JP2014037014A - ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具 - Google Patents

ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具 Download PDF

Info

Publication number
JP2014037014A
JP2014037014A JP2012179315A JP2012179315A JP2014037014A JP 2014037014 A JP2014037014 A JP 2014037014A JP 2012179315 A JP2012179315 A JP 2012179315A JP 2012179315 A JP2012179315 A JP 2012179315A JP 2014037014 A JP2014037014 A JP 2014037014A
Authority
JP
Japan
Prior art keywords
wafer
shaped
grooveless
grindstones
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012179315A
Other languages
English (en)
Other versions
JP5988765B2 (ja
Inventor
Ichiro Katayama
一郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Electron Co Ltd
Original Assignee
Daito Electron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Electron Co Ltd filed Critical Daito Electron Co Ltd
Priority to JP2012179315A priority Critical patent/JP5988765B2/ja
Priority to TW102121065A priority patent/TWI600496B/zh
Priority to CN201310302643.7A priority patent/CN103586751B/zh
Priority to KR1020130094874A priority patent/KR101672076B1/ko
Publication of JP2014037014A publication Critical patent/JP2014037014A/ja
Application granted granted Critical
Publication of JP5988765B2 publication Critical patent/JP5988765B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

【課題】2つの溝なし砥石を使用するウェーハの面取り加工方法において、溝なし砥石の整形(ツルーイング)にかかる時間を短縮する。また、溝なし砥石とウェーハとの接触長を大きくし、ウェーハの縮径加工とウェーハを所望の断面形状に加工するコンタリング加工に要する時間を短縮する。
【解決手段】回転テーブル上にウェーハ1を芯だしして載置し、回転させて、この回転するウェーハ1を加工する2つの溝なし砥石3,3をウェーハ周端部1aに接触させてウェーハ1の直径または断面形状を面取りする面取り加工方法であって、上記2つの溝なし砥石3,3の幅方向の中心線L,Lを、上記回転テーブル上に載置された上記ウェーハ1の回転軸S側に向けて互いに近接させて配置して、上記ウェーハ1に接触させることを特徴とする。
【選択図】図14

Description

本発明は、半導体デバイスの材料となるウェーハや、半導体デバイスを取り付けたウェーハの周端部を加工する方法や装置に関する。
各種結晶ウェーハその他の半導体デバイスウェーハ等の集積回路用基板として用いられる円盤状薄板材、その他金属材料を含む硬い材料からなる円盤状薄板材、例えばシリコン(Si)単結晶、ガリュウム砒素(GaAs)、水晶、石英、サファイヤ、フェライト、炭化珪素(SiC)等からなるもの(これらを総称して単にウェーハという)の面取り加工では、断面形状や断面形状精度を得るため、加工すべきウェーハ周端部の外形状を形成した溝を有する溝付総形砥石を用いて加工するものがある(特許文献1,2)。
しかし、総形砥石を用いた場合には、砥石の溝の最深部には冷却剤が入りにくいため、砥石が傷み易く、またエッジの円周方向に条痕が残って面粗度が大きくなり易いという問題点があった。
そこで、ウェーハの面取りに研磨材を含んだゴムホイールを砥石として用いた研磨方法および装置を提案し、特に大きな直径のゴムホイールを使用することにより、さらなる条痕の微細化を行なうことができるようになった(特許文献3)。
さらに、2つの円盤状の溝なし砥石をウェーハ周端部の同一箇所に近接させて配置し、回転するウェーハと相対的に接近離間させることで、回転する両溝なし砥石の加工面によりウェーハ周端部の同一箇所に近接した位置を同時に加工して成形する加工方法があった(特許文献4)。
また、デバイス化したウェーハを薄化したときに周端部が欠けやすい形状にならないように、予め加工することがあった。
そのほかに、TSV貫通電極ウェーハなどのウェーハを複数枚重ねてデバイス化したものの直径を縮小加工することもあった。
特開平06−262505号公報 特開平11−207584号公報 特開2000−052210号公報 特開2008−177348号公報
特許文献4に記載された従来のウェーハの面取り加工装置では、図1に示すように、不図示の回転テーブルに芯だしして載置されたウェーハ1のエッジ(周端部)1aの面取り加工を行うために、2つの円盤形溝なし砥石3,3が互いに平行に近接して配置されている。
ウェーハ1には、図1に示すように、周方向の基準位置を示すためのV字形又はU字形のノッチ1nを刻設している。
ウェーハ1は回転テーブルによってθ方向に回転させられるとともに、2つの円盤形溝なし砥石3,3は、図1に矢印で示されるように互いに逆方向に回転させられてウェーハ1のエッジ1aに接触し面取り加工を行う。
2つの円盤形溝なし砥石3,3と回転させられるウェーハ1とは互いに近接及び離間させられるように、Y方向の位置を相対的に調整される。
ここで、図20(a)に示すように、2つの円盤形溝なし砥石3,3は互いに近傍に配置されるとともに、それぞれの幅方向の中心線L、Lが互いに平行になるように配置されて、ウェーハの面取り加工に用いられている。
新規な円盤形溝なし砥石3を用いてウェーハ1を加工する際には、加工前に、ウェーハ1と同じ厚さ、同じ直径の薄円盤形砥石(ツルーア51)により、初期の円盤形溝なし砥石3の先端面の直線部を研磨してウェーハ1と同じ直径の円弧形状を転写する整形(ツルーイング)を行っていた。
しかし、このように2つの円盤形溝なし砥石3,3を互いに平行に配置していたため、整形(ツルーイング)において、図20(b)の形状のように砥石3を厚さ方向に深く研磨するのに時間がかかっていた。
たとえば、図21(a)(b)のように、従来の面取り加工装置で幅5mmの円盤形溝なし砥石3を2つ使用してφ450mmのウェーハ1を加工するためにその砥石3をツルーイングする場合、円盤形溝なし砥石3の先端をウェーハ1と同形状のツルーア51に接触させたときに、初期状態の円盤形溝なし砥石3とツルーア51との幅方向外側における最大隙間は約61μm(0.061mm)にもなってしまっていた。
また、図21(c)(d)のように、従来の面取り加工装置で幅7.5mmの円盤形溝なし砥石3を2つ使用してφ450mmのウェーハ1を加工するためにその砥石3をツルーイングする場合、円盤形溝なし砥石3の先端をウェーハ1と同形状のツルーア51に接触させたときに、初期状態の円盤形溝なし砥石3とツルーア51との幅方向外側における最大隙間は約134μm(0.134mm)にもなってしまっていた。
なお、図21におけるツルーア51はウェーハ1と同じ形状であるので、初期状態の円盤形溝なし砥石3を整形(ツルーイング)することなくウェーハ1の加工を開始する場合には、図21(b)(d)に示される最大隙間は、初期状態の円盤形溝なし砥石3とウェーハ1との最大隙間となる。
そして、ウェーハ1のエッジ(周端部)1aの加工については、図2に示すように、ウェーハ1のエッジ1aを、上平面1suに対して角度α1(約22°)だけ傾斜した上斜面1auと、下平面1sdに対し角度α1(約22°)だけ傾斜した下斜面1adと、これらの間を単一の半径R1の円弧1cにより滑らかに結ばれた断面形状(全体としてほぼ三角形状)に加工する場合がある。
この場合、上斜面1auの水平長さを「面取り幅X1」と呼び、下斜面1adの水平長さを「面取り幅X2」と呼ぶ。
また、図3に示すように、ウェーハ1のエッジ1aを、上平面1suに対して角度α2だけ傾斜した上斜面1auと、下平面1sdに対して角度α2だけ傾斜した下斜面1adと、エッジ1aの端面を形成する周端1bとの間で2つの円弧すなわち同じ半径R2を有する円弧1c,1cにより滑らかに結ばれる断面形状(台形形状)に加工する場合がある。
この場合も、上斜面1auの水平長さを「面取り幅X1」、下斜面1adの水平長さを「面取り幅X2」、周端1bの面幅の長さを「面取り幅X3」とそれぞれ呼ぶ。
図12および図13は、ウェーハ1の周端部上側および下側を同時にコンタリング加工するための円盤形溝なし砥石3の移動軌跡を示している。ウェーハ1の上面側の加工では、図12に示すように、周端1bの曲面開始位置(U1)から、まずO1を中心としてR2+r1の半径で円盤形溝なし砥石3を円弧状に動作させる。上斜面の開始位置U1´まで到達したら、次に斜めにU1´´まで平行移動させて上斜面1auを形成する。図13に示すように、ウェーハ1の下面側も同様に、周端1bの曲面開始位置(L1)から、まずO2を中心としてR2+r2の半径で円盤形溝なし砥石3を円弧状に動作させる。上斜面の開始位置L1´まで到達したら、次に斜めにL1´´まで平行移動させて下斜面1adを形成する。図2のコンタリング加工時もほぼ同様の動作となる。
このようにウェーハの断面形状を加工して上斜面1au、下斜面1ad、円弧1cを形成するコンタリング加工でも、2つの砥石3,3を平行に配置していたために円盤形溝なし砥石3,3の先端面の曲率が急になり(図20(b))、砥石幅を大きくしてもその砥石3と上斜面1au、下平面1sd、円弧1cとの接触長は大きくならず、ウェーハを所望の断面形状にコンタリング加工するのに時間がかかっていた。
また、ウェーハ1の縮径加工時とウェーハを所望の断面形状に加工するコンタリング加工時において、円盤形溝なし砥石の幅内におけるウェーハが接触する位置のずれが大きいので、砥石の幅を大きくしてもウェーハとの接触長が大きくならず、加工に時間がかかっていた。
なお、従来、ウェーハ1の縮径加工時には、ウェーハ1に対する円盤形溝なし砥石3の相対的な上下位置は図2および図3のように固定されていた。
さらに、直径が比較的小さいウェーハを加工する場合には、ウェーハの円周の曲率が大きいため、円盤形溝なし砥石3を整形(ツルーイング)すると、各砥石が図20(b)に示すように幅方向に偏った形状になり、ウェーハの中心に近い部位では磨耗が大きく、ウェーハの中心から遠い部位では磨耗が小さい急な曲面が形成されてしまう。その結果、砥石の寿命が短くなってしまうとともに、ウェーハの面取り形状の精度も低下していた。
特に、加工に際してウェーハと円盤形溝なし砥石との左右方向の相対位置合わせが少しでもずれた場合、上記の問題は非常に大きなものとなっていた。
また、従来のウェーハの面取り加工方法では、図16に示すように、2つのカップ形溝なし砥石4,4を用いてウェーハ1を面取り加工するときにも、2つのカップ形溝なし砥石4,4が互いに平行に近接して配置されていた。
ウェーハ1は回転テーブルによってθ方向に回転させられるとともに、2つのカップ形溝なし砥石4,4は、図16に矢印で示されるように互いに同じ方向に回転させられてウェーハ1のエッジ1aに接触し面取り加工を行う。2つのカップ形溝なし砥石4,4と回転させられるウェーハ1とは互いに接近及び離間させられるように、Y方向の位置を相対的に調整される。
ここで、図22に示すように、2つのカップ形溝なし砥石4,4の円筒の接触端面4a,4aの幅方向の中心線L、Lが平行になるように配置されているため、ウェーハ1との接触長が短くなり、面取り加工に時間がかかってしまうとともに、砥石の磨耗に偏りが生じるという問題があった。
本発明は上記問題点を解決するためになされたものであり、2つの溝なし砥石を使用するウェーハの面取り加工方法において、溝なし砥石の整形(ツルーイング)にかかる時間を短縮することを課題とする。また、溝なし砥石とウェーハとの接触長を大きくし、ウェーハの縮径加工とウェーハを所望の断面形状に加工するコンタリング加工に要する時間を短縮することを課題とする。
さらに、このようなウェーハの面取り加工方法を可能とするウェーハの面取り加工装置と、この面取り加工装置に用いる砥石角度調整用治具とを提供することを課題とする。
本発明において、上記課題が解決される手段は以下の通りである。
第1の発明は、回転テーブル上にウェーハを芯だしして載置し、回転させて、この回転するウェーハを加工する2つの溝なし砥石をウェーハ周端部に接触させてウェーハの直径または断面形状を面取りする面取り加工方法であって、上記2つの溝なし砥石の幅方向の中心線を、上記回転テーブル上に載置された上記ウェーハの回転軸側に向くように互いに近接させて配置して、上記ウェーハに接触させることを特徴とするものである。
第2の発明は、第1の発明において、更に上記2つの溝なし砥石を、それぞれの幅方向の中心線が上記ウェーハの回転軸上において互いに交差するように配置することを特徴とするものである。
第3の発明は、第1の発明において、更に上記2つの溝なし砥石が、それぞれ、円盤形に形成されて円心の軸回りに回転させられるとともに外周面で上記ウェーハに接触させられる円盤形溝なし砥石であることを特徴とするものである。
第4の発明は、第3の発明において、更に上記2つの円盤形溝なし砥石の半径方向の厚さの磨耗可能範囲の平均値を基準半径とし、加工されるウェーハの直径、2つの円盤形溝なし砥石の上記基準半径、2つの円盤形溝なし砥石の初期半径、2つの円盤形溝なし砥石の幅、及び2つの円盤形溝なし砥石の間の最小隙間に基づいて、2つの円盤形溝なし砥石の向きを決定することを特徴とするものである。
第5の発明は、第1の発明において、更に上記2つの溝なし砥石が、それぞれ、カップ形に形成されて軸回りに回転させられるとともにカップ形の円筒の端面で上記ウェーハに接触させられるカップ形溝なし砥石であることを特徴とするものである。
第6の発明は、第5の発明において、更に上記2つのカップ形溝なし砥石における円筒の高さ方向の磨耗可能範囲の平均値を基準高さとし、加工されるウェーハの直径、2つのカップ形溝なし砥石の上記基準高さ、2つのカップ形溝なし砥石の初期高さ、2つのカップ形溝なし砥石の円筒の幅、及び2つのカップ形溝なし砥石の間の最小隙間に基づいて、2つのカップ形溝なし砥石の向きを決定することを特徴とするものである。
第7の発明は、ウェーハの面取り装置において、芯だしして載置されたウェーハを回転させる回転テーブルと、上記回転テーブルに載置されて回転させられる上記ウェーハの周縁部を面取りするために、幅方向の中心線を上記回転テーブル上に載置された上記ウェーハの回転軸側に向くように互いに近接して配置された2つの溝なし砥石と、上記回転テーブル上に載置されて回転させられるウェーハと上記2つの溝なし砥石とを相対的に接近離間させる移動装置とを有することを特徴とするものである。
第8の発明は、第7の発明において、上記2つの溝なし砥石の水平面内の保持角度を調整可能な角度調整装置を有することを特徴とするものである。
第9の発明は、第8の発明におけるウェーハの面取り加工装置の上記2つの溝なし砥石を取り付けるべき部位に着脱可能に形成され、上記2つの溝なし砥石の保持角度の基準となる所定のテーパ面を形成したことを特徴とする砥石角度調整用治具を特徴とするものである。
第1の発明によれば、上記2つの溝なし砥石の幅方向の中心線を、上記回転テーブル上に載置された上記ウェーハの回転軸側に向けて互いに近接させて配置し、上記ウェーハに接触させることにより、溝なし砥石の整形(ツルーイング)に要する時間を短縮することができる。さらに、ウェーハのコンタリング加工において、溝なし砥石の幅内においてウェーハが接触する位置のずれを小さくすることができるので、ウェーハと溝なし砥石との接触長を長くすることによってコンタリング加工に要する時間を短縮することができる。
また、整形(ツルーイング)された溝なし砥石の磨耗が略左右対称で、且つ、磨耗の偏りも小さいものになるため、ウェーハ周端の断面形状の加工においても、上斜面、下平面、円弧と溝なし砥石との曲率の差が小さくなり、溝なし砥石とウェーハとの接触長を長くすることができ、短時間でウェーハをコンタリング加工することができて、スループットが向上する。
第2の発明によれば、上記2つの溝なし砥石を、それぞれの幅方向の中心線が上記ウェーハの回転軸上において互いに交差するように配置することにより、溝なし砥石とウェーハとの接触長を最も長くすることができるとともに、溝なし砥石の磨耗の偏りを最も小さくすることができて、短時間でウェーハの縮径加工及びコンタリング加工を行うことができる。また、溝なし砥石の整形(ツルーイング)に要する時間も、最も短くすることができる。
第3の発明によれば、上記2つの溝なし砥石が、それぞれ、円盤形に形成されて円心の軸回りに回転させられるとともに、外周面で上記ウェーハに接触させられる円盤形溝なし砥石であることにより、2つの円盤形溝なし砥石を用いて、ウェーハの縮径加工及びコンタリング加工に要する時間を短縮化し、スループットを向上させるとともに、円盤形溝なし砥石の寿命を長期化することができる。
第4の発明によれば、上記2つの円盤形溝なし砥石の半径方向の厚さの磨耗可能範囲の平均値を基準半径とし、加工されるウェーハの直径、2つの円盤形溝なし砥石の上記基準半径、2つの円盤形溝なし砥石の初期半径、2つの円盤形溝なし砥石の幅、及び2つの円盤形溝なし砥石の間の最小隙間に基づいて、2つの円盤形溝なし砥石の向きを決定することにより、円盤形溝なし砥石の形状およびウェーハの形状に応じて、2つの円盤形溝なし砥石の配置(互いに平行な状態からの傾き角度)を適切に設定することができる。
第5の発明によれば、上記2つの溝なし砥石が、それぞれ、カップ形に形成されて軸回りに回転させられるとともに、カップ形の円筒の端面で上記ウェーハに接触させられるカップ形溝なし砥石であることにより、2つのカップ形溝なし砥石を用いて、ウェーハの縮径加工及びコンタリング加工に要する時間を短縮化し、スループットを向上させるとともに、カップ形溝なし砥石の寿命を長期化することができる。
第6の発明によれば、上記2つのカップ形溝なし砥石における円筒の高さ方向の磨耗可能範囲の平均値を基準高さとし、加工されるウェーハの直径、2つのカップ形溝なし砥石の上記基準高さ、2つのカップ形溝なし砥石の初期高さ、2つのカップ形溝なし砥石の円筒の幅、及び2つのカップ形溝なし砥石の間の最小隙間に基づいて、2つのカップ形溝なし砥石の向きを決定することにより、カップ形溝なし砥石の形状およびウェーハの形状に応じて、2つのカップ形溝なし砥石の配置(互いに平行な状態からの傾き角度)を適切に設定することができる。
第7の発明によれば、ウェーハの面取り加工装置が、芯だしして載置されたウェーハを回転させる回転テーブルと、上記回転テーブルに載置されて回転させられる上記ウェーハの周縁部を面取りするために、幅方向の中心線を上記回転テーブル上に載置された上記ウェーハの回転軸側に向くように互いに近接して配置された2つの溝なし砥石と、上記回転テーブル上に載置されて回転させられるウェーハおよび上記2つの溝なし砥石を相対的に接近離間させる移動装置とを有することにより、ウェーハの縮径加工及びコンタリング加工において、溝なし砥石とウェーハとの接触長を長くすることができて、短時間でウェーハの縮径加工及びコンタリング加工を行うことができ、スループットを向上させることができる。
溝なし砥石の幅を大きくした場合には、さらにウェーハとの接触長を長くすることができ、さらに短時間でウェーハの縮径加工及びコンタリング加工を行うことができ、スループットを向上させることができる。
また、ウェーハの面取り加工に伴う各溝なし砥石の磨耗が略左右対称で、且つ、磨耗の偏りも小さいものになるため、ウェーハ周端の断面形状の加工においても、上斜面、下平面、円弧と溝なし砥石との曲率の差が小さくなり、溝なし砥石とウェーハとの接触長を長くすることができ、短時間でウェーハを加工することができて、スループットが向上する。
さらに、円盤形溝なし砥石を用いる従来の面取り加工装置において、砥石の磨耗を遅くしてその寿命を延ばすためには、砥石の半径を大きくするしかなかったが、円盤形溝なし砥石の半径を大きくすると砥石を収容する巨大な空間が必要となっていた。これに対し、溝なし砥石を傾けて配置することにより、溝なし砥石の幅を大きくして、円盤形溝なし砥石の半径を大きくすることなくその寿命を延ばし、砥石交換の工数を削減することができるとともに、ウェーハの加工時間を短縮することもできる。
第8の発明によれば、上記2つの溝なし砥石の水平面内の保持角度を調整可能な角度調整装置を有することにより、上記溝なし砥石の幅方向の保持角度を任意に調整することができる。
そのため、2つの溝なし砥石の形状やウェーハの形状に変更があっても、2つの溝なし砥石を、互いに近傍かつそれぞれの幅方向の中心線を上記回転テーブル上に載置された上記ウェーハの回転軸側に向くように配置して、ウェーハに接触させることができる。
第9の発明によれば、ウェーハの面取り加工装置の上記2つの溝なし砥石を取り付けるべき部位に着脱可能に形成され、上記2つの溝なし砥石の保持角度の基準となる所定のテーパ面を形成した砥石角度調整用治具としたことにより、ウェーハの形状または溝なし砥石の形状を変更するときにも、短時間で容易に砥石の保持角度を調整することができる。
円盤形溝なし砥石を用いた従来のウェーハの面取り加工装置におけるウェーハ周端の加工状態を示す斜視説明図である。 ウェーハ周端と円盤形溝なし砥石との接触状態を示す拡大部分断面説明図である。 図2と形状の異なるウェーハ周端と円盤形溝なし砥石との接触状態を示す拡大部分断面説明図である。 本発明の加工方法の実施形態におけるコンタリング加工時の円盤形溝なし砥石の接触状態を示す拡大部分断面説明図である。 同実施形態におけるコンタリング加工時のウェーハ位置ズレに応じて位置を変化させる円盤形溝なし砥石の状態を示す拡大部分断面説明図である。 同実施形態における円盤形溝なし砥石が形成する斜め条痕を示す加工説明図である。 本発明に係るウェーハの面取り加工装置を示す正面図である。 同面取り加工装置を示す側面図である。 同面取り加工装置を示す平面図である。 同面取り加工装置の制御系統図である。 同面取り加工装置の制御系の一部を示すブロック図である。 ウェーハ周端の上面側を加工する際の砥石の軌跡を示す加工説明図である。 ウェーハ周端の下面側を加工する際の砥石の軌跡を示す加工説明図である。 (a)本発明の面取り加工方法の実施形態における2つの円盤形溝なし砥石の配置を示す平面説明図、(b)は同砥石の磨耗を示す説明図である。 (a)は幅7.5mmの2つの円盤形溝なし砥石を用いた本発明の実施例を示す説明図、(b)は(a)中M1部の拡大図、(c)は幅10mmの2つの円盤形溝なし砥石を用いた本発明の実施例を示す説明図、(d)は(c)中M2部の拡大図である。 カップ形溝なし砥石を用いた従来の面取り加工装置におけるウェーハ周端の加工状態を示す斜視説明図である。 2つのカップ形溝なし砥石を用いる本発明の別実施形態における、2つのカップ形溝なし砥石の配置を示す平面説明図である。 本発明に係るウェーハの面取り加工装置の角度調整装置を示す斜視説明図および部分断面図である。 本発明に係る砥石角度調整用治具の使用態様を示す説明図である。 (a)従来の加工方法の実施形態における2つの円盤形溝なし砥石の配置を示す平面説明図、(b)は同砥石の磨耗を示す説明図である。 (a)は幅5mmの円盤形溝なし砥石を用いた従来の例を示す説明図、(b)は(a)中M3部の拡大図、(c)は幅7.5mmの円盤形溝なし砥石を用いた従来の例を示す説明図、(d)は(c)中M4部の拡大図である。 2つのカップ形溝なし砥石を用いた従来の加工方法の実施形態における砥石の配置を示す平面説明図である。 本発明の面取り加工方法の実施形態において、円盤形溝なし砥石の配置(互いに平行な状態からの傾き角度)を求めるための説明図である。
<ウェーハの面取り加工方法>
以下、本発明の実施形態に係るウェーハの面取り加工方法について説明する。
ウェーハの面取り加工方法は、一例として図1〜6に示すように、円盤状に形成された円盤形溝なし砥石3,3の外周面をウェーハ1と接触させ、1つのウェーハ1には同時に2つの円盤形溝なし砥石3,3が接触して面取り加工する。
本発明の実施形態では、ワーク取付台2に設けられた回転テーブル2a(図4参照)にウェーハ1を同心的に載置し、回転テーブル2aとともに回転するウェーハ1を2つの円盤形溝なし砥石3,3により同時に面取り加工する。
2つの円盤形溝なし砥石3,3は、周端1bの同一箇所に近接し、互いの対向する側面を近接させて配置し、回転する両溝なし砥石3,3の周面を加工面としてウェーハ1に同時に当接し、エッジ(ウェーハ1の周端部)1aの近接した位置を同時に加工して成形する(図1、図2及び図4参照)。
ここで、2つの溝なし砥石3,3は、図1、図4に矢印にて示されるように、ウェーハ1との接触点における加工方向が互いに反対方向となるように、互いに反対方向に回転させられつつウェーハ1に当接させられる。
なお、2つの円盤形溝なし砥石3,3は、面取り加工の種類によってまたは面取り加工するウェーハ1の端部の形状によって、同時に同一方向に回転させられる場合と、図4のように反対方向に回転させられる場合とがある。
また、2つの円盤形溝なし砥石3,3は、面取り加工の種類によって、または面取り加工するウェーハ1の端部の形状によって、同時に同一方向へ移動する場合(図1)と、各別に異なる方向へ移動する場合(図4)とがある。
ノッチ1nを有するウェーハ1を加工する場合(図1参照)、ウェーハ1の外径を研削して縮径する周端縮径加工では、2つの円盤形溝なし砥石3,3をそれぞれ一定の高さに保持したままでウェーハ1に接触させて加工する(図2及び図3参照)。
この場合で、エッジ1aの断面形状が上下の斜面1au,1adと、周端1bに単一の半径R1の円弧1cと、により形成されるウェーハ1(断面三角形状)を加工する時には、2つの円盤形溝なし砥石3,3を同じ高さに保持して加工する(図2参照)。
また、エッジ1aの断面形状が上下の斜面1au,1adと、垂直面となる周端1bと、これらの間に同じ半径R2を有する上下各角部にそれぞれ接続してなる円弧1c,1cと、により形成されるウェーハ1(断面台形形状)を加工するコンタリング加工時には、2つの円盤形溝なし砥石3,3のそれぞれの高さを異ならせて、周端1bが略垂直な面として加工されるような位置に配置し、それぞれ円盤形溝なし砥石3,3の位置を保持したままウェーハ1を回転させて周端を加工する(図3参照)。
エッジ1aの断面を所望の形状に形成するコンタリング加工では、エッジ1aの各面に2つの円盤形溝なし砥石3,3のそれぞれを各別に移動させ、エッジ1aの径方向の同一箇所を各円盤形溝なし砥石3,3により上下から挟み込んで、それぞれの面を同時に加工する(図4及び図5参照)。
コンタリング加工の場合で、エッジ1aの断面形状が上下対称形の場合には、2つの円盤形溝なし砥石3,3を各別に動作させ、一方がウェーハ1の上側を加工する時には他方はウェーハ1の下側を加工し、ウェーハ1のバタツキあるいは上下動を抑えながらエッジ1aの断面形状を加工する(図4、5参照)。
なお、ウェーハ1との接触点において同時に当接する2つの溝なし砥石3,3の回転方向を互いに逆にすることで、ウェーハ1のバタツキを抑えることができ、さらに加工の斜め条痕1d,1eが互いに交差して加工面の表面粗さを小さくし精細なものにすることができ、断面形状の加工精度を高くすることができる(図6)。
また、2つの円盤形溝なし砥石3,3をウェーハ1に接触させるときには、図14(a)に示すように、2つの溝なし砥石3,3のそれぞれの幅方向の中心線L,Lが、回転するウェーハ1の回転軸S上で互いに交差するように傾けて配置する。
なお、円盤形溝なし砥石3,3における半径方向且つ水平な方向、すなわち、ウェーハ1と接触して磨耗することが予定されている方向を厚さ方向といい、この厚さ方向と垂直に交差する水平な方向を幅方向という。
本実施形態では、2つの円盤形溝なし砥石3,3を、それぞれ幅方向の中心線L,Lが、回転するウェーハ1の回転軸S上で互いに交差するように傾けているが、上記2本の中心線L,Lが正確にウェーハ1の回転軸S上で交差する必要はなく、2つの溝なし砥石3,3の幅方向の中心線L,Lが、互いに平行となるように配置した状態(図1、図20参照)よりもウェーハ1の回転軸S側に傾いていればよい。
2つの円盤形溝なし砥石3,3の幅方向の中心線L,Lをウェーハ1の回転軸Sに向けるための傾き角度(互いに平行な位置からの傾き)P°を決定するには、まず、2つの円盤形溝なし砥石3,3の基準半径rg及びその初期半径r0、加工されるウェーハ1の直径D、2つの円盤形溝なし砥石3,3の幅b、及び2つの円盤形溝なし砥石3,3の間の最小隙間aを用いる(図23参照)。
ここで、2つの円盤形溝なし砥石3,3の基準半径rgとは、円盤形溝なし砥石3の半径方向(厚さ方向)の磨耗範囲の平均値(中央値)をいう。
磨耗範囲の平均値としては、砥石3の初期の最大半径r0と磨耗による交換直前の最小半径との平均の長さを用いることができる。また、磨耗範囲の平均値として、円盤形溝なし砥石3を渦状に巻きつけられたウェーハ1を研磨する薄い層の集合と捉え、この層を直線状に展開したときの中央にあたる位置を計算し、当該位置までの半径を用いることもできる。
ウェーハ1の直径Dは、加工前の直径と加工後の所望の直径とのいずれを用いてもよい。本実施形態では、加工後の所望の直径を用いている。
円盤形溝なし砥石3の幅bとは、円盤形溝なし砥石3の幅方向長さをいう。
2つの円盤形溝なし砥石3,3の間の最小隙間aとは、溝なし砥石3の初期の最大半径のときにおける、ウェーハ1に近い側の円盤形溝なし砥石3,3間の最小距離であり、本実施形態では長さはおよそ0.5mmとなっている。
円盤形溝なし砥石3,3の基準半径rg(mm)、その初期半径r0(mm)、ウェーハ1の直径D(mm)、円盤形溝なし砥石3の幅b(mm)、及び2つの円盤形溝なし砥石3,3の間の最小隙間a(mm)を用いて、2つの円盤形溝なし砥石3,3の傾き角度(互いに平行な位置からの傾き)P°は、以下のように求められる。
図23に示すように、円盤形溝なし砥石3が初期半径r0から基準半径rgまで磨耗したときにおいて、
D/2tanP°=b/2+(r0−rg)tanP°+a/2cosP°
となる。これを整理すると、P°は次式によって決定される。
P°=sin−1((−B+(B−4AC)1/2)/2A)
ただし、ここで、
A=(D−2r0+2rg)+b
B=−2a(D−2r0+2rg)
C=a−b
である。
本実施形態に係るウェーハの面取り加工方法では、2つの円盤形溝なし砥石3,3を、互いに近傍に、且つ、それぞれの幅方向の中心線L,Lを平行に配置した位置よりも、回転テーブル2a上に載置されたウェーハ1の回転軸S側に向くように互いに傾けてウェーハ1に接触させる。これにより、円盤形溝なし砥石3の整形(ツルーイング)後の形状が、図14(b)のように左右(幅方向)対称で研磨量の小さなものになる。そのため、ウェーハ1の加工前に、初期の円盤形溝なし砥石3,3の先端面をウェーハ1と同じ直径の円弧状に整形(ツルーイング)する時間を短縮することができる。
たとえば、図15(a)(b)のように、本実施形態の面取り加工方法で幅7.5mmの円盤形溝なし砥石3を2つ使用して、円盤形溝なし砥石3,3の幅方向の中心線Lを平行な状態からそれぞれ1.018°ずつ回転軸S側へ傾け、φ450mmのウェーハ1を加工するために円盤形溝なし砥石3をツルーイングする場合、円盤形溝なし砥石3の先端をウェーハ1と同形状のツルーア51に接触させたときに初期状態の円盤形溝なし砥石3とツルーア51との幅方向両端における最大隙間を約31μm(0.031mm)まで低減することができた。
また、図15(c)(d)のように、本実施形態の面取り加工方法で幅10mmの円盤形溝なし砥石を2つ使用して、円盤形溝なし砥石3,3の幅方向の中心線Lを平行な状態からそれぞれ1.337°ずつ回転軸S側へ傾け、φ450mmのウェーハ1を加工するために円盤形溝なし砥石3をツルーイングする場合、円盤形溝なし砥石3の先端をウェーハ1と同形状のツルーア51に接触させたときに初期状態の円盤形溝なし砥石3とツルーア51との幅方向両端における最大隙間を約56μm(0.056mm)まで低減することができた。
なお、図15におけるツルーア51はウェーハ1と同じ形状であるので、初期状態の円盤形溝なし砥石3を整形(ツルーイング)することなくウェーハ1の加工を開始する場合には、図15(b)(d)に示される最大隙間は、初期状態の円盤形溝なし砥石3とウェーハ1との最大隙間となる。
また、ウェーハ1の縮径加工およびコンタリング加工において、円盤形溝なし砥石3,3とウェーハ1との接触長を、砥石を互いに平行に配置した場合よりも長くすることができるので、短時間でウェーハ1の縮径加工及びコンタリング加工を行うことができて、スループットを向上させることができる。
2つの円盤形溝なし砥石3,3の幅を大きくした場合には、さらにウェーハ1との接触長を長くすることができ、さらに短時間でウェーハ1の縮径加工及びコンタリング加工を行うことができて、スループットを向上させることができる。
また、本実施形態のように、2つの円盤形溝なし砥石3,3を平行な状態に対し傾けて配置することにより、各円盤形溝なし砥石3の回転中心からの半径を大きくすることなく円盤形溝なし砥石3の幅を大きくすることができ、円盤形溝なし砥石3の回転中心からの半径を大きくする場合と比較して、2つの円盤形溝なし砥石が占める空間を大きくすることなく面取りされるウェーハの下側に充分回り込ませることができる。
さらに、従来の方法において、円盤形溝なし砥石の磨耗を遅くしてその寿命を延ばすためには砥石の半径を大きくするしかなかったが、円盤形溝なし砥石の半径を大きくすると巨大な空間が必要となっていた。これに対し、本実施形態では、円盤形溝なし砥石3を傾けて配置することにより、円盤形溝なし砥石3の幅を大きくして、円盤形溝なし砥石の半径を大きくすることなくその寿命を延ばすことができるとともにウェーハの加工時間を短縮することもできる。
また、図14(b)に示すように、ウェーハ1の面取り加工に伴う両円盤形溝なし砥石3,3の磨耗が左右(幅方向)対称で、且つ、磨耗の偏りも小さいものになるため、ウェーハのエッジ1aのコンタリング加工においても、上斜面1au、下平面1sd、円弧1cと溝なし砥石3,3との曲率の差が小さくすることができる。したがって、円盤形溝なし砥石3,3とウェーハ1との接触長を長くすることができ、短時間でウェーハ1を加工することができて、スループットを向上させることができる。
さらに、従来の方法において、円盤形溝なし砥石を用いる場合には、砥石の磨耗を遅くしてその寿命を延ばすためには砥石の半径を大きくするしかなかったが、円盤形溝なし砥石の半径を大きくすると巨大な空間が必要となっていた。これに対し、溝なし砥石3を傾けて配置することにより、溝なし砥石の幅を大きくしてその寿命を延ばし砥石交換の工数を削減することができるとともに、ウェーハの加工時間を短縮することもできる。
<別実施形態>
上記の実施形態では、2つの円盤形の溝なし砥石3,3を用いてウェーハ1を面取りしたが、これに代えて、図16に示すような2つのカップ形溝なし砥石4,4を用いてもよい。
カップ形溝なし砥石4,4は、図16,17に示すように、円筒状に形成され、軸回りに回転させられながら円筒の端面4a,4aでウェーハ1に接触し、ウェーハ1を研磨する。
ウェーハ1との接触点における加工方向が互いに反対方向となるように、2つのカップ形溝なし砥石4,4を同じ方向に回転させることが好ましい。
カップ形溝なし砥石4,4を用いる場合でも、ウェーハ1の外径を研削して縮径する周端縮径加工では、2つのカップ形溝なし砥石4,4をそれぞれ一定の高さに保持したままでウェーハ1に接触させて加工する。
また、断面形状を形成するコンタリング加工やノッチ1nの加工のときには、必要に応じて、2つのカップ形溝なし砥石4,4を同じ方向に移動させてウェーハ1に接触させ、あるいは、2つのカップ形溝なし砥石4,4を各別に移動させてウェーハ1を上下から挟み込んで、それぞれの面を同時に加工する。
このコンタリング加工のときにウェーハ1の上斜面1au、下斜面1adに2つのカップ形溝なし砥石4,4の接触端面4a,4aを接触させられるように、カップ形溝なし砥石4,4を用いた面取り加工装置には、カップ形溝なし砥石4,4を幅方向の軸の軸回りに回転させて上下方向の角度を調整する上下向き変更装置42,42が設けられる(図16図に示す従来装置と同様)。
さらに、2つのカップ形溝なし砥石4,4をウェーハ1に接触させるときには、図17に示すように、2つの溝なし砥石4,4を、それぞれの幅方向の中心線L,Lが、回転するウェーハ1の回転軸上で互いに交差するように傾けて配置する。
なお、カップ形溝なし砥石4,4における軸心の方向、すなわち、ウェーハ1と接触して磨耗することが予定されている方向を厚さ方向といい、この厚さ方向と垂直に交差する水平な方向を幅方向という。
この別実施形態でも、2つの溝なし砥石4,4を、それぞれの幅方向の中心線L,Lが回転するウェーハ1の回転軸S上で互いに交差するように傾けているが、上記2本の中心線L,Lが正確にウェーハ1の回転軸S上で交差する必要はなく、2つの溝なし砥石4,4の幅方向の中心線L,Lが平行となるように配置した状態よりもウェーハ1の回転軸S側に傾いていればよい。
なお、カップ形溝なし砥石4,4の幅方向の中心線L,Lとは、円筒の軸心と一致する線ではなく、カップ形溝なし砥石4のうちウェーハ1と一度に接触しうる部分の幅方向中央を通る線で、且つ、カップ形溝なし砥石4のそれぞれの円筒の軸芯と平行な線をいう(図17参照)。
2つのカップ形溝なし砥石4,4の幅方向の中心線L,Lをウェーハ1の回転軸Sに向けるための傾き角度Q°を決定するには、まず、2つのカップ形溝なし砥石4,4の基準高さhg及び初期高さh0、加工されるウェーハ1の直径D、2つのカップ形溝なし砥石4,4の幅b、及び2つのカップ形溝なし砥石4,4の間の最小隙間aを用いる。
2つのカップ形溝なし砥石4,4の基準高さhgとしては、カップ形溝なし砥石4の厚さ方向の磨耗範囲の平均値(中央値)、つまり、砥石4の初期の最大高さh0と磨耗による交換直前の最小高さとの平均の長さを用いることができる。
ウェーハ1の直径Dは、加工前の直径と加工後の所望の直径とのいずれを用いてもよい。本実施形態では、加工後の所望の直径を用いている。
カップ形溝なし砥石4,4の幅bとは、カップ形溝なし砥石4,4が一度にウェーハ1に接触しうる部分の幅方向長さであり、近似値としてカップ形溝なし砥石4,4の円筒の周壁の板厚を用いてもよい。
2つのカップ形溝なし砥石4,4の間の最小隙間aとは、初期の最大高さのときにおける、ウェーハ1に近い側における砥石4,4間の最小距離であり、本実施形態では長さはおよそ0.5mmとなっている。
カップ形溝なし砥石4,4の円筒の基準高さhg(mm)、その初期高さh0(mm)、ウェーハ1の直径D(mm)、カップ形溝なし砥石4の円筒の幅b(mm)、及び2つのカップ形溝なし砥石4、4の間の最小隙間a(mm)を用いて、2つのカップ形溝なし砥石4,4の傾き角度(互いに平行な位置からの傾き)Q°は、円盤形溝なし砥石の場合(図23)と同様に、次式によって決定される。
Q°=sin−1((−B+(B−4AC)1/2)/2A)
ただし、ここで、
A=(D−2h0+2hg)+b
B=−2a(D−2h0+2hg)
C=a−b
である。
この別実施形態にかかるウェーハ1の面取り加工方法では、2つのカップ形溝なし砥石4,4を、互いに近傍に、且つ、それぞれの幅方向の中心線L,Lを平行に配置した位置よりも回転テーブル2a上に載置されたウェーハ1の回転軸S側に向くように互いに傾けて配置してウェーハ1に接触させる。これにより、カップ形溝なし砥石4,4とウェーハ1との接触長を、砥石を互いに平行に配置した場合よりも長くすることができるので、短時間でウェーハ1の縮径加工及びコンタリング加工を行うことができて、スループットを向上させることができる。
また、カップ形溝なし砥石4の整形(ツルーイング)後の形状が、図17のように左右(幅方向)対称で研磨量の小さなものになる。そのため、砥石4の整形(ツルーイング)に要する時間を短縮することができる。
2つのカップ形溝なし砥石4,4の幅を大きくした場合には、さらにウェーハ1との接触長を長くすることができ、更に短時間でウェーハ1の縮径加工及びコンタリング加工を行うことができて、スループットを更に向上させることができる。
また、カップ形溝なし砥石4,4を用いる場合には、砥石の磨耗を遅くしてその寿命を延ばすためには砥石4,4の高さを大きくするしかなかったが、カップ形溝なし砥石4,4の高さを大きくすると巨大な空間が必要となっていた。これに対し、カップ形溝なし砥石4を傾けて配置することにより、カップ形溝なし砥石4の幅(カップ形溝なし砥石4,4の円筒の板厚)を大きくしてその寿命を延ばし砥石交換の工数を削減することができるとともに、ウェーハの加工時間を短縮することもできる。
<ウェーハの面取り加工装置>
次に、本発明の面取り加工方法に使用できる面取り加工装置の一例として、図7ないし図11、および図18に示す2つの円盤形溝なし砥石3,3を用いた面取り加工装置10を説明する。
この面取り加工装置10は、2つの円盤形溝なし砥石3,3を、互いに対向する側面を近接して配置すると共に周面を加工面として使用している。ウェーハ1を加工するときには、2つの円盤形溝なし砥石3,3の幅方向の中心線L,Lがウェーハ1の回転軸S上で互いに交差するように傾けて配置し(図14参照)、研削、研磨を左右均等にすることができる。
各円盤形溝なし砥石3,3は、砥石駆動装置11a,11aを備えた砥石支持装置11,11により各別に支持されている。この砥石支持装置11,11は各別に上下(Z)方向へ昇降自在となるように、各別に(精密研削用Z軸モータ付き)砥石昇降装置12,12により支持されている。さらに、各砥石昇降装置12,12は、固定側部材を基台13に基準がぶれないように確実に固定されており、移動側部材を上下(Z)方向へ昇降自在に支持するものである(図7、図10)。
また、図18に示すように、この面取り加工装置10は、各砥石支持装置11,11に、各円盤形溝なし砥石3,3を左右対称に又は各別に水平方向に回動可能な角度調整装置35,35を備えている。
この角度調整装置35は、砥石支持装置11の中間高さに形成され、砥石支持装置11本体側に固定された上側板35aと、円盤形溝なし砥石3側に固定された下側板35bとを、垂直方向に延びる回動軸部材35cを介して連結してなる。
下側板35bは、上側板35aに対して、回動軸部材35cの軸回りに回動可能であり、これによって円盤形溝なし砥石3の水平面内での保持角度を自由に調整することができる。すなわち、砥石支持装置11本体側に固定された上側板35aに対して、円盤形溝なし砥石3側に固定された下側板35bを回転軸部材35cの軸回りに回動させて、円盤形溝なし砥石3の水平面内の保持角度を手動で調整することができる。
なお、円盤形溝なし砥石3の「水平面内での保持角度を調整する」とは、円盤形溝なし砥石3の中心線Lをウェーハ1の回転軸S側へ回転させられればよく、回動軸部材35cのように正確に上下方向に延びた軸の軸回りに回転させるものである必要はない。すなわち、円盤形溝なし砥石3を厚さ方向に延びた軸の軸回りに回転させる装置や、幅方向に延びた軸の軸回りに回転させる装置は、角度調整装置35に含まれないが、斜めの軸の軸回りに回転させる装置は角度調整装置35に含まれる。
図18に示すように、面取り加工装置10は、円盤形溝なし砥石3を幅方向に延びた軸の軸回りに回転させる砥石駆動装置11aを有しているが、これは角度調整装置ではなく、エッジ1a加工に際して円盤形溝なし砥石3を回転させるものである。
また、図16に示すカップ形溝なし砥石4を用いた面取り加工装置では、カップ形溝なし砥石4を回転させる厚さ方向に延びた軸の軸回りに回転させる砥石駆動装置11aを有しているが、これは角度調整装置ではなく、エッジ1a加工に際してカップ形溝なし砥石4を回転させるものである。また、カップ形溝なし砥石4を幅方向に延びた軸の軸回りに回転させる上下向き変更装置42も、角度調整装置ではなく、コンタリング加工のときにカップ形溝なし砥石4を上斜面1au、下斜面1adに接触させられるように上下方向の角度を調整するためのものである。
ウェーハ1を面取り加工するときには、角度調整装置35,35によって、2つの円盤形溝なし砥石3,3を、それぞれの幅方向の中心線L,Lを平行位置よりも回転テーブル2a上に載置されたウェーハ1の回転軸S側に向くように互いに傾けて、ウェーハ1に接触させる。
図7において、面取り加工されるウェーハ1は芯だしして回転テーブル2a上に載置される。回転テーブル2aは、(θ軸モータ付き)ワーク載置テーブル回転装置2bを内蔵したワーク取付台2に取り付けられている。そして、ワーク取付台2は台座16上に回転可能に設置されている。したがって、回転テーブル2a上に芯だしして載置されたウェーハ1は、ワーク取付台2に内蔵されたテーブル回転装置2bによって、台座16に対して回転させられる。
台座16は架台17に支持されている。架台17は、奥行(Y)方向(図7では紙面に垂直な方向)へ延設された一対のレール17a,17aに案内されて奥行方向へ直線移動可能な一対の奥行方向移動体17b,17b上に支持されている。そして、(Y軸モータ付き)奥行方向移動装置17c(図9図示)が一対のレール17a,17a上に設けられており、この(Y軸モータ付き)奥行方向移動装置17cによって、架台17は奥行方向(図7では紙面に垂直な方向)へ直線移動させられる。
さらに、上記奥行(Y)方向と直交する左右(X)方向には、一対のレール17d,17dが延設されている。この一対のレール17d,17dには、一対の左右方向移動体17e,17eが案内可能に支持されている。架台17を奥行方向に移動させるための一対のレール17a,17a、奥行方向移動体17b,17bおよび奥行方向移動装置17cは、まとめて一対の左右方向移動体17e,17e上に載置されている。そして、(X軸モータ付き)左右方向移動装置17fが一対のレール17d,17d上に設けられており、この(X軸モータ付き)左右方向移動装置17fによって架台17は、左右(X)方向へ直線移動させられる。一対のレール17d,17dはウェーハ側昇降装置支持部材33に支持されている。
ワーク支持装置15は、台座16と、架台17と、奥行方向移動装置17cと、左右方向移動装置17fとをまとめたものを指す。
このような構成により、本実施形態によれば、面取り加工されるべきウェーハ1を2つの円盤形溝なし砥石3,3が設けられている位置まで移動するとともに、2つの円盤形溝なし砥石3,3に対してウェーハ1を接近離間させつつウェーハ1の面取り加工を行うことができる。
ウェーハ1と2つの円盤形溝なし砥石3,3とは、Y方向に相対的に接近離間できればよいので、本実施形態とは逆に、砥石支持装置11,11等をY方向へ移動可能にして、ウェーハ1を載置した回転テーブル2aに2つの円盤形溝なし砥石3,3を接近離間させるようにしてもよい。
なお、面取り加工装置10による面取り加工の時にウェーハ1に上下方向の変形、振動、バタツキ等による変位を生じたとしても、2つの円盤形溝なし砥石3,3とウェーハ1との相対的な上下方向の位置ズレが生じないようにするため、図8に示されるように、各レール17a,17aと各レール17d,17dの中間位置から台座16の下端面とウェーハ側昇降装置支持部材33との間には、複数個の(ウェーハ側昇降用Z軸)圧電アクチュエータ34a,…,34aからなるウェーハ側昇降装置34が設けられている。したがって、ウェーハ側昇降装置支持部材33を基準にして台座16ごとウェーハ1を上下方向へ移動させることができるように構成されている。
これら各砥石3,3、各砥石駆動装置11a,11a、各昇降装置12,12,34、各移動装置17c,17f等の加工時における動作を制御するための制御装置は、図10の制御系統図に示されている。図10において、コントロールボックス19は、入力部から各制御装置の動作に必要な初期条件の設定をおこない、必要な制御手順に従って行なう加工動作の指示を出すものであり、操作パネル19a、制御部19b、および制御信号出力部19cを備える。
操作パネル19aは、液晶モニター(LCDモニター)、キーボード、プッシュボタンスイッチ(PBS)等を備えて、入力部から各制御装置の動作に必要な初期条件の設定をおこない、必要な制御手順に従って行なう加工動作の指示を出すとともに、その設定条件、加工条件、初期状態や動作状況等の面取り加工に必要な条件や各装置の状態をモニターできるように構成されている。制御部19bは、操作パネル19aによって指定された設定条件に従って、各円盤形溝なし砥石3,3を回転させる砥石駆動装置11a,11aおよび砥石昇降装置12,12、ウェーハ側昇降装置34、ワーク載置テーブル回転装置2bを内蔵したワーク取付台2、奥行方向移動装置17cや左右方向移動装置17fを設けた架台17等の動作条件を設定して送出すべき制御信号を定める。制御信号出力部19cは、制御部19bから出力された信号を受けて、指示された動作を行なわせるために必要な制御信号を面取り加工装置10本体側の制御装置に送出する。
面取り加工装置10本体側の制御装置は図11に示される。制御装置は、ウェーハセット用制御装置9a、ウェーハ加工用制御装置9b、ウェーハ粗加工用制御装置9c、及びノッチ精密加工用制御装置9dからなる。ウェーハセット用制御装置9aは、ロボットZ軸モータ、吸着アームR軸モータまたはローダ用アクチュエータを起動してウェーハ1を待機場所から回転テーブル2aまで移送し、アライメント(θ軸、Y軸)モータを作動して偏心度を明らかにし、その偏心度を修正することにより軸心を合わせるものである。さらに、ウェーハセット用制御装置9aは、ウェーハ1を回転テーブル2aごと加工位置に移動して位置合せし、ノッチ1nの位置から加工初期の位置を定め、必要に応じて外周端の仕上げ加工用に高速回転するとともに、加工後に表面を洗浄してから、仕上げたウェーハ1を加工済みウェーハ1の集積位置へ移し換える動作を制御する。ウェーハ加工用制御装置9bは、ウェーハ回転方向、左右方向(X軸方向)、奥行方向(Y軸方向)、仕上げ用上下方向(Z軸方向)等の動作方向を個々に制御する制御装置をまとめたものである。ウェーハ粗加工用制御装置9cは、ウェーハ1の精密加工の前に行なう粗加工用に追加された(粗研削用Z軸モータ付き)砥石上下方向移動装置8(図8参照)に配設された制御対象の装置(総形砥石粗研削用モータ6a、棒状砥石粗研削用モータ7a等)をまとめたものである。ノッチ精密加工用制御装置9dは、ウェーハ1の周上の基準位置を決めるノッチ1nを精密加工するための各駆動装置の制御装置をまとめたものである。
これらの各制御装置9a〜9dを制御信号出力部19cから出力された制御信号に基づき制御して、必要な駆動装置Wを起動し、それぞれが他の駆動装置と調和して動作するように制御する。
この面取り加工装置10を使用してウェーハ1の面取り加工するときには、まず、制御部19bから制御信号出力部19cを介してウェーハセット用制御装置9aを駆動して、個々に積まれたウェーハ1又はカセットに収納されたウェーハ1,…,1から1枚のウェーハ1を取り出して回転テーブル2a上に移し、さらに制御部19bからの指示に従い制御信号出力部19cから出力される制御信号により奥行方向移動装置(Y軸モータ)17cを駆動して、ウェーハ1を載せた回転テーブル2aを図8,9に示すウェーハ準備位置から図7に示すウェーハ加工位置まで移動し、移動後に周端の縮径加工を行なう。
周端縮径加工時には、制御部19bからの指示に従い制御信号出力部19cから出力される制御信号により、2つの(精密研削用Z軸モータ付き)砥石昇降装置12,12を駆動して、目標とする周端の形状により図2又は図3に示すようにウェーハ1に対する各円盤形溝なし砥石3,3の位置を定めて配置し、ウェーハ加工用制御装置9bの(θ軸モータ付き)ワーク載置テーブル回転装置2bおよび各円盤形溝なし砥石3の(精密研削用スピンドルモータ付き)砥石駆動装置11a,11aを共に起動し、そして各円盤形溝なし砥石3,3の回転を周端縮径加工時の回転数に調節し、ウェーハ1の回転と円盤形溝なし砥石3,3の回転とを適切に制御して、精度良く研削し、必要な径に近づいてから精密な研磨作業(スパークアウト)に切り換えてウェーハ1のエッジ1aにおけるウェーハ径を目標とする形状に合せるように加工する。
続いて、コンタリング加工を行なう。
コンタリング加工のときには、図4,5に示すように、ウェーハ1の上下各面を各円盤形溝なし砥石3,3によりそれぞれ挟むとともに、上下に位置した各円盤形溝なし砥石3,3を各独立に相対位置を調節しながら加工する。
相対的な位置の調節には、制御信号出力部19cから出力される精密加工用上側砥石のZ軸制御信号により精密加工用上側砥石の砥石昇降装置(精密研削用上側砥石Z軸モータ)12の動作を調節し、同時に、制御信号出力部19cから出力される精密加工用下側砥石のZ軸制御信号により精密加工用下側砥石の砥石昇降装置(精密研削用下側砥石Z軸モータ)12の動作を調節して、ウェーハ1の変形、振動、バタツキ等による位置ずれを各円盤形溝なし砥石3,3により抑えるとともに各円盤形溝なし砥石3,3のZ軸方向の位置調節により、上下両面を各別に位置補正しつつコンタリング加工を進め、さらに同時に、制御信号出力部19cから出力されるウェーハ側昇降用Z軸の制御信号によりウェーハ側昇降装置34による昇降動作を調節して、上下両円盤形溝なし砥石3,3とウェーハ1との上下方向の相対的な位置を一定に保ち、また、加工時における各円盤形溝なし砥石3,3の回転をコンタリング加工時の回転数に調節して、ウェーハ1の回転と円盤形溝なし砥石3,3の回転とを適切に制御して、エッジ形状を精度良く研削し、必要な形状に近づいてから精密な研磨作業(スパークアウト)に切り換え、ウェーハ1のエッジ1aの形状を目的とする形状の寸法に合せるように研磨し、加工形状の精度を向上する。
このようにウェーハ1のエッジ1aを高速で精密に加工することが可能になったことにより、加工時間を短縮でき、作業効率を向上するとともに各円盤形溝なし砥石3,3の摩耗を少なくすることができて、砥石寿命を長くすることができる。
また、各円盤形溝なし砥石3,3のウェーハ1への接触点における加工方向が互いに反対方向になるように各円盤形溝なし砥石3,3の回転方向を定めると、エッジ1aの周辺部に生じやすいバタツキを抑え、研削、研磨時に斜め方向へ刻設される条痕が一方の砥石により刻設された後に、重複して、他方の砥石による逆向きの斜め条痕が刻設されて、加工箇所が条痕の交差した面となり、加工面の表面粗さをより精細なものにして、表面粗さを向上することができ、厚さの薄いウェーハ1やエッジ1aにおける断面斜面角度の小さい形状であっても要求された断面形状を精度良く加工することができる。
制御部19bからの指示に従い制御信号出力部19cから出力される制御信号により、ウェーハ加工用制御装置9bのワーク載置テーブル回転装置(θ軸モータ)2bの回転方向を、ウェーハ1が1枚加工される毎に逆方向へ切り換えて、新たなウェーハ1の加工を行なうと、各円盤形溝なし砥石3,3の摩耗が均一になり、寿命が長くなり、均一に摩耗した砥石を用いて加工するため高い加工精度を維持することができる。
制御部19bからの指示に従い制御信号出力部19cから出力される制御信号により、ウェーハ加工用制御装置9bの各精密加工用(上側又は下側)砥石の砥石昇降装置(Z軸モータ)12,12を起動して、各円盤形溝なし砥石3,3の上下位置を調節するとともに、加工側昇降装置(加工側昇降用Z軸モータ)14による昇降動作を調節して、上下両円盤形溝なし砥石3,3のウェーハ1に対する上下方向の相対的な位置を一定に保つことにより、常に、2つの円盤形溝なし砥石3,3と振れあるいは位置ズレを起こしたウェーハ1のエッジ1aとの相対位置が同じになるように制御することができて、面取り加工が正確にでき、高い加工精度でエッジ1aの成形ができる。
本発明の実施形態ではウェーハ1の周方向(θ方向)の位置の基準としてノッチ1nを形成しているが、ノッチ1nの代わりに、直線状のオリエンテーションフラットを形成することがある。
この場合には、制御部19bからの指示に従い制御信号出力部19cから出力される制御信号により、ウェーハ加工用制御装置9bの左右方向移動装置(X軸モータ)17fを起動して、各円盤形溝なし砥石3,3をウェーハ1のオリエンテーションフラットとなる端縁に当接し、ウェーハ1を左右方向移動装置(X軸モータ)17fにより駆動される左右方向移動体17e,17eの動作方向に従いX軸方向へ直線的に往復動することによりオリエンテーションフラットを所定の形状に加工することができ、同一加工装置によりエッジ1aの成形加工及び仕上げ加工とオリエンテーションフラットの成形加工及び仕上げ加工との両方ができて、ウェーハ加工の作業効率を向上させるとともに装置の稼働率を高めることができる。
さらに、従来の方法において、円盤形溝なし砥石3,3を用いる場合には、砥石の磨耗を遅くしてその寿命を延ばすためには砥石の半径を大きくするしかなかったが、円盤形溝なし砥石3,3の半径を大きくすると巨大な空間が必要となっていた。これに対し、溝なし砥石3,3を傾けて配置することにより、溝なし砥石の幅を大きくしてその寿命を延ばし砥石交換の工数を削減することができるとともに、ウェーハの加工時間を短縮することもできる。
<砥石角度調整用治具>
上記の面取り加工装置10では、2つの円盤形溝なし砥石3,3の基準半径rg(mm)、2つの円盤形溝なし砥石3,3の初期半径r0、ウェーハ1の直径D(mm)、2つの円盤形溝なし砥石3の幅b(mm)、および砥石3,3間の最小隙間a(mm)から決定される所定の傾け角度P°に2つの円盤形溝なし砥石3を傾けて保持するために、2つの砥石角度調整用治具36を用いることができる。
2つの砥石角度調整用治具36は、図19に示すように、略円盤状に形成された部材であって、周面に所定のテーパ面36aが形成されている。
2つの砥石角度調整用治具36,36には、面取り加工装置10の各砥石支持装置11の各円盤形溝なし砥石3,3を取り付けるべき軸支部分に着脱するための孔36bが穿設されている。
2つの砥石角度調整用治具36,36を用いて円盤形溝なし砥石3,3の保持角度を調整するには、まず、それぞれの砥石角度調整用治具36,36を砥石支持装置11,11の軸支部分に取り付ける。
そして、角度調整装置35,35を回転させて、2つの砥石角度調整用治具36,36のテーパ面36a,36aの最もウェーハ1側の部分が一直線状に並ぶように調整する。このとき、2つの砥石角度調整用治具36,36のテーパ面36a,36aの最もウェーハ1側の部分が一直線に並んでいるかどうかは、電気マイクロメータ37によって測定され、正確に調整される。
2つの砥石角度調整用治具36,36のテーパ面36a,36aの最もウェーハ1側の部分が一直線状に並ぶように調整してから、各砥石支持装置11,11から各砥石角度調整用治具36,36を取り外し、各円盤状溝なし砥石3,3を各砥石支持装置11,11に取り付けると、2つの円盤状溝なし砥石3,3は、それぞれの幅方向の中心線L,Lがウェーハ1の回転軸S上で互いに交差する角度に保持される。
このような砥石角度調整用治具36は、一定の厚さおよび幅を有する円盤形溝なし砥石3と、一定の半径のウェーハ1との組み合わせに対応する所定のテーパ面36aを有するため、溝なし砥石3とウェーハ1との組み合わせが変われば、それに対応した別の砥石角度調整用治具36を用意する必要がある。
ウェーハの面取り加工装置10を用いたウェーハ1の面取り加工時において、ウェーハ1または円盤状溝なし砥石3のいずれか一方の形状を変更するときには、その都度、2つの円盤状溝なし砥石3,3のそれぞれの幅方向の中心線L,Lがウェーハ1の回転軸S上で互いに交差するように、砥石3,3の保持角度を調整する必要がある。
しかし、この砥石角度調整用治具36,36を用いることによって、ウェーハ1または円盤状溝なし砥石3,3を変更するときにも、短時間で容易に砥石3,3の保持角度を調整することができる。
2つのカップ形溝なし砥石4,4を使用する面取り加工装置でも、同様のテーパ面を有する砥石角度調整用治具を用いることにより、2つのカップ形溝なし砥石4,4の保持角度を容易に調整することができる。
1 ウェーハ
1a エッジ、周端部
1su 上平面
1sd 下平面
1au 上斜面
1ad 下斜面
1b 周端
1c 円弧
1d 斜め条痕
1e (逆向きの)斜め条痕
1n ノッチ
2 ワーク取付台
2a 回転テーブル
2b (θ軸モータ付き)ワーク載置テーブル回転装置
3 (円盤形溝なし)砥石
4 (カップ形溝なし)砥石
4a (接触)端面
6a 総形砥石粗研削用モータ
7a 棒状砥石粗研削用モータ
8 (粗研削用Z軸モータ付き)砥石上下方向移動装置
9a ウェーハセット用制御装置
9b ウェーハ加工用制御装置
9c ウェーハ粗加工用制御装置
9d ノッチ精密加工用制御装置
10 面取り加工装置
11 砥石支持装置
11a (精密研削用スピンドルモータ付き)砥石駆動装置
12 (精密研削用Z軸モータ付き)砥石昇降装置
13 基台
15 ワーク支持装置
16 台座
17 架台
17a,17d レール
17b 奥行(Y)方向移動体
17c (Y軸モータ付き)奥行方向移動装置
17e 左右方向移動体
17f (X軸モータ付き)左右方向移動装置
19 コントロールボックス
19a 操作パネル
19b 制御部
19c 制御信号出力部
33 ウェーハ側昇降装置支持部材
34 ウェーハ側昇降装置
34a (ウェーハ側昇降用Z軸)圧電アクチュエータ
35 角度調整装置
35a 上側板
35b 下側板
35c 回動軸部材
36 砥石角度調整用治具
36a テーパ面
36b (着脱用)孔
37 マイクロメータ
42 上下向き変更装置
51 ツルーア
R1,R2 半径
α1,α2 角度
X1,X2,X3 面取り幅
X,Y,Z,θ 移動方向
S (ウェーハ1の)回転軸
L (砥石の)幅方向の中心線
rg 円盤形溝なし砥石の基準半径
r0 円盤形溝なし砥石の初期半径
hg カップ形溝なし砥石の基準高さ
h0 カップ形溝なし砥石の初期高さ
D ウェーハの直径
b (円盤形またはカップ形)溝なし砥石の幅
a (2つの溝なし砥石間の)最小隙間

Claims (9)

  1. 回転テーブル上にウェーハを芯だしして載置し、回転させて、この回転するウェーハを加工する2つの溝なし砥石をウェーハ周端部に接触させてウェーハの直径または断面形状を面取りする面取り加工方法であって、
    上記2つの溝なし砥石の幅方向の中心線を、上記回転テーブル上に載置された上記ウェーハの回転軸側に向けて互いに近接させて配置して、上記ウェーハに接触させることを特徴とするウェーハの面取り加工方法。
  2. 上記2つの溝なし砥石を、それぞれの幅方向の中心線が上記ウェーハの回転軸上において互いに交差するように配置することを特徴とする請求項1記載のウェーハの面取り加工方法。
  3. 上記2つの溝なし砥石が、それぞれ、円盤形に形成されて円心の軸回りに回転させられるとともに、外周面で上記ウェーハに接触させられる円盤形溝なし砥石であることを特徴とする請求項1記載のウェーハの面取り加工方法。
  4. 上記2つの円盤形溝なし砥石の半径方向の厚さの磨耗可能範囲の平均値を基準半径とし、
    加工されるウェーハの直径、2つの円盤形溝なし砥石の上記基準半径、2つの円盤形溝なし砥石の初期半径、2つの円盤形溝なし砥石の幅、及び2つの円盤形溝なし砥石の間の最小隙間に基づいて、2つの円盤形溝なし砥石の向きを決定することを特徴とする請求項3のウェーハの面取り加工方法。
  5. 上記2つの溝なし砥石が、それぞれ、カップ形に形成されて軸回りに回転させられるとともに、カップ形の円筒の端面で上記ウェーハに接触させられるカップ形溝なし砥石であることを特徴とする請求項1記載のウェーハの面取り加工方法。
  6. 上記2つのカップ形溝なし砥石における円筒の高さ方向の磨耗可能範囲の平均値を基準高さとし、
    加工されるウェーハの直径、2つのカップ形溝なし砥石の上記基準高さ、2つのカップ形溝なし砥石の初期高さ、2つのカップ形溝なし砥石の円筒の幅、及び2つのカップ形溝なし砥石の間の最小隙間に基づいて、2つのカップ形溝なし砥石の向きを決定することを特徴とする請求項5のウェーハの面取り加工方法。
  7. 芯だしして載置されたウェーハを回転させる回転テーブルと、
    上記回転テーブルに載置されて回転させられる上記ウェーハの周縁部を面取りするために、幅方向の中心線を上記回転テーブル上に載置された上記ウェーハの回転軸側に向くように互いに近接して配置された2つの溝なし砥石と、
    上記回転テーブル上に載置されて回転させられるウェーハおよび上記2つの溝なし砥石を相対的に接近離間させる移動装置とを有することを特徴とするウェーハの面取り加工装置。
  8. 上記2つの溝なし砥石の水平面内の保持角度を調整可能な角度調整装置を有することを特徴とする請求項7記載のウェーハの面取り加工装置。
  9. 請求項8記載のウェーハの面取り加工装置の上記2つの溝なし砥石を取り付けるべき部位に着脱可能に形成され、
    上記2つの溝なし砥石の保持角度の基準となる所定のテーパ面を形成したことを特徴とする砥石角度調整用治具。
JP2012179315A 2012-08-13 2012-08-13 ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具 Active JP5988765B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012179315A JP5988765B2 (ja) 2012-08-13 2012-08-13 ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具
TW102121065A TWI600496B (zh) 2012-08-13 2013-06-14 晶圓的倒角加工方法、晶圓的倒角加工裝置及磨石角度調整輔助具
CN201310302643.7A CN103586751B (zh) 2012-08-13 2013-07-16 晶圆的倒角加工方法和装置以及磨具角度调整用工具
KR1020130094874A KR101672076B1 (ko) 2012-08-13 2013-08-09 웨이퍼의 면취 가공 방법, 웨이퍼의 면취 가공 장치 및 숫돌 각도 조정용 지그

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179315A JP5988765B2 (ja) 2012-08-13 2012-08-13 ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具

Publications (2)

Publication Number Publication Date
JP2014037014A true JP2014037014A (ja) 2014-02-27
JP5988765B2 JP5988765B2 (ja) 2016-09-07

Family

ID=50077180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179315A Active JP5988765B2 (ja) 2012-08-13 2012-08-13 ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具

Country Status (4)

Country Link
JP (1) JP5988765B2 (ja)
KR (1) KR101672076B1 (ja)
CN (1) CN103586751B (ja)
TW (1) TWI600496B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181681A (zh) * 2016-08-31 2016-12-07 天通银厦新材料有限公司 一种蓝宝石加工用精确打磨装置
JP2019040970A (ja) * 2017-08-24 2019-03-14 三菱マテリアル株式会社 プラズマ処理装置用炭化珪素電極板及びその製造方法
CN110265192A (zh) * 2019-07-29 2019-09-20 湖州师范学院 厚度可调双套滚轮漆包扁线导体成形装置
KR20240006007A (ko) 2021-06-24 2024-01-12 이치로 가타야마 워크 가공 장치, 지석, 및 워크 가공 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045542B2 (ja) * 2014-09-11 2016-12-14 信越半導体株式会社 半導体ウェーハの加工方法、貼り合わせウェーハの製造方法、及びエピタキシャルウェーハの製造方法
CN105881136A (zh) * 2016-05-26 2016-08-24 浙江新工机械制造有限公司 一种小型倒角抛光机
CN111347061B (zh) * 2018-12-24 2021-03-30 有研半导体材料有限公司 一种硅环加工的工艺方法
CN110026889B (zh) * 2019-04-28 2021-04-20 上海新昇半导体科技有限公司 固定连接部件、研磨头组件及抛光设备
CN111618707A (zh) * 2020-05-20 2020-09-04 清华大学 晶圆磨削方法及晶圆磨削系统
KR102358687B1 (ko) * 2020-10-13 2022-02-08 (주)미래컴퍼니 웨이퍼 가공 방법 및 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218482A (ja) * 1999-01-28 2000-08-08 Daido Steel Co Ltd 枚葉式端面研磨機
US20080207093A1 (en) * 2007-02-28 2008-08-28 Applied Materials, Inc. Methods and apparatus for cleaning a substrate edge using chemical and mechanical polishing
JP2012051098A (ja) * 2010-02-26 2012-03-15 Nakamura Tome Precision Ind Co Ltd 円板状ワークの外周加工装置
JP2012143865A (ja) * 2012-03-27 2012-08-02 Daito Electron Co Ltd ワークのエッジの加工方法および加工装置
JP2013080531A (ja) * 2011-09-30 2013-05-02 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びにガラス基板
JP2013527624A (ja) * 2010-06-01 2013-06-27 エルジー シルトロン インコーポレイテッド ウェハ研磨装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262505A (ja) 1993-03-11 1994-09-20 Daito Shoji Kk 面取り砥石車及びそれを用いた面取り加工装置
JPH11207584A (ja) 1998-01-27 1999-08-03 M Tec Kk ワーク外周面の研削方法及び装置
JP4008586B2 (ja) 1998-08-09 2007-11-14 エムテック株式会社 ワークのエッジの研摩装置
JP2006021291A (ja) * 2004-07-09 2006-01-26 Tokyo Seimitsu Co Ltd 研削砥石、研削装置、及び研削方法
CN2803621Y (zh) * 2005-05-27 2006-08-09 戚道易 旋转磨头的角度调整装置
JP2007030119A (ja) * 2005-07-28 2007-02-08 Tokyo Seimitsu Co Ltd ウェーハ面取り装置及びウェーハ面取り方法
JP5112703B2 (ja) * 2007-01-18 2013-01-09 ダイトエレクトロン株式会社 ウェーハ面取り加工方法およびその装置
JP2011194561A (ja) * 2010-02-26 2011-10-06 Nakamura Tome Precision Ind Co Ltd 円盤状ワークの面取装置
CN102198637B (zh) * 2011-04-25 2012-12-26 广州市敏嘉制造技术有限公司 数控磨床砂轮角度调整机构
CN102601691B (zh) * 2012-04-06 2013-12-25 大连理工大学 一种圆锥面磨削方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218482A (ja) * 1999-01-28 2000-08-08 Daido Steel Co Ltd 枚葉式端面研磨機
US20080207093A1 (en) * 2007-02-28 2008-08-28 Applied Materials, Inc. Methods and apparatus for cleaning a substrate edge using chemical and mechanical polishing
JP2012051098A (ja) * 2010-02-26 2012-03-15 Nakamura Tome Precision Ind Co Ltd 円板状ワークの外周加工装置
JP2013527624A (ja) * 2010-06-01 2013-06-27 エルジー シルトロン インコーポレイテッド ウェハ研磨装置
JP2013080531A (ja) * 2011-09-30 2013-05-02 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びにガラス基板
JP2012143865A (ja) * 2012-03-27 2012-08-02 Daito Electron Co Ltd ワークのエッジの加工方法および加工装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181681A (zh) * 2016-08-31 2016-12-07 天通银厦新材料有限公司 一种蓝宝石加工用精确打磨装置
JP2019040970A (ja) * 2017-08-24 2019-03-14 三菱マテリアル株式会社 プラズマ処理装置用炭化珪素電極板及びその製造方法
CN110265192A (zh) * 2019-07-29 2019-09-20 湖州师范学院 厚度可调双套滚轮漆包扁线导体成形装置
CN110265192B (zh) * 2019-07-29 2024-04-05 湖州师范学院 厚度可调双套滚轮漆包扁线导体成形装置
KR20240006007A (ko) 2021-06-24 2024-01-12 이치로 가타야마 워크 가공 장치, 지석, 및 워크 가공 방법

Also Published As

Publication number Publication date
CN103586751A (zh) 2014-02-19
CN103586751B (zh) 2017-08-25
TW201406495A (zh) 2014-02-16
JP5988765B2 (ja) 2016-09-07
KR101672076B1 (ko) 2016-11-02
KR20140021975A (ko) 2014-02-21
TWI600496B (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
JP5988765B2 (ja) ウェーハの面取り加工方法、ウェーハの面取り加工装置および砥石角度調整用治具
JP5352331B2 (ja) ウェーハの面取り加工方法
JP5416956B2 (ja) 研削ホイールのツルーイング工具及びその製作方法、これを用いたツルーイング装置、研削ホイールの製作方法、並びにウェハーエッジ研削装置
KR101273729B1 (ko) 판상체의 연마 방법 및 그 장치
KR102507777B1 (ko) 웨이퍼의 제조 방법 및 웨이퍼
JP6528527B2 (ja) ツルーアーの製造方法および半導体ウェーハの製造方法、ならびに半導体ウェーハの面取り加工装置
JP5112703B2 (ja) ウェーハ面取り加工方法およびその装置
JP7481518B2 (ja) ツルーイング方法及び面取り装置
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
JPH09168953A (ja) 半導体ウェーハのエッジ研摩方法及び装置
JP2007030119A (ja) ウェーハ面取り装置及びウェーハ面取り方法
CN210115768U (zh) 倒角研削装置
JP6725831B2 (ja) ワーク加工装置
JP2000042887A (ja) ウェーハ面取り方法
TW201628777A (zh) 倒角加工裝置及倒角加工方法
JP6847484B1 (ja) ワークの溝研磨方法及び研磨装置
JP2004243422A (ja) 外周研削合体ホイル
JP7278584B2 (ja) 研削装置
JP2001191238A (ja) 円盤状工作物の面取り加工方法、面取り用研削砥石車および面取り加工装置
KR102646975B1 (ko) 워크 가공 장치, 지석, 및 워크 가공 방법
JP2018171707A (ja) 板状物の端面加工装置
US20230415293A1 (en) Method of forming truer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250