JP2013225460A - 導電性部材、その製造方法、タッチパネル及び太陽電池 - Google Patents

導電性部材、その製造方法、タッチパネル及び太陽電池 Download PDF

Info

Publication number
JP2013225460A
JP2013225460A JP2012103559A JP2012103559A JP2013225460A JP 2013225460 A JP2013225460 A JP 2013225460A JP 2012103559 A JP2012103559 A JP 2012103559A JP 2012103559 A JP2012103559 A JP 2012103559A JP 2013225460 A JP2013225460 A JP 2013225460A
Authority
JP
Japan
Prior art keywords
conductive layer
conductive
group
conductive member
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103559A
Other languages
English (en)
Other versions
JP5868771B2 (ja
Inventor
Tomohito Tanaka
智史 田中
Shinichi Nakahira
真一 中平
Yuki Matsunami
由木 松並
Tomohito Asai
智仁 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012103559A priority Critical patent/JP5868771B2/ja
Publication of JP2013225460A publication Critical patent/JP2013225460A/ja
Application granted granted Critical
Publication of JP5868771B2 publication Critical patent/JP5868771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れる導電性部材及びその製造方法、並びに当該導電性部材を用いたタッチパネル及び太陽電池を提供する。
【解決手段】基材と、前記基材上に設けられた導電性層と、を含む導電性部材であって、前記導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー及び(ii)バインダーを含有し、前記バインダーが、下記一般式(Ia)で示される部分構造と下記一般式(IIa)又は一般式(IIb)で示される部分構造とを含む三次元架橋構造を含む、前記導電性部材。式中、M及びMはそれぞれ独立に、Si、Ti、及びZrからなる群より選ばれる元素を示し、Rはそれぞれ独立に、水素原子又は炭化水素基を示す。

【選択図】なし

Description

本発明は、導電性部材、その製造方法、タッチパネル及び太陽電池に関する。
近年、金属ナノワイヤーのような導電性繊維を含む導電性層を有する導電性部材が提案されている(例えば、特表2009−505358号公報参照。)。この導電性部材は、基材上に、複数の金属ナノワイヤーを含む導電性層を備えるものである。この導電性部材は、例えば導電性層中にマトリックスとしての光硬化性組成物を含有すると、パターン露光及びそれに引き続く現像によって、所望の導電性領域と非導電性領域とを含む導電性層を有する導電性部材に容易に加工され得る。この加工された導電性部材は、例えばタッチパネルとして、又は太陽電池の電極としての用途に供することができる。
上記の導電性部材の導電性層は、物理的及び機械的な性質を向上させるため、マトリックス材中に導電性部材が分散又は埋め込まれたものとすることも記載されている。このようなマトリックス材として、ゾルゲルマトリックスのような無機材料が例示されている(例えば、特許文献1の段落0045〜0046及び0051参照。)。
高い透明性と高い導電性を兼ね備えた導電性層として、透明樹脂と金属ナノワイヤーのようなファイバー状の導電性物質とを含有する導電性層を基材上に設けた導電性部材が提案されている。上記の透明樹脂として、アルコキシシラン、アルコキシチタン等の化合物をゾルゲル法により熱重合させた樹脂が例示されている(例えば、特許文献2参照)。
特表2009−505358号公報 特開2010−121040号公報
上記の導電性部材は、例えば鉛筆、タッチパネル操作具のような先端のとがった用具で導電性層の表面を擦る等のタッチパネルの操作が繰り返されると、導電性層の表面が傷ついたり磨耗したりしてしまうため、依然として導電性層の膜強度及び耐磨耗性に改善の余地があった。
上記の導電性部材は、可撓性のあるタッチパネルに供される場合には、長期に亘って繰り返し折り曲げられる操作を受け、導電性層にひび割れ等が発生して導電性の低下をきたすことがあるため、耐屈曲性に改善の余地がある。
金属ナノワイヤーを含む導電性層を備えた導電性部材において、高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れる導電性部材が要望されていた。
本発明は、高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れる導電性部材及びその製造方法、並びに当該導電性部材を用いたタッチパネル及び太陽電池を提供し得る。
すなわち、本発明は、下記を提供する。
<1>基材と、
前記基材上に設けられた導電性層と、を含む導電性部材であって、
前記導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー及び(ii)バインダーを含有し、
前記バインダーが、下記一般式(Ia)で示される部分構造と下記一般式(IIa)又は一般式(IIb)で示される部分構造とを含む三次元架橋構造を含む、前記導電性部材。
(式中、M及びMはそれぞれ独立に、Si、Ti、及びZrからなる群より選ばれる元素を示し、Rはそれぞれ独立に、水素原子又は炭化水素基を示す)
<2> 基材と、前記基材上に設けられた導電性層と、を含む導電性部材であって、
前記導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー及び(ii)ゾルゲル硬化物を含有し、
前記ゾルゲル硬化物が、下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られる、前記導電性部材。
(OR (I)
(式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、Rは炭化水素基を示す)
(OR 4−a (II)
(式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3を示す)
<3> 導電性層中における前記オルガノアルコキシ化合物の含有量に対する前記テトラアルコキシ化合物の含有量の質量比が0.01/1〜100/1の範囲にある前記<2>に記載の導電性部材。
<4> 導電性層中における前記金属ナノワイヤーの含有量に対する前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物の総含有量の質量比が、0.5/1〜25/1の範囲にある前記<2>又は<3>に記載の導電性部材。
<5> 前記M及びMが、いずれもSiである前記<1>〜<4>のいずれか1つに記載の導電性部材。
<6> 前記金属ナノワイヤーが、銀ナノワイヤーである前記<1>〜<5>のいずれか1つに記載の導電性部材。
<7> 前記導電性層の表面から測定した表面抵抗率が、1,000Ω/□以下である前記<1>〜<6>のいずれか1つに記載の導電性部材。
<8> 前記導電性層の平均膜厚が、0.005μm〜0.5μmである前記<1>〜<7>のいずれか1つに記載の導電性部材。
<9> 前記導電性層が、導電性領域及び非導電性領域を含み、かつ少なくとも前記導電性領域が前記金属ナノワイヤーを含む前記<1>〜<8>のいずれか1つに記載の導電性部材。
<10> 前記基板と前記導電性層との間に、更に少なくとも1層の中間層を有する前記<1>〜<9>のいずれか1つに記載の導電性部材。
<11> 前記基材と前記導電性層との間に、前記導電性層に接し且つ前記金属ナノワイヤーと相互作用可能な官能基を有する化合物を含む中間層を有する、前記<1>〜<10>のいずれか1つに記載の導電性部材。
<12> 前記官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びにこれらの基の塩からなる群より選ばれる前記<11>に記載の導電性部材。
<13> 前記導電性層の表面に対して、連続加重引掻試験機を使用し、125g/cmの圧力でガーゼを押し付け、50往復擦る耐磨耗試験を行った場合、前記耐磨耗試験前の導電性層の表面抵抗率(Ω/□)に対する前記耐磨耗試験後の導電性層の表面抵抗率(Ω/□))の比が100以下である前記<1>〜<12>のいずれか1つに記載の導電性部材。
<14> 屈曲試験に供される前の前記導電性部材の前記導電性層の表面抵抗率(Ω/□)に対する、前記屈曲試験に供された後の前記導電性層の表面抵抗率(Ω/□)の比が2.0以下であり、
前記屈曲試験が、直径10mmの円筒マンドレルを備える円筒形マンドレル屈曲試験器を用いて、前記導電性部材を20回曲げ試験に供することである、前記<1>〜<13>のいずれか1つに記載の導電性部材。
<15> (a)前記基材上に、平均短軸長が150nm以下の前記金属ナノワイヤー、並びに前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物を含む液状組成物を付与して、当該液状組成物の液膜を前記基材上に形成することと、
(b)前記液膜中の前記テトラアルコキシ化合物及びオルガノアルコキシ化合物を加水分解及び重縮合させて前記ゾルゲル硬化物を得ることと、
を含む前記<2>〜<4>のいずれか1つに記載の導電性部材の製造方法。
<16> 前記(a)に先だって、前記基材の前記液膜が形成される面上に、少なくとも1層の中間層を形成することを、更に含む前記<15>に記載の導電性部材の製造方法。
<17> 前記導電性層が非導電性領域と導電性領域とを有するように、前記(b)の後に、(c)前記導電性層にパターン状の非導電性領域を形成することを更に含む前記<15>又は<16>に記載の導電性部材の製造方法。
<18> 導電性層における前記オルガノアルコキシ化合物の含有量に対する前記テトラアルコキシ化合物の含有量の質量比(テトラアルコキシ化合物/オルガノアルコキシ化合物)が0.01/1〜100/1の範囲にある前記<15>〜<17>のいずれか1つに記載の導電性部材の製造方法。
<19> 導電性層における前記金属ナノワイヤーの含有量に対する前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物の総含有量の質量比(テトラアルコキシ化合物及びオルガノアルコキシ化合物の総量/金属ナノワイヤー)が、0.5/1〜25/1の範囲にある前記<15>〜<18>のいずれか1つに記載の導電性部材の製造方法。
<20> (i)平均短軸長が150nm以下の金属ナノワイヤーと、(ii)下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物と、(iii)前記成分(i)及び(ii)を分散又は溶解する液体の分散媒と、を含む組成物。
(OR (I)
(式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、Rは炭化水素基を示す)
(OR 4−a (II)
(式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3を示す)
<21> 前記<1>〜<14>のいずれか1つに記載の導電性部材を備えるタッチパネル。
<22> 前記<1>〜<14>のいずれか1つに記載の導電性部材を備える太陽電池。
本発明によれば、高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れる導電性部材及びその製造方法、並びに当該導電性部材を用いたタッチパネル及び太陽電池が提供され得る。
本発明の第一の実施形態に係る導電性部材の第一の例示的態様を示す概略断面図である。 本発明の第一の実施形態に係る導電性部材の第二の例示的態様を示す概略断面図である。
以下、本発明の代表的な実施形態に基づいて記載されるが、本発明の主旨を超えない限りにおいて、本発明は記載された実施形態に限定されるものではない。
本開示において「工程」とは、独立した工程だけではなく、他の工程と明確に区別できない工程であっても、その工程の所期の作用を達成するものであれば、その範囲に包含する。
数値範囲の表示(「m以上n以下」または「m〜n」)は、当該数値範囲の下限値として表示される数値(m)を最小値として含み、当該数値範囲の上限値として表示される数値(n)を最大値として含む範囲を示す。
組成物中のある成分の量について言及する場合において、組成物中に当該成分に該当する物質が複数存在する場合には、特に別途定義しない限り、当該量は、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書において「光」という語は、可視光線のみならず、紫外線、エックス線、ガンマ線などの高エネルギー線、電子線のような粒子線等を含む概念として用いられる。
本明細書中、アクリル酸、メタクリル酸のいずれか或いは双方を示すため「(メタ)アクリル酸」と、アクリレート、メタクリレートのいずれか或いは双方を示すため「(メタ)アクリレート」と、それぞれ表記することがある。
含有量は特に断りのない限り、質量換算で示し、特に断りのない限り、質量%は、組成物の総量に対する割合を表し、「固形分」とは、組成物中の溶剤等の揮発性成分を除く成分を表す。
<<<導電性部材>>>
本発明の一実施形態である導電性部材は、基材と前記基材上に設けられた導電性層とを有する。該導電性層は、(i)平均短軸長が150nm以下の金属ナノワイヤー、並びに(ii)バインダーを含有する。該(ii)バインダーは、下記一般式(Ia)で示される部分構造と、下記一般式(IIa)又は一般式(IIb)で示される部分構造と、を含む三次元架橋構造を含む。前記導電性部材は必要に応じてその他の構成要素を更に有していてもよい。
一般式(Ia)、一般式(IIa)及び一般式(IIb)中、M及びMはそれぞれ独立に、Si、Ti、及びZrからなる群より選ばれる元素を示す。Rはそれぞれ独立に、水素原子又は炭化水素基を示す。
導電性層が、平均短軸長が150nm以下の金属ナノワイヤーに加えて、特定の部分構造を有するバインダーを含むことで、前記導電性部材は高い導電性と高い透明性とを有し得ると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れ得る。
また前記バインダーは、一般式(Ia)で表される部分構造に加えて、一般式(IIa)で表される部分構造及び一般式(IIb)で表される部分構造(オルガノメタル構造)からなる群より選ばれる少なくとも1種の部分構造を有する三次元架橋構造を有することを特徴とする。このようにバインダー中に、一般式(Ia)で表される部分構造に加えてオルガノメタル構造を更に有することで、バインダーとしての柔軟性が向上し、屈曲性に優れ得ると共に、優れた膜強度と耐摩耗性とをバランスよく発現し得る。
前記バインダーは、一般式(Ia)で表される部分構造と一般式(IIa)で表される部分構造とを有するもの、一般式(Ia)で表される部分構造と一般式(IIb)で表される部分構造とを有するもの、及び一般式(Ia)で表される部分構造と一般式(IIa)で表される部分構造と一般式(IIb)で表される部分構造とを有するもののいずれであってもよい。
ある実施態様において、M及びMはSiであると、前記導電性部材は膜強度、耐磨耗性、及び耐屈曲性により優れ得る。
は、水素原子又は炭化水素基を示すが、膜強度、耐磨耗性、及び耐屈曲性の観点から、炭化水素基であることが好ましい。Rの各炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
がアルキル基を示す場合の炭素数は好ましくは1〜18、より好ましくは1〜8であり、さらにより好ましくは1〜4である。また、アリール基を示す場合は、フェニル基が好ましい。
におけるアルキル基又はアリール基は置換基を有していてもよい。導入可能な置換基としては、ハロゲン原子、アシルオキシ基、アルケニル基、アクリロイルオキシ基、メタクリロイルオキシ基、アミノ基、アルキルアミノ基、メルカプト基、エポキシ基などが挙げられる。
前記バインダーを含む導電性層において、一般式(IIa)で表される部分構造及び一般式(IIb)で表される部分構造に含まれる元素Mの総含有量に対する一般式(Ia)で表される部分構造に含まれる元素Mの含有量のモル比(M/M)は、膜強度、耐磨耗性、及び耐屈曲性の観点から、0.01/1〜100/1であることが好ましく、0.02/1〜50/1であることがより好ましく、0.05/1〜20/1であることがさらに好ましい。
前記バインダーが一般式(Ia)で表される部分構造と、一般式(IIa)で表される部分構造及び一般式(IIb)で表される部分構造からなる群より選ばれる少なくとも1種の部分構造とを有することは、導電性層の固体NMRを測定して、それぞれの部分構造に対応するシグナルを検出することで確認することができる。
導電性層における元素Mの含有量に対する元素Mの含有量のモル比(M/M)は、例えば、基材から導電性層を剥がしとり、導電性層の固体NMRを測定し、Mに対応するシグナルの積分値に対するMに対応するシグナルの積分値の比として求めることができる。具体的には、M及びMがSiの場合、Bruker社製AVANCE DSX−300分光器(商品名)を用いて固体29Si−NMR(CP/Mas法、観測周波数29Si:59.62MHz)を測定する。化学シフトが−70〜−120ppmの範囲であるシグナルが一般式(Ia)に対応するSiのピークであり、化学シフトが5〜−35ppmの範囲であるピークが一般式(IIb)に対応するSiのシグナルであり、化学シフトが−35〜−70ppmの範囲であるシグナルが一般式(IIa)に対応するSiのピークとなる。これらのシグナルの積分値からMに対するMのモル比を算出することができる。
前記バインダーは、例えば、前記一般式(Ia)で表される部分構造を形成しうるテトラアルコキシ化合物と、前記一般式(IIa)で表される部分構造及び一般式(IIb)で表される部分構造を形成しうるオルガノアルコキシ化合物との混合物を加水分解及び重縮合することでゾルゲル硬化物として得ることができる。前記ゾルゲル硬化物の詳細については後述する。
前記導電性層に含まれる金属ナノワイヤーは、平均短軸長が150nm以下である。これにより、導電性層は導電性と透明性に優れ得る。前記金属ナノワイヤーの詳細については後述する。
前記導電性層は、前記金属ナノワイヤーと前記バインダーとを含む。導電性層中における金属ナノワイヤーを構成する金属元素の含有量に対するバインダーを構成する元素M及びMの総含有量のモル比((M+M)/金属元素)は、膜強度、耐磨耗性、及び耐屈曲性の観点から、0.10/1〜22/1であることが好ましく、0.20/1〜18/1であることがより好ましく、0.45/1〜15/1であることがさらに好ましい。
前記モル比((M+M)/金属元素)は、導電性層をX線光電子分析(Electron Spectroscopy for Chemical Analysis(ESCA))に付することで算出することができる。ESCAによる分析方法では元素によって測定感度が異なるため、求められた値が直ちに元素成分のモル比に相当するわけではない。そこであらかじめ元素成分のモル比が既知の導電性層を用いて検量線を作成し、その検量線から前記モル比((M+M)/金属元素)を計算する。
前記導電性部材における導電性層は、(i)平均短軸長が150nm以下の金属ナノワイヤー、並びに、(ii)下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物を含有することが好ましい。
すなわち、ある好ましい態様において、前記導電性部材は、基材と、前記基材上に設けられた(i)平均短軸長が150nm以下の金属ナノワイヤー、並びに、(ii)下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物であるバインダーを含有する導電性層と、を含む。
(OR (I)
(一般式(I)中、MはSi、Ti及びZrからなる群より選ばれた元素を示し、Rは炭化水素基を示す。
(OR 4−a (II)
(一般式(II)中、MはSi、Ti及びZrからなる群より選ばれた元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3の整数を示す。)
<<基材>>
上記基材としては、導電性層を担うことができるものである限り特に制限されず、目的に応じて種々のものを使用することができる。一般的には、板状又はシート状のものが使用される。
基材は、透明であっても、不透明であってもよい。基材を構成する素材としては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス;ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂;アルミニウム、銅、ニッケル、ステンレス等の金属;セラミック、半導体基板に使用されるシリコンウエハーなどを挙げることができる。これらの基材の導電性層が形成される表面は、所望により、アルカリ性水溶液による清浄化処理、シランカップリング剤などの薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などにより前処理がされていてもよい。
基材の厚さは、用途に応じて所望の範囲のものが使用される。一般的には、1μm〜500μmの範囲から選択され、3μm〜400μmがより好ましく、5μm〜300μmが更に好ましい。
導電性部材に透明性が要求される場合には、前記基材は全光透過率が70%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましい。なお、基材の全光透過率は、ISO 13468−1 (1996)に準拠して測定される。
<<導電性層>>
導電性層は、(i)平均短軸長が150nm以下の金属ナノワイヤーと、(ii)前述の一般式(I)で表されるテトラアルコキシ化合物及び前記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物であるバインダーとを含有する。
<平均短軸長が150nm以下の金属ナノワイヤー>
導電性層は、平均短軸長150nm以下の金属ナノワイヤーを含有する。平均短軸長が150nmを超えると、導電性の低下や光散乱等による光学特性の悪化が生じるおそれがあるため、好ましくない。金属ナノワイヤーは、中実構造であることが好ましい。
より透明な導電性層を形成しやすいという観点からは、例えば、金属ナノワイヤーは、平均短軸長が1nm〜150nmであって、平均長軸長が1μm〜100μmのものが好ましい。
製造時の扱い易さから、前記金属ナノワイヤーの平均短軸長(平均直径)は、100nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることが更に好ましく、特に30nm以下であることがヘイズに関して一段と優れるものが得られるので好ましい。前記平均短軸長を1nm以上とすることにより、耐酸化性が良好で、対候性に優れる導電性部材が容易に得られる。平均短軸長は5nm以上であることがより好ましく、10nm以上であることが更に好ましく、20nm以上であることが特に好ましい。
前記金属ナノワイヤーの平均短軸長は、ヘイズ値、耐酸化性、及び耐候性の観点から、1nm〜100nmであることが好ましく、5nm〜60nmであることがより好ましく、10nm〜60nmであることが更に好ましく、20nm〜50nmであることが特に好ましい。
前記金属ナノワイヤーの平均長軸長は、1μm〜40μmであることが好ましく、3μm〜35μmがより好ましく、5μm〜30μmが更に好ましい。金属ナノワイヤーの平均長軸長が40μm以下であると、金属ナノワイヤーを凝集物が生じることなく合成することが容易となる。また平均長軸長が1μm以上であると、十分な導電性を得ることが容易となる。
前記金属ナノワイヤーの平均短軸長(平均直径)及び平均長軸長は、例えば、透過型電子顕微鏡(TEM)と光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができる。具体的には、金属ナノワイヤーの平均短軸長(平均直径)及び平均長軸長は、透過型電子顕微鏡(日本電子株式会社製、商品名:JEM−2000FX)を用い、ランダムに選択した300個の金属ナノワイヤーについて、各々短軸長と長軸長を測定し、その平均値から金属ナノワイヤーの平均短軸長と平均長軸長を求めることができる。なお、前記金属ナノワイヤーの短軸方向断面が円形でない場合の短軸長は、短軸方向の測定で最も長い箇所の長さを短軸長とする。また。金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値を長軸長とする。
ある実施態様においては、前記導電性層における全金属ナノワイヤーの含有量に対する、短軸長(直径)が150nm以下であり、かつ長軸長が5μm以上500μm以下である金属ナノワイヤーの含有量が、金属量で50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることが更に好ましい。
前記短軸長(直径)が150nm以下であり、長さが5μm以上500μm以下である金属ナノワイヤーの割合が、50質量%であることで、十分な導電性が得られるとともに、電圧集中が生じにくくなり、電圧集中に起因する耐久性の低下を抑制しうるため好ましい。繊維状以外の導電性粒子が導電性層に実質的に含まれない構成では、プラズモン吸収が強い場合にも透明度の低下を避け得る。
前記導電性層に含まれる金属ナノワイヤーの短軸長(直径)の変動係数は、40%以下が好ましく、35%以下がより好ましく、30%以下が更に好ましい。
前記変動係数が40%以下であると、耐久性が悪化することを防ぎ得る。これは例えば、短軸長(直径)の小さいワイヤーに電圧が集中することを避け得るためと考えることができる。
前記金属ナノワイヤーの短軸長(直径)の変動係数は、例えば透過型電子顕微鏡(TEM)像からランダムに選択した300個のナノワイヤーの短軸長(直径)を計測し、その標準偏差と算術平均値を算出し、標準偏差を算術平均値で除することにより求めることができる。
(金属ナノワイヤーのアスペクト比)
前記金属ナノワイヤーのアスペクト比は、10以上であることが好ましい。ここで、アスペクト比とは、平均短軸長に対する平均長軸長の比(平均長軸長/平均短軸長)を意味する。前述の方法により算出した平均長軸長と平均短軸長から、アスペクト比を算出することができる。
前記金属ナノワイヤーのアスペクト比は、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、10〜100,000が好ましく、50〜100,000がより好ましく、100〜100,000が更に好ましい。
前記アスペクト比が10以上であると、金属ナノワイヤー同士が接触したネットワークが容易に形成され、高い導電性を有する導電性層が容易に得られる。また、前記アスペクト比が100,000以下であると、例えば基材上に導電性層を塗布により設ける際の塗布液において、金属ナノワイヤー同士が絡まって凝集してしまうことが抑制される安定な塗布液が得られるので、導電性部材の製造が容易となる。
導電性層に含まれる全金属ナノワイヤーの質量に対するアスペクト比が10以上の金属ナノワイヤーの含有量は特に制限されない。例えば70質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることが最も好ましい。
前記金属ナノワイヤーの形状は、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状であり得るが、高い透明性が必要とされる用途では、円柱状や断面が5角形以上の多角形であって鋭角的な角が存在しない断面形状であるものが好ましい。
前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより検知することができる。
前記金属ナノワイヤーを形成する金属は、特に制限はなく、いかなる金属であってもよい。1種の金属のみ又は2種以上の金属を組み合わせて用いてもよい。合金を用いることも可能である。これらの中でも、金属単体又は金属化合物から形成されるものが好ましく、金属単体から形成されるものがより好ましい。
前記金属としては、長周期律表(IUPAC1991)の第4周期、第5周期、及び第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2〜14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、及び第14族から選ばれる少なくとも1種の金属が更に好ましく、これらを主成分として含むことが特に好ましい。
前記金属としては、具体的には銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛、及び、これらのうちいずれかを含む合金などが挙げられる。これらの中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム又はこれらの合金が好ましく、パラジウム、銅、銀、金、白金、錫、又は、これらのうちいずれかを含む合金がより好ましく、銀又は銀を含有する合金が特に好ましい。ここで銀を含有する合金における銀の含有量は合金の全量に対して50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。
前記導電性層に含まれる金属ナノワイヤーは、高い導電性の観点から、銀ナノワイヤーを含むことが好ましく、平均短軸長が1nm〜150nmであって、平均長軸長が1μm〜100μmの銀ナノワイヤーを含むことがより好ましく、平均短軸長が5nm〜30nmであって、平均長軸長が5μm〜30μmの銀ナノワイヤーを含むことが更に好ましい。導電性層に含まれる全金属ナノワイヤーの質量に対する銀ナノワイヤーの含有量は、本発明の効果を妨げない限り特に制限されない。例えば、導電性層に含まれる全金属ナノワイヤーの質量に対する銀ナノワイヤーの含有量は50質量%以上であることが好ましく、80質量%以上であることがより好ましく、全金属ナノワイヤーが実質的に銀ナノワイヤーであることが更に好ましい。ここで「実質的に」とは、不可避的に混入する銀以外の金属原子を許容することを意味する。
導電性層に含まれる金属ナノワイヤーの含有量は、金属ナノワイヤーの種類等に応じて、導電性部材の表面抵抗率、全光透過率及びヘイズ値が所望の範囲となるような量とされることが好ましい。当該含有量(導電性層1mあたりの金属ナノワイヤーの含有量(グラム))は、例えば銀ナノワイヤーの場合は、0.001g/m〜0.100g/mの範囲であり、好ましくは0.002g/m〜0.050g/mの範囲であり、より好ましくは0.003g/m〜0.040g/mの範囲である。
前記導電性層は、導電性の観点から、平均短軸長が5nm〜60nmの金属ナノワイヤーを0.001g/m〜0.100g/mの範囲で含むことが好ましく、平均短軸長が10nm〜60nmの金属ナノワイヤーを0.002g/m〜0.050g/mの範囲で含むことがより好ましく、平均短軸長が20nm〜50nmの金属ナノワイヤーを0.003g/m〜0.040g/mの範囲で含むことが更に好ましい。
(金属ナノワイヤーの製造方法)
前記金属ナノワイヤーの製造方法には特に制限はない。金属ナノワイヤーはいかなる方法で作製されてもよい。以下のようにハロゲン化合物と分散剤を溶解した溶媒中で金属イオンを還元することによって製造することが好ましい。また、金属ナノワイヤーを形成した後は、常法により脱塩処理を行うことが、分散性、導電性層の経時安定性の観点から好ましい。
金属ナノワイヤーの製造方法としては、特開2009−215594号公報、特開2009−242880号公報、特開2009−299162号公報、特開2010−84173号公報、特開2010−86714号公報などに記載の方法を用いることができる。
金属ナノワイヤーの製造に用いられる溶媒としては、親水性溶媒が好ましい。例えば、水、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤などが挙げられ、これらは1種単独で使用してもよく、2種以上を併用してもよい。
アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコールなどが挙げられる。
エーテル系溶剤としては、例えば、ジオキサン、テトラヒドロフランなどが挙げられる。
ケトン系溶剤としては、例えば、アセトンなどが挙げられる。
金属ナノワイヤーの製造において加熱処理を行う場合、その加熱温度は、250℃以下が好ましく、20℃以上200℃以下がより好ましく、30℃以上180℃以下が更に好ましく、40℃以上170℃以下が特に好ましい。上記温度を20℃以上とすることで、形成される金属ナノワイヤーの長さが分散安定性を確保しうる好ましい範囲となり、且つ、250℃以下とすることで、金属ナノワイヤーの断面外周が鋭角を有しない、なめらかな形状となるため、透明性の観点から好適である。
なお、必要に応じて、粒子形成過程で温度を変更してもよい。途中での温度変更は核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果が得られることがある。
前記加熱処理は、還元剤を添加して行うことが好ましい。
前記還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アルカノールアミン、脂肪族アミン、ヘテロ環式アミン、芳香族アミン、アラルキルアミン、アルコール、有機酸類、グルコース等の還元糖類、糖アルコール類、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオンなどが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類、エチレングリコールが特に好ましい。
これらの中でも、還元糖類、その誘導体としての糖アルコール類、エチレングリコールが特に好ましい。
前記還元剤によっては、機能として分散剤や溶媒としても機能する化合物があり、同様に好ましく用いることができる。
前記金属ナノワイヤー製造は分散剤と、ハロゲン化合物又はハロゲン化金属微粒子を添加して行うことが好ましい。
分散剤とハロゲン化合物の添加のタイミングは、還元剤の添加前でも添加後でもよく、金属イオンあるいはハロゲン化金属微粒子の添加前でも添加後でもよい。ハロゲン化合物の添加は2段階以上に分けることが好ましい。これにより単分散性により優れる金属ナノワイヤーを得ることができる。これは例えば、核形成と成長を制御できるためと考えることができる。
前記分散剤を添加する段階は特に制限されない。金属ナノワイヤーを調製する前に添加し、分散剤存在下で金属ナノワイヤーを形成してもよいし、金属ナノワイヤーを調製後に分散状態の制御のために添加しても構わない。前記分散剤としては、例えばアミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子化合物類、などが挙げられる。これらのうち分散剤として用いられる各種高分子化合物類は、後述するポリマーに包含される化合物である。
分散剤として好適に用いられるポリマーとしては、例えば保護コロイド性のあるポリマーであるゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプルピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン、ポリビニルピロリドン構造を含む共重合体、アミノ基やチオール基を有するポリアクリル酸誘導体等の親水性基を有するポリマーが好ましく挙げられる。
分散剤として用いるポリマーはゲル浸透クロマトグラフィー(GPC)により測定した重量平均分子量(Mw)が、3000以上300000以下であることが好ましく、5000以上100000以下であることがより好ましい。
前記分散剤として使用可能な化合物の構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝倉書院発行、2000年)の記載を参照できる。
使用する分散剤の種類によって得られる金属ナノワイヤーの形状を変化させることができる。
前記ハロゲン化合物は、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウム等のアルカリハライドや下記の分散添加剤と併用できる化合物が好ましい。
前記ハロゲン化合物は、分散添加剤として機能するものがありうるが、同様に好ましく用いることができる。
前記ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
分散剤の機能とハロゲン化合物の機能との双方を有する単一の物質を用いてもよい。即ち、分散剤としての機能を有するハロゲン化合物を用いることで、1つの化合物で、分散剤とハロゲン化合物の双方の機能を発現する。
分散剤の機能を有するハロゲン化合物としては、例えば、アミノ基と臭化物イオンを含むヘキサデシル−トリメチルアンモニウムブロミド(HTAB)、アミノ基と塩化物イオンを含むヘキサデシル−トリメチルアンモニウムクロライド(HTAC)、アミノ基と臭化物イオン又は塩化物イオンを含むドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムクロリド、ジメチルジステアリルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリド、ジメチルジパルミチルアンモニウムブロミド、ジメチルジパルミチルアンモニウムクロリド、などが挙げられる。
金属ナノワイヤーの製造方法においては、金属ナノワイヤー形成後に脱塩処理を行うことが好ましい。金属ナノワイヤー形成後の脱塩処理は、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により行うことができる。
前記金属ナノワイヤーは、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。前記金属ナノワイヤーを水性溶媒に分散させてなる分散物の電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
前記金属ナノワイヤーの水性分散物の20℃における粘度は、0.5mPa・s〜100mPa・sが好ましく、1mPa・s〜50mPa・sがより好ましい。
前記電気伝導度及び粘度は、前記水性分散物における金属ナノワイヤーの濃度を0.45質量%として測定される。水性分散物における金属ナノワイヤーの濃度が上記濃度より高い場合には、水性分散物を蒸留水にて希釈して測定する。
前記導電性層は、金属ナノワイヤーに加えて、他の導電性材料、例えば、導電性粒子などを本発明の効果を損なわない限りにおいて併用しうる。効果の観点からは、金属ナノワイヤー(好ましくは、アスペクト比が10以上の金属ナノワイヤー)の含有比率は、金属ナノワイヤーを含む導電性材料の総量に対して体積基準で、50体積%以上が好ましく、60体積%以上がより好ましく、75体積%以上が特に好ましい。前記金属ナノワイヤーの含有比率を50体積%以上とすることにより、金属ナノワイヤー同士の密なネットワークが形成され、高い導電性を有する導電性層を容易に得ることができる。
金属ナノワイヤー以外の形状の導電性粒子は、導電性層における導電性に大きく寄与しない上に可視光領域に吸収を持つ場合がある。特に導電性粒子が金属であって、球形などのプラズモン吸収が強い形状である場合には、導電性層の透明度が悪化してしまうことがある。
ここで、前記金属ナノワイヤーの含有比率は、下記のように求めることができる。例えば、金属ナノワイヤーが銀ナノワイヤーであり、導電性粒子が銀粒子である場合には、銀ナノワイヤー水分散液をろ過して、銀ナノワイヤーと、それ以外の導電性粒子とを分離し、誘導結合プラズマ(ICP)発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定し、金属ナノワイヤーの比率を算出することができる。金属ナノワイヤーのアスペクト比は、ろ紙に残っている金属ナノワイヤーをTEMで観察し、300個の金属ナノワイヤーの短軸長及び長軸長をそれぞれ測定することにより算出される。金属ナノワイヤーの平均短軸長及び平均長軸長の測定方法は既述の通りである。
<ゾルゲル硬化物>
次に、前記導電性層に含まれる成分(ii)のゾルゲル硬化物について説明する。
上記ゾルゲル硬化物は、下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られる。
(OR (I)
(一般式(I)中、MはSi、Ti及びZrからなる群より選ばれた元素を示し、Rは炭化水素基を示す。
(OR 4−a (II)
(一般式(II)中、MはSi、Ti及びZrからなる群より選ばれた元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3の整数を示す。)
上記一般式(I)におけるRの炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
アルキル基を示す場合の炭素数は好ましくは1〜18、より好ましくは1〜8であり、さらにより好ましくは1〜4である。また、アリール基を示す場合は、フェニル基が好ましい。
アルキル基又はアリール基は置換基を有していてもいなくてもよい。導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。上記一般式(I)で表される化合物は低分子化合物であり、分子量1000以下であることが好ましい。
一般式(II)におけるR及びRの各炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
アルキル基を示す場合の炭素数は好ましくは1〜18、より好ましくは1〜8であり、さらにより好ましくは1〜4である。また、アリール基を示す場合は、フェニル基が好ましい。
アルキル基又はアリール基は置換基を有していてもいなくてもよい。導入可能な置換基としては、ハロゲン原子、アシルオキシ基、アルケニル基、アクリロイルオキシ基、メタクリロイルオキシ基、アミノ基、アルキルアミノ基、メルカプト基、エポキシ基などが挙げられる。
一般式(II)におけるR及びRは、それぞれ炭化水素基であることが好ましい。
以下に、一般式(I)で示されるテトラアルコキシ化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
がSiである場合、即ち4官能のテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシラン、メトキシトリエトキシシラン、エトキシトリメトキシシラン、メトキシトリプロポキシシラン、エトキシトリプロポキシシラン、プロポキシトリメトキシシラン、プロポキシトリエトキシシラン、ジメトキシジエトキシシラン等を挙げることができる。これらのうち特に好ましいものとしては、テトラメトキシシラン、テトラエトキシシラン等を挙げることができる。
がTiである場合、即ち4官能のテトラアルコキシチタネートとしては、例えば、テトラメトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、テトライソプロポキシチタネート、テトラブトキシチタネート等を挙げることができる。
がZrである場合、即ち、即ち4官能のテトラアルコキシジルコニウムとしては、例えば、前記テトラアルコキシチタネートとして例示した化合物に対応するジルコネートを挙げることができる。
次に、一般式(II)で示されるオルガノアルコキシ化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
がSiでaが2の場合、即ち2官能のオルガノアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジエチルジメトキシシラン、プロピルメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、γ−クロロプロピルジメチルジメトキシシラン、クロロジメチルジエトキシシラン、(p−クロロメチル)フェニルメチルジメトキシシラン、γ−ブロモプロピルメチルジメトキシシラン、アセトキシメチルメチルジエトキシシラン、アセトキシメチルメチルジメトキシシラン、アセトキシプロピルメチルジメトキシシラン、ベンゾイロキシプロピルメチルジメトキシシラン、2−(カルボメトキシ)エチルメチルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルエチルジエトキシシラン、フェニルメチルジプロポキシシラン、ヒドロキシメチルメチルジエトキシシラン、N−(メチルジエトキシシリルプロピル)−O−ポリエチレンオキシドウレタン、N−(3−メチルジエトキシシリルプロピル)−4−ヒドロキシブチルアミド、N−(3−メチルジエトキシシリルプロピル)グルコンアミド、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジブトキシシラン、イソプロペニルメチルジメトキシシラン、イソプロペニルメチルジエトキシシラン、イソプロペニルメチルジブトキシシラン、ビニルメチルビス(2−メトキシエトキシ)シラン、アリルメチルジメトキシシラン、ビニルデシルメチルジメトキシシラン、ビニルオクチルメチルジメトキシシラン、ビニルフェニルメチルジメトキシシラン、イソプロペニルフェニルメチルジメトキシシラン、2−(メタ)アクリロキシエチルメチルジメトキシシラン、2−(メタ)アクリロキシエチルメチルジエトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)−アクリロキシプロピルメチルビス(2−メトキシエトキシ)シラン、3−[2−(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルメチルジメトキシシラン、3−(ビニルフェニルアミノ)プロピルメチルジメトキシシラン、3−(ビニルフェニルアミノ)プロピルメチルジエトキシシラン、3−(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3−(ビニルベンジルアミノ)プロピルメチルジエトキシシラン、3−[2−(N−ビニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、3−[2−(N−イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルメチルジメトキシシラン、2−(ビニルオキシ)エチルメチルジメトキシシラン、3−(ビニルオキシ)プロピルメチルジメトキシシラン、4−(ビニルオキシ)ブチルメチルジエトキシシラン、2−(イソプロペニルオキシ)エチルメチルジメトキシシラン、3−(アリルオキシ)プロピルメチルジメトキシシラン、10−(アリルオキシカルボニル)デシルメチルジメトキシシラン、3−(イソプロペニルメチルオキシ)プロピルメチルジメトキシシラン、10−(イソプロペニルメチルオキシカルボニル)デシルメチルジメトキシシラン、3−[(メタ)アクリロキプロピル]メチルジメトキシシラン、3−[(メタ)アクリロキシプロピル]メチルジエトキシシラン、3−[(メタ)アクリロキメチル]メチルジメトキシシラン、3−[(メタ)アクリロキシメチル]メチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、N−[3−(メタ)アクリロキシ−2−ヒドロキシプロピル]−3−アミノプロピルメチルジエトキシシラン、O−「(メタ)アクリロキシエチル」−N−(メチルジエトキシシリルプロピル)ウレタン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、4−アミノブチルメチルジエトキシシラン、11−アミノウンデシルメチルジエトキシシラン、m−アミノフェニルメチルジメトキシシラン、p−アミノフェニルメチルジメトキシシラン、3−アミノプロピルメチルビス(メトキシエトキシエトキシ)シラン、2−(4−ピリジルエチル)メチルジエトキシシラン、2−(メチルジメトキシシリルエチル)ピリジン、N−(3−メチルジメトキシシリルプロピル)ピロール、3−(m−アミノフェノキシ)プロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジエトキシシラン、N−(6−アミノヘキシル)アミノメチルメチルジエトキシシラン、N−(6−アミノヘキシル)アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルメチルジメトキシシラン、(アミノエチルアミノメチル)フェネチルメチルジメトキシシラン、N−3−[(アミノ(ポリプロピレンオキシ))]アミノプロピルメチルジメトキシシラン、n−ブチルアミノプロピルメチルジメトキシシラン、N−エチルアミノイソブチルメチルジメトキシシラン、N−メチルアミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノメチルメチルジエトキシシラン、(シクロヘキシルアミノメチル)メチルジエトキシシラン、N−シクロヘキシルアミノプロピルメチルジメトキシシラン、ビス(2−ヒドロキシエチル)−3−アミノプロピルメチルジエトキシシラン、ジエチルアミノメチルメチルジエトキシシラン、ジエチルアミノプロピルメチルジメトキシシラン、ジメチルアミノプロピルメチルジメトキシシラン、N−3−メチルジメトキシシリルプロピル−m−フェニレンジアミン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]エチレンジアミン、ビス(メチルジエトキシシリルプロピル)アミン、ビス(メチルジメトキシシリルプロピル)アミン、ビス[(3−メチルジメトキシシリル)プロピル]−エチレンジアミン、ビス[3−(メチルジエトキシシリル)プロピル]ウレア、ビス(メチルジメトキシシリルプロピル)ウレア、N−(3−メチルジエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、ウレイドプロピルメチルジエトキシシラン、ウレイドプロピルメチルジメトキシシラン、アセトアミドプロピルメチルジメトキシシラン、2−(2−ピリジルエチル)チオプロピルメチルジメトキシシラン、2−(4−ピリジルエチル)チオプロピルメチルジメトキシシラン、ビス[3−(メチルジエトキシシリル)プロピル]ジスルフィド、3−(メチルジエトキシシリル)プロピルコハク酸無水物、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、イソシアナトプロピルメチルジメトキシシラン、イソシアナトプロピルメチルジエトキシシラン、イソシアナトエチルメチルジエトキシシラン、イソシアナトメチルメチルジエトキシシラン、カルボキシエチルメチルシランジオールナトリウム塩、N−(メチルジメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3−(メチルジヒドロキシシリル)−1−プロパンスルホン酸、ジエチルホスフェートエチルメチルジエトキシシラン、3−メチルジヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(メチルジエトキシシリル)エタン、ビス(メチルジメトキシシリル)エタン、ビス(メチルジエトキシシリル)メタン、1,6−ビス(メチルジエトキシシリル)ヘキサン、1,8−ビス(メチルジエトキシシリル)オクタン、p−ビス(メチルジメトキシシリルエチル)ベンゼン、p−ビス(メチルジメトキシシリルメチル)ベンゼン、3−メトキシプロピルメチルジメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]メチルジメトキシシラン、メトキシトリエチレンオキシプロピルメチルジメトキシシラン、トリス(3−メチルジメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]メチルジエトキシシラン、N,N'−ビス(ヒドロキシエチル)−N,N'−ビス(メチルジメトキシシリルプロピル)エチレンジアミン、ビス−[3−(メチルジエトキシシリルプロピル)−2−ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N'−(メチルジエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(メチルジエトキシシリルプロピル)ポリエチレンオキシドを挙げることができる。これらのうち特に好ましいものとしては、入手容易な観点と親水性層との密着性の観点から、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン等を挙げることができる。
がSiであり、且つ、aが3の場合、即ち3官能のオルガノアルコキシシランとしては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、クロロメチルトリエトキシシラン、(p−クロロメチル)フェニルトリメトキシシラン、γ−ブロモプロピルトリメトキシシラン、アセトキシメチルトリエトキシシラン、アセトキシメチルトリメトキシシラン、アセトキシプロピルトリメトキシシラン、ベンゾイロキシプロピルトリメトキシシラン、2−(カルボメトキシ)エチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ヒドロキシメチルトリエトキシシラン、N−(トリエトキシシリルプロピル)−O−ポリエチレンオキシドウレタン、N−(3−トリエチキシシリルプロピル)−4−ヒドロキシブチルアミド、N−(3−トリエトキシシリルプロピル)グルコンアミド、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、イソプロペニルトリメトキシシラン、イソプロペニルトリエトキシシラン、イソプロペニルトリブトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、アリルトリメトキシシラン、ビニルデシルトリメトキシシラン、ビニルオクチルトリメトキシシラン、ビニルフェニルトリメトキシシラン、イソプロペニルフェニルトリメトキシシラン、2−(メタ)アクリロキシエチルトリメトキシシラン、2−(メタ)アクリロキシエチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)−アクリロキシプロピルトリス(2−メトキシエトキシ)シラン、3−[2−(アリルオキシカルボニル)フェニルカルボニルオキシ]プロピルトリメトキシシラン、3−(ビニルフェニルアミノ)プロピルトリメトキシシラン、3−(ビニルフェニルアミノ)プロピルトリエトキシシラン、3−(ビニルベンジルアミノ)プロピルトリエトキシシラン、3−(ビニルベンジルアミノ)プロピルトリエトキシシラン、3−[2−(N−ビニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、3−[2−(N−イソプロペニルフェニルメチルアミノ)エチルアミノ]プロピルトリメトキシシラン、2−(ビニルオキシ)エチルトリメトキシシラン、3−(ビニルオキシ)プロピルトリメトキシシラン、4−(ビニルオキシ)ブチルトリエトキシシラン、2−(イソプロペニルオキシ)エチルトリメトキシシラン、3−(アリルオキシ)プロピルトリメトキシシラン、10−(アリルオキシカルボニル)デシルトリメトキシシラン、3−(イソプロペニルメチルオキシ)プロピルトリメトキシシラン、10−(イソプロペニルメチルオキシカルボニル)デシルトリメトキシシラン、3−[(メタ)アクリロキプロピル]トリメトキシシラン、3−[(メタ)アクリロキシプロピル]トリエトキシシラン、3−[(メタ)アクリロキメチル]トリメトキシシラン、3−[(メタ)アクリロキシメチル]トリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、N−[3−(メタ)アクリロキシ−2−ヒドロキシプロピル]−3−アミノプロピルトリエトキシシラン、O−「(メタ)アクリロキシエチル」−N−(トリエトキシシリルプロピル)ウレタン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、4−アミノブチルトリエトキシシラン、11−アミノウンデシルトリエトキシシラン、m−アミノフェニルトリメトキシシラン、p−アミノフェニルトリメトキシシラン、3−アミノプロピルトリス(メトキシエトキシエトキシ)シラン、2−(4−ピリジルエチル)トリエトキシシラン、2−(トリメトキシシリルエチル)ピリジン、N−(3−トリメトキシシリルプロピル)ピロール、3−(m−アミノフェノキシ)プロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、N−(6−アミノヘキシル)アミノメチルトリエトキシシラン、N−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N−3−[(アミノ(ポリプロピレンオキシ))]アミノプロピルトリメトキシシラン、n−ブチルアミノプロピルトリメトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノメチルトリエトキシシラン、(シクロヘキシルアミノメチル)トリエトキシシラン、N−シクロヘキシルアミノプロピルトリメトキシシラン、ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、ジエチルアミノメチルトリエトキシシラン、ジエチルアミノプロピルトリメトキシシラン、ジメチルアミノプロピルトリメトキシシラン、N−3−トリメトキシシリルプロピル−m−フェニレンジアミン、N,N−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス[(3−トリメトキシシリル)プロピル]−エチレンジアミン、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス(トリメトキシシリルプロピル)ウレア、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、ウレイドプロピルトリエトキシシラン、ウレイドプロピルトリメトキシシラン、アセトアミドプロピルトリメトキシシラン、2−(2−ピリジルエチル)チオプロピルトリメトキシシラン、2−(4−ピリジルエチル)チオプロピルトリメトキシシラン、ビス[3−(トリエトキシシリル)プロピル]ジスルフィド、3−(トリエトキシシリル)プロピルコハク酸無水物、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、イソシアナトプロピルトリメトキシシラン、イソシアナトプロピルトリエトキシシラン、イソシアナトエチルトリエトキシシラン、イソシアナトメチルトリエトキシシラン、カルボキシエチルシラントリオールナトリウム塩、N−(トリメトキシシリルプロピル)エチレンジアミン三酢酸三ナトリウム塩、3−(トリヒドロキシシリル)−1−プロパンスルホン酸、ジエチルホスフェートエチルトリエトキシシラン、3−トリヒドロキシシリルプロピルメチルホスホネートナトリウム塩、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)メタン、1,6−ビス(トリエトキシシリル)ヘキサン、1,8−ビス(トリエトキシシリル)オクタン、p−ビス(トリメトキシシリルエチル)ベンゼン、p−ビス(トリメトキシシリルメチル)ベンゼン、3−メトキシプロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン、メトキシトリエチレンオキシプロピルトリメトキシシラン、トリス(3−トリメトキシシリルプロピル)イソシアヌレート、[ヒドロキシ(ポリエチレンオキシ)プロピル]トリエトキシシラン、N,N'−ビス(ヒドロキシエチル)−N,N'−ビス(トリメトキシシリルプロピル)エチレンジアミン、ビス−[3−(トリエトキシシリルプロピル)−2−ヒドロキシプロポキシ]ポリエチレンオキシド、ビス[N,N'−(トリエトキシシリルプロピル)アミノカルボニル]ポリエチレンオキシド、ビス(トリエトキシシリルプロピル)ポリエチレンオキシドを挙げることができる。これらのうち特に好ましいものとしては、入手容易な観点と親水性層との密着性の観点から、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン等を挙げることができる。
がTiでaが2の場合、即ち2官能のオルガノアルコキシチタネートとしては、例えば、ジメチルジメトキシチタネート、ジエチルジメトキシチタネート、プロピルメチルジメトキシチタネート、ジメチルジエトキシチタネート、ジエチルジエトキシチタネート、ジプロピルジエトキシチタネート、フェニルエチルジエトキシチタネート、フェニルメチルジプロポキシチタネート、ジメチルジプロポキシチタネート等を挙げることができる。
がTiでaが3の場合、即ち3官能のオルガノアルコキシチタネートとしては、例えば、メチルトリメトキシチタネート、エチルトリメトキシチタネート、プロピルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、プロピルトリエトキシチタネート、クロロメチルトリエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート、フェニルトリプロポキシチタネート等を挙げることができる。
がZrである場合、即ち、2官能及び3官能のオルガノアルコキシジルコネートとしては、例えば、前記2官能及び3官能のオルガノアルコキシチタネートとして例示した化合物においてTiをZrに変えてなるオルガノアルコキシジルコネートを挙げることができる。
これらのテトラアルコキシ化合物及びオルガノアルコキシ化合物は市販品として容易に入手可能であり、また公知の合成方法、たとえば各金属ハロゲン化物とアルコールとの反応によっても得られる。
テトラアルコキシ化合物及びオルガノアルコキシ化合物は、それぞれ1種類の化合物を単独で用いても、2種類以上の化合物を組み合わせて使用してもよい。
特に好ましいテトラアルコキシ化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシチタネート、テトライソプロポキシチタネート、テトラエトキシジルコネート、テトラプロポキシジルコネート等が挙げられる。また、特に好ましいオルガノアルコキシ化合物としては、3−グルシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ウレイドプロピルトリエトキシシラン、ジエチルジメトキシシラン、プロピルトリエトキシチタネート、エチルトリエトキシジルコネート等が挙げられる。
前述のとおり、前記導電性層を構成する成分(ii)としてのゾルゲル硬化物は前記一般式(I)で表されるテトラアルコキシ化合物と前記一般式(II)で表されるオルガノアルコキシ化合物とを組み合わせて加水分解及び重縮合したものである。これにより、上記のテトラアルコキシ化合物又はオルガノアルコキシ化合物を単独で加水分解及び重縮合したゾルゲル硬化物を金属ナノワイヤーと共に含む導電性層を有する導電性部材に比べて、高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性に優れ、かつ耐屈曲性に優れる導電性部材が得られる。その理由は、前記導電性層を構成する成分(ii)としてのゾルゲル硬化物が、−M−O−M−(ここで、MはSi、Ti及びZrからなる群より選ばれた元素を示す。)で表される部分構造を含む三次元架橋構造の中に、前述の一般式(II)中のRに由来する基が含まれているために、導電性層の柔軟性が向上し、それにより耐屈曲性と耐磨耗性に優れるという特性が得られるためと推定される。
導電性層における前記オルガノアルコキシ化合物の含有量に対する前記テトラアルコキシ化合物の含有量の質量比(テトラアルコキシ化合物/オルガノアルコキシ化合物)は、0.01/1〜100/1の範囲、更に好ましくは0.02/1〜50/1の範囲、より更に好ましくは0.05/1〜20/1の範囲から選ばれることが、膜強度、耐磨耗性及び耐屈曲性に優れた導電性部材を容易に得られるという点から有利である。
導電性層における金属ナノワイヤーの含有量に対する前記ゾルゲル硬化物の含有量の質量比(すなわち、前記金属ナノワイヤーの含有量に対する、ゾルゲル硬化物の原料としての前記テトラアルコキシ化合物及びオルガノアルコキシ化合物の総含有量の質量比)は、0.5/1〜25/1の範囲、より好ましくは1/1〜20/1の範囲、最も好ましくは2/1〜15/1の範囲にあることが、高い導電性と高い透明性を有すると共に、膜強度が高く、耐磨耗性、耐熱性、耐湿熱性及び屈曲性に優れる導電性層が容易に得られるので好ましい。
<<<導電性部材の製造方法>>>
ある実施態様において、前記導電性部材は、前述の平均短軸長が150nm以下の金属ナノワイヤーと前述のテトラアルコキシ化合物及びオルガノアルコキシ化合物(以下、これらの両化合物からなるものを「特定アルコキシド化合物」ともいう。)とを含む液状組成物(以下、「ゾルゲル塗布液」ともいう)を、基材上に付与して液膜を形成すること、及び、この液膜中で特定アルコキシド化合物の加水分解と重縮合の反応(以下、この加水分解と重縮合の反応を「ゾルゲル反応」ともいう。)を起こさせることにより導電性層を形成すること、を少なくとも含む方法により製造することができる。当該方法は、更に必要に応じて、液状組成物中に溶媒として含まれ得る水を加熱により蒸発させること(乾燥)を含んでもよく含まなくてもよい。
ある実施態様では、前記ゾルゲル塗布液は、金属ナノワイヤーの水分散液を調製し、これと特定アルコキシド化合物とを混合して調製されてもよい。ある実施態様では、特定アルコキシド化合物を含む水溶液を調製し、この水溶液を加熱して特定アルコキシド化合物の少なくとも一部を加水分解及び重縮合させてゾル状態とし、このゾル状態にある水溶液と金属ナノワイヤーの水分散液とを混合してゾルゲル塗布液を調製してもよい。
ゾルゲル反応を促進させるために、酸性触媒又は塩基性触媒を併用することが反応効率を高められるので、実用上好ましい。以下、この触媒について、説明する。
〔触媒〕
導電性層を形成する液状組成物は、ゾルゲル反応を促進させる触媒の少なくとも1種を含むことが好ましい。触媒としては、前述のテトラアルコキシ化合物及びオルガノアルコキシ化合物の加水分解及び重縮合の反応を促進させるものであれば特に制限はなく、通常用いられる触媒から適宜選択して使用することができる。
このような触媒としては、酸性化合物及び塩基性化合物が挙げられる。これらはそのまま使用することもできるし、水又はアルコールなどの溶媒に溶解させた状態のもの(以下、これらを包括してそれぞれ酸性触媒、塩基性触媒とも称する)で使用してもよい。
酸性化合物又は塩基性化合物を溶媒に溶解させる際の濃度については特に限定はなく、用いる酸性化合物又は塩基性化合物の特性、触媒の所望の含有量などに応じて適宜選択すればよい。ここで、触媒を構成する酸或いは塩基性化合物の濃度が高い場合は、加水分解、重縮合速度が速くなる傾向がある。濃度の高過ぎる塩基性触媒を用いると、沈殿物が生成して導電性層に欠陥となって現れる場合があるので、塩基性触媒を用いる場合、その濃度は液状組成物での濃度換算で1N以下であることが望ましい。
酸性触媒あるいは塩基性触媒の種類は特に限定されない。濃度の高い触媒を用いる必要がある場合には、導電性層中にほとんど残留しないような元素から構成される触媒を選択することが好ましい。具体的に、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸等の無機酸、蟻酸や酢酸等のカルボン酸、RCOOHで示される構造式のRが置換基を有する置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などが挙げられる。また塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどの有機アミンなどが挙げられる。
ここでRは、炭化水素基を表す。Rで表される炭化水素基は前記一般式(II)における炭化水素基と同じ定義を有しており、好ましい態様も同様である。
前記触媒として、金属錯体からなるルイス酸触媒もまた好ましく使用できる。特に好ましい触媒は、金属錯体触媒であり、周期律表の2A、3B、4A及び5A族から選ばれる金属元素とβ−ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、並びにエノール性活性水素化合物からなる群より選ばれるオキソ又はヒドロキシ酸素含有化合物である配位子とから構成される金属錯体である。
構成金属元素の中では、Mg、Ca、St、Baなどの2A族元素、Al、Gaなどの3B族元素、Ti、Zrなどの4A族元素及びV、Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiからなる群より選ばれる金属元素を含む錯体が優れており、好ましい。
上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物の具体例としては、アセチルアセトン(2,4−ペンタンジオン)、2,4−ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4−ヒドロキシ−4−メチル−2−ペンタノン、4−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ヘプタノン、4−ヒドロキシ−2−ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N−ジメチルエタノールアミン、N−メチル−モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4−ペンタンジオン)のメチル基、メチレン基又はカルボニル炭素に置換基を有するアセチルアセトン誘導体などが挙げられる。
好ましい配位子はアセチルアセトン誘導体である。アセチルアセトン誘導体は、ここでは、アセチルアセトンのメチル基、メチレン基又はカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1〜3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1〜3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1〜3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。
好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n−プロピルカルボニルアセトン、i−プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル−1−プロピオニル−アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3−ジアセトプロピオン酸、4,4−ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1〜4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。
好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ−i−プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。
上記した金属錯体の対塩の詳細な記載はここでは省略する。対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。
金属錯体のシリカゾルゲル反応での挙動については、J.Sol−Gel.Sci.and Tec.第16巻、第209〜220頁(1999年)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、液状組成物中では、金属錯体は、配位構造を取って安定である。基材に付与後の自然乾燥または加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより、液状組成物の経時安定性、並びに導電性層の皮膜面質及び高耐久性が優れ得る。
上記の金属錯体触媒は、市販品として容易に入手可能であり、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。
前記液状組成物が触媒を含む場合、前記触媒は、液状組成物の固形分に対して、好ましくは50質量%以下、更に好ましくは5質量%〜25質量%の範囲で使用される。触媒は、単独で用いても2種以上を組み合わせて使用してもよい。
〔溶剤〕
上記の液状組成物は、必要に応じて、水及び/または有機溶剤を含有してもよい。有機溶剤を含有することにより基材上に、より均一な液膜を形成することができる。
このような有機溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2−プロパノール、1−プロパノール、1−ブタノール、tert−ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
液状組成物が有機溶剤を含む場合、液状組成物の総質量に対して50質量%以下の範囲が好ましく、更に30質量%以下の範囲がより好ましい。
基材上に形成されたゾルゲル塗布液の塗布液膜中においては、特定アルコキシド化合物の加水分解及び縮合の反応が起こるが、その反応を促進させるために、上記塗布液膜を加熱、乾燥することが好ましい。ゾルゲル反応を促進させるための加熱温度は、30℃〜200℃の範囲が適しており、50℃〜180℃の範囲がより好ましい。加熱、乾燥時間は10秒間〜300分間が好ましく、1分間〜120分間がより好ましい。
導電性層の平均膜厚は、0.005μm〜0.5μmが好ましく、0.007μm〜0.3μmがより好ましく、0.008μm〜0.2μmが更に好ましく、0.01μm〜0.1μmが特に好ましい。平均膜厚を0.005μm以上0.5μm以下とすることで、十分な耐久性、膜強度が得られる。さらに導電性層を導電性領域と非導電性領域にパターニングする際に非導電性領域に含まれる金属ナノワイヤーを十分に除去することができる。さらに0.01μm〜0.1μmの範囲とすれば、製造上の許容範囲が確保され得るので特に好ましい。
前記導電性層の平均膜厚は、電子顕微鏡による導電性層断面の直接観察により、導電性層の膜厚を5点測定し、その算術平均値として算出される。平均膜厚は金属ワイヤーの存在しないマトリックス成分のみの厚みを測定して算出する。なお、導電性層の膜厚は例えば、触針式表面形状測定器(Dektak(登録商標)150、Bruker AXS製)を用いて、導電性層を形成した部分と導電性層を除去した部分の段差として測定することもできる。しかし、導電性層を除去する際に基材の一部まで除去してしまう恐れがあり、また形成される導電性層が薄膜なため誤差が生じやすい。そのため、後述の実施例では電子顕微鏡を用いて測定される平均膜厚を用いる。
前記導電性層は、基材と対向する面とは反対側の面(以下、「オモテ面」ともいう)における水滴接触角が、3°以上70°以下であることが好ましい。より好ましくは5°以上60°であり、更に好ましくは5°以上50°以下であり、最も好ましくは5°以上40°以下である。導電性層表面の水滴接触角がこの範囲であると、後述するエッチング液を用いるパターニング方法においてエッチング速度が向上する傾向がある。これは例えば、エッチング液が導電性層内に取り込まれやすくなるためと考えることができる。またパターニングした際の細線の線幅の精度が向上する傾向がある。さらに導電性層上に銀ペーストによる配線を形成する場合に、導電性層と銀ペーストとの密着性が向上する傾向がある。
なお、前記導電性層のオモテ面における水滴接触角は、接触角計(例えば、協和界面科学社製の全自動接触角計、商品名:DM−701)を用いて25℃において測定される。
前記導電性層表面の水滴接触角は、例えば、液状組成物中のアルコキシド化合物種、アルコキシド化合物の縮合度、導電性層の平滑性などを適宜選択することで所望の範囲とすることができる。
前記導電性層は、その表面抵抗率が1,000Ω/□以下であることが好ましい。ここで導電性層の表面抵抗率は、導電性層が非導電性領域及び導電性領域を有する場合、導電性領域における表面抵抗率である。
表面抵抗率は、導電性部材における導電性層の基材側とは反対側の表面を四探針法により測定して得られる値である。四探針法による表面抵抗率の測定方法は、例えばJIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)などに準拠して測定することができ、市販の表面抵抗率計を用いて、簡便に測定することができる。表面抵抗率を1,000Ω/□以下とするには、導電性層に含まれる金属ナノワイヤーの種類及び含有比率の少なくとも一つを調整すればよい。より具体的には、特定アルコキシド化合物と金属ナノワイヤーの含有比率を0.25/1〜30/1の質量比の範囲内で調製することにより、所望の範囲の表面抵抗率を有する導電性層を形成することができる。
導電性層の表面抵抗率は、0.1Ω/□〜900Ω/□の範囲であることがより好ましい。
前記導電性部材における、基材表面に垂直な方向から観察した場合の導電性層の形状は特に制限されず、目的に応じて適宜選択することができる。導電性層は非導電性領域を含むものであってもよい。すなわち導電性層は、導電性層の全領域が導電性領域である(以下、この導電性層を「非パターン化導電性層」ともいう)第一の態様、及び導電性層が導電性領域と非導電性領域とを含む(以下、この導電性層を「パターン化導電性層」ともいう)第二の態様の何れであってもよい。第二の態様の場合には、非導電性領域に金属ナノワイヤーが含まれていても含まれていなくてもよい。非導電性領域に金属ナノワイヤーが含まれている場合、非導電性領域に含まれる金属ナノワイヤーは断線されている。
第一の態様に係る導電性部材は、例えば太陽電池の透明電極として使用することができる。
第二の態様に係る導電性部材は、例えばタッチパネルを構成する場合に使用され得る。この場合、所望の形状を有する導電性領域と非導電性領域とが形成される。
前記非導電性領域の表面抵抗率は特に制限されない。中でも1.0×10Ω/□以上であることが好ましく、1.0×10Ω/□以上であることがより好ましい。前記導電性領域の表面抵抗率は、1.0×10Ω/□以下であることが好ましく、9.0×10Ω/□以下であることがより好ましい。
パターン化導電性層は、例えば下記パターニング方法により製造される。
(1)予め非パターン化導電性層を形成しておき、この非パターン化導電性層の所望の領域に含まれる金属ナノワイヤーに炭酸ガスレーザー、YAGレーザー等の高エネルギーのレーザー光線を照射して、金属ナノワイヤーの一部を断線又は消失させて当該所望の領域を非導電性領域とするパターニング方法。この方法は、例えば、特開2010−44968号公報に記載されている。
(2)予め形成した非パターン化導電性層上にレジスト層を形成し得る感光性組成物(フォトレジスト)層を設け、この感光性組成物層に所望のパターン露光及び現像を行って、当該パターン状にレジスト層を形成したのちに、金属ナノワイヤーを溶解可能なエッチング液で処理するウェットプロセスか、又は反応性イオンエッチングのようなドライプロセスにより、レジスト層で保護されていない領域の導電性層中の金属ナノワイヤーをエッチング除去するパターニング方法。この方法は、例えば特表2010−507199号公報(特に、段落0212〜0217)に記載されている。
(3)予め形成した非パターン化導電性層上に、金属ナノワイヤーを溶解可能なエッチング液を所望のパターン状に付与して、エッチング液が付与された領域の導電性層中の金属ナノワイヤーをエッチング除去するパターニング方法。
前記感光性組成物層のパターン露光に用いる光源は、前記感光性組成物の感光波長域との関連で選定されるが、一般的にはg線、h線、i線、j線等の紫外線が好ましく用いられる。また、青色LEDを用いてもよい。
パターン露光の方法にも特に制限はなく、フォトマスクを利用した面露光で行ってもよいし、レーザービーム等による走査露光で行ってもよい。この際、レンズを用いた屈折式露光でも反射鏡を用いた反射式露光でもよく、コンタクト露光、プロキシミティー露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。
前記金属ナノワイヤーを溶解可能なエッチング液の付与方法には、特に制限はなく、目的に応じて適宜選択することができる。例えばスクリーン印刷、インクジェット法、コーター塗布、ローラー塗布、ディップ(浸漬)塗布、スプレー塗布する方法、などが挙げられる。これらの中でも、スクリーン印刷、インクジェット法、コーター塗布、ディップ塗布が特に好ましい。
前記エッチング液を所望のパターン状に付与する方法には特に制限はなく、目的に応じて適宜選択することができる。例えばスクリーン印刷、インクジェット法などが挙げられる。
前記インクジェット法としては、例えばピエゾ方式及びサーマル方式のいずれも使用可能である。
前記パターンの種類には、特に制限はなく、目的に応じて適宜選択することができ、例えば、文字、記号、模様、図形、配線パターン、などが挙げられる。
前記パターンの大きさには、特に制限はなく、目的に応じて適宜選択することができるが、ナノオーダーサイズからミリオーダーサイズのいずれの大きさであっても構わない。
前記金属ナノワイヤーを溶解可能なエッチング液は、金属ナノワイヤーの種類に応じて適宜選択することができる。例えば金属ナノワイヤーが銀ナノワイヤーの場合には、写真科学分野において、主にハロゲン化銀カラー感光材料の印画紙の漂白、定着工程に使用される漂白定着液、強酸、酸化剤、過酸化水素などが挙げられる。これらの中でも、漂白定着液、希硝酸、過酸化水素が特に好ましい。エッチング液による金属ナノワイヤーの溶解は、溶解液を付与した部分の金属ナノワイヤーを完全に溶解しなくてもよく、導電性が消失していれば一部が残存していてもよい。
前記希硝酸の濃度は、1質量%〜20質量%であることが好ましい。
前記過酸化水素の濃度は、3質量%〜30質量%であることが好ましい。
前記漂白定着液としては、例えば特開平2−207250号公報の第26頁右下欄1行目〜34頁右上欄9行目、及び特開平4−97355号公報の第5頁左上欄17行目〜18頁右下欄20行目に記載の処理素材や処理方法が好ましく適用できる。
漂白定着時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましく、90秒間以下5秒間以上が更に好ましい。また、水洗又は安定化時間は、180秒間以下が好ましく、120秒間以下1秒間以上がより好ましい。
前記漂白定着液は、写真用漂白定着液であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、富士フイルム株式会社製CP−48S、CP−49E(カラーペーパー用漂白定着剤)、コダック社製エクタカラーRA漂白定着液、大日本印刷株式会社製漂白定着液D−J2P−02−P2、D−30P2R−01、D−22P2R−01(全て商品名)などが挙げられる。これらの中でも、CP−48S、CP−49Eが特に好ましい。
前記金属ナノワイヤーを溶解可能なエッチング液の粘度は、25℃で、5mPa・s〜300,000mPa・sであることが好ましく、10mPa・s〜150,000mPa・sであることがより好ましい。前記粘度を5mPa・sとすることで、エッチング液の拡散を所望の範囲に制御することが容易となって、導電性領域と非導電性領域との境界が明瞭なパターニングが確保され得、他方、300,000mPa・s以下とすることで、エッチング液の印刷を負荷なく行うことが確保されると共に、金属ナノワイヤーの溶解に要する処理時間を所望の時間内で完了させることができる。
導電性部材における導電性層はエッチング特性に優れることから、導電性部材における導電性層は、非導電性領域及び導電性領域を有し、少なくとも前記導電性領域が前記金属ナノワイヤーを含み、前記非導電性領域が前記金属ナノワイヤーを溶解するエッチング液の付与により形成されることが好ましい。
エッチング液の付与により非導電性領域を形成する方法は、導電性層上にパターン状にエッチング液を付与する方法であればよい。例えばレジスト層を用いてエッチング液をパターン状に付与する方法であっても、スクリーン印刷、インクジェット法等によりエッチング液をパターン状に付与する方法であってもよい。生産性の観点から、スクリーン印刷、インクジェット法等によりエッチング液をパターン状に付与する方法であることが好ましい。
<マトリックス>
前記導電性層は、マトリックスを含んでもよい。ここで「マトリックス」は、金属ナノワイヤーを含んで層を形成する物質の総称である。マトリックスを含むことにより、導電性層における金属ナノワイヤーの分散が安定に維持される上、基材表面に導電性層を、接着層を介することなく形成した場合においても基材と導電性層との強固な接着が確保される傾向がある。導電性層に含まれる前述のゾルゲル硬化物はマトリックスとしての機能も有するが、導電性層はさらにゾルゲル硬化物以外のマトリックス(以下、「その他マトリックス」という。)を含んでもよい。その他マトリックスを含む導電性層は、前述の液状組成物中に、その他マトリックスを形成し得る材料を含有させておき、これを基材上に(例えば、塗布により)付与して形成すればよい。
その他マトリックスは、有機高分子ポリマーのような非感光性のものであっても、フォトレジスト組成物のような感光性のものであっても良い。
導電性層がその他マトリックスを含む場合、その含有量は、導電性層に含まれる特定アルコキシ化合物に由来するゾルゲル硬化物の含有量に対して、0.10質量%〜20質量%、好ましくは0.15質量%〜10質量%、更に好ましくは0.20質量%〜5質量%の範囲から選ばれることが導電性、透明性、膜強度、耐磨耗性及び耐屈曲性の優れる導電性部材が得られるので有利である。
その他マトリックスは、前述のとおり、非感光性のものであっても、感光性のものであっても良い。
好適な非感光性マトリックスには、有機高分子ポリマーが含まれる。有機高分子ポリマーの具体例には、ポリメタクリル酸、ポリメタクリレート(例えば、ポリ(メタクリル酸メチル))、ポリアクリレート、及びポリアクリロニトリルなどのアクリル系樹脂、ポリビニルアルコール、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエステルナフタレート、及びポリカーボネート)、フェノール又はクレゾール−ホルムアルデヒド(Novolacs(登録商標))、ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、及びポリフェニルエーテルなどの芳香族性を有する高分子、ポリウレタン(PU)、エポキシ、ポリオレフィン(例えば、ポリプロピレン、ポリメチルペンテン、及び環状ポリオレフィン)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、セルロース、シリコーン及びその他のシリコン含有高分子(例えば、ポリシルセスキオキサン及びポリシラン)、ポリ塩化ビニル(PVC)、ポリビニルアセテート、ポリノルボルネン、合成ゴム(例えば、EPR、SBR、EPDM)、及びフッ化炭素系重合体(例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン(TFE)、又はポリヘキサフルオロプロピレン)、フルオロ−オレフィンの共重合体、及び炭化水素オレフィン(例えば、旭硝子株式会社製「LUMIFLON」(登録商標))、及び非晶質フルオロカーボン重合体又は共重合体(例えば、旭硝子株式会社製の「CYTOP」(登録商標)又はデュポン社製の「Teflon」(登録商標)AF)が挙げられるがそれだけに限定されない。
感光性のマトリックスには、リソグラフィック・プロセスに好適なフォトレジスト組成物が含まれ得る。マトリックスとして、フォトレジスト組成物が含まれる場合には、導電性層を導電性領域と非導電性領域とをパターン上に有するものを、リソグラフィック・プロセスにより形成することが可能となる。このようなフォトレジスト組成物のうち、特に好ましいものとして、透明性及び柔軟性に優れ、かつ基材との接着性に優れた導電性層が得られるという点から、光重合性組成物が挙げられる。以下、この光重合性組成物について説明する。
<光重合性組成物>
光重合性組成物は、(a)付加重合性不飽和化合物と、(b)光に照射されるとラジカルを発生する光重合開始剤とを基本成分として含む。光重合性組成物は、更に所望により(c)バインダー、及び/又は(d)上記成分(a)〜(c)以外の添加剤を含んでも含まなくてもよい。
以下、これらの成分について、説明する。
[(a)付加重合性不飽和化合物]
成分(a)の付加重合性不飽和化合物(以下、「重合性化合物」ともいう。)は、ラジカルの存在下で付加重合反応を生じて高分子化される化合物であり、通常、分子末端に少なくとも一つの、好ましくは二つ以上の、より好ましくは四つ以上の、更に好ましくは六つ以上のエチレン性不飽和二重結合を有する化合物が使用される。
これらは、例えば、モノマー、プレポリマー、即ち2量体、3量体もしくはオリゴマー、又はそれらの混合物などの化学的形態をもつ。
このような重合性化合物としては、種々のものが知られており、それらは成分(a)として使用することができる。
このうち、特に好ましい重合性化合物としては、膜強度の観点から、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが挙げられる。
導電性層中における成分(a)の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、2.6質量%以上37.5質量%以下であることが好ましく、5.0質量%以上20.0質量%以下であることがより好ましい。
[(b)光重合開始剤]
成分(b)の光重合開始剤は、光に照射されるとラジカルを発生する化合物である。このような光重合開始剤としては、光照射により、最終的には酸となる酸ラジカルを発生する化合物及びその他のラジカルを発生する化合物などが挙げられる。以下、前者を「光酸発生剤」と呼び、後者を「光ラジカル発生剤」と呼ぶ。
−光酸発生剤−
光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸ラジカルを発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
このような光酸発生剤は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジ−又はトリ−ハロメチル基を少なくとも一つ有するトリアジン又は1,3,4−オキサジアゾール、ナフトキノン−1,2−ジアジド−4−スルホニルハライド、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o−ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o−ニトロベンジルスルホネートが特に好ましい。
また、活性光線又は放射線の照射により酸ラジカルを発生する基、あるいは化合物を樹脂の主鎖又は側鎖に導入した化合物、例えば、米国特許第3,849,137号明細書、独国特許第3914407号明細書、特開昭63−26653号、特開昭55−164824号、特開昭62−69263号、特開昭63−146038号、特開昭63−163452号、特開昭62−153853号、特開昭63−146029号の各公報等に記載の化合物を用いることができる。
更に、米国特許第3,779,778号、欧州特許第126,712号等の各明細書に記載の化合物も、酸ラジカル発生剤として使用することができる。
前記トリアジン系化合物としては、例えば2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−エトキシナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−エトキシカルボニルナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4,6−トリス(モノクロロメチル)−s−トリアジン、2,4,6−トリス(ジクロロメチル)−s−トリアジン、2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−メチル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−n−プロピル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(α,α,β−トリクロロエチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(3,4−エポキシフェニル)−4、6−ビス(トリクロロメチル)−s−トリアジン、2−(p−クロロフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−〔1−(p−メトキシフェニル)−2,4−ブタジエニル〕−4,6−ビス(トリクロロメチル)−s−トリアジン、2−スチリル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−i−プロピルオキシスチリル)−4、6−ビス(トリクロロメチル)−s−トリアジン、2−(p−トリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−フェニルチオ−4,6−ビス(トリクロロメチル)−s−トリアジン、2−ベンジルチオ−4,6−ビス(トリクロロメチル)−s−トリアジン、4−(o−ブロモ−p−N,N−ビス(エトキシカルボニルアミノ)−フェニル)−2,6−ジ(トリクロロメチル)−s−トリアジン、2,4,6−トリス(ジブロモメチル)−s−トリアジン、2,4,6−トリス(トリブロモメチル)−s−トリアジン、2−メチル−4,6−ビス(トリブロモメチル)−s−トリアジン、2−メトキシ−4,6−ビス(トリブロモメチル)−s−トリアジン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記(1)光酸発生剤の中でもスルホン酸を発生する化合物が好ましく、下記のようなオキシムスルホネート化合物が高感度である観点から特に好ましい。
−光ラジカル発生剤−
光ラジカル発生剤は、光を直接吸収し、又は光増感されて分解反応若しくは水素引き抜き反応を起こし、ラジカルを発生する機能を有する化合物である。光ラジカル発生剤は、波長300nm〜500nmの領域に吸収を有するものが好ましい。
このような光ラジカル発生剤としては、多数の化合物が知られており、例えば特開2008−268884号公報に記載されているようなカルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシムエステル化合物、アシルホスフィン(オキシド)化合物、が挙げられる。これらは目的に応じて適宜選択することができる。これらの中でも、ベンゾフェノン化合物、アセトフェノン化合物、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、及びアシルホスフィン(オキシド)化合物が露光感度の観点から特に好ましい。
前記ベンゾフェノン化合物としては、例えばベンゾフェノン、ミヒラーズケトン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、N,N−ジエチルアミノベンゾフェノン、4−メチルベンゾフェノン、2−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記アセトフェノン化合物としては、例えば2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシアセトフェノン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、1−ヒドロキシシクロヘキシルフェニルケトン、α−ヒドロキシ−2−メチルフェニルプロパノン、1−ヒドロキシ−1−メチルエチル(p−イソプロピルフェニル)ケトン、1−ヒドロキシ−1−(p−ドデシルフェニル)ケトン、2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン、1,1,1−トリクロロメチル−(p−ブチルフェニル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1などが挙げられる。市販品の具体例としては、BASF社製のイルガキュア369(登録商標)、イルガキュア379(登録商標)、イルガキュア907(登録商標)などが好適である。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記ヘキサアリールビイミダゾール化合物としては、例えば、特公平6−29285号公報、米国特許第3,479,185号、米国特許第4,311,783号、米国特許第4,622,286号等の各明細書に記載の種々の化合物、具体的には、2,2’−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−ブロモフェニル))4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o,p−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−クロロフェニル)−4,4’,5,5’−テトラ(m−メトキシフェニル)ビイジダゾール、2,2’−ビス(o,o’−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−ニトロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−トリフルオロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記オキシムエステル化合物としては、例えばJ.C.S.Perkin II(1979)1653−1660)、J.C.S.Perkin II(1979)156−162、Journal of Photopolymer Science and Technology(1995)202−232、特開2000−66385号公報記載の化合物、特開2000−80068号公報、特表2004−534797号公報記載の化合物等が挙げられる。具体例としては、BASF社製のイルガキュア(登録商標)OXE−01、イルガキュア(登録商標)OXE−02等が好適である。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記アシルホスフィン(オキシド)化合物としては、例えばBASF社製のイルガキュア(登録商標)819、ダロキュア(登録商標)4265、ダロキュア(登録商標)TPOなどが挙げられる。
光ラジカル発生剤としては、露光感度と透明性の観点から、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−メチル−1−(4−メチルチオフェニル)−2−モルホリノプロパン−1−オン、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、N,N−ジエチルアミノベンゾフェノン、1−[4−(フェニルチオ)フェニル]−1,2−オクタンジオン2−(O−ベンゾイルオキシム)が特に好ましい。
成分(b)の光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよく、その導電性層中における含有量は、金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、0.1質量%〜50質量%であることが好ましく、0.5質量%〜30質量%がより好ましく、1質量%〜20質量%が更に好ましい。このような数値範囲において、後述の導電性領域と非導電性領域とを含むパターンを導電性層に形成する場合に、良好な感度とパターン形成性が得られる。
[(c)バインダー]
バインダーは、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
これらの中でも、有機溶剤に可溶でアルカリ水溶液に可溶なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。
ここで、前記酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。
前記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。前記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。
前記線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましい。
前記側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59−44615号、特公昭54−34327号、特公昭58−12577号、特公昭54−25957号、特開昭59−53836号、特開昭59−71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が特に好ましい。
更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーからなる多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。
前記以外にも、特開平7−140654号公報に記載の、2−ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2−ヒドロキシ−3−フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2−ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2−ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体、などが挙げられる。
前記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。
前記(メタ)アクリル酸と共重合可能な他の単量体としては、例えばアルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。これらは、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。
前記アルキル(メタ)アクリレート又はアリール(メタ)アクリレートとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ポリメチルメタクリレートマクロモノマー、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記ビニル化合物としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、アクリロニトリル、ビニルアセテート、N−ビニルピロリドン、ポリスチレンマクロモノマー、CH=CR1112〔ただし、R11は水素原子又は炭素数1〜5のアルキル基を表し、R12は炭素数6〜10の芳香族炭化水素環を表す。〕、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000〜500,000が好ましく、3,000〜300,000がより好ましく、5,000〜200,000が更に好ましい。
ここで、前記重量平均分子量は、ゲルパーミエイションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて求めることができる。
導電性層中における成分(c)のバインダーの含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、5質量%〜90質量%であることが好ましく、10質量%〜85質量%がより好ましく、20質量%〜80質量%が更に好ましい。前記好ましい含有量範囲であると、現像性と金属ナノワイヤーの導電性の両立が図れる。
[(d)その他、上記成分(a)〜(c)以外の添加剤]
上記成分(a)〜(c)以外のその他の添加剤としては、例えば、連鎖移動剤、架橋剤、分散剤、溶媒、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種の添加剤などが挙げられる。
(d−1)連鎖移動剤
連鎖移動剤は、光重合性組成物の露光感度向上のために使用されるものである。このような連鎖移動剤としては、例えば、N,N−ジメチルアミノ安息香酸エチルエステルなどのN,N−ジアルキルアミノ安息香酸アルキルエステル、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、2−メルカプトベンゾイミダゾール、N−フェニルメルカプトベンゾイミダゾール、1,3,5−トリス(3−メルカプトブチルオキシエチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンなどの複素環を有するメルカプト化合物、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトブチレート)、1,4−ビス(3−メルカプトブチリルオキシ)ブタンなどの脂肪族多官能メルカプト化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
導電性層中における連鎖移動剤の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、0.01質量%〜15質量%が好ましく、0.1質量%〜10質量%がより好ましく、0.5質量%〜5質量%が更に好ましい。
(d−2)架橋剤
架橋剤は、フリーラジカル又は酸及び熱により化学結合を形成し、導電層を硬化させる化合物で、例えばメチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも1つの基で置換されたメラミン系化合物、グアナミン系化合物、グリコールウリル系化合物、ウレア系化合物、フェノール系化合物もしくはフェノールのエーテル化合物、エポキシ系化合物、オキセタン系化合物、チオエポキシ系化合物、イソシアネート系化合物、又はアジド系化合物、メタクリロイル基又はアクリロイル基などを含むエチレン性不飽和基を有する化合物、などが挙げられる。これらの中でも、膜物性、耐熱性、溶剤耐性の点でエポキシ系化合物、オキセタン系化合物、エチレン性不飽和基を有する化合物が特に好ましい。
また、前記オキセタン系化合物は、1種単独で又はエポキシ系化合物と混合して使用することができる。特にエポキシ系化合物との併用で用いた場合には反応性が高く、膜物性を向上させる観点から好ましい。
なお、架橋剤としてエチレン性不飽和二重結合基を有する化合物を用いる場合、当該架橋剤も、また、前記(c)重合性化合物に包含され、その含有量は、(c)重合性化合物の含有量に含まれることを考慮すべきである。
導電性層中における架橋剤の含有量は、前述の金属ナノワイヤーを含む光重合性組成物の固形分の総質量を基準として、1質量%〜250質量%が好ましく、3質量%〜200質量%がより好ましい。
(d−3)分散剤
分散剤は、光重合性組成物中における前述の金属ナノワイヤーが凝集することを防止しつつ分散させるために用いられる。分散剤としては、前記金属ナノワイヤーを分散させることができれば特に制限はなく、目的に応じて適否選択することができる。例えば、顔料分散剤として市販されている分散剤を利用でき、特に金属ナノワイヤーに吸着する性質を持つ高分子分散剤が好ましい。このような高分子分散剤としては、例えばポリビニルピロリドン、BYKシリーズ(登録商標、ビックケミー社製)、ソルスパースシリーズ(登録商標、日本ルーブリゾール社製など)、アジスパーシリーズ(登録商標、味の素株式会社製)などが挙げられる。
分散剤として、前記金属ナノワイヤーの製造に用いたもの以外の高分子分散剤をさらに別に添加する場合、当該高分子分散剤も、また、前記成分(c)のバインダーに包含され、その含有量は、前述の成分(c)の含有量に含まれる。
導電性層中における分散剤の含有量は、成分(c)のバインダー100質量部に対し、0.1質量部〜50質量部が好ましく、0.5質量部〜40質量部がより好ましく、1質量部〜30質量部が特に好ましい。
分散剤の含有量を0.1質量部以上とすることで、分散液中での金属ナノワイヤーの凝集が効果的に抑制され、50質量部以下とすることで、付与工程において安定な液膜が形成され、付与ムラの発生が抑制されるため好ましい。
(d−4)溶媒
溶媒は、前述の(i)金属ナノワイヤー並びに(ii)テトラアルコキシ化合物及びオルガノアルコキシ化合物と、光重合性組成物とを含む組成物を基材表面に膜状に形成するための塗布液とするために使用される成分であり、目的に応じて適宜選択することができ、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3−エトキシプロピオン酸エチル、3−メトキシプロピオン酸メチル、乳酸エチル、3−メトキシブタノール、水、1−メトキシ−2−プロパノール、イソプロピルアセテート、乳酸メチル、N−メチルピロリドン(NMP)、γ−ブチロラクトン(GBL)、プロピレンカーボネート、などが挙げられる。この溶媒は、前述の金属ナノワイヤーの分散液の溶媒の少なくとも一部が兼ねていてもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
このような溶媒を含む塗布液の固形分濃度は、0.1質量%〜20質量%の範囲であることが好ましい。
(d−5)金属腐食防止剤
導電性層は金属ナノワイヤーの金属腐食防止剤を含有することが好ましい。このような金属腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばチオール類、アゾール類などが好適である。
金属腐食防止剤を含有させることで、防錆効果を発揮させることができ、導電性部材の経時による導電性及び透明性の低下を抑制することができる。金属腐食防止剤は導電性層形成用組成物中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述する導電層用塗布液による導電膜を作製後に、これを金属腐食防止剤浴に浸すことで付与することができる。
金属腐食防止剤を添加する場合、導電性層中におけるその含有量は、金属ナノワイヤーの含有量に対して0.5質量%〜10質量%であることが好ましい。
その他、マトリックスとしては、前述の金属ナノワイヤーの製造の際に使用された分散剤としての高分子化合物を、マトリックスを構成する成分の少なくとも一部として使用することが可能である。
<<中間層>>
前記導電性部材は、基材と導電性層との間に少なくとも1層の中間層を有することが好ましい。基材と導電性層との間に中間層を設けることにより、基材と導電性層との密着性、導電性層の全光透過率、導電性層のヘイズ、及び導電性層の膜強度のうちの少なくとも1つの向上を図り得る。
中間層としては、基材と導電性層との接着力を向上させるための接着剤層、導電性層に含まれる成分との相互作用により機能性を向上させる機能性層などが挙げられ、目的に応じて適宜設けられる。
中間層を更に有する導電性部材の構成について、図面を参照しながら説明する。
図1は、第一の実施形態に係る導電性部材の第一の例示的態様である導電性部材1を示す概略断面図である。導電性部材1においては、基材上に中間層を有してなる基板101上に導電性層20が設けられている。基材10と導電性層20との間に、基材10との親和性に優れた第1の接着層31と、導電性層20との親和性に優れた第2の接着層32とを含む中間層30を備える。
図2は、第一の実施形態に係る導電性部材の第二の例示的態様である導電性部材2を示す概略断面図である。導電性部材2においては、基材上に中間層を有してなる基板102上に導電性層20が設けられている。基材10と導電性層20との間に、前記第1の実施形態と同様の第1の接着層31及び第2の接着層32に加え、導電性層20に隣接して機能性層33を備えて構成される中間層30を有する。
中間層30に使用される素材は特に限定されず、上記の特性のいずれか少なくとも一つを向上させるものであればよい。
例えば、中間層として接着層を備える場合、接着層には、接着剤として使用されるポリマー、シランカップリング剤、チタンカップリング剤、Siのアルコキシド化合物を加水分解及び重縮合させて得られるゾルゲル膜などから選ばれる素材が含まれる。
導電性層と接する中間層(即ち、中間層30が単層の場合には、当該中間層が、そして中間層30が複数のサブ中間層を含む場合には、そのうちの導電性層と接するサブ中間層)が、当該導電性層20に含まれる金属ナノワイヤーと静電的に相互作用することのできる官能基(以下「相互作用可能な官能基」という)を有する化合物を含む機能性層33であることが、全光透過率、ヘイズ、及び膜強度に優れた導電性層が得られることから好ましい。このような中間層を有する場合においては、導電性層20が金属ナノワイヤーと有機高分子とを含むものであっても、膜強度に優れた導電性層が得られる。
この作用は明確ではないが、導電性層20に含まれる金属ナノワイヤーと相互作用可能な官能基を有する化合物を含む中間層を設けることで、導電性層に含まれる金属ナノワイヤーと中間層に含まれる上記の官能基を有する化合物との相互作用により、導電性層における導電性材料の凝集が抑制され、均一分散性が向上し、導電性層中における導電性材料の凝集に起因する透明性やヘイズの低下が抑制されるとともに、密着性に起因して膜強度の向上が達成されるものと考えられる。このような相互作用性を発現しうる中間層を、以下、機能性層と称することがある。機能性層は、金属ナノワイヤーとの相互作用によりその効果を発揮することから、導電性層が金属ナノワイヤーを含んでいれば、導電性層が含むマトリックスに依存せずにその効果を発現する。
上記の金属ナノワイヤーと相互作用可能な官能基としては、例えば金属ナノワイヤーが銀ナノワイヤーの場合には、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基、ホスホン酸基又はそれらの塩が挙げられ、これらからなる群より選ばれる一つまたは複数の官能基を前記化合物が有することが好ましい。当該官能基は、アミノ基、メルカプト基、リン酸基、ホスホン酸基又はそれらの塩であることがより好ましく、更に好ましくはアミノ基である。
上記のような官能基を有する化合物としては、例えばウレイドプロピルトリエトキシシラン、ポリアクリルアミド、ポリメタクリルアミドなどのようなアミド基を有する化合物、例えばN−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、ビス(ヘキサメチレン)トリアミン、N,N’−ビス(3−アミノプロピル)−1,4−ブタンジアミン四塩酸塩、スペルミン、ジエチレントリアミン、m−キシレンジアミン、メタフェニレンジアミンなどのようなアミノ基を有する化合物、例えば3−メルカプトプロピルトリメトキシシラン、2−メルカプトベンゾチアゾール、トルエン−3,4−ジチオールなどのようなメルカプト基を有する化合物、例えばポリ(p−スチレンスルホン酸ナトリウム)、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)などのようなスルホン酸又はその塩の基を有する化合物、例えばポリアクリル酸、ポリメタクリル酸、ポリアスパラギン酸、テレフタル酸、ケイ皮酸、フマル酸、コハク酸などのようなカルボン酸基を有する化合物、例えばホスマーPE、ホスマーCL、ホスマーM、ホスマーMH(商品名、ユニケミカル株式会社製)、及びそれらの重合体、ポリホスマーM−101、ポリホスマーPE−201、ポリホスマーMH−301(商品名、DAP株式会社製)などのようなリン酸基を有する化合物、例えばフェニルホスホン酸、デシルホスホン酸、メチレンジホスホン酸、ビニルホスホン酸、アリルホスホン酸などのようなホスホン酸基を有する化合物が挙げられる。
これらの官能基を選択することで、導電性層形成用の塗布液を塗布後、金属ナノワイヤーと中間層に含まれる官能基とが相互作用を生じて、乾燥する際に金属ナノワイヤーが凝集するのを抑制し、金属ナノワイヤーが均一に分散された導電性層を形成することができる。
中間層は、中間層を構成する化合物が溶解、分散(懸濁又は乳化)した液体を基材上に塗布し、乾燥することで形成することができる。塗布方法は一般的な方法を用いることができる。その方法としては特に制限はなく、目的に応じて適宜選択することができる。例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。
前記中間層の、基材と対向する面とは反対側の面(中間層表面)における水滴接触角は、3゜以上50゜以下であることが好ましい。より好ましくは5゜以上40゜であり、更に好ましくは5゜以上35゜以下であり、最も好ましくは5゜以上30゜以下である。中間層表面の水滴接触角がこの範囲であると、ムラなどの欠陥がより抑制された導電性層を形成することができる。これは例えば、導電性層形成用の液状組成物を付与する際の濡れ拡がりがよくなるためと考えることができる。また表面が活性化されているため導電性層との密着性がより向上する傾向がある。
中間層表面の水滴接触角は、接触角計を用いて25℃において測定される。
前記導電性部材は、優れた耐磨耗性を有する。この耐磨耗性は、例えば、以下の(1)又は(2)の方法により評価することができる。
(1)導電性層の表面に対して、連続加重引掻試験機(例えば、新東科学株式会社製の連続加重引掻試験機、商品名:Type18s)を使用し、125g/cmの圧力でガーゼ(例えば、FCガーゼ(商品名、白十字株式会社製))を押し付け、50往復擦る耐磨耗試験を行ったとき、前記耐磨耗試験後の導電性層の表面抵抗率(Ω/□)/前記耐磨耗試験前の導電性層の表面抵抗率(Ω/□)の比が100以下である。
従来の金属ナノワイヤーを用いた導電性層は低抵抗領域(0.1〜1000Ω/□)で使用する場合、金属ナノワイヤー同士の接触点を増やすためにマトリックス量を少なく用いているため、膜強度が非常に弱い。そのため、タッチパネル等を作成する場合のハンドリング時に導電性層に傷が入ってしまい断線する。これは金属ナノワイヤーを用いた導電性層を製品に採用する上での要改善事項であった。本発明の一実施形態である導電性部材は前記の通り優れた耐磨耗性を有するので、上記のようなハンドリング時の故障を低減できるため、タッチパネル用の電極として長期の使用の適性を有するものとなる。
(2)導電性部材を、直径10mmの円筒マンドレルを備えた円筒形マンドレル屈曲試験器(例えば、コーテック(株)社製のもの)を用いて、20回曲げ試験に供したとき、前記試験後の導電性層の表面抵抗率(Ω/□)/前記試験前の導電性層の表面抵抗率(Ω/□)の比が2.0以下である。
金属ナノワイヤーを用いた従来の導電性部材は3Dタッチパネルディスプレイや球状ディスプレイに使用するには、耐屈曲性が不十分であった。これに対して、本発明の一実施形態である導電性部材は前記の通り優れた耐屈曲性を有するため、立体加工適性を有するので、3Dタッチパネルディスプレイや球状ディスプレイの電極として使用することが可能である。
前記導電性部材は、導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー、並びに、(ii)前述の一般式(I)で表されるテトラアルコキシ化合物及び前記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物を含有する構成とされることにより、導電性、透明性、耐磨耗性、耐熱性、耐湿熱性及び耐屈曲性に優れ得るという特異的な効果を奏する。
その理由は必ずしも明らかではないが、導電性層が、前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物を含むことと密接に関連しているものと推定される。例えば、金属ナノワイヤーとして銀ナノワイヤーを使用した場合、銀ナノワイヤーの調製時に使用された分散剤としての親水性基を有するポリマーが、銀ナノワイヤー同士の接触を少なくとも幾分かは妨げていると推測されるが、本発明による導電性部材においては、上記ゾルゲル硬化物の形成過程で、銀ナノワイヤーを覆っている上記の分散剤が剥離され、さらに特定アルコキシド化合物が重縮合する際に、結果として銀ナノワイヤー表面を被覆した状態で存在するポリマー層が収縮するために、多数の銀ナノワイヤー同士の接触点が増加し、その結果として、表面抵抗率の低い導電性部材が得られるものと推定される。更に、前記テトラアルコキシ化合物のみを加水分解及び重縮合して得られるゾルゲル硬化物を含む導電性層は、架橋密度が高すぎでガラスのような脆い膜となり屈曲によりクラックが生じ、それにより導線が断線してしまう可能性が高くなる。それに対して、前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物を加水分解及び重縮合して得られるゾルゲル硬化物を含む導電性層は、架橋密度が調節されて適度な範囲となるために、膜強度と耐磨耗性に優れると共に適度な柔軟性を有するものとなり、その結果として一段と耐屈曲性に優れるものと推測される。そして、酸素、オゾン、水分なのどの物質の透過性がバランスのとれた範囲のものとなって、耐熱性及び耐湿熱性も優れるものと推測される。その結果として、前記導電性部材を例えばタッチパネルに使用した場合には、ハンドリング時の故障を低減でき、歩留まりを向上できる上、自由に湾曲させることができ、3Dタッチパネルディスプレイや球状ディスプレイなどの立体的は加工適性を付与することができる。
前記導電性部材は、導電性層が高い導電性と透明性とを有すると共に、膜強度が高く、耐磨耗性に優れ、かつ屈曲性に優れるので、例えばタッチパネル、ディスプレイ用電極、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、集積型太陽電池、液晶表示装置、タッチパネル機能付表示装置、その他の各種デバイスなどに幅広く適用される。これらの中でも、タッチパネル及び太陽電池への適用が特に好ましい。
<<タッチパネル>>
前記導電性部材は、例えば、表面型静電容量方式タッチパネル、投射型静電容量方式タッチパネル、抵抗膜式タッチパネルなどに適用される。ここで、タッチパネルとは、いわゆるタッチセンサ及びタッチパッドを含むものとする。
前記タッチパネルにおけるタッチパネルセンサー電極部の層構成が、2枚の透明電極を貼合する貼合方式、1枚の基材の両面に透明電極を具備する方式、片面ジャンパーあるいはスルーホール方式あるいは片面積層方式のいずれかであることが好ましい。
前記表面型静電容量方式タッチパネルについては、例えば特表2007−533044号公報に記載されている。
<<太陽電池>>
前記導電性部材は、集積型太陽電池(以下、太陽電池デバイスと称することもある)における透明電極として有用である。
集積型太陽電池としては、特に制限はなく、太陽電池デバイスとして一般的に用いられるものを使用することができる。例えば、単結晶シリコン系太陽電池デバイス、多結晶シリコン系太陽電池デバイス、シングル接合型、又はタンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII−V族化合物半導体太陽電池デバイス、カドミウムテルル(CdTe)等のII−VI族化合物半導体太陽電池デバイス、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池デバイス、色素増感型太陽電池デバイス、有機太陽電池デバイスなどが挙げられる。これらの中でも、前記太陽電池デバイスが、タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、及び銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池デバイスであることが好ましい。
タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイスの場合、アモルファスシリコン、微結晶シリコン薄膜層、また、これらにGeを含んだ薄膜、更に、これらの2層以上のタンデム構造が光電変換層として用いられる。成膜はプラズマCVD等を用いる。
前記導電性部材は、前記全ての太陽電池デバイスに関して適用できる。導電性部材は、太陽電池デバイスのどの部分に含まれてもよいが、光電変換層に隣接して導電性層が配置されていることがいることが好ましい。光電変換層との位置関係に関しては下記の構成が好ましいが、これに限定されるものではない。また、下記に記した構成は太陽電池デバイスを構成する全ての部分を記載しておらず、前記透明導電層の位置関係が分かる範囲の記載としている。ここで、角括弧で括られた構成が、前記導電性部材に相当する。
(A)[基材−導電性層]−光電変換層
(B)[基材−導電性層]−光電変換層−[導電性層−基材]
(C)基板−電極−光電変換層−[導電性層−基材]
(D)裏面電極−光電変換層−[導電性層−基材]
このような太陽電池の詳細については、例えば特開2010−87105号公報に記載されている。
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、実施例中の含有率としての「%」、及び、「部」は、いずれも質量基準に基づくものである。
以下の例において、金属ナノワイヤーの平均短軸長(平均直径)及び平均長軸長、短軸長の変動係数、並びに、アスペクト比が10以上の銀ナノワイヤーの比率は、以下のようにして測定した。
<金属ナノワイヤーの平均短軸長(平均直径)及び平均長軸長>
透過型電子顕微鏡(TEM;日本電子株式会社製、商品名:JEM−2000FX)を用いて拡大観察される金属ナノワイヤーから、ランダムに選択した300個の金属ナノワイヤーの短軸長(直径)と長軸長を測定し、その平均値から金属ナノワイヤーの平均短軸長(平均直径)及び平均長軸長を求めた。
<金属ナノワイヤーの短軸長(直径)の変動係数>
上記電子顕微鏡(TEM)像からランダムに選択した300個のナノワイヤーの短軸長(直径)を測定し、その300個についての標準偏差と平均値を計算することにより、求めた。
<アスペクト比が10以上の銀ナノワイヤーの比率>
透過型電子顕微鏡(JEM−2000FX:上述)を用い、銀ナノワイヤーの短軸長を300個観察し、ろ紙を透過した銀の量を各々測定し、短軸長が50nm以下であり、かつ長軸長が5μm以上である銀ナノワイヤーをアスペクト比が10以上の銀ナノワイヤーの比率(%)として求めた。
なお、銀ナノワイヤーの比率を求める際の銀ナノワイヤーの分離は、メンブレンフィルター(Millipore社製、商品名:FALP 02500、孔径:1.0μm)を用いて行った。
(調製例1)
−銀ナノワイヤー水分散液(1)の調製−
予め、下記の添加液A、G、及びHを調製した。
〔添加液A〕
硝酸銀粉末0.51gを純水50mLに溶解した。その後、1Nのアンモニア水を透明になるまで添加した。そして、全量が100mLになるように純水を添加した。
〔添加液G〕
グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
〔添加液H〕
HTAB(ヘキサデシル−トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
次に、以下のようにして、銀ナノワイヤー水分散液(1)を調製した。
純水410mLを三口フラスコ内に入れ、20℃にて攪拌しながら、添加液H 82.5mL、及び添加液G 206mLをロートにて添加した(一段目)。この液に、添加液A 206mLを流量2.0mL/min、攪拌回転数800rpmで添加した(二段目)。その10分間後、添加液Hを82.5mL添加した(三段目)。その後、3℃/分で内温73℃まで昇温した。その後、攪拌回転数を200rpmに落とし、5.5時間加熱した。
得られた水分散液を冷却した後、限外濾過モジュールSIP1013(商品名、旭化成株式会社製、分画分子量:6,000)、マグネットポンプ、及びステンレスカップをシリコーン製チューブで接続し、限外濾過装置とした。
銀ナノワイヤー水分散液(水溶液)をステンレスカップに入れ、ポンプを稼動させて限外濾過を行った。モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。前記の洗浄を伝導度が50μS/cm以下になるまで繰り返した後、濃縮を行い、0.84%銀ナノワイヤー水分散液を得た。
得られた調製例1の銀ナノワイヤーについて、前述のようにして平均短軸長、平均長軸長、アスペクト比が10以上の銀ナノワイヤーの比率、及び銀ナノワイヤーの短軸長の変動係数を測定した。
その結果、平均短軸長17.2nm、平均長軸長34.2μm、変動係数が17.8%の銀ナノワイヤーを得た。得られた銀ナノワイヤーのうち、アスペクト比が10以上の銀ナノワイヤーの占める比率は81.8%であった。以後、「銀ナノワイヤー水分散液(1)」と表記する場合は、上記方法で得られた銀ナノワイヤー水分散液を示す。
(調製例2)
−ガラス基板の前処理−
まず、水酸化ナトリウム1%水溶液に浸漬した厚み0.7mmの無アルカリガラス板を超音波洗浄機によって30分超音波照射し、ついでイオン交換水で60秒間水洗した後200℃で60分間加熱処理を行った。その後、シランカップリング液としてKBM−603(商品名、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、信越化学工業(株)製)の0.3%水溶液をシャワーにより20秒間吹き付け、純水シャワー洗浄した。以後、「ガラス基板」と表記する場合は、上記前処理で得られた無アルカリガラス基板を示す。
(調製例3)
−図1に示す構成の中間層を有するPET基板101の作製−
下記の配合で接着用溶液1を調製した。
[接着用溶液1]
・タケラック(登録商標)WS−4000 5.0部
(コーティング用ポリウレタン、固形分濃度30%、三井化学(株)製)
・界面活性剤 0.3部
(商品名:ナローアクティHN−100、三洋化成工業(株)製)
・界面活性剤 0.3部
(サンデット(登録商標)BL、固形分濃度43%、三洋化成工業(株)製)
・水 94.4部
厚さ125μmのPETフィルム10の一方の表面にコロナ放電処理を施し、このコロナ放電処理を施した表面に、上記の接着用溶液1を塗布し120℃で2分間乾燥させて、厚さが0.11μmの第1の接着層31を形成した。
以下の配合で、接着用溶液2を調製した。
[接着用溶液2]
・テトラエトキシシラン 5.0部
(商品名:KBE−04、信越化学工業(株)製)
・3−グリシドキシプロピルトリメトキシシラン 3.2部
(商品名:KBM−403、信越化学工業(株)製)
・2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン 1.8部
(商品名:KBM−303、信越化学工業(株)製)
・酢酸水溶液(酢酸濃度=0.05%、pH=5.2) 10.0部
・硬化剤 0.8部
(ホウ酸、和光純薬工業(株)製)
・コロイダルシリカ 60.0部
(スノーテックス(登録商標)O、平均粒子径10nm〜20nm、固形分濃度20%、pH=2.6、日産化学工業(株)製)
・界面活性剤 0.2部
(ナローアクティHN−100(上述))
・界面活性剤 0.2部
(サンデット(登録商標)BL、固形分濃度43%、三洋化成工業(株)製)
接着用溶液2は、以下の方法で調製した。酢酸水溶液を激しく攪拌しながら、3−グリシドキシプロピルトリメトキシシランを、この酢酸水溶液中に3分間かけて滴下した。次に、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを酢酸水溶液中に強く攪拌しながら3分間かけて添加した。次に、テトラメトキシシランを、酢酸水溶液中に強く攪拌しながら5分かけて添加し、その後2時間攪拌を続けた。次に、コロイダルシリカと、硬化剤と、界面活性剤とを順次添加し、接着用溶液2を調製した。
前述の第1の接着層31の表面をコロナ放電処理したのち、その表面に、上記の接着用溶液2をバーコート法により塗布し、170℃で1分間加熱して乾燥し、厚さ0.5μmの第2の接着層32を形成して、図1に示す構成を有するPET基板101を得た。
(導電性部材1の作製)
下記組成のアルコキシド化合物の溶液を60℃で1時間撹拌して均一になったことを確認した。得られたゾルゲル溶液3.44部と前記調整例1で得られた銀ナノワイヤー水分散液(1)16.56部を混合し、さらに蒸留水で希釈してゾルゲル塗布液を得た。上記のPET基板101の第2の接着層32の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.020g/m、全固形分塗布量が0.150g/mとなるように上記ゾルゲル塗布液を塗布したのち、175℃で1分間乾燥してゾルゲル反応を起こさせて、導電性層20を形成した。かくして、図1の断面図で示される構成を有する非パターン化導電性部材1を得た。導電性層におけるテトラエトキシシラン及び3−グリシドキシプロピルトリメトキシシランの総量/銀ナノワイヤーの質量比は6.5/1となった。
<アルコキシド化合物の溶液>
・テトラエトキシシラン 2.5部
(KBE−04(上述))
・3−グリシドキシプロピルトリメトキシシラン 2.5部
(KBM−403(上述))
・1%酢酸水溶液 10.0部
・蒸留水 4.0部
また、触針式表面形状測定器(Dektak(登録商標)150、Bruker AXS製)を用いて測定した導電性層の平均膜厚は、0.085μmであった。
さらに以下のようにして電子顕微鏡を用いて測定した導電性層の平均膜厚は、0.036μmであった。
導電性部材上にカーボンおよびPtの保護層を形成したのち、日立社製収束イオンビーム装置(商品名:FB−2100)内で約10μm幅、約100nm厚の切片を作製し、導電性層の断面を日立製走査透過型電子顕微鏡(商品名:HD−2300、印加電圧:200kV)で観察し、5箇所の導電性層の膜厚を測定し、その算術平均値として平均膜厚を算出した。平均膜厚は金属ワイヤーの存在しないマトリックス成分のみの厚みを測定して算出した。
なお、平均膜厚の測定においてのみ、上記保護層を備えた導電性部材を測定に供しているが、他の性能評価に際しては保護層を備えていない導電性部材を測定に供した。
導電性層表面の水滴接触角を、DM−701(上述)を用いて25℃にて測定したところ、30゜であった。
<<パターニング>>
上記で得られた非パターン化導電性部材について、以下の方法によりパターニング処理を行った。スクリーン印刷には、株式会社ミノグループ製のWHT−3とスキージNo.4イエローと(共に商品名)を使用した。パターニングを形成するための銀ナノワイヤーのエッチング液はCP−48S−A液と、CP−48S−B液(いずれも商品名、富士フイルム社製)と、純水とを1:1:1となるように混合し、ヒドロキシエチルセルロースで増粘させて形成し、スクリーン印刷用のインクとした。使用したパターンメッシュはストライプパターン(ライン/スペース=50μm/50μm)であった。
非導電性領域を形成する部分領域に、エッチング液を付与量が0.01g/cmとなるように付与した後、25℃で2分間放置した。その後、水洗することでパターニング処理を行い、導電性領域と非導電性領域とを有する導電性層を含む導電性部材1を得た。
上記パターニング処理を行い、導電性領域と非導電性領域とを有する導電性層を含むパターン化導電性部材1を得た。
(導電性部材2〜10の作製)
導電性部材1の作製において使用したアルコキシド化合物の溶液において、テトラエトキシシラン及び3−グリシドキシプロピルトリメトキシシランの代わりに、下記の表1に記載のテトラアルコキシ化合物、オルガノアルコキシ化合物、又は、これら二つの化合物を、下記に記載の量で使用した以外は、導電性部材1の作製と同様にして導電性部材2〜21、及び、導電性部材C−3及びC−4を得た。なお、表1中の平均膜厚は、電子顕微鏡を用いて測定した数値である。
(導電性部材C1)
導電性部材1の作製において、ゾルゲル溶液を添加しなかったことを除いて導電性部材1の作製と同様にして導電性部材C1を得た。導電性層の平均膜厚は、0.002μmであった。
(導電性部材C2)
導電性部材1の作製において、ゾルゲル溶液を下記溶液Aに変更した以外は実施例1と同様にして導電性部材C2を得た。導電性層の平均膜厚は、0.150μmであった。
<溶液A>
・ポリビニルピロリドン 5.0部
・蒸留水 14.0部
(導電性部材C5の作製)
導電性部材1の作製において、ゾルゲル溶液を下記溶液Bに変更した点、および導電性層20を窒素雰囲気下で超高圧水銀灯i線(365nm)を用いて、露光量40mJ/cmで露光した点を除いて、導電性部材1の作製と同様にして、導電性部材C5を得た。導電性層の平均膜厚は、0.230μmであった。
<溶液B>
・ジペンタエリスリトールヘキサアクリレート 10.0部
・光重合開始剤:2,4−ビス−(トリクロロメチル)−6−
[4−{N,N−ビス(エトキシカルボニルメチル)アミノ}−3−ブロモ
フェニル]−s−トリアジン 0.4部
・メチルエチルケトン 13.6部
(導電性部材22〜41の作製)
導電性部材1の作製において、ゾルゲル塗布液を調製するために混合するアルコキシド溶液及び銀ナノワイヤー水分散液(1)の量、基板上に形成した銀量及び全固形物塗布量を下記表2に示すように変更した以外は導電性部材1の場合と同様にして導電性部材22〜41を得た。表2中の膜厚は触針式表面形状測定器で測定した数値であり、平均膜厚は、電子顕微鏡を用いて測定した数値である。
(導電性部材42)
PET基板101を調製例2で作製したガラス基板に変更した以外は導電性部材1の作製と同様にして導電性部材42を得た。
(導電性部材1R)
導電性部材1の作製を再度行い、導電性部材1Rを得た。
<<評価>>
得られた各導電性部材について、後述の方法で表面抵抗率、光学特性(全光透過率およびヘイズ)、膜強度、耐磨耗性、耐熱性、耐湿熱性、屈曲性、エッチング性、及び導電性層の水滴接触角を評価し、その結果を表3及び表4に示した。なお、評価には非パターン化導電性部材を用いた。
<表面抵抗率>
導電性層の導電性領域の表面抵抗率を、三菱化学株式会社製Loresta(登録商標)−GP MCP−T600を用いて測定した。10cm×10cmのサンプルの導電性領域の中央部のランダムに選択した5箇所について表面抵抗率を測定し、その平均値を当該サンプルの表面抵抗率とした。下記の基準に従って測定結果をランク付けした。
・ランク5:表面抵抗率 100Ω/□未満で、極めて優秀なレベル
・ランク4:表面抵抗率 100Ω/□以上、150Ω/□未満で、優秀なレベル
・ランク3:表面抵抗率 150Ω/□以上、200Ω/□未満で、許容レベル
・ランク2:表面抵抗率 200Ω/□以上、1000Ω/□未満で、やや問題なレベル
・ランク1:表面抵抗率 1000Ω/□以上で、問題なレベル
<光学特性(全光透過率)>
導電性部材の導電性領域に相当する部分の全光透過率(%)と、導電性層20を形成する前のPET基板101(導電性部材1〜41)又はガラス基板(導電性部材42)の全光透過率(%)とをガードナー社製のヘイズガードプラス(商品名)を用いて測定し、その比から透明導電膜の透過率を換算した。C光源下のCIE視感度関数yについて、測定角0°で測定し、10cm×10cmのサンプルの導電性領域の中央部のランダムに選択した5箇所について上記全光透過率を測定して透過率を算出し、その平均値を当該サンプルの透過率とした。下記の基準に従って測定結果をランク付けした。
・ランクA:透過率90%以上で、良好なレベル
・ランクB:透過率85%以上90%未満で、やや問題なレベル
<光学特性(ヘイズ)>
得られた後の導電膜の矩形ベタ露光領域のヘイズ値をヘイズガードプラス(上述)を用いて測定した。10cm×10cmのサンプルの導電性領域の中央部のランダムに選択した5箇所について上記ヘイズ値を測定し、その平均値を当該サンプルのヘイズ値とした。下記の基準に従って測定結果をランク付けした。
・ランクA:ヘイズ値1.5%未満で、優秀なレベル
・ランクB:へイズ値1.5%以上2.0%未満で、良好なレベル。
・ランクC:へイズ値2.0%以上2.5%未満で、やや問題なレベル。
・ランクD:へイズ値2.5%以上で、問題なレベル。
<膜強度>
日本塗料検査協会検定鉛筆引っかき用鉛筆(硬度HB及び硬度B)をISO/DIS 15184:1996に準じてセットした鉛筆引掻塗膜硬さ試験機(株式会社東洋精機製作所製、商品名:型式NP)にて荷重500gの条件で長さ10mmにわたり引っ掻いた後、下記条件にて露光及び現像を施し、引っ掻いた部分をデジタルマイクロスコープ(VHX−600(登録商標)、キーエンス株式会社製、倍率:2,000倍)で観察し、下記のランク付けを行った。なお、ランク3以上では実用上導電膜の断線が見られず、導電性の確保が可能な問題の無いレベルである。
〔評価基準〕
・ランク5:硬度2Hの鉛筆引っ掻きで引っ掻き跡が認められず、極めて優秀なレベル。・ランク4:硬度2Hの鉛筆引っ掻きで導電性繊維が削られ、引っ掻き跡が認められるものの、導電性繊維が残存し、基材表面の露出が観察されない、優秀なレベル。
・ランク3:硬度2Hの鉛筆引っ掻きで基材表面の露出が観察されるものの、硬度HBの鉛筆引っ掻きで導電性繊維が残存し、基材表面の露出が観察されない、良好なレベル。
・ランク2:硬度HBの鉛筆で導電膜が削られ、基材表面の露出が部分的に観察される、問題なレベル。
・ランク1:硬度HBの鉛筆で導電膜が削られ、基材表面の殆どが露出している、極めて問題なレベル。
<耐磨耗性>
得られた導電性層の表面を、FCガーゼ(上述)を用いて、20mm×20mmのサイズを備えた500g荷重で50往復擦り(すなわち、導電性層の表面に125g/cmの圧力でガーゼを押し付けて50往復擦り)、その前後の表面抵抗率の変化(磨耗後表面抵抗率/磨耗前表面抵抗率)を観察した。磨耗試験には、新東科学株式会社製の連続加重引掻試験機Type18s(商品名)、表面抵抗率はLoresta−GP MCP−T600(上述)を用いて測定した。表面抵抗率の変化が少ないものほど(1に近いほど)、耐磨耗性に優れる。なお、表中の「OL」は表面抵抗率が1.0×10Ω/□以上で導電性が無いことを意味する。
<耐熱性>
得られた導電性部材を150℃で60分間加熱し、その前後の表面抵抗率の変化(耐熱性試験後表面抵抗率/耐熱性試験前表面抵抗率、「抵抗変化」ともいう)及びヘイズ値の変化(耐熱性試験後ヘイズ値−耐熱性試験前ヘイズ値、「ヘイズ変化」ともいう)を観察した。表面抵抗率はLoresta−GP MCP−T600(上述)を用い、ヘイズ値はヘイズガードプラス(上述)を用いて測定した。表面抵抗率の変化、ヘイズ値の変化が少ないものほど(抵抗変化は1に近いほど、ヘイズ変化は0に近いほど)、耐熱性に優れる。
<耐湿熱性>
得られた導電性部材を60℃90RH%の環境下で240時間静置し、その前後の表面抵抗率の変化(耐湿熱性試験後表面抵抗率/耐湿熱性試験前表面抵抗率、「抵抗変化」ともいう)及びヘイズ値の変化(耐湿熱性試験後ヘイズ値−耐湿熱性試験前ヘイズ値、「ヘイズ変化」ともいう)を観察した。表面抵抗率はLoresta−GP MCP−T600(上述)を用い、ヘイズ値はヘイズガードプラス(上述)を用いて測定した。表面抵抗率の変化、ヘイズ値の変化が少ないものほど(抵抗変化は1に近いほど、ヘイズ変化は0に近いほど)、耐湿熱性に優れる。
<屈曲性>
得られた導電性部材を、直径10mmの円筒マンドレルを備えた円筒形マンドレル屈曲試験器(コーテック(株)社製)を用いて、20回曲げ試験に供し、その前後のクラックの有無及び抵抗率の変化(磨耗後表面抵抗率/磨耗前表面抵抗率)を観察した。クラックの有無は目視及び光学顕微鏡を用い、表面抵抗率はLoresta−GP MCP−T600(上述)を用いて測定した。クラックが無く且つ表面抵抗率の変化が少ないものほど(1に近いほど)、屈曲性に優れる。なお、ガラス基板を用いた導電性部材については、屈曲性の評価を行わなかった。
<エッチング性>
得られた導電性部材をパターン形成に用いたCP−48S−A液と、CP−48S−B液(いずれも商品名、富士フイルム社製)と、純水とを1:1:1となるように混合した溶液(エッチング液)に25℃で浸漬し、その後流水で洗浄し、乾燥した。表面抵抗率はLoresta−GP MCP−T600(上述)を用いて測定した。ヘイズ値はヘイズガードプラス(上述)を用いて測定した。
エッチング液浸漬後に表面抵抗率が高く、Δヘイズ値(浸漬前後のヘイズ値差)が大きいほどエッチング性に優れる。そこで表面抵抗率が1.0×10Ω/□以上、及びΔヘイズ値が0.4%以上となるまでのエッチング液浸漬時間を求め、下記のランク付けを行った。
ランク5:表面抵抗率1.0×10Ω/□以上、及びΔヘイズ値0.4%以上となるまでのエッチング液浸漬時間が30秒未満で極めて優秀なレベル
ランク4:同上時間が、30秒以上〜60秒未満で優秀なレベル
ランク3:同上時間が、60秒以上〜120秒未満で良好なレベル
ランク2:同上時間が、120秒以上〜180秒未満で実用上問題があるレベル
ランク1:同上時間が、180秒以上であり、実用上極めて問題があるレベル
<水滴接触角>
導電性層のオモテ面の水滴接触角は、DM−701(上述)を用いて25℃にて測定した。
導電性部材C−3及びC−4はそれぞれ、導電性層にテトラアルコキシ化合物又はオルガノアルコキシ化合物を単独で用いて形成されたゾルゲル硬化物を含む導電性層を有する。表3に示された結果から、導電性部材C−3は屈曲性が劣っており、導電性部材C−4は耐磨耗性が劣っていることが分かる。それに対して、本発明の一実施形態に係る導電性部材1〜21は、屈曲性及び耐磨耗性が優れていると同時に、表面抵抗率、全光透過率、ヘイズ、膜強度、耐熱性及び耐湿熱性のすべてについて優れた性能を有していることが分かる。
更に、表4に示された結果から、次のことが理解される。
導電性層に含まれる銀ナノワイヤーの塗布量が同一で、かつ、テトラアルコキシ化合物及びオルガノアルコキシ化合物の総量/銀ナノワイヤーの質量比を変化させた導電性部材22〜33及び導電性部材1Rの評価結果から、テトラアルコキシ化合物及びオルガノアルコキシ化合物の総量/銀ナノワイヤーの質量比が2/1〜8/1の範囲にある場合に、表面抵抗率、全光透過率、ヘイズ、耐磨耗性、耐熱性、耐湿熱性、及び、屈曲性のすべてについて、良好な性能を示す、最もバランスのとれた導電性部材が得られることが分かる。
また、テトラアルコキシ化合物及びオルガノアルコキシ化合物の総量/銀ナノワイヤーの質量比が同一で、銀ナノワイヤーの塗布量を変化させた導電性部材34〜42及び導電性部材1Rの評価結果から、銀ナノワイヤーの塗布量が0.015〜0.02g/mの範囲にある場合に、表面抵抗率、全光透過率、ヘイズ、耐磨耗性、耐熱性、耐湿熱性、及び、屈曲性のすべてについて、良好な性能を示す、最もバランスのとれた導電性部材が得られることが分かる。
(導電性部材43〜50の作製)
導電性部材1の作製において使用した銀ナノワイヤー水分散液(1)の代わりに、平均長軸長及び平均短軸長が異なる下記表5に示される銀ナノワイヤー水分散液(2)〜(9)を使用した以外は導電性部材1の作製と同様にして導電性部材43〜50を得た。
(導電性部材51の作製)
調製例3で作製されたPET基板101の第2の接着層32の表面をコロナ放電処理したのち、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン(KBM−603(上述))の0.1%水溶液を、バーコート法で固形分塗布量が0.007g/mとなるように塗布し、175℃で1分間乾燥して、機能層33を形成した。かくして、図2に示す構成を有する、接着層31、接着層32及び機能層33の三層構成よりなる中間層30を有するPET基板102を作製した。
PET基板102上に、導電性部材1の導電性層と同じ導電性層20を形成して、図2の断面図で示される非パターン化導電性部材51を作製した。これを導電性部材1の場合と同様にしてパターニングを実施し、導電性部材51を得た。
(導電性部材52〜59の作製)
導電性部材51で使用したPET基板102における機能層33の形成において、KBM603(上述)を下記化合物に変更した以外は、導電性部材51の作製と同様にして導電性部材52〜59を得た。
導電性部材52:ウレイドプロピルトリエトキシシラン
導電性部材53:3−アミノプロピルトリエトキシシラン
導電性部材54:3−メルカプトプロピルトリメトキシシラン
導電性部材55:ポリアクリル酸(重量平均分子量:50,000)
導電性部材56:ホスマーM(上述)のホモポリマー(重量平均分子量20,000)
導電性部材57:ポリアクリルアミド(重量平均分子量100,000)
導電性部材58:ポリ(p−スチレンスルホン酸ナトリウム)(重量平均分子量50,000)
導電性部材59:ビス(ヘキサメチレン)トリアミン
(導電性部材C6〜C13の作製)
導電性部材C2の作製において使用した銀ナノワイヤー水分散液(1)の代わりに、前述の銀ナノワイヤー水分散液(2)〜(9)を使用した以外は導電性部材C2の作製と同様にして導電性部材C6〜C13を得た。
<<評価>>
得られた各導電性部材について、前述と同じ方法で表面抵抗率、光学特性(全光透過率、ヘイズ)、膜強度、耐磨耗性、耐熱性、耐湿熱性、屈曲性を評価した。結果を表6に示す。
表6に示された結果から、次のことが理解できる。
導電性部材43〜50の評価結果、及び前述の導電性部材1の評価結果から、銀ナノワイなーの平均短軸長が30nm以下の範囲もものを使用した導電性部材が、とりわけ全光透過率、ヘイズ、膜強度及び耐磨耗性に優れた性能を有していることが分かる。
また、導電性部材51〜59の結果から、導電性層に接する中間層として、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基又はホスホン酸基を有する化合物を含む機能層を設けることで基板に対して導電性膜を問題なく塗布できることが分かる。
(導電性部材60の作製)
銀ナノワイヤー水分散液(1)に代えて米国特許出願公開2011/0174190A1号公報の例1および例2に記載(8項段落0151〜9項段落0160)の銀ナノワイヤー分散液を蒸留水にて0.45%に希釈した銀ナノワイヤー水分散液(10)を用いた以外は、導電性部材1と同様にして導電性部材60を得た。
(導電性部材61〜70の作製)
以下に示すように銀ナノワイヤー水分散液(1)を上記銀ナノワイヤー水分散液(10)に変更した以外は、導電性部材6、10、27、29、30、36、37、51、52または53と同様にして導電性部材61〜70をそれぞれ得た。
導電性部材61:導電性部材6のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材62:導電性部材10のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材63:導電性部材27のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材64:導電性部材29のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材65:導電性部材30のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材66:導電性部材36のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材67:導電性部材37のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材68:導電性部材51のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材69:導電性部材52のバインダー構成+銀ナノワイヤー水分散液(10)
導電性部材70:導電性部材53のバインダー構成+銀ナノワイヤー水分散液(10)
<<評価>>
得られた各導電性部材について、前述と同じ方法で表面抵抗率、光学特性(全光透過率、ヘイズ)、膜強度、耐磨耗性、耐熱性、耐湿熱性、屈曲性を評価した。結果を表7に示す。
表7に示された結果から、次のことが理解できる。
導電性部材60〜70の評価結果から、米国特許出願公開2011/0174190A1号公報に記載の銀ナノワイヤーを使用しても、本発明の一実施形態である導電性部材であれば全光透過率、ヘイズ、膜強度および耐磨耗性に優れた性能を有していることが分かる。
<集積型太陽電池の作製>
−アモルファス太陽電池(スーパーストレート型)の作製−
ガラス基板上に、導電性部材1と同様にして導電性層を形成し、透明導電膜を形成した。但し、パターニング処理は行わず全面均一な透明導電膜とした。その上部にプラズマCVD法により膜厚約15nmのp型、膜厚約350nmのi型、膜厚約30nmのn型アモルファスシリコンを形成し、裏面反射電極としてガリウム添加酸化亜鉛層20nm、銀層200nmを形成し、光電変換素子(集積型太陽電池)を作製した。
−CIGS太陽電池(サブストレート型)の作製−
ソーダライムガラス基板上に、直流マグネトロンスパッタ法により膜厚500nm程度のモリブデン電極、真空蒸着法により膜厚約2.5μmのカルコパイライト系半導体材料であるCu(In0.6Ga0.4)Se薄膜を形成し、その上に溶液析出法により膜厚約50nmの硫化カドミニウム薄膜を形成した。
その上に導電性部材1の導電性層と同じ導電性層を形成し、ガラス基板上に透明導電膜を形成し、光電変換素子(CIGS太陽電池)を作製した。
作製した各太陽電池について、以下のようにして変換効率を評価した。
<太陽電池特性(変換効率)の評価>
各太陽電池について、エア・マス(AM)1.5、照射強度100mW/cmの疑似太陽光を照射することで効率)を測定した。その結果、いずれ素子も9%の変換効率を示した。
この結果から、本発明の一実施形態である導電膜形成用積層体を透明導電膜の形成に用いることで、いずれの集積型太陽電池方式においても高い変換効率が得られることが分かった。
−タッチパネルの作製−
実施例1の導電性層の形成と同様にして、ガラス基板上に透明導電膜を形成した。得られた透明導電膜を用いて、『最新タッチパネル技術』(2009年7月6日発行、株式会社テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004年12月発行)、「FPD International 2009 Forum T−11講演テキストブック」、「Cypress Semiconductor Corporation アプリケーションノートAN2292」等に記載の方法により、タッチパネルを作製した。
作製したタッチパネルを使用した場合、光透過率の向上により視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作できることが分かった。
本発明の一実施形態である導電膜形成用積層体は、そのまま使用しても、転写材料として用いても、現像によるパターニング性に優れ、透明性、導電性及び耐久性(膜強度)に優れるため、例えばパターン状透明導電膜、タッチパネル、ディスプレイ用帯電防止材、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、フレキシブルディスプレイ用帯電防止膜、表示素子、集積型太陽電池の作製に好適に用いることができる。

Claims (22)

  1. 基材と、
    前記基材上に設けられた導電性層と、を含む導電性部材であって、
    前記導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー及び(ii)バインダーを含有し、
    前記バインダーが、下記一般式(Ia)で示される部分構造と下記一般式(IIa)又は一般式(IIb)で示される部分構造とを含む三次元架橋構造を含む、前記導電性部材。

    (式中、M及びMはそれぞれ独立に、Si、Ti、及びZrからなる群より選ばれる元素を示し、Rはそれぞれ独立に、水素原子又は炭化水素基を示す)
  2. 基材と、前記基材上に設けられた導電性層と、を含む導電性部材であって、
    前記導電性層が(i)平均短軸長が150nm以下の金属ナノワイヤー及び(ii)ゾルゲル硬化物を含有し、
    前記ゾルゲル硬化物が、下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物を加水分解及び重縮合して得られる、前記導電性部材。
    (OR (I)
    (式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、Rは炭化水素基を示す)
    (OR 4−a (II)
    (式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3を示す)
  3. 導電性層中における前記オルガノアルコキシ化合物の含有量に対する前記テトラアルコキシ化合物の含有量の質量比が0.01/1〜100/1の範囲にある請求項2に記載の導電性部材。
  4. 導電性層中における前記金属ナノワイヤーの含有量に対する前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物の総含有量の質量比が、0.5/1〜25/1の範囲にある請求項2又は請求項3に記載の導電性部材。
  5. 前記M及びMが、いずれもSiである請求項1〜請求項4のいずれか1項に記載の導電性部材。
  6. 前記金属ナノワイヤーが、銀ナノワイヤーである請求項1〜請求項5のいずれか1項に記載の導電性部材。
  7. 前記導電性層の表面から測定した表面抵抗率が、1,000Ω/□以下である請求項1〜請求項6のいずれか1項に記載の導電性部材。
  8. 前記導電性層の平均膜厚が0.005μm〜0.5μmである請求項1〜請求項7のいずれか1項に記載の導電性部材。
  9. 前記導電性層が、導電性領域及び非導電性領域を含み、かつ少なくとも前記導電性領域が前記金属ナノワイヤーを含む請求項1〜請求項8のいずれか1項に記載の導電性部材。
  10. 前記基材と前記導電性層との間に、更に少なくとも1層の中間層を有する請求項1〜請求項9のいずれか1項に記載の導電性部材。
  11. 前記基材と前記導電性層との間に、前記導電性層に接し且つ前記金属ナノワイヤーと相互作用可能な官能基を有する化合物を含む中間層を有する請求項1〜請求項10のいずれか1項に記載の導電性部材。
  12. 前記官能基が、アミド基、アミノ基、メルカプト基、カルボン酸基、スルホン酸基、リン酸基及びホスホン酸基、並びにこれらの基の塩からなる群より選ばれる請求項11に記載の導電性部材。
  13. 前記導電性層の表面に対して、連続加重引掻試験機を使用し、125g/cmの圧力でガーゼを押し付け、50往復擦る耐磨耗試験を行った場合、前記耐磨耗試験前の導電性層の表面抵抗率(Ω/□)に対する前記耐磨耗試験後の導電性層の表面抵抗率(Ω/□))の比が100以下である請求項1〜請求項12のいずれか1項に記載の導電性部材。
  14. 屈曲試験に供される前の前記導電性部材の前記導電性層の表面抵抗率(Ω/□)に対する、前記屈曲試験に供された後の前記導電性層の表面抵抗率(Ω/□)の比が2.0以下であり、
    前記屈曲試験が、直径10mmの円筒マンドレルを備える円筒形マンドレル屈曲試験器を用いて、前記導電性部材を20回曲げ試験に供することである、請求項1〜請求項13のいずれか1項に記載の導電性部材。
  15. (a)前記基材上に、前記金属ナノワイヤー、並びに前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物を含む液状組成物を付与して、当該液状組成物の液膜を前記基材上に形成することと、
    (b)前記液膜中の前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物を加水分解及び重縮合させて前記ゾルゲル硬化物を得ることと、
    を含む請求項2〜請求項4のいずれか1項に記載の導電性部材の製造方法。
  16. 前記(a)に先だって、前記基材の前記液膜が形成される面上に、少なくとも1層の中間層を形成することを、更に含む請求項15に記載の導電性部材の製造方法。
  17. 前記導電性層が非導電性領域と導電性領域とを有するように、前記(b)の後に、(c)前記導電性層にパターン状の非導電性領域を形成することを更に含む請求項15又は請求項16に記載の導電性部材の製造方法。
  18. 導電性層における前記オルガノアルコキシ化合物の含有量に対する前記テトラアルコキシ化合物の含有量の質量比が0.01/1〜100/1の範囲にある請求項15〜請求項17のいずれか1項に記載の導電性部材の製造方法。
  19. 導電性層における前記金属ナノワイヤーの含有量に対する前記テトラアルコキシ化合物及び前記オルガノアルコキシ化合物の総含有量の質量比が、0.5/1〜25/1の範囲にある請求項15〜請求項18のいずれか1項に記載の導電性部材の製造方法。
  20. (i)平均短軸長が150nm以下の金属ナノワイヤーと、(ii)下記一般式(I)で表されるテトラアルコキシ化合物及び下記一般式(II)で表されるオルガノアルコキシ化合物と、(iii)前記成分(i)及び(ii)を分散又は溶解する液体の分散媒と、を含む組成物。
    (OR (I)
    (式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、Rは炭化水素基を示す)
    (OR 4−a (II)
    (式中、MはSi、Ti及びZrからなる群より選ばれる元素を示し、R及びRはそれぞれ独立に水素原子又は炭化水素基を示し、aは2又は3を示す)
  21. 請求項1〜請求項14のいずれか1項に記載の導電性部材を備えるタッチパネル。
  22. 請求項1〜請求項14のいずれか1項に記載の導電性部材を備える太陽電池。
JP2012103559A 2011-04-28 2012-04-27 導電性部材、その製造方法、タッチパネル及び太陽電池 Active JP5868771B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103559A JP5868771B2 (ja) 2011-04-28 2012-04-27 導電性部材、その製造方法、タッチパネル及び太陽電池

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011102135 2011-04-28
JP2011102135 2011-04-28
JP2011265207 2011-12-02
JP2011265207 2011-12-02
JP2012068270 2012-03-23
JP2012068270 2012-03-23
JP2012103559A JP5868771B2 (ja) 2011-04-28 2012-04-27 導電性部材、その製造方法、タッチパネル及び太陽電池

Publications (2)

Publication Number Publication Date
JP2013225460A true JP2013225460A (ja) 2013-10-31
JP5868771B2 JP5868771B2 (ja) 2016-02-24

Family

ID=47072466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103559A Active JP5868771B2 (ja) 2011-04-28 2012-04-27 導電性部材、その製造方法、タッチパネル及び太陽電池

Country Status (6)

Country Link
US (1) US20140048131A1 (ja)
JP (1) JP5868771B2 (ja)
KR (1) KR101644680B1 (ja)
CN (1) CN103597550B (ja)
TW (1) TWI504701B (ja)
WO (1) WO2012147955A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033629A (ja) * 2014-07-31 2016-03-10 富士フイルム株式会社 窓用断熱フィルム、窓用断熱フィルムの製造方法、窓用断熱ガラスおよび窓
KR20160031402A (ko) * 2014-09-12 2016-03-22 제이에스알 가부시끼가이샤 도전성막 형성용 조성물, 도전성막, 도금막의 제조 방법, 도금막 및 전자 기기
CN105468204A (zh) * 2016-02-04 2016-04-06 京东方科技集团股份有限公司 一种显示模组、显示装置
WO2016152595A1 (ja) * 2015-03-25 2016-09-29 富士フイルム株式会社 遠赤外線反射フィルム、遠赤外線反射フィルム形成用の分散液、遠赤外線反射フィルムの製造方法、遠赤外線反射ガラスおよび窓
WO2016163364A1 (ja) * 2015-04-06 2016-10-13 大日本印刷株式会社 導電性積層体、タッチパネル及び導電性積層体の製造方法
JP2016196180A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性積層体及びタッチパネル
JP2016196179A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性フィルムの製造方法及び導電性フィルム
KR20200067606A (ko) * 2018-12-04 2020-06-12 주식회사 디케이티 투명전극 디바이스
KR20210110672A (ko) 2019-02-18 2021-09-08 쇼와 덴코 가부시키가이샤 투명 도전 기체 및 이것을 포함하는 터치패널
WO2022044448A1 (ja) 2020-08-26 2022-03-03 昭和電工株式会社 透明導電基体
JP7424451B2 (ja) 2016-09-30 2024-01-30 大日本印刷株式会社 導電性フィルム、タッチパネル、および画像表示装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5952119B2 (ja) * 2012-03-23 2016-07-13 富士フイルム株式会社 導電性部材およびその製造方法
KR20140054735A (ko) * 2012-10-29 2014-05-09 삼성전기주식회사 터치패널 및 이의 제조방법
US8957315B2 (en) 2013-03-11 2015-02-17 Carestream Health, Inc. Stabilization agents for silver nanowire based transparent conductive films
KR101465071B1 (ko) * 2013-09-27 2014-11-27 성균관대학교산학협력단 세슘을 이용한 플렉서블 투명전극필름 제조방법 및 그에 의해 제조된 플렉서블 투명전극필름
EP3038164B1 (en) * 2014-12-22 2018-12-12 Total S.A. Opto-electronic device with textured surface and method of manufacturing thereof
KR20170134531A (ko) * 2015-04-06 2017-12-06 다이니폰 인사츠 가부시키가이샤 도전성 적층체, 터치 패널 및 도전성 적층체의 제조 방법
KR102402759B1 (ko) * 2015-05-29 2022-05-31 삼성디스플레이 주식회사 플렉서블 표시 장치 및 이의 제조 방법
US10133428B2 (en) 2015-05-29 2018-11-20 Samsung Display Co., Ltd. Flexible display device including a flexible substrate having a bending part and a conductive pattern at least partially disposed on the bending part
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US20170236610A1 (en) * 2016-02-12 2017-08-17 Tyco Electronics Corporation Method for Enhancing Adhesion of Silver Nanoparticle Inks Using a Functionalized Alkoxysilane Additive and Primer Layer
KR102378021B1 (ko) * 2016-05-06 2022-03-23 에이에스엠 아이피 홀딩 비.브이. SiOC 박막의 형성
KR20180026007A (ko) * 2016-09-01 2018-03-12 삼성디스플레이 주식회사 투명 전극 및 이의 제조 방법
KR102623721B1 (ko) * 2016-11-15 2024-01-11 신에쓰 가가꾸 고교 가부시끼가이샤 고효율 태양전지 및 고효율 태양전지의 제조방법
KR102276987B1 (ko) * 2017-04-05 2021-07-12 엘지이노텍 주식회사 터치 패널
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
KR20240010760A (ko) 2017-05-05 2024-01-24 에이에스엠 아이피 홀딩 비.브이. 산소 함유 박막의 형성을 제어하기 위한 플라즈마 강화 증착 공정
TWI761636B (zh) 2017-12-04 2022-04-21 荷蘭商Asm Ip控股公司 電漿增強型原子層沉積製程及沉積碳氧化矽薄膜的方法
JP7166800B2 (ja) * 2018-06-20 2022-11-08 キヤノン株式会社 配向性圧電体膜用塗工液組成物、配向性圧電体膜、並びに、液体吐出ヘッド
JPWO2020166361A1 (ja) * 2019-02-12 2021-12-16 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ
US11360622B2 (en) * 2020-10-16 2022-06-14 Cambrios Film Solutions Corporation Stack structure and touch sensor
KR20230045621A (ko) * 2021-09-27 2023-04-05 삼성디스플레이 주식회사 감광성 수지 조성물 및 이를 이용한 표시 장치의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183810A (ja) * 1985-02-07 1986-08-16 三井東圧化学株式会社 透明電極
JP2003151362A (ja) * 2001-08-31 2003-05-23 Toppan Printing Co Ltd 導電膜および導電膜の製造方法
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387453B1 (en) * 2000-03-02 2002-05-14 Sandia Corporation Method for making surfactant-templated thin films
JP2005173338A (ja) * 2003-12-12 2005-06-30 Kinyosha Co Ltd 導電性部材
KR101234233B1 (ko) * 2006-05-18 2013-02-18 삼성에스디아이 주식회사 포스페이트를 포함하는 반도체 전극 및 이를 채용한태양전지
WO2008147431A2 (en) * 2006-10-12 2008-12-04 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
JP5443881B2 (ja) * 2009-07-28 2014-03-19 パナソニック株式会社 透明導電膜付き基材
JP5068298B2 (ja) * 2009-10-08 2012-11-07 日揮触媒化成株式会社 透明導電性被膜形成用塗布液、透明導電性被膜付基材および表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183810A (ja) * 1985-02-07 1986-08-16 三井東圧化学株式会社 透明電極
JP2003151362A (ja) * 2001-08-31 2003-05-23 Toppan Printing Co Ltd 導電膜および導電膜の製造方法
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033629A (ja) * 2014-07-31 2016-03-10 富士フイルム株式会社 窓用断熱フィルム、窓用断熱フィルムの製造方法、窓用断熱ガラスおよび窓
KR20160031402A (ko) * 2014-09-12 2016-03-22 제이에스알 가부시끼가이샤 도전성막 형성용 조성물, 도전성막, 도금막의 제조 방법, 도금막 및 전자 기기
JP2016060906A (ja) * 2014-09-12 2016-04-25 Jsr株式会社 導電性膜形成用組成物、導電性膜、めっき膜の製造方法、めっき膜および電子機器
KR102304865B1 (ko) * 2014-09-12 2021-09-23 제이에스알 가부시끼가이샤 도전성막 형성용 조성물, 도전성막, 도금막의 제조 방법, 도금막 및 전자 기기
US10589494B2 (en) 2015-03-25 2020-03-17 Fujifilm Corporation Far infrared reflective film, dispersion for forming far infrared reflective film, manufacturing method of far infrared reflective film, far infrared reflective glass, and window
WO2016152595A1 (ja) * 2015-03-25 2016-09-29 富士フイルム株式会社 遠赤外線反射フィルム、遠赤外線反射フィルム形成用の分散液、遠赤外線反射フィルムの製造方法、遠赤外線反射ガラスおよび窓
JP2016180932A (ja) * 2015-03-25 2016-10-13 富士フイルム株式会社 遠赤外線反射フィルム、遠赤外線反射フィルム形成用の分散液、遠赤外線反射フィルムの製造方法、遠赤外線反射ガラスおよび窓
US11247444B2 (en) 2015-04-06 2022-02-15 Dai Nippon Printing Co., Ltd. Electroconductive layered product, touch panel, and process for producing electroconductive layered product
WO2016163364A1 (ja) * 2015-04-06 2016-10-13 大日本印刷株式会社 導電性積層体、タッチパネル及び導電性積層体の製造方法
JP2016196180A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性積層体及びタッチパネル
JP2016196179A (ja) * 2015-04-06 2016-11-24 大日本印刷株式会社 導電性フィルムの製造方法及び導電性フィルム
US11760070B2 (en) 2015-04-06 2023-09-19 Dai Nippon Printing Co., Ltd. Electroconductive layered product, touch panel, and process for producing electroconductive layered product
CN105468204A (zh) * 2016-02-04 2016-04-06 京东方科技集团股份有限公司 一种显示模组、显示装置
JP7424451B2 (ja) 2016-09-30 2024-01-30 大日本印刷株式会社 導電性フィルム、タッチパネル、および画像表示装置
KR102185171B1 (ko) * 2018-12-04 2020-12-01 주식회사 디케이티 투명전극 디바이스
KR20200067606A (ko) * 2018-12-04 2020-06-12 주식회사 디케이티 투명전극 디바이스
CN113396053A (zh) * 2019-02-18 2021-09-14 昭和电工株式会社 透明导电基体及包含该透明导电基体的触摸面板
KR20210110672A (ko) 2019-02-18 2021-09-08 쇼와 덴코 가부시키가이샤 투명 도전 기체 및 이것을 포함하는 터치패널
WO2022044448A1 (ja) 2020-08-26 2022-03-03 昭和電工株式会社 透明導電基体
KR20220027806A (ko) 2020-08-26 2022-03-08 쇼와 덴코 가부시키가이샤 투명 도전 기체
US11685846B2 (en) 2020-08-26 2023-06-27 Showa Denko K. K. Transparent conducting film

Also Published As

Publication number Publication date
TW201247810A (en) 2012-12-01
KR101644680B1 (ko) 2016-08-01
CN103597550A (zh) 2014-02-19
WO2012147955A1 (ja) 2012-11-01
US20140048131A1 (en) 2014-02-20
TWI504701B (zh) 2015-10-21
KR20140042797A (ko) 2014-04-07
JP5868771B2 (ja) 2016-02-24
CN103597550B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
JP5868771B2 (ja) 導電性部材、その製造方法、タッチパネル及び太陽電池
JP5930833B2 (ja) 導電性部材、その製造方法、タッチパネル及び太陽電池
WO2013047147A1 (ja) 導電性組成物、その製造方法、導電性部材、並びに、タッチパネル及び太陽電池
JP2013137982A (ja) 導電性部材、導電性部材の製造方法、タッチパネルおよび太陽電池
WO2012147815A1 (ja) 導電性部材、その製造方法、タッチパネル及び太陽電池
JP5646671B2 (ja) 導電性部材、その製造方法、タッチパネル、及び太陽電池
JP5952119B2 (ja) 導電性部材およびその製造方法
JP2013201004A (ja) 導電性パターン部材、その製造方法、タッチパネル及び太陽電池
JP2013201005A (ja) 導電性パターン部材の製造方法、導電性パターン部材、タッチパネルおよび太陽電池
JP2013200997A (ja) 導電性部材、導電性部材の製造方法、及びタッチパネル
JP5669781B2 (ja) 導電性部材及びその製造方法、並びにタッチパネル
JP2014036002A (ja) 導電性部材の形成方法
JP2013201003A (ja) 導電性パターン部材、その製造方法、タッチパネル及び太陽電池
JP2013200998A (ja) 導電材料の製造方法、並びに、該方法により製造された導電材料及びこれを具備したタッチパネル、タッチパネル機能付き表示装置
JP2013200999A (ja) 透明導電性部材、透明導電性部材の製造方法、タッチパネル、及び太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5868771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250