JP2013060364A - 複合材料 - Google Patents

複合材料 Download PDF

Info

Publication number
JP2013060364A
JP2013060364A JP2012242353A JP2012242353A JP2013060364A JP 2013060364 A JP2013060364 A JP 2013060364A JP 2012242353 A JP2012242353 A JP 2012242353A JP 2012242353 A JP2012242353 A JP 2012242353A JP 2013060364 A JP2013060364 A JP 2013060364A
Authority
JP
Japan
Prior art keywords
graphene
carbon
resin
fine particles
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242353A
Other languages
English (en)
Other versions
JP5917370B2 (ja
Inventor
Seiji Nozato
省二 野里
Akira Nakasuga
章 中壽賀
Hirotaka Ihara
博隆 伊原
Hullathy Subban Ganapathy
ガナパテイ、フラテイ、ソバン
Makoto Takato
誠 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Kumamoto University NUC
Original Assignee
Sekisui Chemical Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Kumamoto University NUC filed Critical Sekisui Chemical Co Ltd
Priority to JP2012242353A priority Critical patent/JP5917370B2/ja
Publication of JP2013060364A publication Critical patent/JP2013060364A/ja
Application granted granted Critical
Publication of JP5917370B2 publication Critical patent/JP5917370B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】グラフェンライク炭素材料の樹脂からなる基材に対する密着性に優れた複合材料を提供する。
【解決手段】樹脂からなる基材と、基材表面の少なくとも一部を覆うように設けられたグラフェンライク炭素材料層とを備え、基材の表面にグラフェンライク炭素が密着している複合材料。
【選択図】なし

Description

本発明は、樹脂と、グラフェンもしくは薄片化黒鉛のようなグラフェンライク炭素材料との複合材料に関し、より詳細には、樹脂からなる基材に対するグラフェンライク炭素材料の密着性が高められている複合材料及びその製造方法に関する。
従来、黒鉛、カーボンナノチューブ、カーボンファイバーまたはカーボン粒子などの炭素材料が、樹脂への補強剤や充填剤として広く用いられている。また、近年、黒鉛を剥離して得られる、グラフェン積層数がより少ない薄片化黒鉛がより注目されている。
上記のような炭素材料と樹脂との複合材料として、例えば下記の特許文献1に示すように、エポキシ樹脂中に炭素繊維などの炭素材料を分散させてなる複合材料が知られている。
特開2003−277471号公報
しかしながら、従来の樹脂と炭素材料との複合材料では、樹脂と炭素材料との密着強度が充分でないという問題があった。例えば、特許文献1に記載のように樹脂中に炭素材料を分散させてなる複合材料では、添加されている炭素材料により物性の改善が図られているものの、炭素材料との密着強度は充分ではなかった。
本発明の目的は、上述した従来技術の欠点を解消し、樹脂とグラフェンライク炭素材料との密着性に優れた複合材料及びその製造方法を提供することにある。
本発明に係る複合材料は、樹脂からなる基材と、前記基材表面の少なくとも一部を覆うように設けられたグラフェンライク炭素材料層とを備え、前記基材の表面にグラフェンライク炭素が密着している。
本発明に係る複合材料のある特定の局面では、グラフェンライク炭素の一部が基材の表面から内部に入り込んでいる。従って、両者の密着性がより一層高められる。
本発明に係る複合材料の他の特定の局面では、前記樹脂からなる基材が、樹脂微粒子であり、前記樹脂微粒子の外表面を覆うように前記グラフェンライク炭素材料層が形成されている。この場合には、樹脂微粒子の外表面が、グラフェンライク炭素材料層で覆われており、かつグラフェンライク炭素の一部が樹脂微粒子表面に入り込んでいるため、樹脂微粒子とグラフェンライク炭素材料層との密着性が高められている。しかも、グラフェンライク炭素材料層表面に有する微粒子状の複合材料は、凝集し難い。従って、いわゆる自由流動性粉体(free flowing powder)として取り扱うことができる。
本発明に係る複合材料の他の特定の局面では、前記樹脂からなる基材がシート状基材であって、該シート状基材の少なくとも一方面に前記グラフェンライク炭素材料層が設けられている。この場合には、本発明に従って、炭素材料層のシート状基材との密着性に優れたシート状の複合材料を提供することができる。
本発明に係る複合材料では、好ましくは、グラフェンライク炭素材料がグラフェンまたは薄片化黒鉛からなる。グラフェンまたは薄片化黒鉛はアスペクト比が大きく、かつ、グラフェン積層数が少ないため、少量の添加で複合材料の物性を高めることができる。
本発明に係る複合材料の製造方法は、本発明に従って構成された複合材料の製造方法であって、樹脂からなる基材と、グラフェンライク炭素材料とを用意する工程と、前記樹脂からなる基材の表面の少なくとも一部に前記グラフェンライク炭素材料を接触させ、超臨界または亜臨界状態の流体を作用させつつ加熱する工程とを備える。
本発明に係る製造方法では、好ましくは、前記超臨界または亜臨界の流体として、超臨界または亜臨界状態のCOを用いる。COは、31.1℃程度の温度かつ7.52MPa程度の圧力下で超臨界状態となる。従って、HOなどに比べて、穏やかな条件で樹脂からなる基材の表面を膨潤させることができる。そのため、ガラス転移温度が低い樹脂を用いた場合においても、本発明の複合材料を確実に得ることができる。
本発明に係る複合材料では、樹脂からなる基材にグラフェンライク炭素が密着しているため、グラフェンライク炭素材料層と基材との密着性に優れた複合材料を得ることが可能となる。
また、本発明に係る製造方法によれば、超臨界または亜臨界状態の流体を樹脂に作用させつつ加熱することにより、樹脂からなる基材の表面にグラフェンライク炭素が密着するようにして、樹脂表面にグラフェンライク炭素材料層が形成される。よって、樹脂からなる基材に対して密着性に優れたグラフェンライク炭素材料層を有する本発明の複合材料を得ることができる。また、本発明の製造方法では、上記のようにして、グラフェンライク炭素材料層を基材表面に形成するため、基材の形状も特に限定されない。よって、樹脂微粒子のような微粒子状、シート状基材などの形状に限らず、複雑な形状の樹脂からなる基材の表面にも、本発明に従ってグラフェンライク炭素材料層を容易に形成することができる。
また、被分散体である炭素材料微粒子は凝集性が高く、均一に分散させ、付着させる事は容易ではなかったところ、発明の製造方法では、容易に炭素材料微粒子を基材表面に密着させることができる。
図1は、ポリメチルメタクリレート微粒子1gと薄片化黒鉛0.01gを混合し、超臨界二酸化炭素(65℃、35MPa)で5時間作用させた後の微粒子の走査型電子顕微鏡写真(75倍)である。 図2は、ポリメチルメタクリレート微粒子1gと薄片化黒鉛0.01gを混合し、超臨界二酸化炭素(65℃、35MPa)で5時間作用させた後の微粒子の走査型電子顕微鏡写真(1300倍)である。 図3は、ポリメチルメタクリレート微粒子1gと薄片化黒鉛0.01gを混合し、超臨界二酸化炭素(65℃、35MPa)で5時間作用させた後の微粒子の断面の走査型電子顕微鏡写真(550倍)である。 図4は、ポリメチルメタクリレート微粒子1gと薄片化黒鉛0.005gを混合し、超臨界二酸化炭素(65℃、35MPa)で5時間作用させた後の微粒子の走査型電子顕微鏡写真(450倍)である。 図5は、ポリメチルメタクリレート微粒子を超臨界二酸化炭素(65℃、35MPa)で5時間作用させた後の微粒子の走査型電子顕微鏡写真(120倍)である。 図6は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−20)1gと薄片化黒鉛0.01gを混合し、超臨界二酸化炭素(55℃、28MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(200倍)である。 図7は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−20)1gと薄片化黒鉛0.01gを混合し、超臨界二酸化炭素(55℃、28MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(500倍)である。 図8は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−20)を超臨界二酸化炭素(55℃、28MPa)で5時間作用させた後の微粒子の走査型電子顕微鏡写真(200倍)である。 図9は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−30)1gと薄片化黒鉛0.001gを混合し、超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(100倍)である。 図10は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−30)1gと薄片化黒鉛0.001gを混合し、超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(500倍)である。 図11は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−30)を超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(100倍)である。 図12は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−30)を超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(500倍)である。 図13は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−40)1gと薄片化黒鉛0.005gを混合し、超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(100倍)である。 図14は、ポリスチレン微粒子(積水化成品工業株式会社製の品番S−40)を超臨界二酸化炭素(60℃、28MPa)で4.5時間作用させた後の微粒子の走査型電子顕微鏡写真(100倍)である。 図15は、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製の品番CS−10)1gと薄片化黒鉛0.3gを混合し、超臨界二酸化炭素(35℃、21MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(500倍)である。 図16は、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製の品番CS−10)1gと薄片化黒鉛0.3gを混合し、超臨界二酸化炭素(35℃、21MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(5000倍)である。 図17は、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製の品番CS−10)を超臨界二酸化炭素(35℃、21MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(450倍)である。 図18は、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製の品番CS−50)1gと薄片化黒鉛0.001gを混合し、超臨界二酸化炭素(室温、28MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(70倍)である。 図19は、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製の品番CS−50)を超臨界二酸化炭素(室温、28MPa)で12時間作用させた後の微粒子の走査型電子顕微鏡写真(80倍)である。
以下、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
(樹脂からなる基材)
本発明に係る複合材料及びその製造方法では、樹脂からなる基材を用いる。基材を構成する樹脂については、超臨界または亜臨界状態の流体を作用させつつ加熱することにより、表面を柔らかくし得る適宜の樹脂を用いることができる。このような樹脂は、合成樹脂であってもよく、天然樹脂であってもよい。
上記樹脂としては、超臨界または亜臨界状態の流体が作用する温度において軟化する程度のガラス転移温度Tgを有するものが好ましい。後述するように、COが超臨界または亜臨界状態で作用させる流体として好適に用いられる。従って、樹脂としては、ポリスチレン、ポリプロピレン、ポリメチルメタクリレート(PMMA)、セルロースなどを好適に用いることができる。また、樹脂は、これらのポリマーを構成するモノマーの共重合体であってもよい。もっとも、本発明において用いる樹脂材料としては、PMMA以外、様々な(メタ)アクリル系樹脂、ポリプロピレン以外の様々なポリオレフィン等も用いることができる。
上記樹脂からなる基材の形状についても特に限定されない。基材は、樹脂微粒子であってもよい。すなわち、微粒子状基材であってもよい。なお、微粒子の直径は特に限定されないが、平均200μm以下の微粒子が好適に用いられ、これよりも大きい粒子状の樹脂からなる基材を用いてもよい。樹脂からなる基材が粒子状である場合、本発明に従って得られた複合材料では、後述するように、凝集が生じ難い。従って、自由流動性粉末(free flowing powder)として取り扱うことができる。
また、樹脂からなる基材は、シート状であってもよい。シート状基材の場合には、シート状基材の一面及び/または反対側の面の少なくとも一部に本発明に従って、グラフェンライク炭素材料層を形成することができる。
さらに、本発明で用いられる樹脂からなる基材は、粒子状やシート状である必要は必ずしもない。すなわち、グラフェンライク炭素材料を樹脂からなる基材表面の少なくとも一部に接触させ、その状態で超臨界または亜臨界状態の流体を作用させ得る限り、樹脂からなる基材の形状は複雑な立体的形状を有するものであってもよい。その場合においても、本発明に従って、表面にグラフェンライク炭素材料層を有する複雑な立体的形状を有する複合材料を得ることができる。
また、複雑な表面の基材の一部に、グラフェンライク炭素材料を選択的に形成することもできる。
(グラフェンライク炭素材料層)
本発明に係る複合材料では、上記樹脂からなる基材の表面の少なくとも一部を覆うように、グラフェンライク炭素材料層が設けられている。このグラフェンライク炭素材料層を構成するグラフェンライク炭素材料としては、グラフェンまたは薄片化黒鉛を好適に用いることができる。周知のように、黒鉛は、グラフェンの積層体である。薄片化黒鉛は、黒鉛を剥離することにより得られ、薄片化黒鉛の積層体におけるグラフェンの積層数は数層〜200層程度である。また、薄片化黒鉛の比表面積は黒鉛よりもはるかに大きく、600m/g以上である。本発明において、上記薄片化黒鉛とは、黒鉛を剥離することにより得られ、上記のようなグラフェン積層数のグラフェン積層体をいうものとする。
上記薄片化黒鉛としては、市販されている薄片化黒鉛を用いてもよい。また、黒鉛を剥離する様々な処理により薄片化黒鉛を得てもよい。
上記のように薄片化黒鉛を得る方法としては特に限定されず、黒鉛を膨張して行われた膨張化黒鉛を剥離することにより得ることができる。黒鉛を膨潤し膨張化黒鉛とする工程は、1)電解質溶液中に層状黒鉛を浸漬し加熱する方法、及び2)電気分解法などを用いることができる。
1)の方法では、硝酸や硫酸中に層状黒鉛を浸漬し、加熱し、硝酸イオンや硫酸イオンを層間にインターカレートする方法である。この場合、硝酸濃度及び硫酸濃度は、40重量%〜70重量%程度であることが望ましい。この範囲内であれば、硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。また、加熱温度については、20℃以上、50℃以下であることが好ましい。この範囲内の温度であれば、上記硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。
2)の電気分解法では、層状黒鉛を作用極とし、該作用極をPtなどからなる対照極と共に硝酸や硫酸中に浸漬し、電気分解する。それによって、層状黒鉛の層間すなわちグラフェン間に硝酸イオンや硫酸イオン等の電解質イオンをインターカレートすることができ、層間を広げることができる。
次に、上記のようにして得られた膨張化黒鉛からなるシートを水等により洗浄し、乾燥し、硝酸イオンや硫酸イオン等を除去する。このようにして、乾燥した膨張化黒鉛からなるシートを得ることができる。膨張化黒鉛を剥離して薄片化黒鉛を得るには、加熱、超音波を加える方法などを用いることができる。
なお、本発明におけるグラフェンライク炭素材料としては、グラフェンまたは薄片化黒鉛に限らず、カーボンナノチューブなどの表面にグラフェンシート構造を有する様々なグラフェンライク炭素材料を用いてもよい。
本発明においては、上記グラフェンライク炭素材料層の厚みは特に限定されず、用途に応じて適宜選択すればよい。もっとも、樹脂微粒子からなる基材表面にグラフェンライク炭素材料層を設ける場合には、グラフェンライク炭素材料層の厚みは0.5nm〜500nm程度である。また、シート状基材の少なくとも一方面にグラフェンライク炭素材料層を設ける場合においても、0.5nm〜500nm程度の厚みとすればよい。
グラフェンライク炭素材料層の厚みが厚すぎると、樹脂物性の効果が発現しなくなることがある。逆に、グラフェンライク炭素材料層の厚みが薄くなりすぎると、グラフェンライク炭素材料層を設けたことによる物性改善効果が充分に得られないことがある。
本発明においては、上記グラフェンライク炭素材料層を構成しているグラフェンライク炭素の一部が、基材の表面に密着している。好ましくは、グラフェンライク炭素の一部が基材の表面から内部に向かって入り込んでいる。そのため、アンカー効果により、グラフェンライク炭素材料層と樹脂からなる基材との密着性が効果的に高められる。
グラフェンライク炭素の基材表面への密着性に優れた本発明の複合材料、より好ましくは、グラフェンライク炭素の一部が基材の表面に内部に入り込んでいる本発明の複合材料は、本発明の製造方法に従って得ることができる。
(製造方法)
本発明の製造方法では、先ず、樹脂からなる上記基材と、上記グラフェンライク炭素材料とを用意する。次に、樹脂からなる基材の表面の少なくとも一部に、上記グラフェンライク炭素材料を接触させ、その状態で、超臨界または亜臨界状態の流体を作用させつつ加熱する。超臨界または亜臨界状態の流体としては、CO、HO、などを用いることができる。
COは、31.1℃の温度及び7.52Mpa程度の気圧で超臨界状態となる。また、−56.6℃〜31.1℃及び0.528Mpa〜7.52MPa程度の気圧の範囲で亜臨界状態となる。超臨界または亜臨界状態の流体を作用させつつ加熱することにより、樹脂からなる基材表面が軟化する。従って、グラフェンライク炭素が軟化した基材表面と接触する。また、好ましくはグラフェンライク炭素の一部が基材表面に入り込む。そのため、加熱後冷却すれば、グラフェンライク炭素を基材表面と密着するようにして、基材表面の少なくとも一部を覆うようにグラフェンライク炭素材料層が形成される。すなわち、本発明の複合材料を得ることができる。
よって、上記樹脂からなる基材を構成する樹脂のガラス転移温度Tgが、上記超臨界または亜臨界状態の流体を作用させつつ加熱する工程における温度雰囲気にあることが望ましい。より具体的には、樹脂のガラス転移温度Tgは、上記加熱温度−100℃〜+100℃の範囲にあることが望ましい。この範囲内にあれば、樹脂からなる基材表面にグラフェンライク炭素の一部を確実に入り込ませることができる。
上記樹脂からなる基材の表面にグラフェンライク炭素材料を接触させるにあたっては、上記の通り、基材の表面の少なくとも一部に接触させればよい。もっとも、基材の全表面にグラフェンライク炭素材料を接触させてもよい。
さらに、上記のように、基材表面の少なくとも一部にグラフェンライク炭素材料を接触させた状態で超臨界または亜臨界状態の流体を作用させつつ加熱するものであるため、基材表面の一部に選択的にグラフェンライク炭素材料を接触させ、基材表面の一部に選択的にグラフェンライク炭素材料層が設けられている複合材料も容易に得ることができる。加えて、前述したように、複雑な立体的な形状を有する基材を用いた場合においても、その表面に本発明に従ってグラフェンライク炭素材料層を容易にかつ確実に形成することができる。
(複合材料の物性)
本発明に係る複合材料では、上記のように、グラフェンライク炭素材料の基材表面への密着性が高められ、好ましくは、グラフェンライク炭素材料の一部が樹脂からなる基材表面に入り込むようにして、グラフェンライク炭素材料層が形成されている。従って、グラフェンライク炭素材料層と基材との密着性を効果的に高め得る。よって、熱履歴を伴う環境に晒されたとしても、グラフェンライク炭素材料層の基材からの剥離等が生じ難い。また、密着性に優れているため、炭素材料による機械的強度の改善等も効果的に図ることができる。
加えて、本願発明者の実験によれば、例えば、PMMAに上記グラフェンライク炭素材料層を本発明に従って形成してなる複合材料では、複合材料のガラス転移温度Tgも高められることがわかった。従って、耐熱性に優れた複合材料を提供することができる。このように、複合材料のTgが高められるのは、グラフェンライク炭素材料とPMMAの表面との密着性が高められるため、グラフェンライク炭素と樹脂との相互作用が強くなることによると考えられる。
なお、PMMAに限らず、他の樹脂を用いた場合においても、本発明に従ってグラフェンライク炭素材料層を形成することにより、複合材料のTgを元の樹脂のTgに比べて効果的に高めることができる。従って、耐熱性に優れた複合材料を提供することが可能となる。
以下、本発明の実施例及び比較例を説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
1)薄片化黒鉛の調製
原料の黒鉛シートとして東洋炭素社製、品番:PF100−UHPを用意した。この黒鉛シートと同じ製法で、圧延処理時の圧延倍率を下げて密度0.7、厚み1mmの低密度黒鉛シートを用意した。
上記のようにして得られた密度0.7の黒鉛シートを3cm×3cmの大きさに切断し、電極材料としての黒鉛シートを得た。この黒鉛シートに、2本のスリットを、スリットの長さが1cm、幅が1cmとなるようにカッターナイフにより切削し、形成した。上記2本のスリットが形成された黒鉛シートに、Ptからなる電極を挿入した。このようにして用意した黒鉛シートを作用極(陽極)として、Ptからなる対照極(陰極)及び、Ag/AgClからなる参照極とともに60重量%濃度の硝酸水溶液中に浸漬し、直流電圧を印加し電気化学処理を行った。このようにして、陽極に作用極として用いた黒鉛を膨張化黒鉛とした。
次に、得られた膨張化黒鉛を乾燥し、1cm角に切断し、その1つをカーボンるつぼに入れて電磁誘導加熱処理を行った。誘導加熱装置はSKメディカル社製MU1700Dを用い、アルゴンガス雰囲気下で最高到達温度550℃となるように10Aの電流量で行った。電磁誘導加熱により膨張化黒鉛は薄片化され、得られた薄片化黒鉛の粉末を島津製作所製の比表面積測定装置ASAP−2000で窒素ガスを用いて測定したところ、1回測定で850m/gの比表面積を示した。
2)複合材料の製造
樹脂からなる基材として、ポリメチルメタクリレートからなる微粒子(Aldrich社製、品番:445746−500G、Mw:35万、Tg:122℃)を用意した。このポリメチルメタクリレートからなる微粒子1.0gと、上記のようにして得られた薄片化黒鉛0.01gを圧力容器内に配置し、室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた後、いったんCOを除去した(水分を除去し、乾燥させるため)。その後、再度室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた。その後、温度を65℃まで上昇させ5時間かき混ぜながら加熱した。このときの圧力は約35MPaまで上昇した。しかる後、室温まで冷却し、複合材料を得た。得られた複合材料は粒子状であるその平均粒径は120μmであった。また、このようにして得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図1は、実施例1で得た複合材料としての粒子の75倍の電子顕微鏡写真を示し、図2はその表面を1300倍に拡大して示す電子顕微鏡写真である。
上記粒子を乳鉢を用いて部分的に切断し、部分的に切断されている粒子を同じく走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。図3は、このようにして得られた550倍の倍率の走査型電子顕微鏡写真を示す。図1〜図3から明らかなように、得られた複合材料では、微粒子表面にグラフェンライク炭素材料が形成されており、特に図3の写真から、グラフェンライク炭素は基材粒子表面に集積していることがわかる。
(実施例2)
実施例1と同様の薄片化黒鉛0.005gとポリメチルメタクリレートからなる微粒子(Aldrich社製、品番:445746−500G、Mw:35万、Tg:122℃)1.0gを混合し、実施例1と同様に圧力容器内に配置し、室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた後、いったんCOを除去した(水分を除去し、乾燥させるため)。その後、再度室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた。その後、温度を65℃まで上昇させ5時間かき混ぜながら加熱した。このときの圧力は約35MPaまで上昇した。しかる後、室温まで冷却し、複合材料を得た。得られた複合材料は粒子状であるその平均粒径は120μmであった。また、このようにして得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図4は、実施例2で得た複合材料としての粒子の450倍の走査型電子顕微鏡写真である。図4の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例1)
比較例として、実施例で用意した材料としてのポリメチルメタクリレート微粒子を用意した。このポリメチルメタクリレート微粒子の120倍の走査型電子顕微鏡写真を図5に示す。図5から明らかなように、このポリメチルメタクリレート微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。
(実施例3)
実施例1と同様の薄片化黒鉛0.01gとポリスチレンからなる微粒子(積水化成品工業株式会社製、品番:S−20、平均粒子径:300μm、Tg:106℃)1.0gを混合し、実施例1と同様に圧力容器内に配置し、室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた後、いったんCOを除去した(水分を除去し、乾燥させるため)。その後、再度室温(23℃)及び10MPaの圧力で超臨界状態とされているCOを10mL加えた。その後、温度を55℃まで上昇させ12時間かき混ぜながら加熱した。このときの圧力は約28MPaまで上昇した。しかる後、室温まで冷却し、複合材料を得た。得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図6及び図7は、ぞれぞれ、実施例3で得た複合材料としての粒子の200倍及び500倍の走査型電子顕微鏡写真である。図6及び図7の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例2)
実施例3で用意した材料としてのポリスチレン微粒子を用意した。このポリスチレン微粒子の200倍の走査型電子顕微鏡写真を図8に示す。図8から明らかなように、このポリスチレン微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。
(実施例4)
実施例1と同様の薄片化黒鉛0.001gとポリスチレンからなる微粒子(積水化成品工業株式会社製、品番:S−30、平均粒子径:800μm、Tg:105℃)1.0gを混合したこと、及び温度を60℃まで上昇させ4.5時間かき混ぜながら加熱したこと以外は、実施例3と同様にして、複合材料を得た。なお、混合時の圧力は28MPaまで上昇した。得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図9及び図10は、それぞれ、実施例4で得た複合材料としての粒子の100倍及び500倍の走査型電子顕微鏡写真である。図5の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例3)
実施例4で用意した材料としてのポリスチレン微粒子を用意した。このポリスチレン微粒子の100倍及び500倍の走査型電子顕微鏡写真を、それぞれ図11及び図12に示す。図11及び図12から明らかなように、このポリメチルメタクリレート微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。
(実施例5)
実施例1と同様の薄片化黒鉛0.005gとポリスチレンからなる微粒子(積水化成品工業株式会社製、品番:S−40、平均粒子径:600μm、Tg:105℃)1.0gを混合したこと以外は、実施例4と同様にして、複合材料を得た。なお、混合時の圧力は約28MPaまで上昇した。得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図13は、実施例5で得た複合材料としての粒子の100倍の走査型電子顕微鏡写真である。図13の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例4)
実施例5で用意した材料としてのポリスチレン微粒子を用意した。このポリスチレン微粒子の100倍の走査型電子顕微鏡写真を図14に示す。図14から明らかなように、この微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。
(実施例6)
実施例1と同様の薄片化黒鉛0.3gと、ポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体からなる微粒子(積水化成品工業株式会社製、品番:CS−10、平均粒子径:100μm、Tg:98℃)1.0gを混合したこと、及び温度を35℃まで上昇させ12時間かき混ぜたこと以外は、実施例3と同様にして、複合材料を得た。なお、混合時の圧力は約21MPaまで上昇した。得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図15及び図16は、それぞれ、実施例6で得た複合材料としての粒子の500倍及び5000倍の走査型電子顕微鏡写真である。図15及び図16の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例5)
実施例6で用意した材料としてのポリスチレン及びメタクリル酸2−ヒドロキシエチルの共重合体微粒子を用意した。この微粒子の450倍の走査型電子顕微鏡写真を図17に示す。図17から明らかなように、この微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。
(実施例7)
実施例1と同様の薄片化黒鉛0.001gと、ポリスチレン及びアクリル酸ブチルの共重合体からなる微粒子(積水化成品工業株式会社製、品番:CS−50、平均粒子径:1100μm、Tg:46℃)1.0gを混合したこと、及び温度を室温のまま12時間かき混ぜたこと以外は、実施例3と同様にして、複合材料を得た。なお、混合時の圧力は約28MPaまで上昇した。得られた複合材料としての粒子の表面を走査型電子顕微鏡(日本電子社製 JCM−5700)により観察した。
図18は、実施例7で得た複合材料としての粒子の70倍の走査型電子顕微鏡写真である。図18の写真から、グラフェンライク炭素の一部が樹脂からなる元の基材粒子表面の内側に入り込んでいることがわかる。
(比較例6)
実施例7で用意した材料としてのポリスチレン及びアクリル酸ブチルの共重合体微粒子を用意した。この微粒子の80倍の走査型電子顕微鏡写真を図19に示す。図19から明らかなように、この微粒子では、表面にグラフェンライク炭素が全く存在しないため、平滑な表面を呈していることがわかる。

Claims (5)

  1. 樹脂からなる基材と、前記基材表面の少なくとも一部を覆うように設けられたグラフェンライク炭素材料層とを備え、前記基材の表面にグラフェンライク炭素が密着している、複合材料。
  2. 前記グラフェンライク炭素の一部が前記基材の表面から内部に入り込んでいる、請求項1に記載の複合材料。
  3. 前記樹脂からなる基材が、樹脂微粒子であり、前記樹脂微粒子の外表面を覆うように前記グラフェンライク炭素材料層が形成されている、請求項1または2に記載の複合材料。
  4. 前記樹脂からなる基材がシート状基材であって、該シート状基材の少なくとも一方面に前記グラフェンライク炭素材料層が設けられている、請求項1または2に記載の複合材料。
  5. 前記グラフェンライク炭素材料がグラフェンまたは薄片化黒鉛からなる、請求項1〜4のいずれか1項に記載の複合材料。
JP2012242353A 2011-06-03 2012-11-02 複合材料 Active JP5917370B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242353A JP5917370B2 (ja) 2011-06-03 2012-11-02 複合材料

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011125471 2011-06-03
JP2011125471 2011-06-03
JP2012242353A JP5917370B2 (ja) 2011-06-03 2012-11-02 複合材料

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012526560A Division JP5192612B2 (ja) 2011-06-03 2012-05-28 複合材料の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016026683A Division JP6215372B2 (ja) 2011-06-03 2016-02-16 複合材料

Publications (2)

Publication Number Publication Date
JP2013060364A true JP2013060364A (ja) 2013-04-04
JP5917370B2 JP5917370B2 (ja) 2016-05-11

Family

ID=47259228

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012526560A Active JP5192612B2 (ja) 2011-06-03 2012-05-28 複合材料の製造方法
JP2012242353A Active JP5917370B2 (ja) 2011-06-03 2012-11-02 複合材料
JP2016026683A Active JP6215372B2 (ja) 2011-06-03 2016-02-16 複合材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012526560A Active JP5192612B2 (ja) 2011-06-03 2012-05-28 複合材料の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016026683A Active JP6215372B2 (ja) 2011-06-03 2016-02-16 複合材料

Country Status (8)

Country Link
US (2) US9284417B2 (ja)
EP (1) EP2716604B1 (ja)
JP (3) JP5192612B2 (ja)
KR (1) KR101953924B1 (ja)
CN (2) CN105906823B (ja)
ES (1) ES2716016T3 (ja)
TW (1) TWI529204B (ja)
WO (1) WO2012165372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531278A (ja) * 2014-07-22 2017-10-19 深▲セン▼市華星光電技術有限公司 導電性グラフェン球合成樹脂の製造方法及び導電性グラフェン球合成樹脂
JP2019502806A (ja) * 2016-04-15 2019-01-31 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 複合粒状構築材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968720B2 (ja) * 2012-08-07 2016-08-10 大陽日酸株式会社 複合樹脂材料粒子の製造方法、及び複合樹脂成形体の製造方法
KR101930989B1 (ko) 2012-09-03 2018-12-19 세키스이가가쿠 고교가부시키가이샤 복합 재료 및 그의 제조 방법
JP6283847B2 (ja) * 2013-08-30 2018-02-28 国立大学法人 熊本大学 コア・シェル複合粒子の製造方法
US9926427B2 (en) * 2015-12-10 2018-03-27 Nanotek Instruments, Inc. Chemical-free production of graphene-reinforced polymer matrix composites
JP6939672B2 (ja) * 2017-03-29 2021-09-22 東レ株式会社 導電性粒子の製造方法
WO2019189284A1 (ja) * 2018-03-27 2019-10-03 積水化学工業株式会社 複合材料及びその製造方法
CN116462193A (zh) * 2023-03-22 2023-07-21 广西宸宇新材料有限公司 一种改性石墨及其制备和在电池中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092432A1 (en) * 2005-10-14 2007-04-26 Prud Homme Robert K Thermally exfoliated graphite oxide
US20070284557A1 (en) * 2006-06-13 2007-12-13 Unidym, Inc. Graphene film as transparent and electrically conducting material
JP2010189621A (ja) * 2009-01-20 2010-09-02 Taiyo Nippon Sanso Corp 複合樹脂材料粒子及びその製造方法
WO2010110153A1 (ja) * 2009-03-27 2010-09-30 独立行政法人科学技術振興機構 グラフェン膜の製造方法、電子素子の製造方法および基板へのグラフェン膜の転写方法
US20100247892A1 (en) * 2009-03-31 2010-09-30 Korea Institute Of Science And Technlogy Electroconductive particle and anisotropic conductive film comprising same
JP2011066057A (ja) * 2009-09-15 2011-03-31 Kitagawa Ind Co Ltd 熱拡散シート及びその製造方法,製造装置
WO2011046415A2 (ko) * 2009-10-16 2011-04-21 성균관대학교산학협력단 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277471A (ja) 2002-03-27 2003-10-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
US7071258B1 (en) * 2002-10-21 2006-07-04 Nanotek Instruments, Inc. Nano-scaled graphene plates
JP2005272541A (ja) * 2004-03-23 2005-10-06 Hitachi Maxell Ltd ナノカーボンを含有するポリマー及び熱可塑性樹脂、当該熱可塑性樹脂から成形される成形品、並びに、その製造方法
CN1881077A (zh) * 2005-04-27 2006-12-20 日立麦克赛尔株式会社 聚合物的表面改性方法
US20060257633A1 (en) 2005-04-27 2006-11-16 Hitachi Maxell, Ltd. Method for modifying surface of polymer substrate, method for forming plated film on polymer substrate, method for producing polymer member, and coating member
US20060281306A1 (en) 2005-06-08 2006-12-14 Florian Gstrein Carbon nanotube interconnect contacts
US8962130B2 (en) 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
CN100556950C (zh) * 2006-12-28 2009-11-04 上海交通大学 一种聚合物/金属纳米复合材料的制备方法
JP5320564B2 (ja) * 2007-02-21 2013-10-23 国立大学法人北海道大学 微小カーボン単分子膜の形成方法及び表面コーティング方法並びにコーティング体
KR20090026568A (ko) * 2007-09-10 2009-03-13 삼성전자주식회사 그라펜 시트 및 그의 제조방법
CN101462391B (zh) 2007-12-21 2013-04-24 清华大学 碳纳米管复合材料的制备方法
CN101480858B (zh) * 2008-01-11 2014-12-10 清华大学 碳纳米管复合材料及其制备方法
CN101456277B (zh) 2007-12-14 2012-10-10 清华大学 碳纳米管复合材料的制备方法
JP2009172862A (ja) * 2008-01-24 2009-08-06 Ono Kogei Kk 複合コーティング皮膜およびその製造方法
WO2009106507A2 (en) 2008-02-28 2009-09-03 Basf Se Graphite nanoplatelets and compositions
WO2009129194A2 (en) * 2008-04-14 2009-10-22 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
US8696938B2 (en) * 2008-08-25 2014-04-15 Nanotek Instruments, Inc. Supercritical fluid process for producing nano graphene platelets
JP2010106128A (ja) * 2008-10-29 2010-05-13 Nissan Motor Co Ltd 摩擦材、摩擦材の製造方法、ブレーキ部材、クラッチ部材及び駆動装置
CN101928407A (zh) * 2009-06-25 2010-12-29 华东理工大学 含石墨烯组合物的制备方法
JP2011032156A (ja) * 2009-07-06 2011-02-17 Kaneka Corp グラフェンまたは薄膜グラファイトの製造方法
US20110014457A1 (en) * 2009-07-17 2011-01-20 Nathaniel J Quitoriano Graphene Layer With An Engineered Stress Supported On A Substrate
KR101635835B1 (ko) * 2009-08-11 2016-07-05 한국세라믹기술원 그래핀 산화물의 코팅방법
CN103108923B (zh) 2010-07-12 2016-03-23 韩华石油化学株式会社 导电涂料组合物及使用其制备导电膜的方法
CN101987908B (zh) * 2010-09-21 2012-01-25 中国科学院长春应用化学研究所 一种石墨烯-环氧树脂复合材料的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092432A1 (en) * 2005-10-14 2007-04-26 Prud Homme Robert K Thermally exfoliated graphite oxide
JP2009511415A (ja) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ 熱的に剥離されたグラファイト酸化物
US20070284557A1 (en) * 2006-06-13 2007-12-13 Unidym, Inc. Graphene film as transparent and electrically conducting material
JP2010189621A (ja) * 2009-01-20 2010-09-02 Taiyo Nippon Sanso Corp 複合樹脂材料粒子及びその製造方法
WO2010110153A1 (ja) * 2009-03-27 2010-09-30 独立行政法人科学技術振興機構 グラフェン膜の製造方法、電子素子の製造方法および基板へのグラフェン膜の転写方法
US20120082787A1 (en) * 2009-03-27 2012-04-05 Jun-Ichi Fujita Method for producing graphene film, method for manufacturing electronic element, and method for transferring graphene film to substrate
US20100247892A1 (en) * 2009-03-31 2010-09-30 Korea Institute Of Science And Technlogy Electroconductive particle and anisotropic conductive film comprising same
JP2010245022A (ja) * 2009-03-31 2010-10-28 Korea Inst Of Science & Technology 導電性粒子及びこれを含む異方性導電フィルム
JP2011066057A (ja) * 2009-09-15 2011-03-31 Kitagawa Ind Co Ltd 熱拡散シート及びその製造方法,製造装置
WO2011046415A2 (ko) * 2009-10-16 2011-04-21 성균관대학교산학협력단 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
US20120258311A1 (en) * 2009-10-16 2012-10-11 Research & Business Foundation Sungkyunkwan University Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll transfer equipment for graphene
JP2013508247A (ja) * 2009-10-16 2013-03-07 スンキュンクワン ユニヴァーシティー ファウンデーション フォー コーポレイト コラボレイション グラフェンのロールツーロール転写方法、それによるグラフェンロール、及びグラフェンのロールツーロール転写装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531278A (ja) * 2014-07-22 2017-10-19 深▲セン▼市華星光電技術有限公司 導電性グラフェン球合成樹脂の製造方法及び導電性グラフェン球合成樹脂
JP2019502806A (ja) * 2016-04-15 2019-01-31 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 複合粒状構築材料
US11732150B2 (en) 2016-04-15 2023-08-22 Hewlett-Packard Development Company, L.P. Composite particulate build materials

Also Published As

Publication number Publication date
JP5192612B2 (ja) 2013-05-08
EP2716604B1 (en) 2018-12-26
KR20140015250A (ko) 2014-02-06
JP5917370B2 (ja) 2016-05-11
US9284417B2 (en) 2016-03-15
US20130244038A1 (en) 2013-09-19
EP2716604A1 (en) 2014-04-09
CN103269974A (zh) 2013-08-28
CN105906823B (zh) 2019-01-04
JP2016102063A (ja) 2016-06-02
CN105906823A (zh) 2016-08-31
KR101953924B1 (ko) 2019-03-04
TWI529204B (zh) 2016-04-11
US9458295B2 (en) 2016-10-04
WO2012165372A1 (ja) 2012-12-06
EP2716604A4 (en) 2014-12-17
CN103269974B (zh) 2016-06-22
TW201307448A (zh) 2013-02-16
JPWO2012165372A1 (ja) 2015-02-23
JP6215372B2 (ja) 2017-10-18
ES2716016T3 (es) 2019-06-07
US20160024259A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6215372B2 (ja) 複合材料
Chen et al. Pristine titanium carbide MXene hydrogel matrix
CN105110318B (zh) 一种石墨烯水性浆料及其制备方法
JP2018524257A (ja) 超柔軟性高熱伝導性グラフェン膜及びその製造方法
US20150183189A1 (en) Graphene Hydrogel, Graphene Hydrogel Nanocomposite Materials, and Preparation Method Thereof
WO2013080843A1 (ja) 官能基変成炭素材料及びその製造方法
Hou et al. Nanodiamond decorated graphene oxide and the reinforcement to epoxy
US9604884B2 (en) Composite material and method for producing the same
US20200102227A1 (en) Nanoporous copper supported copper oxide nanosheet array composites and method thereof
CN108773842B (zh) 一种石墨烯的制备方法及石墨烯
Tao et al. Reduction versus cross-linking: how to improve the tensile strength of graphene oxide/polyvinyl alcohol composite film
JP5937813B2 (ja) アミノ基変成炭素材料、その製造方法及び複合材料
JP2012107233A (ja) 樹脂複合材料及び樹脂複合材料の製造方法
Kholkhoev et al. Conductive composites based on chitosan and polyvinylpyrrolidone-stabilized graphene
WO2024088254A1 (zh) 一种边缘接枝改性石墨烯及其水分散液和制备方法
Zhou et al. Fabrication of high-aspect-ratio metallic microstructures by microelectroforming using silver-coated polydimethylsiloxane molds with controllable wettability
CN112092465A (zh) 一种具有取向螺旋结构的纳米纤维素板材及其制备方法
Wang et al. Comparative study on electrical properties of three different types of graphene-based thin films
Kumar et al. Monolayer Graphene for proton exchange membrane and catalyst layer in PEM fuel cells

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250