JP2014024703A - 炭化珪素単結晶の製造方法 - Google Patents

炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
JP2014024703A
JP2014024703A JP2012165805A JP2012165805A JP2014024703A JP 2014024703 A JP2014024703 A JP 2014024703A JP 2012165805 A JP2012165805 A JP 2012165805A JP 2012165805 A JP2012165805 A JP 2012165805A JP 2014024703 A JP2014024703 A JP 2014024703A
Authority
JP
Japan
Prior art keywords
silicon carbide
raw material
single crystal
growth chamber
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012165805A
Other languages
English (en)
Inventor
Shinsuke Fujiwara
伸介 藤原
Taro Nishiguchi
太郎 西口
Tsutomu Hori
勉 堀
Shunsaku Ueda
俊策 上田
Naoki Oi
直樹 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012165805A priority Critical patent/JP2014024703A/ja
Publication of JP2014024703A publication Critical patent/JP2014024703A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】マイクロパイプの発生を抑制することができる、炭化珪素単結晶の製造方法を提供する。
【解決手段】内壁EWを有する成長室10が準備される。内壁EWは原料支持部E1と種結晶支持部E2と犠牲部E3とを有する。原料支持部E1の温度が炭化珪素の昇華温度よりも高いT1となり、種結晶支持部E2の温度がT2となり、犠牲部E3の温度がT3となるように、成長室が加熱される。T1>T2≧T3が満たされる。種結晶70上に質量W1を有する炭化珪素単結晶81が成長し、かつ犠牲部E3上に質量W2を有する炭化珪素堆積物82が堆積される。W1/W2<5が満たされる。
【選択図】図2

Description

本発明は炭化珪素単結晶の製造方法に関するものであり、特に昇華法を用いた炭化珪素単結晶の製造方法に関するものである。
D. Hofmann et al., "Sublimation growth of silicon carbide bulk crystals: experimental and theoretical studies on defect formation and growth rate augmentation", Journal of Crystal Growth 198/199 (1999), pp. 1005-1010 によれば、マイクロパイプのないまたは低減されたシード上の炭化珪素(SiC)結晶成長におけるマイクロパイプの原因は、主に、C(カーボン)インクルージョンの発生に関係している、と指摘されている。
特開平6−333830号公報によれば、種結晶の近傍に金属珪素が配置される。この公報には、炭化珪素単結晶の初期成長段階において種結晶が炭化されることがないため、炭化珪素単結晶のエピタキシャル成長が良好に行われる、と記載されている。
特開2000−264793号公報によれば、上記特開平6−333830号公報の技術を用いると、過剰なSiリッチな雰囲気に起因したSiドロップレット(成長表面に付着したSiが気化した後、穴として残る状態)からマイクロパイプが生じる場合があることが指摘されている。特開2000−264793号公報の技術によれば、珪素原料が仕切板で囲まれることで、過剰なSiリッチ雰囲気とならないようにすることができる、と記載されている。
特開平6−333830号公報 特開2000−264793号公報
しかしながら、成長室中に珪素原料を配置することのみによって雰囲気中のSi量を精度よく調整するためには、炭化珪素原料から昇華するガスの量と、珪素原料から発生するSi蒸気の量とのバランスを高い精度で維持する必要がある。しかしながら、炭化珪素の昇華と珪素の蒸発とは互いに異なる現象であり、よって両者の間のバランスを精度よく保つことは困難であった。この結果、CインクルージョンまたはSiドロップレットのいずれかに起因したマイクロパイプの発生を十分に抑制することが困難であった。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、マイクロパイプの発生を抑制することができる、炭化珪素単結晶の製造方法を提供することである。
本発明の一の局面に従う炭化珪素単結晶の製造方法は、以下の工程を有する。
内壁を有する成長室が準備される。内壁は原料支持部と種結晶支持部と犠牲部とを有する。原料支持部は原料を支持するためのものである。種結晶支持部は種結晶を支持するためのものである。犠牲部は原料および種結晶の各々から離れて位置する。
炭化珪素からなる種結晶と、炭化珪素を含有する原料との各々が、成長室の内壁によって支持される。
原料支持部の温度が炭化珪素の昇華温度よりも高いT1となり、種結晶支持部の温度がT2となり、犠牲部の温度がT3となるように、成長室が加熱される。T1>T2≧T3が満たされる。成長室が加熱されることによって原料から昇華したガスが固化することによって、種結晶上に質量W1を有する炭化珪素単結晶が成長し、かつ犠牲部上に質量W2を有する炭化珪素堆積物が堆積される。W1/W2<5が満たされる。
上記一の局面に従う炭化珪素単結晶の製造方法によれば、W1/W2<5が満たされることにより、Cインクルージョンの発生が抑制される。よってマイクロパイプの発生が抑制される。
好ましくは、W1/W2≦3が満たされる。これにより、Cインクルージョンの発生がより抑制される。よってマイクロパイプの発生がより抑制される。
好ましくは、W1/W2≧2が満たされる。これにより、炭化珪素単結晶の成長速度が極端に小さくなることを避けることができる。
成長室は、炭化珪素単結晶が0.5mm/時以下で成長するように加熱されてもよい。このように成長速度が小さい場合にはCインクルージョンが発生しやすかった。上記の炭化珪素単結晶の製造方法によれば、このCインクルージョンの発生が効果的に抑制される。また成長速度が小さいことにより、転位の発生を抑制することができる。
本発明の他の局面に従う炭化珪素単結晶の製造方法は、以下の工程を有する。
内壁を有する成長室が準備される。内壁は原料支持部と種結晶支持部と犠牲部とを有する。原料支持部は原料を支持するためのものである。種結晶支持部は種結晶を支持するためのものである。原料支持部と種結晶支持部と犠牲部とは一の方向において順に配置されている。
炭化珪素からなる種結晶と、炭化珪素からなる原料との各々が、成長室の内壁によって支持される。
原料支持部の温度が炭化珪素の昇華温度よりも高いT1となり、種結晶支持部の温度がT2となり、犠牲部の温度がT3となるように、成長室が加熱される。T1>T2≧T3が満たされる。成長室が加熱されることによって原料から昇華したガスが固化することによって、種結晶上に質量W1を有する炭化珪素単結晶が成長し、かつ犠牲部上に質量W2を有する炭化珪素堆積物が堆積される。
成長室を準備する工程は成長室の構造を決定する工程を含む。成長室の構造を決定する工程は、W1およびW2の間の比率が、炭化珪素単結晶中のCインクルージョンを指標として定められた所定の範囲内の値となるように行われる。
上記他の局面に従う炭化珪素単結晶の製造方法によれば、Cインクルージョンの発生を抑制することにより、マイクロパイプの発生を抑制することができる。好ましくは、炭化珪素単結晶が成長する際に新たに生成されるマイクロパイプの密度が0.2/cm3以下である。
上述したように本発明によれば、マイクロパイプの発生を抑制することができる。
本発明の実施の形態1における炭化珪素単結晶の製造装置を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素単結晶の製造装置が有する成長室の構成を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素単結晶の製造方法の第1工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素単結晶の製造方法の第2工程を概略的に示す断面図である。 本発明の実施の形態2における炭化珪素単結晶の製造方法の一工程を概略的に示す断面図である。 本発明の実施の形態3における炭化珪素単結晶の製造装置が有する成長室の構成を概略的に示す断面図である。
以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”−”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
(実施の形態1)
図1を参照して、本実施の形態における炭化珪素単結晶の製造方法に用いる製造装置50について説明する。製造装置50は、成長室10と、断熱材21と、高周波加熱コイル22とを有する。高周波加熱コイル22は、高周波誘導加熱によって成長室10を加熱するためのものであり、たとえば、成長室10を収める炉に設けられたものである。成長室10は、るつぼ11および蓋12を有する。本実施の形態においては、るつぼ11および蓋12の各々はグラファイトから作られている。
図2に示すように、成長室10は内壁EWを有する。内壁EWは原料支持部E1と種結晶支持部E2と犠牲部E3とを有する。
原料支持部E1は原料60を支持するためのものである。原料支持部E1は、るつぼ11によって構成されている。具体的には、原料支持部E1は、るつぼ11の底によって構成されている底面部分E1aと、るつぼ11の側面によって構成されている側面部分E1bとを有する。
種結晶支持部E2は種結晶70を支持するためのものである。種結晶支持部E2は、蓋12の裏面の一部によって構成されている。具体的には、種結晶支持部E2は、蓋12の裏面に設けられた突出部の、原料60に面する面によって構成されている。
犠牲部E3は原料60および種結晶70の各々から離れて位置する。原料支持部E1と種結晶支持部E2と犠牲部E3とは一の方向(図2における縦方向)において順に配置されている。成長室10の内部において、犠牲部E3に面する空間と、原料支持部E1および種結晶支持部E2の各々に面する空間との間は、幅WGを有する隙間GPによって狭窄されている。隙間GPは、るつぼ11と、蓋12とが対向することによって構成されている。具体的には隙間GPは、蓋12の裏面に設けられた突出部の側面に向かって、るつぼ11の側面が突出することによって構成されている。
次に本実施の形態における炭化珪素単結晶の製造方法について、以下に説明する。
上述した製造装置50(図1)が準備される。また種結晶70(図3)が準備される。種結晶70の結晶構造は六方晶である。この結晶構造のポリタイプは4Hであることが好ましい。種結晶70の表面(原料60に面することになる面)は、たとえば、(000−1)面から4°程度のオフ角を有する。またこの表面の形状は、100mm以上の最大寸法を有することが好ましく、100mm以上の直径を有する円形であることがより好ましく、たとえば150mm程度の直径を有する円形である。
また、炭化珪素を含有する原料60(図3)が準備される。原料60は、昇華法によって炭化珪素を成長させるための原料である。言い換えれば原料60は、昇華法による炭化珪素の成長のための原料ガスを発生させるものである。原料ガスは、たとえば、SiC2ガスおよびSi2Cガスなどである。好ましくは、原料60として炭化珪素の粉末が準備される。
図3に示すように、炭化珪素からなる種結晶70が、成長室10の内壁EWの種結晶支持部E2によって支持される。具体的には、種結晶70が種結晶支持部E2に取り付けられる。たとえば、種結晶70が種結晶支持部E2に接着される。また原料60が成長室10の内壁EWの原料支持部E1によって支持される。具体的には、原料60が、るつぼ11内に収容される。
次に成長室10内に不活性ガスが導入される。不活性ガスは、たとえば、アルゴン、ヘリウム、または窒素である。
また高周波加熱コイル22による高周波誘導加熱によって成長室10が加熱される。具体的には、原料支持部E1の温度が炭化珪素の昇華温度よりも高いT1となり、種結晶支持部E2の温度がT2となり、犠牲部E3の温度がT3となるように、成長室10が加熱される。この加熱は、T1>T2≧T3が満たされるように行われる。好ましくはT1は2000℃程度以上2500℃程度以下であり、たとえば2350℃程度である。また好ましくは、T1に対するT2およびT3の各々の相違は数十℃程度以上200℃程度以下であり、たとえば150℃程度である。
図4に示すように、成長室10が加熱されることによって原料60から昇華したガスが固化することによって、種結晶70上に炭化珪素単結晶81が成長し、かつ犠牲部E3上に炭化珪素堆積物82が堆積される。炭化珪素単結晶81は質量W1を有し、炭化珪素堆積物82は質量W2を有する。炭化珪素単結晶81の成長および炭化珪素堆積物82の体積は、W1/W2<5が満たされるように行われる。好ましくは、W1/W2≦3が満たされる。好ましくは、W1/W2≧2が満たされる。また成長室10は、炭化珪素単結晶81が0.5mm/時以下で成長するように加熱されることが好ましい。
以上により、炭化珪素単結晶81が得られる。好ましくは、炭化珪素単結晶81が成長する際に新たに生成されるマイクロパイプの密度が0.2/cm3以下である。
上述した成長室10を準備する工程は、成長室10を製造する工程であってもよい。成長室10を製造する工程は、成長室10を設計する工程、言い換えれば成長室10の構造を決定する工程を含む。成長室10の構造を決定する工程は、上述したW1およびW2の間の比率が、炭化珪素単結晶81中のCインクルージョンを指標として定められた所定の範囲内の値となるように行われる。この決定は、たとえば、隙間GPの幅WG(図2)、隙間GPの長さ(図2における縦方向の寸法)、および隙間GPと犠牲部E3との間の深さ(図2における縦方向の寸法)の組み合わせを変更することによって行い得る。なおこのような決定の具体例は、後述する実施例において示す。
本実施の形態によれば、上述したようにW1/W2<5が満たされる。すなわちW2>W1/5が満たされる。これにより、形成される炭化珪素単結晶81の質量W1に応じて、十分な質量W2を有する炭化珪素堆積物82が犠牲部E3上に生成される。炭化珪素へと変化する原料ガスは、時間的ゆらぎはあるものの時間平均で考えればSiリッチなガスである。このため、おおよそ化学量論的なSiCからなる炭化珪素堆積物82が生成される際に、犠牲部E3の周辺の雰囲気は、よりSiリッチなものとなる。犠牲部E3近傍において生成されたSiリッチなガスの一部が成長中の炭化珪素単結晶81へと拡散することで、炭化珪素単結晶81の成長が生じている箇所の雰囲気がSiプアーとなることが抑制される。これによりCインクルージョンの発生が抑制される。よってマイクロパイプの発生が抑制される。
原料60から昇華する原料ガスは熱平衡においてSiリッチと考えられる。この原料ガスが、種結晶70上まで拡散によって輸送された後、結晶化する。よって単純に考えれば炭化珪素単結晶81中にCインクルージョンが形成されることは想定されにくいが、それにも関らず従来Cインクルージョンが多く形成されていた。この原因は、成長環境の揺らぎである可能性がある。本実施の形態のように炭化珪素堆積物82の生成によりSiリッチな雰囲気が形成されることで、このような揺らぎがあっても雰囲気がSiプアーとなることを避けることができる。
また本実施の形態においては、高周波加熱コイル22がるつぼ11を加熱し、この加熱されたるつぼ11が原料60を加熱する。原料60の表面はるつぼ11に接しておらず、原料60の底はるつぼ11に接している。よって原料60の表面(図4における上面)の加熱が抑制されつつ、原料60の底(図4における下側)の加熱が促進される。この結果、原料60の表面における昇華が抑制されつつ、原料60の底からの昇華が促進される。これにより、原料60の表面を炭化されにくくすることができる。よってこの炭化によって原料60の表面上にカーボン粉末が生じることを抑制し得る。よってこのカーボン粉末が成長室10内で舞い上がることを防止することができるよって。よって舞い上がったカーボン粉末が成長中の炭化珪素単結晶81に付着することを防止することができる。よってCインクルージョンが発生することを防止することができる。
好ましくは、成長室10は、炭化珪素単結晶81が0.5mm/時以下で成長するように加熱される。このように成長速度が小さい場合にはCインクルージョンが発生しやすかった。本実施の形態によれば、このCインクルージョンの発生が効果的に抑制される。また成長速度が小さいことにより、転位の発生を抑制することができる。
好ましくは、W1/W2≦3が満たされる。これにより、Cインクルージョンの発生がより抑制される。よってマイクロパイプの発生がより抑制される。
好ましくは、W1/W2≧2が満たされる。これにより、炭化珪素単結晶81の成長速度が極端に小さくなることを避けることができる。
好ましくは、原料60として炭化珪素の粉末が用いられる場合、粒径50μm程度以下の微粒子が事前に除去される。これにより、このような微粒子が加熱されることで生じたカーボン粒子が成長中の炭化珪素単結晶81に付着することを防止することができる。これによりCインクルージョンの発生がより抑制される。
好ましくは、るつぼ11は、1.8g/cm3よりも高い密度を有するカーボン(高密度カーボンとも称する)によって作られる。これにより、雰囲気によってるつぼ11がエッチングされる量が抑制される。よってこのエッチングに伴うるつぼ11の内壁の表面荒れが抑制される。この結果、るつぼ11の内壁からのカーボン粉末の発生が抑制される。このような高密度カーボンから作られたるつぼ11を用いる代わりに、またはそれに加えて、るつぼ11の内壁に、カーボン粉末の発生を抑制するためのコーティングが設けられてもよい。コーティングの材料としては、たとえば、TaCまたはガラス状カーボンを用い得る。
好ましくは、炭化珪素単結晶81の成長中、成長室10内における粉末の舞い上がりを抑制するために、成長室10内の圧力変動が抑制される。このためには、成長室10を収める炉の容積に鑑みて、炉への導入流量と、炉からの排出流量との各々、すなわちガス流量が過度に大きくない必要がある。言い換えれば、炉内の雰囲気が単位時間当たり理論的に置換される回数(置換レート)が過度に大きくない必要がある。この観点で置換レートは好ましくは1回/分以下とされる。
好ましくは、炉内の雰囲気を所望のものとするために、炉の外部から内部への、意図しないガスのリークが抑制される。このためには、上記ガス流量が過度に小さくない必要がある。言い換えれば置換レートが過度に小さくない必要がある。この観点で置換レートは好ましくは0.01回/分以上とされる。
(実施の形態2)
図5に示すように、本実施の形態においては、成長室10が加熱される前に、原料60上にリング30が載置される。リング30は、原料60の種結晶70に面する面のうち、外周部分を選択的に覆っている。原料60の外周部分は、炭化珪素の昇華が特に生じやすく、その結果、炭化されやすい場所である。この炭化によってカーボン粉末が生じ得る。このカーボン粉末が成長室10内で舞い上がって、成長中の炭化珪素単結晶81に付着すると、Cインクルージョンが発生し得る。本実施の形態によれば、このような現象をリング30によって防止することができる。
リング30の材料は、るつぼ11の材料と同様であってもよい。またコーティングについても同様である。
なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
(実施の形態3)
図6に示すように本実施の形態の成長室10Vは、実施の形態1のるつぼ11(図2)の代わりにるつぼ11Vを有している。これにより成長室10Vは、実施の形態1の成長室10(図2)と異なり隙間GP(図2)を有しない。このような形態であっても、成長室10Vの構造が適切に決定されれば、W1およびW2の間の比率が、炭化珪素単結晶81中のCインクルージョンを指標として定められた所定の範囲内の値とされ得る。成長室10Vの構造の調整され得る要素は、たとえば、種結晶支持部とるつぼ11Vとの間隔としての長さDAおよびDCと、種結晶支持部の長さDBと、種結晶支持部の突出の長さDDとである。DA、DCまたはDDが大きくされると、Cインクルージョンが減少し、かつW1/W2が小さくなる。
なお、上記以外の構成については、上述した実施の形態1または2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
種結晶70が、次のように準備された。まず、炭化珪素の単結晶が準備された。単結晶の表面(図3において原料60に面する面)は、(000−1)面から4°のオフ角を有していた。単結晶の平面形状は直径150mm程度の円形であった。単結晶の厚さは600μmであった。単結晶の貫通転位密度は1×103/cm2であった。単結晶のマイクロパイプ数密度は1/cm2未満であった。単結晶の裏面(蓋12に取り付けられることになる面)と表面(原料60に対向することになる面)との各々がCMP(Chemical Mechanical Polishing)法によって研磨された。このようにして種結晶70が準備された。種結晶70の反りは10μm以下であった。
原料60が、次のように準備された。まず炭化珪素粉末が準備された。炭化珪素の純度は、窒素を考慮しないものとして99.999%以上であった。粉末の平均粒径は約200μmであった。粉末の最大粒径は約500μmであった。粉末中には、50μm程度以下の直径を有する微粒子も含まれていた。次にこの微粒子を除去するために、純水流水中で100メッシュのふるいを用いた。次に、ふるいに残った粉末を乾燥させた。この乾燥された粉末を原料60として用いた。
成長室10(図2)は高密度カーボンから作られた。成長室10として、内壁EWの構造の異なる6種類のものが準備された。6種類の成長室10のそれぞれは、隙間GPの幅WGとして、0.5mm、1mm、2mm、3mm、4mm、および5mmを有していた。なお隙間GPの長さは共通に5mmとされた。隙間GPと犠牲部E3との間の深さは共通に30mmとされた。成長室10を収める炉(図示せず)の容積は140リットルとされた。次に各成長室10を用いて炭化珪素単結晶81を、以下のようにして製造した。
種結晶70および原料60が成長室10の内壁EWによって支持された。また原料60上にリング30(図5)が載置された。
次に成長室10を収めた炉内が真空排気された。次に炉内へArガスが供給されることで圧力が800kPaとされた。この圧力が維持されながら、高周波加熱コイル22によって成長室10が加熱された。この加熱は、内壁EWの底面部分E1a(図2)が2400℃となり、かつ種結晶支持部E2(図2)が2200℃となるように行われた。
成長室10の温度が安定した後、炉内の圧力を1kPaへ下げることで、炭化珪素単結晶81の成長が開始された。成長中のガス流量は、0.1SLM(Standard Liter per Minute)とされた。すなわち置換レートが0.1/(140×0.01)=0.07回/分とされた。成長中の炉内の圧力変動は±1Paの範囲内であった。成長を100時間行った後、炉内の圧力を800kPaに上げることで、炭化珪素単結晶81の成長が停止された。次に成長室10の温度を室温まで下げた。成長終了後に残存した原料60のうちリング30の開口において露出した部分は、炭化されておらず炭化珪素のままであり、その粒径が数mm程度にまで増大していた。
得られた炭化珪素単結晶81の厚さを成長時間である100時間で除すことにより「成長速度」を算出した。また炭化珪素単結晶81の質量W1と、炭化珪素堆積物82の質量W2とを測定することで、比「W1/W2」を算出した(以下の表1参照)。
また炭化珪素単結晶81の各々が種結晶70と平行にピッチ1000μmでスライスされた。すなわち、炭化珪素単結晶81の各々から第1〜第11基板が切り出された。第1基板は種結晶70のほぼ直上に位置していた部分に対応し、第2〜第11基板のそれぞれはこの第1基板となる部分の上に順に位置していた部分である。次に基板の両面が研磨された。これにより、直径150mm、厚さ600μmの第1〜第11基板を得た。
各基板について、Cインクルージョンを起点として発生したマイクロパイプの数、すなわち「マイクロパイプ発生数」が計測された。またこの「マイクロパイプ発生数」を基板の体積で除した値である「マイクロパイプ発生数密度」が算出された(以下の表1参照)。
次に各基板の177個の領域における、5μmを超える寸法を有するCインクルージョンの個数、すなわち「カーボンインクルージョン個数」が計測された(以下の表1参照)。5μmを超える寸法を有するCインクルージョンにのみ着目したのは、これよりも小さいCインクルージョンはマイクロパイプの起点となる可能性が小さいためである。各基板において上記領域は、面内10mm間隔で位置する1mm四方のものとされた。
成長室10の隙間GPの幅WGが0.5mm、1mm、2mm、3mm、4mmおよび5mmの各々の場合についての結果を以下の表1に示す。
Figure 2014024703
この結果から、隙間GPの幅WGが2mmよりも大きくされた場合、第1、第6および第11基板のすべてについて、マイクロパイプ発生数密度を0.2/cm3以下とし得ることがわかった。これは、隙間GPの幅WGが2mmよりも大きくされたことで、W1/W2<5となったことによると考えられる。W1/W2<5の場合、形成される炭化珪素単結晶81の質量W1に応じて、十分な質量W2を有する炭化珪素堆積物82が犠牲部E3上に生成されたと考えられる。
特に隙間GPの幅WGが3mm以上の場合、第1、第6および第11基板のすべてについて、マイクロパイプ発生数密度が0.2/cm3以下であった。これは、隙間GPの幅WGが3mm以上とされたことで、W1/W2≦3となったことによると考えられる。W1/W2≦3の場合、形成される炭化珪素単結晶81の質量W1に応じて、十分な質量W2を有する炭化珪素堆積物82が犠牲部E3上に生成されたと考えられる。
実施の形態1において述べたように、炭化珪素へと変化する原料ガスは、時間的ゆらぎはあるものの時間平均で考えればSiリッチなガスである。このため、おおよそ化学量論的なSiCからなる炭化珪素堆積物82が生成される際に、犠牲部E3の周辺の雰囲気は、よりSiリッチなものとなる。犠牲部E3近傍において生成されたSiリッチなガスの一部が成長中の炭化珪素単結晶81へと拡散することで、炭化珪素単結晶81の成長が生じている箇所の雰囲気がSiプアーとなることが抑制される。これによりCインクルージョンの発生が抑制される。よってマイクロパイプの発生が抑制される。
また隙間GPの幅WGが4mm以下の場合、W1/W2≧2となり、炭化珪素堆積物82の質量W2は過度に大きくはなかった。これにより、炭化珪素単結晶81の成長速度が極端に小さくなることを避けることができたと考えられる。
隙間GPの幅WGが3mm程度の場合、W1/W2=3となった。この場合、マイクロパイプ発生数密度を0.2/cm3以下としつつ、隙間GPの幅WGが極端に小さい0.5mmの場合の成長速度の80%程度の成長速度を確保することができた。よってW1/W2は3程度が最適であることがわかった。この最適と思われる条件で上記の実験を3回繰り返した。その結果、いずれの実験においても、マイクロパイプ発生密度は0.2/cm3以下であった。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
10,10V 成長室、12 蓋、21 断熱材、22 高周波加熱コイル、30 リング、50 製造装置、60 原料、70 種結晶、81 炭化珪素単結晶、82 炭化珪素堆積物、E1 原料支持部、E1a 底面部分、E1b 側面部分、E2 種結晶支持部、E3 犠牲部、EW 内壁、GP 隙間。

Claims (6)

  1. 内壁を有する成長室を準備する工程を備え、前記内壁は、原料を支持するための原料支持部と、種結晶を支持するための種結晶支持部と、前記原料および前記種結晶の各々から離れて位置する犠牲部とを有し、さらに
    炭化珪素からなる前記種結晶と、炭化珪素を含有する前記原料との各々を前記成長室の前記内壁によって支持する工程と、
    前記原料支持部の温度が炭化珪素の昇華温度よりも高いT1となり前記種結晶支持部の温度がT2となり前記犠牲部の温度がT3となるように前記成長室を加熱する工程とを備え、T1>T2≧T3が満たされ、前記成長室が加熱されることによって前記原料から昇華したガスが固化することによって、前記種結晶上に質量W1を有する炭化珪素単結晶が成長しかつ前記犠牲部上に質量W2を有する炭化珪素堆積物が堆積され、W1/W2<5が満たされる、炭化珪素単結晶の製造方法。
  2. 1/W2≦3が満たされる、請求項1に記載の炭化珪素単結晶の製造方法。
  3. 1/W2≧2が満たされる、請求項1または2に記載の炭化珪素単結晶の製造方法。
  4. 前記成長室を加熱する工程は、前記炭化珪素単結晶が0.5mm/時以下で成長するように行われる、請求項1〜3のいずれか1項に記載の炭化珪素単結晶の製造方法。
  5. 内壁を有する成長室を準備する工程を備え、前記内壁は、原料を支持するための原料支持部と、種結晶を支持するための種結晶支持部と、犠牲部とを有し、前記原料支持部と前記種結晶支持部と前記犠牲部とは一の方向において順に配置されており、さらに
    炭化珪素からなる前記種結晶と、炭化珪素からなる前記原料との各々を前記成長室の前記内壁によって支持する工程と、
    前記原料支持部の温度が炭化珪素の昇華温度よりも高いT1となり前記種結晶支持部の温度がT2となり前記犠牲部の温度がT3となるように前記成長室を加熱する工程とを備え、T1>T2≧T3が満たされ、前記成長室が加熱されることによって前記原料から昇華したガスが固化することによって、前記種結晶上に質量W1を有する炭化珪素単結晶が成長しかつ前記犠牲部上に質量W2を有する炭化珪素堆積物が堆積され、
    前記成長室を準備する工程は前記成長室の構造を決定する工程を含み、前記成長室の構造を決定する工程は、W1およびW2の間の比率が、前記炭化珪素単結晶中のカーボンインクルージョンを指標として定められた所定の範囲内の値となるように行われる、炭化珪素単結晶の製造方法。
  6. 前記炭化珪素単結晶が成長する際に新たに生成されるマイクロパイプの密度が0.2/cm3以下である、請求項5に記載の炭化珪素単結晶の製造方法。
JP2012165805A 2012-07-26 2012-07-26 炭化珪素単結晶の製造方法 Pending JP2014024703A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165805A JP2014024703A (ja) 2012-07-26 2012-07-26 炭化珪素単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165805A JP2014024703A (ja) 2012-07-26 2012-07-26 炭化珪素単結晶の製造方法

Publications (1)

Publication Number Publication Date
JP2014024703A true JP2014024703A (ja) 2014-02-06

Family

ID=50198706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165805A Pending JP2014024703A (ja) 2012-07-26 2012-07-26 炭化珪素単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP2014024703A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043171A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法
WO2018043169A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
JP2018041942A (ja) * 2016-08-31 2018-03-15 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法
JP2018039714A (ja) * 2016-08-31 2018-03-15 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
WO2018055917A1 (ja) * 2016-09-23 2018-03-29 昭和電工株式会社 SiC単結晶成長用坩堝
US11961736B2 (en) 2016-08-31 2024-04-16 Resonac Corporation SiC epitaxial wafer, production method therefor, and defect identification method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295595A (ja) * 1995-04-21 1996-11-12 Toyota Central Res & Dev Lab Inc 単結晶成長装置
JP2007077017A (ja) * 2006-10-19 2007-03-29 National Institute Of Advanced Industrial & Technology 単結晶の成長装置および成長方法
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2008280206A (ja) * 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd 単結晶成長装置
JP2010090013A (ja) * 2008-10-10 2010-04-22 Bridgestone Corp 炭化珪素単結晶の製造方法
JP2010095397A (ja) * 2008-10-15 2010-04-30 Nippon Steel Corp 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP2010514648A (ja) * 2006-09-14 2010-05-06 クリー インコーポレイテッド マイクロパイプ・フリーの炭化ケイ素およびその製造方法
WO2011034850A1 (en) * 2009-09-15 2011-03-24 Ii-Vi Incorporated Sublimation growth of sic single crystals
JP2011144075A (ja) * 2010-01-14 2011-07-28 Bridgestone Corp 炭化ケイ素単結晶の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295595A (ja) * 1995-04-21 1996-11-12 Toyota Central Res & Dev Lab Inc 単結晶成長装置
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2010514648A (ja) * 2006-09-14 2010-05-06 クリー インコーポレイテッド マイクロパイプ・フリーの炭化ケイ素およびその製造方法
JP2007077017A (ja) * 2006-10-19 2007-03-29 National Institute Of Advanced Industrial & Technology 単結晶の成長装置および成長方法
JP2008280206A (ja) * 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd 単結晶成長装置
JP2010090013A (ja) * 2008-10-10 2010-04-22 Bridgestone Corp 炭化珪素単結晶の製造方法
JP2010095397A (ja) * 2008-10-15 2010-04-30 Nippon Steel Corp 炭化珪素単結晶及び炭化珪素単結晶ウェハ
WO2011034850A1 (en) * 2009-09-15 2011-03-24 Ii-Vi Incorporated Sublimation growth of sic single crystals
JP2011144075A (ja) * 2010-01-14 2011-07-28 Bridgestone Corp 炭化ケイ素単結晶の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043171A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法
WO2018043169A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
JP2018041942A (ja) * 2016-08-31 2018-03-15 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法
JP2018039714A (ja) * 2016-08-31 2018-03-15 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
CN109642342A (zh) * 2016-08-31 2019-04-16 昭和电工株式会社 SiC外延晶片及其制造方法、以及缺陷识别方法
CN109642342B (zh) * 2016-08-31 2021-10-26 昭和电工株式会社 SiC外延晶片及其制造方法、以及缺陷识别方法
US11293115B2 (en) 2016-08-31 2022-04-05 Showa Denko K.K. Method for producing a SiC epitaxial wafer containing a total density of large pit defects and triangular defects of 0.01 defects/cm2 or more and 0.6 defects/cm2 or less
US11320388B2 (en) 2016-08-31 2022-05-03 Showa Denko K.K. SiC epitaxial wafer containing large pit defects with a surface density of 0.5 defects/CM2 or less, and production method therefor
US11961736B2 (en) 2016-08-31 2024-04-16 Resonac Corporation SiC epitaxial wafer, production method therefor, and defect identification method
WO2018055917A1 (ja) * 2016-09-23 2018-03-29 昭和電工株式会社 SiC単結晶成長用坩堝
CN109715868A (zh) * 2016-09-23 2019-05-03 昭和电工株式会社 SiC单晶生长用坩埚

Similar Documents

Publication Publication Date Title
JP5779171B2 (ja) SiC単結晶の昇華成長方法及び装置
JP4733485B2 (ja) 炭化珪素単結晶成長用種結晶の製造方法、炭化珪素単結晶成長用種結晶、炭化珪素単結晶の製造方法、および炭化珪素単結晶
CN111088524B (zh) 一种大尺寸碳化硅单晶、衬底及制备方法和使用的装置
CN110396717B (zh) 高质量高纯半绝缘碳化硅单晶、衬底及其制备方法
JP2014024703A (ja) 炭化珪素単結晶の製造方法
JP2007119273A (ja) 炭化珪素単結晶の成長方法
CN110904509B (zh) 碳化硅晶体及其生长方法和装置、半导体器件以及显示装置
JP2011178621A (ja) 炭化珪素結晶の製造方法、炭化珪素結晶、および炭化珪素結晶の製造装置
JP2011018772A (ja) 炭化珪素単結晶成膜装置用サセプタ
JP2013067522A (ja) 炭化珪素結晶の製造方法
JP4690906B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
JP2008169111A (ja) 炭化珪素単結晶の製造方法
JP2015040146A (ja) 単結晶製造装置及びこれを用いた単結晶製造方法
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
WO2009107188A1 (ja) 単結晶SiCの成長方法
CN211497863U (zh) 一种用于pvt法制备单晶的坩埚组件和长晶炉
JP2011178622A (ja) 炭化珪素結晶、その製造方法、その製造装置および坩堝
JP6223290B2 (ja) 単結晶の製造装置
JP5761264B2 (ja) SiC基板の製造方法
JP2009280436A (ja) 炭化珪素単結晶薄膜の製造方法
US20140366807A1 (en) Apparatus for fabricating ingot and method of fabricating ingot
JP6344401B2 (ja) SiC単結晶の製造方法
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
JP2005314167A (ja) 炭化珪素単結晶成長用種結晶とその製造方法及びそれを用いた結晶成長方法
JP2013133234A (ja) インゴット、基板および基板群

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220