に示す半導体装置332、図38に示す半導体装置334、図39に示す半導体装置336のように構成することもできる。ここで、ピラー電極216aは、アノード電極224と導通しており、pアノード領域214を貫通している。pバリアハイト調整領域217aは、nバリア領域212とショットキー界面228aを介してショットキー接合している。
以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上記の実施例では、半導体材料としてシリコンを用いる場合について説明したが、本発明は、炭化シリコン、窒化ガリウム、ヒ化ガリウムなどの半導体材料を用いる場合についても、同様に適用することができる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2 ダイオード;4 半導体基板;6 nカソード領域;8 nバッファ領域;10 nドリフト領域;12 nバリア領域;14 pアノード領域;16 nピラー領域;16a ピラー電極;17 pバリアハイト調整領域;17a pバリアハイト調整領域;18 pコンタクト領域;20 カソード電極;22 アノード電極;24 ショットキー界面;24a ショットキー界面;26 ダイオード;28 半導体基板;30 ショットキー界面;32 ダイオード;34 半導体基板;36 p電界進展防止領域;42 ダイオード;44 トレンチ;46 絶縁膜;48 トレンチ電極;52 ダイオード;62 ダイオード;64 pカソードショート領域;66 ダイオード;68 ダイオード;70 ダイオード;72 半導体装置;74 nエミッタ領域;82 半導体装置;102 半導体装置;104 半導体基板;106 IGBT領域;108 ダイオード領域;110 pコレクタ領域;112 nバッファ領域;114 nドリフト領域;116 nバリア領域;118 pボディ領域;120 nカソード領域;122 nバリア領域;124 pアノード領域;126 トレンチ;128 絶縁膜;130 ゲート電極;132 nエミッタ領域;134 nピラー領域;134a ピラー電極;136 pコンタクト領域;137 pバリアハイト調整領域;137a pバリアハイト調整領域;138 絶縁膜;140 ゲート電極;142 nピラー領域;142a ピラー電極;144 pコンタクト領域;146 コレクタ/カソード電極;147 pバリアハイト調整領域;147a pバリアハイト調整領域;148 エミッタ/アノード電極;150 ショットキー界面;150a ショットキー界面;152 ショットキー界面;152a ショットキー界面;162 半導体装置;164 半導体基板;166 p電界進展防止領域;168 電界進展防止領域;172 半導体装置;174 pカソードショート領域;182 半導体装置;202 半導体装置;204 半導体基板;206 nカソード領域;208 nバッファ領域;210 nドリフト領域;212 nバリア領域;214 pアノード領域;216 nピラー領域;216a ピラー電極;217 pバリアハイト調整領域;217a pバリアハイト調整領域;218 pコンタクト領域;220 nエミッタ領域;222 カソード電極;224 アノード電極;226 ゲート電極;228 ショットキー界面;228a ショットキー界面;230 絶縁膜;232 半導体装置;234 p電界進展防止領域;242 半導体装置;244 pコレクタ領域;252 半導体装置;302 ダイオード;304 ダイオード;306 ダイオード;308 ダイオード;310 ダイオード;312 ダイオード;314 ダイオード;316 ダイオード;318 半導体装置;320 半導体装置;322 半導体装置;324 半導体装置;326 半導体装置;328 半導体装置;330 半導体装置;332 半導体装置;334 半導体装置;336 半導体装置

Claims (16)

  1. カソード電極と、第1導電型の半導体からなるカソード領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるアノード領域と、金属からなるアノード電極を備えるダイオードであって、
    前記ドリフト領域と前記アノード領域の間に形成された、前記ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、
    前記バリア領域と前記アノード電極の間を伸びており、前記バリア領域に接触して形成された、第1導電型の半導体からなるピラー領域と、
    前記ピラー領域と前記アノード電極の間に位置しており、前記ピラー領域と前記アノード電極に接触して形成された、バリアハイト調整領域と、を備えており、
    前記バリアハイト調整領域は、前記アノード領域よりも濃度が低い第2導電型の半導体、前記ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記バリアハイト調整領域と前記アノード電極がショットキー接合していることを特徴とするダイオード。
  2. 前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることを特徴とする請求項1のダイオード。
  3. 前記アノード領域から前記ドリフト領域まで達するトレンチが形成されており、
    前記トレンチの内部に絶縁膜で被覆されたトレンチ電極が形成されていることを特徴とする請求項1または2のダイオード。
  4. 前記カソード領域に部分的に形成された、第2導電型の半導体からなるカソードショート領域をさらに備えていることを特徴とする請求項1から3の何れか一項のダイオード。
  5. 請求項1から4の何れか一項のダイオードとIGBTが一体化された半導体装置であって、
    前記IGBTが、コレクタ電極と、第2導電型の半導体からなるコレクタ領域と、前記ドリフト領域から連続しており、第1導電型の半導体からなる第2ドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるエミッタ領域と、金属からなるエミッタ電極と、前記エミッタ領域と前記第2ドリフト領域の間の前記ボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えており、
    前記IGBTが、前記第2ドリフト領域と前記ボディ領域の間に形成された、前記第2ドリフト領域よりも濃度が高い第1導電型の半導体からなる第2バリア領域と、前記第2バリア領域と前記エミッタ電極の間を伸びており、前記第2バリア領域に接触して形成された、第1導電型の半導体からなる第2ピラー領域と、前記第2ピラー領域と前記エミッタ電極の間に位置しており、前記第2ピラー領域と前記エミッタ電極に接触して形成された、第2バリアハイト調整領域と、を備えており、
    前記第2バリアハイト調整領域は、前記ボディ領域よりも濃度が低い第2導電型の半導体、前記第2ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記第2バリアハイト調整領域と前記エミッタ電極がショットキー接合していることを特徴とする半導体装置。
  6. 前記第2バリア領域と前記第2ドリフト領域の間に形成された、第2導電型の半導体からなる第2電界進展防止領域をさらに備えることを特徴とする請求項5の半導体装置。
  7. ドレイン電極と、第1導電型の半導体からなるドレイン領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるソース領域と、金属からなるソース電極と、前記ソース領域と前記ドリフト領域の間の前記ボディ領域に対して絶縁膜を挟んで対向するゲート電極を備える半導体装置であって、
    前記ドリフト領域と前記ボディ領域の間に形成された、前記ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、
    前記バリア領域と前記ソース電極の間を伸びており、前記バリア領域に接触して形成された、第1導電型の半導体からなるピラー領域と、
    前記ピラー領域と前記ソース電極の間に位置しており、前記ピラー領域と前記ソース電極に接触して形成された、バリアハイト調整領域と、を備えており、
    前記バリアハイト調整領域は、前記ボディ領域よりも濃度が低い第2導電型の半導体、前記ピラー領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記バリアハイト調整領域と前記ソース電極がショットキー接合していることを特徴とする半導体装置。
  8. 前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることを特徴とする請求項7の半導体装置。
  9. カソード電極と、第1導電型の半導体からなるカソード領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるアノード領域と、アノード電極を備えるダイオードであって、
    前記ドリフト領域と前記アノード領域の間に形成された、前記ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、
    前記バリア領域と前記アノード電極の間を伸びており、前記アノード電極に接触して形成された、金属からなるピラー電極と、
    前記バリア領域と前記ピラー電極の間に位置しており、前記バリア領域と前記ピラー電極に接触して形成された、バリアハイト調整領域と、を備えており、
    前記バリアハイト調整領域は、前記アノード領域よりも濃度が低い第2導電型の半導体、前記バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記バリアハイト調整領域と前記ピラー電極がショットキー接合していることを特徴とするダイオード。
  10. 前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることを特徴とする請求項9のダイオード。
  11. 前記アノード領域から前記ドリフト領域まで達するトレンチが形成されており、
    前記トレンチの内部に絶縁膜で被覆されたトレンチ電極が形成されていることを特徴とする請求項9または10のダイオード。
  12. 前記カソード領域に部分的に形成された、第2導電型の半導体からなるカソードショート領域をさらに備えていることを特徴とする請求項9から11の何れか一項のダイオード。
  13. 請求項9から12の何れか一項のダイオードとIGBTが一体化された半導体装置であって、
    前記IGBTが、コレクタ電極と、第2導電型の半導体からなるコレクタ領域と、前記ドリフト領域から連続しており、第1導電型の半導体からなる第2ドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるエミッタ領域と、エミッタ電極と、前記エミッタ領域と前記第2ドリフト領域の間の前記ボディ領域に対して絶縁膜を挟んで対向するゲート電極を備えており、
    前記IGBTが、前記第2ドリフト領域と前記ボディ領域の間に形成された、前記第2ドリフト領域よりも濃度が高い第1導電型の半導体からなる第2バリア領域と、前記第2バリア領域と前記エミッタ電極の間を伸びており、前記エミッタ電極に接触して形成された、金属からなる第2ピラー電極と、前記第2バリア領域と前記第2ピラー電極の間に位置しており、前記第2バリア領域と前記第2ピラー電極に接触して形成された、第2バリアハイト調整領域と、を備えており、
    前記第2バリアハイト調整領域は、前記ボディ領域よりも濃度が低い第2導電型の半導体、前記第2バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記第2バリアハイト調整領域と前記第2ピラー電極がショットキー接合していることを特徴とする半導体装置。
  14. 前記第2バリア領域と前記第2ドリフト領域の間に形成された、第2導電型の半導体からなる第2電界進展防止領域をさらに備えることを特徴とする請求項13の半導体装置。
  15. ドレイン電極と、第1導電型の半導体からなるドレイン領域と、第1導電型の半導体からなるドリフト領域と、第2導電型の半導体からなるボディ領域と、第1導電型の半導体からなるソース領域と、ソース電極と、前記ソース領域と前記ドリフト領域の間の前記ボディ領域に対して絶縁膜を挟んで対向するゲート電極を備える半導体装置であって、
    前記ドリフト領域と前記ボディ領域の間に形成された、前記ドリフト領域よりも濃度が高い第1導電型の半導体からなるバリア領域と、
    前記バリア領域と前記ソース電極の間を伸びており、前記ソース電極に接触して形成された、金属からなるピラー電極と、
    前記バリア領域と前記ピラー電極の間に位置しており、前記バリア領域と前記ピラー電極に接触して形成された、バリアハイト調整領域と、を備えており、
    前記バリアハイト調整領域は、前記ボディ領域よりも濃度が低い第2導電型の半導体、前記バリア領域よりも濃度が低い第1導電型の半導体、及びi型の半導体からなる群から選択される少なくとも1つを含んでおり、
    前記バリアハイト調整領域と前記ピラー電極がショットキー接合していることを特徴とする半導体装置。
  16. 前記バリア領域と前記ドリフト領域の間に形成された、第2導電型の半導体からなる電界進展防止領域をさらに備えていることを特徴とする請求項15の半導体装置。
JP2013028073A 2013-02-15 2013-02-15 ダイオード及びダイオードを内蔵する半導体装置 Active JP5981859B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013028073A JP5981859B2 (ja) 2013-02-15 2013-02-15 ダイオード及びダイオードを内蔵する半導体装置
US14/155,998 US9276137B2 (en) 2013-02-15 2014-01-15 Diode and semiconductor device including built-in diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028073A JP5981859B2 (ja) 2013-02-15 2013-02-15 ダイオード及びダイオードを内蔵する半導体装置

Publications (2)

Publication Number Publication Date
JP2014157930A true JP2014157930A (ja) 2014-08-28
JP5981859B2 JP5981859B2 (ja) 2016-08-31

Family

ID=51350582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028073A Active JP5981859B2 (ja) 2013-02-15 2013-02-15 ダイオード及びダイオードを内蔵する半導体装置

Country Status (2)

Country Link
US (1) US9276137B2 (ja)
JP (1) JP5981859B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165541A (ja) * 2014-03-03 2015-09-17 トヨタ自動車株式会社 半導体装置
JP2016096307A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 半導体装置
JP2016164952A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 半導体装置
US9595603B2 (en) 2015-07-02 2017-03-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9899374B2 (en) 2015-11-19 2018-02-20 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2020013821A (ja) * 2018-07-13 2020-01-23 トヨタ自動車株式会社 ダイオード構造を有する半導体装置
JP2020141113A (ja) * 2019-03-01 2020-09-03 株式会社東芝 半導体装置
JP2021097085A (ja) * 2019-12-13 2021-06-24 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
CN113659014A (zh) * 2021-10-20 2021-11-16 四川洪芯微科技有限公司 一种含有阴极短接槽栅结构的功率二极管
JP2022048882A (ja) * 2020-09-15 2022-03-28 株式会社東芝 半導体装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170654A (ja) * 2014-03-05 2015-09-28 株式会社東芝 半導体装置
US9634128B2 (en) 2014-03-17 2017-04-25 Kabushiki Kaisha Toshiba Semiconductor device
JP2016058654A (ja) * 2014-09-11 2016-04-21 株式会社東芝 半導体装置
JP6003961B2 (ja) * 2014-11-04 2016-10-05 トヨタ自動車株式会社 半導体装置
JP6411929B2 (ja) * 2015-03-24 2018-10-24 トヨタ自動車株式会社 Mosfet
JP6217700B2 (ja) * 2015-07-21 2017-10-25 トヨタ自動車株式会社 ダイオード
DE102015120210B4 (de) * 2015-11-23 2019-02-21 Infineon Technologies Ag Leistungshalbleitertransistor mit vergrößerter bipolarer Verstärkung
JP6505625B2 (ja) * 2016-03-16 2019-04-24 株式会社東芝 半導体装置
JP2017208413A (ja) 2016-05-17 2017-11-24 株式会社デンソー 半導体装置
US10600871B2 (en) * 2016-05-23 2020-03-24 General Electric Company Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using body region extensions
JP2018046247A (ja) * 2016-09-16 2018-03-22 株式会社東芝 半導体装置
JP2018092968A (ja) 2016-11-30 2018-06-14 ルネサスエレクトロニクス株式会社 半導体装置、rc−igbt及び半導体装置の製造方法
JP6643382B2 (ja) * 2017-03-20 2020-02-12 インフィニオン テクノロジーズ オーストリア アーゲーInfineon Technologies Austria AG パワー半導体デバイス
CN107452624A (zh) * 2017-06-19 2017-12-08 西安电子科技大学 肖特基接触SiC IGBT及其制备方法
JP6935731B2 (ja) 2017-11-16 2021-09-15 株式会社デンソー 半導体装置
US10608122B2 (en) * 2018-03-13 2020-03-31 Semicondutor Components Industries, Llc Schottky device and method of manufacture
JP6952631B2 (ja) * 2018-03-20 2021-10-20 株式会社東芝 半導体装置
KR102463180B1 (ko) 2018-05-04 2022-11-03 현대자동차 주식회사 반도체 소자 및 그 제조 방법
US11171248B2 (en) * 2019-02-12 2021-11-09 Semiconductor Components Industries, Llc Schottky rectifier with surge-current ruggedness
JP7364488B2 (ja) * 2020-02-05 2023-10-18 株式会社東芝 半導体装置
JP7370309B2 (ja) * 2020-10-21 2023-10-27 三菱電機株式会社 逆導通型半導体装置および逆導通型半導体装置の製造方法
CN117242577A (zh) * 2022-04-14 2023-12-15 苏州龙驰半导体科技有限公司 晶体管器件和制造晶体管器件的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323488A (ja) * 1999-05-10 2000-11-24 Fuji Electric Co Ltd ダイオードおよびその製造方法
JP2002299643A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 半導体装置
JP2003163357A (ja) * 2001-11-26 2003-06-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2004186413A (ja) * 2002-12-03 2004-07-02 Toshiba Corp 半導体装置
JP2005210047A (ja) * 2003-12-24 2005-08-04 Toyota Central Res & Dev Lab Inc 半導体装置
JP2006245237A (ja) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd ショットキバリアダイオードおよびその製造方法
WO2013014943A2 (en) * 2011-07-27 2013-01-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Diode, semiconductor device, and mosfet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282822B2 (ja) * 2009-09-07 2013-09-04 トヨタ自動車株式会社 ダイオード領域とigbt領域を有する半導体基板を備える半導体装置
US8461620B2 (en) * 2010-05-21 2013-06-11 Applied Pulsed Power, Inc. Laser pumping of thyristors for fast high current rise-times

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323488A (ja) * 1999-05-10 2000-11-24 Fuji Electric Co Ltd ダイオードおよびその製造方法
JP2002299643A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 半導体装置
JP2003163357A (ja) * 2001-11-26 2003-06-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2004186413A (ja) * 2002-12-03 2004-07-02 Toshiba Corp 半導体装置
JP2005210047A (ja) * 2003-12-24 2005-08-04 Toyota Central Res & Dev Lab Inc 半導体装置
JP2006245237A (ja) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd ショットキバリアダイオードおよびその製造方法
WO2013014943A2 (en) * 2011-07-27 2013-01-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Diode, semiconductor device, and mosfet
JP2013048230A (ja) * 2011-07-27 2013-03-07 Toyota Central R&D Labs Inc ダイオード、半導体装置およびmosfet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165541A (ja) * 2014-03-03 2015-09-17 トヨタ自動車株式会社 半導体装置
JP2016096307A (ja) * 2014-11-17 2016-05-26 トヨタ自動車株式会社 半導体装置
JP2016164952A (ja) * 2015-03-06 2016-09-08 トヨタ自動車株式会社 半導体装置
US9595603B2 (en) 2015-07-02 2017-03-14 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9899374B2 (en) 2015-11-19 2018-02-20 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2020013821A (ja) * 2018-07-13 2020-01-23 トヨタ自動車株式会社 ダイオード構造を有する半導体装置
JP7214508B2 (ja) 2019-03-01 2023-01-30 株式会社東芝 半導体装置
CN111640790A (zh) * 2019-03-01 2020-09-08 株式会社东芝 半导体装置
JP2020141113A (ja) * 2019-03-01 2020-09-03 株式会社東芝 半導体装置
CN111640790B (zh) * 2019-03-01 2023-11-07 株式会社东芝 半导体装置
JP2021097085A (ja) * 2019-12-13 2021-06-24 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP7353957B2 (ja) 2019-12-13 2023-10-02 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP2022048882A (ja) * 2020-09-15 2022-03-28 株式会社東芝 半導体装置
JP7410829B2 (ja) 2020-09-15 2024-01-10 株式会社東芝 半導体装置
CN113659014A (zh) * 2021-10-20 2021-11-16 四川洪芯微科技有限公司 一种含有阴极短接槽栅结构的功率二极管
CN113659014B (zh) * 2021-10-20 2022-01-18 四川洪芯微科技有限公司 一种含有阴极短接槽栅结构的功率二极管

Also Published As

Publication number Publication date
JP5981859B2 (ja) 2016-08-31
US9276137B2 (en) 2016-03-01
US20140231867A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5981859B2 (ja) ダイオード及びダイオードを内蔵する半導体装置
JP5919121B2 (ja) ダイオードおよび半導体装置
JP6001735B2 (ja) Mosfet
JP5787853B2 (ja) 電力用半導体装置
JP5753814B2 (ja) ダイオード、半導体装置およびmosfet
US9082815B2 (en) Semiconductor device having carrier extraction in electric field alleviating layer
JP5922886B2 (ja) ダイオードおよび半導体装置
JP6053050B2 (ja) 逆導通igbt
JP5706275B2 (ja) ダイオード、半導体装置およびmosfet
JP2013051345A (ja) ダイオード、半導体装置およびmosfet
JP6958011B2 (ja) 半導体装置および半導体装置の製造方法
JP2016115766A (ja) 逆導通igbt
JP2013201360A (ja) 半導体装置
JP2016058636A (ja) 半導体装置
TW201711184A (zh) 半導體裝置及其驅動方法
JP6674395B2 (ja) 半導体装置
JP6077309B2 (ja) ダイオード及びダイオードを内蔵した半導体装置
JP2016162897A (ja) ダイオード及びそのダイオードを内蔵する逆導通igbt
WO2017134900A1 (ja) 半導体装置
JP2009182205A (ja) 半導体装置
US9147757B2 (en) Power semiconductor device and method for manufacturing the same
JP2017199723A (ja) 半導体装置
KR20150076815A (ko) 전력 반도체 소자

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5981859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250