WO2013080843A1 - 官能基変成炭素材料及びその製造方法 - Google Patents

官能基変成炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2013080843A1
WO2013080843A1 PCT/JP2012/080078 JP2012080078W WO2013080843A1 WO 2013080843 A1 WO2013080843 A1 WO 2013080843A1 JP 2012080078 W JP2012080078 W JP 2012080078W WO 2013080843 A1 WO2013080843 A1 WO 2013080843A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
group
graphene
modified carbon
amino group
Prior art date
Application number
PCT/JP2012/080078
Other languages
English (en)
French (fr)
Inventor
和田 拓也
坪川 紀夫
Original Assignee
積水化学工業株式会社
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011262157A external-priority patent/JP5937812B2/ja
Priority claimed from JP2011262158A external-priority patent/JP5937813B2/ja
Application filed by 積水化学工業株式会社, 国立大学法人新潟大学 filed Critical 積水化学工業株式会社
Priority to CN201280029130.7A priority Critical patent/CN103608288B/zh
Priority to EP12852901.3A priority patent/EP2786962B1/en
Priority to KR1020137028198A priority patent/KR20140109246A/ko
Priority to US14/008,532 priority patent/US9346748B2/en
Publication of WO2013080843A1 publication Critical patent/WO2013080843A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/02Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds

Definitions

  • the present invention relates to a functional group-modified carbon material obtained by modifying a graphene-like carbon material such as exfoliated graphite with an isocyanate group or an amino group, and a production method thereof.
  • Patent Document 1 discloses a modified carbon material in which the dispersibility of a carbon material having a graphene sheet structure is improved.
  • a fragment obtained by radically decomposing an azo radical polymerization initiator containing a carboxyl group is added to a carbon material having a graphene sheet structure, for example, vapor-grown carbon fiber or carbon nanotube.
  • a carbon material is disclosed.
  • Patent Document 1 discloses the above carbon material modified by a carboxyl group.
  • various reactive groups to graphene-like carbon materials such as graphene and exfoliated graphite.
  • the physical properties of the composite material of the resin and the carbon material can be improved.
  • An object of the present invention is to provide a functional group-modified carbon material in which an isocyanate group or an amino group is added to a graphene-like carbon material and a method for producing the same.
  • a carbon material modified with an isocyanate group can be obtained by reacting a diisocyanate compound with a graphene-like carbon material. It came to be accomplished.
  • a fragment obtained by radical decomposition of an azo radical initiator containing an isocyanate group or an amino group of a diisocyanate compound is bonded or added to a graphene-like carbon material. ing.
  • Exfoliated graphite refers to a graphene laminate obtained by exfoliating ordinary graphite and having a graphene laminate number of about several to 200 layers and a specific surface area of about 600 m 2 / g to 2500 m 2 / g. To do.
  • a graphene-like carbon material and an azo radical initiator containing a diisocyanate compound or an amino group are heated and stirred in a solvent. Thereby, the functional group-modified carbon material of the present invention can be obtained.
  • exfoliated graphite is preferably used as the graphene-like carbon material.
  • an azo radical initiator having a secondary or tertiary amino group is used as the azo radical initiator.
  • the amino group-modified carbon material can be obtained efficiently only by heating and stirring in a solvent.
  • a composite material including the functional group-modified carbon material according to the present invention and a resin is provided.
  • resin fine particles are used as the resin.
  • graphene-like carbon is modified with an isocyanate group or an amino group. Therefore, it is possible to easily provide an amine-modified graphene-like carbon material by hydrolyzing an isocyanate group.
  • the isocyanate group can be reacted with a hydroxyl group to form a urethane bond. Therefore, by reacting the isocyanate group-modified carbon material of the present invention with a resin material having a hydroxyl group such as diol, the composite having improved properties such as mechanical strength by graphene-like carbon while having the properties of a urethane resin. Material can be provided.
  • the amino group-modified carbon material according to the present invention a fragment obtained by radical decomposition of an azo radical initiator containing an amino group is added to the graphene-like carbon, so that the graphene-like carbon having a positive charge is added.
  • Material can be provided. Therefore, for example, a carbon material suitable for obtaining a composite material with resin fine particles having a negative charge can be provided.
  • FIG. 1 is a graph showing the chromatogram of the pyrolysis gas of the isocyanate group-modified carbon material and hexamethylene-1,6-diisocyanate obtained in Example 1.
  • 2 (a) and 2 (b) show mass spectra of pyrolysis gas at a retention time of 4.52 minutes for the isocyanate-modified carbon material obtained in Example 1 and hexamethylene-1,6-diisocyanate.
  • FIG. FIG. 3 is a diagram showing a chromatogram of pyrolysis gas of 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the amino group-modified carbon material obtained in Example 3.
  • FIG. 5 is a view showing a thermal analysis result obtained by TG-DTA of a composite material of an amino group-modified carbon material and a resin obtained in Comparative Example 1.
  • FIG. 6 is a diagram showing a thermal analysis result by TG-DTA of a composite material of a carbon material and a resin obtained in Example 3.
  • an isocyanate group-modified carbon material or an amino group-modified carbon material is provided.
  • the graphene-like carbon material and the diisocyanate compound are heated and stirred in a solvent.
  • the graphene-like carbon material and the azo radical initiator containing an amino group are heated and stirred in a solvent.
  • exfoliated graphite in which graphene or a plurality of graphenes are stacked can be suitably used.
  • exfoliated graphite is graphite having a number of graphene stacks of about several to 200, and a number of graphene stacks smaller than that of normal graphite.
  • the exfoliated graphite has a specific surface area much larger than that of normal graphite, and as described above, it is 600 m 2 / g or more and 2500 m 2 / g or less. Therefore, a desired reinforcing effect or physical property improving effect can be obtained by adding a small amount to the resin.
  • exfoliated graphite commercially available exfoliated graphite may be used. Further, exfoliated graphite may be obtained by various treatments for peeling the graphite.
  • the method for obtaining exfoliated graphite as described above is not particularly limited, and it can be obtained by exfoliating expanded graphite obtained by expanding graphite.
  • As the process of swelling graphite into expanded graphite 1) a method in which layered graphite is immersed in an acid solution and an acid solution is taken in between layers, and 2) an electrolysis method can be used.
  • layered graphite is immersed in nitric acid or sulfuric acid, heated, and nitrate ions or sulfate ions are intercalated between the layers.
  • the nitric acid concentration and the sulfuric acid concentration are preferably about 40 wt% to 70 wt%. Within this range, nitrate ions and sulfate ions can be reliably intercalated between the layers.
  • a layered graphite is used as a working electrode, and the working electrode is immersed in nitric acid or sulfuric acid together with a reference electrode made of Pt or the like to be electrolyzed.
  • electrolyte ions such as nitrate ions and sulfate ions can be intercalated between layers of layered graphite, that is, between graphenes, and the layers can be expanded.
  • the sheet made of expanded graphite obtained as described above is washed with water or the like and dried at a low temperature to remove excess nitrate ions or sulfate ions. In this way, a sheet made of dried expanded graphite can be obtained.
  • heating, a method of applying ultrasonic waves, or the like can be used.
  • the graphene-like carbon material in the present invention is not limited to graphene or exfoliated graphite, and various graphene-like carbon materials having a graphene sheet structure on the surface of carbon nanotubes or the like may be used.
  • HMDI hexamethylene diisocyanate
  • tolylene diisocyanate isophorone dicyanate
  • xylene diisocyanate and the like can be used.
  • a method for modifying the graphene-like carbon material with an isocyanate a method in which the graphene-like carbon material and a diisocyanate compound are mixed in a solvent and heated can be used.
  • hexamethylene diisocyanate and a graphene-like carbon material are dispersed in a solvent such as toluene, and heated at 80 ° C., so that the isocyanate of the present invention is represented by the following formula (1).
  • a group-modified carbon material can be obtained.
  • graphene-like carbon materials such as exfoliated graphite have hydroxyl groups and carboxyl groups on the surface. This hydroxyl group or carboxyl group reacts with the isocyanate group of the diisocyanate compound and bonds to the graphene-like carbon material. Thereby, the graphene-like carbon material having an isocyanate group, that is, the isocyanate group-modified graphene-like carbon material of the present invention can be obtained.
  • the ratio of reacting the graphene-like carbon material with the diisocyanate compound is preferably in the range of 100 to 1000 parts by weight of the diisocyanate compound with respect to 100 parts by weight of the graphene-like carbon material. Within this range, the graphene-like carbon material can be reliably reacted with the diisocyanate compound.
  • the solvent various solvents such as toluene, xylene, cyclohexanone, methyl ethyl ketone and the like can be used.
  • this heating temperature is in the range of about 50 ° C to 90 ° C.
  • the isocyanate group-modified carbon material obtained by the present invention can be obtained by heating and stirring a graphene-like carbon material and a diisocyanate compound in a solvent as described above.
  • the isocyanate group-modified carbon material thus obtained has an isocyanate group on the surface. Therefore, various modified carbon materials and composite materials can be obtained by utilizing the reactivity of isocyanate groups.
  • the composite material examples include composite materials containing the isocyanate group-modified carbon material and a resin.
  • a preferred application example of the isocyanate group-modified carbon material will be described.
  • the amino group-modified carbon material can be obtained by hydrolyzing the isocyanate group-modified carbon material. For example, by hydrolyzing the isocyanate group-modified carbon material obtained on the right side of the aforementioned formula (1), an amino group-modified graphene-like carbon material is obtained as shown by the following formula (2). be able to.
  • a urethane bond can be formed by reacting the isocyanate group-modified carbon material with a hydroxyl group-containing compound such as diol. Therefore, not only the reinforcing effect by the graphene-like carbon material can be obtained, but also a composite material having excellent adhesion between the graphene-like carbon material and the urethane resin matrix can be provided.
  • azo radical initiator containing an amino group an appropriate azo radical initiator that generates an amino group-containing fragment that undergoes radical decomposition by a treatment such as heating or UV irradiation can be used.
  • azo radical initiators include 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (2-methylpropionamidine) dihydrochloride.
  • Water-soluble radical initiators such as 2,2′-azobis (2,4-dimethylvaleronitrile), oils such as 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide]
  • a soluble radical initiator can be used.
  • 2,2′-azobis [2- (2-imidazolin-2-yl) propane] having a structure represented by the following formula (3) or 2,2′-azobis (2-methylpropionamidine) 2 Hydrochloride or the like can be used.
  • 2,2′-Azobis [2- (2-imidazolin-2-yl) propane] represented by the above formula (3) is dispersed in a solvent such as toluene and heated at a temperature of about 80 ° C. Radical decomposition as shown in (4). And the radical containing fragment shown on the right side of Formula (5) is added to graphene by radical adsorption, as shown on the right side of Formula (5).
  • an amino group-containing functional group can be added to graphene, and a positively charged amino group-modified carbon material can be provided.
  • the azo radical initiator containing an amino group may have any of a primary amino group, a secondary amino group, and a tertiary amino group. However, it is preferable to use an azo radical initiator having a secondary amino group or an azo radical initiator having a tertiary amino group, such as the compound represented by the formula (3). In that case, an amino group-containing fragment added to the graphene-like carbon material by radical adsorption can be easily generated only by heating in a solvent. In addition, more amino groups can be introduced into the graphene-like carbon material.
  • the proportion of the graphene-like carbon material to react with the azo radical initiator containing an amino group is preferably 100 azo radical initiator containing an amino group with respect to 100 parts by weight of the graphene-like carbon material. It may be in the range of ⁇ 500 parts by weight. Within this range, a fragment containing an amino group can be efficiently and reliably added to the graphene-like carbon material.
  • the heating temperature may be any temperature at which the azo radical initiator is radically decomposed, and may be appropriately selected according to the type of the azo radical initiator. In the case of an azo radical initiator containing a normal amino group, the heating temperature is in the range of about 70 ° C to 90 ° C.
  • the amino group-modified carbon material obtained by the present invention can be obtained by heating and stirring a graphene-like carbon material and an azo radical initiator containing an amino group in a solvent as described above.
  • the amino group-modified carbon material thus obtained has a positive charge derived from an amino group. Therefore, when compounding by mixing with a functional group-containing polymer or the like having a negative charge on the surface, the dispersibility of the amino group-modified carbon material in the polymer can be enhanced. In particular, when mixing fine particles made of resin having a functional group having a negative charge on the surface and the amino group-modified carbon material in a solvent or dispersion medium, the dispersibility of the amino group-modified carbon material is improved. Can do. Therefore, the uniformity of the physical properties of the fine particles made of the composite material of the resin fine particles and the amino group-modified carbon material can be improved.
  • the method for producing fine particles comprising a composite material of such resin fine particles and an amino group-modified carbon material.
  • a functional group-containing resin having a positive charge such as a sulfonic acid group and the amino group-modified carbon material are added to water and stirred to obtain a dispersion.
  • the dispersion thus obtained is heated with stirring.
  • a composite material of the amino group-modified carbon material and the functional group-containing resin can be obtained. Since the composite material obtained in this way contains the amino group-modified carbon material, the thermal decomposition temperature can be significantly increased compared to the original resin not containing the amino group-modified carbon material. .
  • the amino group-modified carbon material is uniformly dispersed with respect to the resin having a positive charge, the heat resistance can be greatly improved.
  • resin fine particles are preferably used as described above.
  • resin fine particles may be used as the resin.
  • Example 1 As a raw material graphite sheet, Toyo Tanso Co., Ltd. product number: PF100-UHP was prepared. A low density graphite sheet having a density of 0.7 and a thickness of 1 mm was prepared by lowering the rolling ratio at the time of rolling by the same production method as this graphite sheet.
  • the graphite sheet having a density of 0.7 obtained as described above was cut into a size of 5 cm ⁇ 5 cm to obtain a graphite sheet as an electrode material.
  • two slits were formed by cutting with a cutter knife so that the length of the slit was 1 cm.
  • An electrode made of Pt was inserted into the graphite sheet on which the two slits were formed.
  • the graphite sheet thus prepared was immersed in a 60 wt% aqueous nitric acid solution as a working electrode (anode) together with a reference electrode (cathode) made of Pt and a reference electrode made of Ag / AgCl.
  • the graphite sheet portion from the lower end of the 5 cm ⁇ 5 cm graphite sheet to a position 4 cm high was immersed in the nitric acid aqueous solution, and the upper portion of the graphite sheet was not immersed in the nitric acid aqueous solution.
  • a DC voltage was applied to perform electrochemical treatment. In this way, the portion of the original graphite sheet used as the working electrode that was immersed in the aqueous nitric acid solution was used as expanded graphite.
  • the obtained expanded graphite was dried at a low temperature, cut into 1 cm squares, one of which was placed in a carbon crucible and subjected to electromagnetic induction heat treatment.
  • the induction heating device MU1700D manufactured by SK Medical Co., Ltd. was used, and the current was 14 A so that the maximum temperature reached 550 ° C. in an argon gas atmosphere.
  • the expanded graphite was exfoliated by electromagnetic induction heating, and the specific surface area of the obtained exfoliated graphite powder was measured with a specific surface area measuring device ASAP-2000 of Shimadzu Corporation using nitrogen gas. And showed a specific surface area of 1296 m 2 / g.
  • FIG. 1 shows an infrared spectrum (pyrolysis GC-MS) of exfoliated graphite into which the above hexamethylene-1,6-diisocyanate and the isocyanate group obtained as described above were introduced.
  • FIG. 1 is a diagram showing a chromatogram of pyrolysis gas of isocyanate group-modified carbon material and hexamethylene-1,6-diisocyanate obtained in Example 1. From FIG. 1, it was confirmed that the pyrolysis gas of hexamethylene-1,6-diisocyanate and the isocyanate group-modified carbon material generated a common pyrolysis gas at a retention time of 4.52 minutes.
  • 2 (a) and 2 (b) are mass spectra of pyrolysis gas at a retention time of 4.52 minutes for the isocyanate-modified carbon material obtained in Example 1 and hexamethylene-1,6-diisocyanate.
  • the amount of isocyanate groups in the isocyanate group-modified exfoliated graphite obtained as described above was measured by the isocyanate group quantification method specified in JIS K8006. As a result, it was confirmed that the isocyanate group was bonded at a ratio of 0.10 equivalent to 1 g of exfoliated graphite.
  • Example 2 As a carbon material, an isocyanate group-modified exfoliated graphite was obtained in the same manner as in Example 1 except that exfoliated graphite was changed to oxidized graphite.
  • the ratio of isocyanate groups in the isocyanate group-modified exfoliated graphite obtained as described above was determined in the same manner as in Example 1. As a result, the proportion of isocyanate group was 0.01 equivalent to 1 g of exfoliated graphite.
  • the obtained emulsion was vacuum-dried to remove moisture.
  • a styrene-styrene sulfonic acid copolymer was obtained.
  • the thermal decomposition temperature of the obtained copolymer was measured by TG-DTA. The results are shown in FIG. As is clear from FIG. 5, the thermal decomposition starting temperature of the styrene-styrene sulfonic acid copolymer obtained in Comparative Example 1 is about 280 ° C.
  • Example 3 By supplying expanded graphite between a pair of rolls and molding the sheet, a graphite sheet having a density of 0.7 and a thickness of 1 mm was prepared.
  • the graphite sheet having a density of 0.7 obtained as described above was cut into a size of 5 cm ⁇ 5 cm to obtain a graphite sheet as an electrode material. Two slits were formed on this graphite sheet by cutting with a cutter knife so that the length of the slit was 1 cm. An electrode made of Pt was inserted into the graphite sheet on which the two slits were formed.
  • the graphite sheet thus prepared was immersed in a 60 wt% aqueous nitric acid solution as a working electrode (anode) together with a reference electrode (cathode) made of Pt and a reference electrode made of Ag / AgCl.
  • the graphite sheet portion from the lower end of the 5 cm ⁇ 5 cm graphite sheet to a position 4 cm high was immersed in the nitric acid aqueous solution, and the upper portion of the graphite sheet was not immersed in the nitric acid aqueous solution.
  • a DC voltage was applied to perform electrochemical treatment. In this way, the portion of the graphite sheet used as the working electrode that was immersed in the aqueous nitric acid solution was expanded graphite.
  • the obtained expanded graphite was dried at a low temperature, cut into 1 cm squares, one of which was placed in a carbon crucible and subjected to electromagnetic induction heat treatment.
  • the induction heating apparatus MU1700D manufactured by SK Medical Electronics Co., Ltd. was used, and the current was 14 A so that the maximum temperature reached 550 ° C. in an argon gas atmosphere.
  • the expanded graphite was exfoliated by electromagnetic induction heating, and the specific surface area of the obtained exfoliated graphite powder was measured with a specific surface area measuring device ASAP-2000 manufactured by Shimadzu Corporation using nitrogen gas. A specific surface area of 2 / g was shown.
  • FIG. 3 is a diagram showing a chromatogram of pyrolysis gas of 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the amino group-modified carbon material obtained in Example 3.
  • the pyrolysis gas of 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the amino group-modified carbon material contains a common pyrolysis gas at a retention time of 1.02 minutes. Formation was observed.
  • 4 (a) and 4 (b) show 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the pyrolysis gas of the amino group-modified carbon material obtained in Example 3.
  • the thermal decomposition temperature of the composite material obtained as described above was measured by TG-DTA as in Comparative Example 1. The results are shown in FIG. As is apparent from FIG. 6, the thermal decomposition starting temperature is about 350 ° C., and it can be seen that the heat resistance is improved by about 70 ° C. or more compared to about 280 ° C. in the case of Comparative Example 1.

Abstract

 イソシアネート基またはアミノ基で変成された官能基変成炭素材料及びその製造方法を提供する。 ジイソシアネート化合物のイソシアネート基がグラフェンライク炭素材料に結合されているイソシアネート基変成炭素材料またはアミノ基を含有するアゾ系ラジカル開始剤をラジカル分解することにより得られたフラグメントが、グラフェンライク炭素材料にラジカル吸着により付加されているアミノ基変成炭素材料、並びにグラフェンライク炭素材料と、ジイソシアネート化合物またはアミノ基を含有するアゾ系ラジカル開始剤とを溶媒中で加熱攪拌させる、官能基変成炭素材料の製造方法。

Description

官能基変成炭素材料及びその製造方法
 本発明は、薄片化黒鉛などのグラフェンライク炭素材料をイソシアネート基またはアミノ基により変成してなる官能基変成炭素材料及びその製造方法に関する。
 従来、黒鉛、カーボンナノチューブまたはカーボン粒子などの炭素材料が、吸着剤、配線材料もしくは樹脂への補強材または充填剤として広く用いられている。また、近年、黒鉛を剥離することにより得られ、グラフェン積層数が黒鉛より少ない薄片化黒鉛が注目されている。
 上記のような炭素材料を利用する場合、溶媒や合成樹脂に分散させることが多い。ところが、薄片化黒鉛やカーボンナノチューブなどではアスペクト比が大きいため、分散性が低いという問題があった。下記の特許文献1には、グラフェンシート構造を有する炭素材料の分散性を高めた変成炭素材料が開示されている。特許文献1では、カルボキシル基を含有するアゾ系ラジカル重合開始剤をラジカル分解して得られたフラグメントを、グラフェンシート構造を有する炭素材料、例えば気相成長炭素繊維またはカーボンナノチューブに付加してなる変成炭素材料が開示されている。カルボキシル基により変成することにより、上記変成炭素材料では、水に対する分散性が高められている。
特開2007-169112号公報
 特許文献1では、カルボキシル基により変成された上記炭素材料が開示されている。近年、グラフェンや薄片化黒鉛などのグラフェンライク炭素材料に、さまざまな反応基を付加させることが試みられている。グラフェンライク炭素材料にさまざまな官能基を付加することにより、樹脂と炭素材料との複合材料の物性の改良を図ることができる。
 本発明の目的は、グラフェンライク炭素材料にイソシアネート基またはアミノ基が付加されている官能基変成炭素材料及びその製造方法を提供することにある。
 本願発明者らは、上記課題を達成すべく、鋭意検討した結果、ジイソシアネート化合物をグラフェンライク炭素材料と反応させることにより、イソシアネート基で変成された炭素材料を得ることができることを見出し、本発明を成すに至った。
 また、本願発明者らは、上記課題を達成すべく、鋭意検討した結果、アミノ基を含有するアゾ系ラジカル開始剤をラジカル分解することにより得られたフラグメントをグラフェンライク炭素材料にラジカル吸着により付加すれば、アミノ基により変成された炭素材料を得ることができることを見出し、本発明を成すに至った。
 すなわち、本発明に係る官能基変成炭素材料では、ジイソシアネート化合物のイソシアネート基またはアミノ基を含有するアゾ系ラジカル開始剤をラジカル分解することにより得られたフラグメントが、グラフェンライク炭素材料に結合もしくは付加されている。
 上記グラフェンライク炭素材料としては、好ましくは、薄片化黒鉛が用いられる。薄片化黒鉛とは、通常の黒鉛を剥離することにより得られ、グラフェン積層数が数層~200層程度、比表面積で600m/g~2500m/g程度のグラフェンの積層体をいうものとする。
 グラフェンライク炭素材料が薄片化黒鉛である場合、比表面積が大きいため、少ない添加量で、樹脂の物性等を改善することができる。
 本発明に係るイソシアネート基変成炭素材料の製造方法では、グラフェンライク炭素材料と、ジイソシアネート化合物またはアミノ基を含有するアゾ系ラジカル開始剤とを溶媒中で加熱攪拌する。それによって、本発明の官能基変成炭素材料を得ることができる。
 本発明の製造方法においては、好ましくは、グラフェンライク炭素材料として薄片化黒鉛を用いる。この場合には、少ない添加量で、樹脂の物性等を改善し得る炭素材料を提供することができる。
 本発明の製造方法では、好ましくは、上記アゾ系ラジカル開始剤として、二級または三級アミノ基を有するアゾ系ラジカル開始剤が用いられる。その場合には、後述するように、溶媒中で加熱攪拌するだけで、アミノ基変成炭素材料を効率良く得ることができる。
 本発明の他の特定の局面では、本発明に係る官能基変成炭素材料と、樹脂とを含む複合材料が提供される。本発明のより限定的な局面では、上記樹脂として樹脂微粒子が用いられる。
 本発明に係る官能基変成炭素材料では、グラフェンライク炭素がイソシアネート基またはアミノ基で変成されている。従って、イソシアネート基を加水分解して、アミン変成されたグラフェンライク炭素材料を容易に提供することができる。また、該イソシアネート基を水酸基と反応させてウレタン結合を形成させることもできる。従って、本発明のイソシアネート基変成炭素材料をジオールなどの水酸基を有する樹脂材料と反応させることにより、ウレタン樹脂の物性を有しつつ、かつグラフェンライク炭素により機械的強度等の特性が改善された複合材料を提供することができる。
 また、本発明に係るアミノ基変成炭素材料では、アミノ基を含有するアゾ系ラジカル開始剤のラジカル分解により得られたフラグメントがグラフェンライク炭素に付加されているため、正電荷を帯びたグラフェンライク炭素材料を提供することができる。従って、例えば負電荷を有する樹脂微粒子との複合材料を得るのに好適な炭素材料を提供することが可能となる。
 また、本発明に係る官能基変成炭素材料の製造方法によれば、上記のような従来得ることができなかった、本発明の官能基変成炭素材料を提供することができる。
図1は、実施例1で得たイソシアネート基変成炭素材料及びヘキサメチレン-1,6-ジイソシアネートの熱分解ガスのクロマトグラムを示す図である。 図2(a),(b)は、実施例1で得たイソシアネート変成炭素材料及びヘキサメチレン-1,6-ジイソシアネートの熱分解ガスの保持時間4.52分における熱分解ガスの質量スペクトルを示す図である。 図3は、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕及び実施例3で得たアミノ基変成炭素材料の熱分解ガスのクロマトグラムを示す図である。 図4(a)及び(b)は、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕及び実施例3で得たアミノ基変成炭素材料の熱分解ガスの保持時間1.02分における熱分解ガスの質量スペクトルを示す図である。 図5は、比較例1で得たアミノ基変成炭素材料と樹脂との複合材料のTG-DTAにより求められた熱分析結果を示す図である。 図6は、実施例3で得た炭素材料と樹脂との複合材料のTG-DTAによる熱分析結果を示す図である。
 以下、本発明の具体的な実施形態を説明する。
 本発明に係る官能基変成炭素材料では、イソシアネート基変成炭素材料またはアミノ基変成炭素材料が提供される。
 本発明に係るイソシアネート基変成炭素材料を得るに際しては、グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で加熱攪拌する。
 本発明に係るアミノ基変成炭素材料を得るに際しては、グラフェンライク炭素材料と、アミノ基を含有するアゾ系ラジカル開始剤とを溶媒中で加熱攪拌する。
 (グラフェンライク炭素材料)
 上記グラフェンライク炭素材料としては、グラフェンまたは複数のグラフェンが積層された薄片化黒鉛を好適に用いることができる。薄片化黒鉛とは、前述した通り、グラフェン積層数が数層~200層程度の、通常の黒鉛よりもグラフェン積層数が薄い黒鉛である。薄片化黒鉛は、比表面積が通常の黒鉛よりも非常に大きく、前述した通り、600m/g以上、2500m/g以下である。従って、樹脂に少量添加するだけで、所望の補強効果や物性改善効果等を得ることができる。
 上記薄片化黒鉛としては、市販されている薄片化黒鉛を用いてもよい。また、黒鉛を剥離する様々な処理により薄片化黒鉛を得てもよい。
 上記のように薄片化黒鉛を得る方法としては特に限定されず、黒鉛を膨張して得られた膨張化黒鉛を剥離することにより得ることができる。黒鉛を膨潤し膨張化黒鉛とする工程としては、1)酸溶液中に層状黒鉛を浸漬し、層間に酸溶液を取り込む方法、及び2)電気分解法などを用いることができる。
 1)の方法では、硝酸や硫酸中に層状黒鉛を浸漬し、加熱し、硝酸イオンや硫酸イオンを層間にインターカレートする方法である。この場合、硝酸濃度及び硫酸濃度は、40重量%~70重量%程度であることが望ましい。この範囲内であれば、硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。また、必要に応じて溶液を撹拌したり加熱したりしてもよい。加熱温度については、溶液が水溶液の場合、20℃以上、95℃以下であることが好ましい。この範囲内の温度であれば、上記硝酸イオンや硫酸イオンを確実に層間にインターカレートすることができる。
 2)の電気分解法では、層状黒鉛を作用極とし、該作用極をPtなどからなる対照極と共に硝酸や硫酸中に浸漬し、電気分解する。それによって、層状黒鉛の層間すなわちグラフェン間に硝酸イオンや硫酸イオン等の電解質イオンをインターカレートすることができ、層間を広げることができる。
 次に、上記のようにして得られた膨張化黒鉛からなるシートを水等により洗浄し、低温で乾燥し、過剰な硝酸イオンや硫酸イオン等を除去する。このようにして、乾燥した膨張化黒鉛からなるシートを得ることができる。膨張化黒鉛を剥離して薄片化黒鉛を得るには、加熱、超音波を加える方法などを用いることができる。
 また、本発明におけるグラフェンライク炭素材料としては、グラフェンまたは薄片化黒鉛に限らず、カーボンナノチューブなどの表面にグラフェンシート構造を有する様々なグラフェンライク炭素材料を用いてもよい。
 (イソシアネート基変成炭素材料)
 上記ジイソシアネート化合物としては、ヘキサメチレンジイソシアネート(HMDI)、トリレンジイソシアネート、イソホロンジシアネート、キシレンジイソシアネートなどを用いることができる。
 上記グラフェンライク炭素材料をイソシアネートで変成する方法としては、上記グラフェンライク炭素材料と、ジイソシアネート化合物とを溶媒中で混合し、加熱する方法を用いることができる。具体的な例としては、ヘキサメチレンジイソシアネートと、グラフェンライク炭素材料とを溶媒、例えばトルエンに分散させ、80℃温度で加熱することにより、下記の式(1)で示すように、本発明のイソシアネート基変成炭素材料を得ることができる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)で示すように、薄片化黒鉛などのグラフェンライク炭素材料は、表面に水酸基やカルボキシル基を有する。この水酸基やカルボキシル基が、ジイソシアネート化合物のイソシアネート基と反応し、グラフェンライク炭素材料に結合することとなる。それによって、イソシアネート基を有するグラフェンライク炭素材料すなわち、本発明のイソシアネート基変成グラフェンライク炭素材料を得ることができる。
 上記グラフェンライク炭素材料と、ジイソシアネート化合物とを反応させる割合としては、好ましくは、グラフェンライク炭素材料100重量部に対し、ジイソシアネート化合物を100~1000重量部の範囲とすればよい。この範囲内であれば、グラフェンライク炭素材料を、ジイソシアネート化合物を確実に反応させることができる。
 上記溶媒としては、トルエン、キシレン、シクロヘキサノン、メチルエチルケトンなどの様々な溶媒を用いることができる。また、加熱温度については、上記ジイソシアネート化合物が水酸基及び/またはカルボキシキ基と反応する温度であればよく、ジイソシアネート化合物の種類に応じて適宜選択すればよい。通常この加熱温度は、50℃~90℃程度の範囲である。
 本発明により得られるイソシアネート基変成炭素材料は、上記のようにグラフェンライク炭素材料とジイソシアネート化合物とを溶媒中で加熱攪拌し、反応させることにより得られる。このようにして得られたイソシアネート基変成炭素材料は、表面にイソシアネート基を有する。従って、イソシアネート基の反応性を利用してさまざまな変成炭素材料や複合材料を得ることができる。
 上記複合材料としては、例えば上記イソシアネート基変成炭素材料と樹脂とを含む複合材料が挙げられる。
 上記イソシアネート基変成炭素材料の好ましい応用例を説明する。
 イソシアネート基変成炭素材料を加水分解し、アミノ基変成炭素材料を得ることができる。一例を挙げると、前述した式(1)の右辺で得られたイソシアネート基変成炭素材料を加水分解することにより、下記の式(2)で示すようにアミノ基変成されたグラフェンライク炭素材料を得ることができる。
Figure JPOXMLDOC01-appb-C000002
 また、上記イソシアネート基変成炭素材料をジオールなどの水酸基含有化合物と反応させることにより、ウレタン結合を形成することができる。従って、グラフェンライク炭素材料による補強効果を得ることができるだけでなく、上記グラフェンライク炭素材料とウレタン系樹脂マトリックスとの密着性に優れた複合材料を提供することができる。
 (アミノ基変成グラフェンライク炭素材料)
 上記アミノ基を含有するアゾ系ラジカル開始剤としては、加熱やUV照射などの処理によりラジカル分解するアミノ基含有フラグメントを発生させる適宜のアゾ系ラジカル開始剤を用いることができる。このようなアゾ系ラジカル開始剤としては、例えば、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩などの水溶性のラジカル開始剤や、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス〔N-(2-プロペニル)-2-メチルプロピオンアミド〕などの油溶性のラジカル開始剤などを用いることができる。
 好ましくは、下記の式(3)で示す構造を有する2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕や、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩などを用いることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(3)で示す2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕は、溶媒、例えばトルエンに分散させ80℃程度の温度で熱することにより、下記の式(4)で示すようにラジカル分解する。そして、式(5)の右辺に示すラジカル含有フラグメントは式(5)の右辺に示すように、グラフェンにラジカル吸着により付加される。
 従って、グラフェンに、アミノ基含有官能基を付加させることができ、正電荷を帯びたアミノ基変成炭素材料を提供することができる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記アミノ基を含有するアゾ系ラジカル開始剤は、一級アミノ基、二級アミノ基及び三級アミノ基のいずれを有するものであってもよい。もっとも、好ましくは、式(3)で示した化合物のような二級アミノ基を有するアゾ系ラジカル開始剤や、三級アミノ基を有するアゾ系ラジカル開始剤を用いることが望ましい。その場合には、溶媒中で加熱するだけで、グラフェンライク炭素材料にラジカル吸着により付加されるアミノ基含有フラグメントを容易に発生させることができる。また、グラフェンライク炭素材料に、より多くのアミノ基を導入することができる。
 上記グラフェンライク炭素材料と、アミノ基を含有するアゾ系ラジカル開始剤とを反応させる割合としては、好ましくは、グラフェンライク炭素材料100重量部に対し、アミノ基を含有するアゾ系ラジカル開始剤を100~500重量部の範囲とすればよい。この範囲内であれば、グラフェンライク炭素材料に、アミノ基を含有するフラグメントを効率良くかつ確実に付加させることができる。
 上記溶媒としては、トルエン、キシレン、ジオキサン、シクロヘキサノン、メチルエチルケトンなどの様々な溶媒を用いることができる。また、加熱温度については、上記アゾ系ラジカル開始剤がラジカル分解する温度であればよく、アゾ系ラジカル開始剤の種類に応じて適宜選択すればよい。通常のアミノ基を含有するアゾ系ラジカル開始剤の場合には、この加熱温度は、70℃~90℃程度の範囲である。
 本発明により得られるアミノ基変成炭素材料は、上記のようにグラフェンライク炭素材料とアミノ基を含有するアゾ系ラジカル開始剤とを溶媒中で加熱攪拌し、反応させることにより得られる。このようにして得られたアミノ基変成炭素材料は、アミノ基由来の正電荷を有する。従って、表面に負電荷を有する官能基含有ポリマー等との混合等により複合化する場合、アミノ基変成炭素材料のポリマーへの分散性を高めることができる。特に、表面に負電荷を有する官能基を持つ樹脂からなる微粒子と、上記アミノ基変成炭素材料とを溶媒もしくは分散媒中で混合し複合化させる場合、アミノ基変成炭素材料の分散性を高めることができる。従って、樹脂微粒子とアミノ基変成炭素材料との複合材料からなる微粒子の物性の均一性を高めることができる。
 このような樹脂微粒子とアミノ基変成炭素材料との複合材料からなる微粒子の製造方法は特に限定されるものではない。一例を挙げると、スルホン酸基などの正電荷を有する官能基含有樹脂のエマルジョン及び上記アミノ基変成炭素材料を水に加え、攪拌し、分散液を得る。このようにして得られた分散液を攪拌しつつ加熱する。加熱により水を除去することにより、アミノ基変成炭素材料と上記官能基含有樹脂との複合材料等を得ることができる。このようにして得られた複合材料は、上記アミノ基変成炭素材料が含有されているため、アミノ基変成炭素材料が含有されていない元の樹脂に比べ、熱分解温度を大幅に高めることができる。すなわち、アミノ基変成炭素材料が正電荷を有する樹脂に対して均一に分散されるため、耐熱性を大幅に高めることができる。
 なお、上記アミノ基変成炭素材料と樹脂との複合材料において、樹脂として上記のように樹脂微粒子が好ましく用いられる。前述したイソシアネート基変成炭素材料と樹脂とを含む複合材料においても、同様に、樹脂として樹脂微粒子を用いても良い。
 次に、具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 原料の黒鉛シートとして東洋炭素社製、品番:PF100-UHPを用意した。この黒鉛シートと同じ製法で、圧延処理時の圧延倍率を下げて密度0.7、厚み1mmの低密度黒鉛シートを用意した。
 上記のようにして得られた密度0.7の黒鉛シートを5cm×5cmの大きさに切断し、電極材料としての黒鉛シートを得た。この黒鉛シートに、2本のスリットを、スリットの長さが1cmとなるようにカッターナイフにより切削し、形成した。上記2本のスリットが形成された黒鉛シートに、Ptからなる電極を挿入した。このようにして用意した黒鉛シートを作用極(陽極)として、Ptからなる対照極(陰極)及び、Ag/AgClからなる参照極とともに60重量%濃度の硝酸水溶液中に浸漬した。浸漬に際しては、5cm×5cmの黒鉛シートの下端から4cmの高さの位置までの黒鉛シート部分を硝酸水溶液中に浸漬し、黒鉛シートの上方部分は硝酸水溶液中に浸漬させなかった。直流電圧を印加し電気化学処理を行った。このようにして、作用極として用いたもとの黒鉛シートの内、硝酸水溶液中に浸漬されていた部分を膨張化黒鉛とした。
 次に、得られた膨張化黒鉛を低温で乾燥し、1cm角に切断し、その1つをカーボンるつぼに入れて電磁誘導加熱処理を行った。誘導加熱装置はSKメディカル社製MU1700Dを用い、アルゴンガス雰囲気下で最高到達温度550℃となるように14Aの電流量で行った。電磁誘導加熱により膨張化黒鉛は薄片化され、得られた薄片化黒鉛の粉末を島津製作所(株)の比表面積測定装置ASAP-2000で窒素ガスを用いて比表面積を測定したところ、1回測定で1296m/gの比表面積を示した。
 上記のようして得た薄片化黒鉛(比表面積1296m/g)1gに対してヘキサメチレン-1,6-ジイソシアネート5mLを添加し、窒素雰囲気下で200mLのトルエン中とともに80℃にて8時間加熱撹拌することにより、薄片化黒鉛にイソシアネート基を導入した。
 上記ヘキサメチレン-1,6-ジイソシアネートと、上記のようにして得られたイソシアネート基が導入された薄片化黒鉛の赤外スペクトル(熱分解GC-MS)を図1に示す。
 図1は、実施例1で得たイソシアネート基変成炭素材料及びヘキサメチレン-1,6-ジイソシアネートの熱分解ガスのクロマトグラムを示す図である。図1より、ヘキアンメチレン-1,6-ジイソシアネートとイソシアネート基変成炭素材料の熱分解ガスには、保持時間4.52分に共通の熱分解ガスの生成が認められた。また、図2(a),(b)は、実施例1で得たイソシアネート変成炭素材料及びヘキサメチレン-1,6-ジイソシアネートの熱分解ガスの保持時間4.52分における熱分解ガスの質量スペクトルを示す図である。図2より、ヘキサメチレン-1,6-ジイソシアネートとイソシアネート基変成炭素材料の保持時間4.52分における熱分解ガスの質量スペクトルは完全に一致することから、イソシアネート基を有するフラグメントが薄片化黒鉛に付加されていることがわかる。
 また、JIS K8006に規定されたイソシアネート基の定量法により、上記のようにして得たイソシアネート基変成薄片化黒鉛におけるイソシアネート基の量を測定した。その結果、薄片化黒鉛1gに対し、イソシアネート基が0.10等量の割合で結合されていることが確かめられた。
 (実施例2)
 炭素材料として、薄片化黒鉛を酸化黒鉛に変更したこと以外は実施例1と同様にして、イソシアネート基変成薄片化黒鉛を得た。
 また、上記のようにして得たイソシアネート基変成薄片化黒鉛におけるイソシアネート基の割合を実施例1と同様にして求めた。その結果、薄片化黒鉛1gに対し、イソシアネート基の割合は0.01等量であった。
 (比較例1)
 2L重合容器に水1100mL、スチレンモノマー180mLを仕込み、窒素ガスを導入しつつ、撹拌羽より180rpmの撹拌速度で撹拌し、乳化液を作製した。別途、分散剤としてp-スチレンスルホン酸モノマーを水で2重量%の濃度に希釈してなる分散剤溶液を用意した。また、重合開始剤としてペルオキソ二硫酸カリウムを水で3重量%の濃度に希釈してなる重合開始剤溶液を用意した。
 上記乳化液を窒素ガスを導入したまま70℃まで昇温した後、上記重合開始剤溶液20mLを添加し、続けて上記分散剤溶液を50mLを添加した。重合温度を70℃±2℃の範囲に維持したまま8時間重合処理を行った。このようにして、エマルジョンを得た。
 上記エマルジョンをTEMで観察したところ、直径約120nmの微粒子が分散していることを確認した。
 次に、得られたエマルジョンを真空乾燥し、水分を除去した。このようにして、スチレン-スチレンスルホン酸共重合体を得た。得られた共重合体の熱分解温度をTG-DTAにより測定した。結果を図5に示す。図5から明らかなように、比較例1で得たスチレン-スチレンスルホン酸共重合体の熱分解開始温度は約280℃である。
 (実施例3)
 膨張黒鉛を一対のロール間に供給してシート成型することにより、密度0.7、厚み1mmの黒鉛シートを用意した。
 上記のようにして得られた密度0.7の黒鉛シートを5cm×5cmの大きさに切断し、電極材料としての黒鉛シートを得た。この黒鉛シートに、2本のスリットを、スリットの長さが1cmとなるようにカッターナイフにより切削し、形成した。上記2本のスリットが形成された黒鉛シートに、Ptからなる電極を挿入した。このようにして用意した黒鉛シートを作用極(陽極)として、Ptからなる対照極(陰極)及び、Ag/AgClからなる参照極とともに60重量%濃度の硝酸水溶液中に浸漬した。浸漬に際しては、5cm×5cmの黒鉛シートの下端から4cmの高さの位置までの黒鉛シート部分を硝酸水溶液中に浸漬し、黒鉛シートの上方部分は硝酸水溶液中に浸漬させなかった。直流電圧を印加し電気化学処理を行った。このようにして、作用極として用いた黒鉛シートの内、硝酸水溶液中に浸漬されていた部分を膨張化黒鉛とした。
 次に、得られた膨張化黒鉛を低温で乾燥し、1cm角に切断し、その1つをカーボンるつぼに入れて電磁誘導加熱処理を行った。誘導加熱装置はSKメディカル電子社製MU1700Dを用い、アルゴンガス雰囲気下で最高到達温度550℃となるように14Aの電流量で行った。電磁誘導加熱により膨張化黒鉛は薄片化され、得られた薄片化黒鉛の粉末を島津製作所製の比表面積測定装置ASAP-2000で窒素ガスを用いて比表面積を測定したところ、1回測定で1296m/gの比表面積を示した。
 上記のようにして得られた薄片化黒鉛1.0gと、アゾ系ラジカル開始剤として式(1)で示した構造を有する2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕を4.0gとを200mLのトルエン中で窒素雰囲気下で80℃の温度で加熱攪拌した。それによって、アミノ基変成炭素材料を得た。
 図3は、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕及び実施例3で得たアミノ基変成炭素材料の熱分解ガスのクロマトグラムを示す図である。図3より、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕とアミノ基変成炭素材料の熱分解ガスには、保持時間1.02分に共通の熱分解ガスの生成が認められた。また、図4(a)及び(b)は、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕及び実施例3で得たアミノ基変成炭素材料の熱分解ガスの保持時間1.02分における熱分解ガスの質量スペクトルを示す図である。図4(a)及び(b)より、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕とアミノ基変成炭素材料の保持時間1.02分における熱分解ガスの質量スペクトルは完全に一致することから、アミノ基を有するフラグメントか薄片化黒鉛に付加されていることがわかる。
 上記のようにして得たアミノ基変成炭素材料15gを水10gに分散させたところ、分散性に優れた薄片化黒鉛の水分散液を得ることができた。別途、比較例1で作製したエマルジョンを固形分濃度が10重量%となるように調製した。調製されたエマルジョンの固形分が0.57gとなるように該エマルジョンを薄片化黒鉛水分散液に添加し、攪拌した。エマルジョン及び薄片化黒鉛の分散状態は良好であった。このようにして得られた分散液を100℃で真空乾燥処理を行い加熱し、水分を除去した。その結果、均一な黒色透明の樹脂複合材料を得た。仕込み成分から、この複合材料は、スチレン-スチレンスルホン酸ソーダ共重合体とアミノ基変成薄片化黒鉛との複合材料である。
 上記のようにして得た複合材料の熱分解温度を、比較例1と同様にTG-DTAにより測定した。結果を図6に示す。図6から明らかなように、熱分解開始温度は約350℃であり、比較例1の場合の約280℃に比べ、約70℃以上耐熱性の高められていることがわかる。

Claims (9)

  1.  イソシアネート基またはアミノ基がグラフェンライク炭素材料に付加もしくは結合されている、官能基変成炭素材料。
  2.  ジイソシアネート化合物のイソシアネート基がグラフェンライク炭素材料に結合されている、請求項1に記載の官能基変成炭素材料。
  3.  アミノ基を含有するアゾ系ラジカル開始剤をラジカル分解することにより得られたフラグメントが、グラフェンライク炭素材料にラジカル吸着により付加されている、請求項1に記載の官能基変成炭素材料。
  4.  前記グラフェンライク炭素材料が薄片化黒鉛である、請求項1~3のいずれか1項に記載の官能基変成炭素材料。
  5.  グラフェンライク炭素材料と、ジイソシアネート化合物またはアミノ基含有アゾ系ラジカル開始剤とを溶媒中で加熱攪拌させる、官能基変成炭素材料の製造方法。
  6.  前記グラフェンライク炭素材料として、薄片化黒鉛を用いる、請求項5に記載のイソシアネート基変成炭素材料の製造方法。
  7.  前記アゾ系ラジカル開始剤が、二級または三級アミノ基を有するアゾ系ラジカル開始剤である、請求項5に記載のアミノ基変成炭素材料の製造方法。
  8.  請求項1~4のいずれか1項に記載の官能基変成炭素材料と、樹脂とを含む複合材料。
  9.  前記樹脂が樹脂微粒子である、請求項8に記載の複合材料。
PCT/JP2012/080078 2011-11-30 2012-11-20 官能基変成炭素材料及びその製造方法 WO2013080843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280029130.7A CN103608288B (zh) 2011-11-30 2012-11-20 官能团改性碳材料及其制造方法
EP12852901.3A EP2786962B1 (en) 2011-11-30 2012-11-20 Functional-group-modified exfoliated graphite, and method for producing same
KR1020137028198A KR20140109246A (ko) 2011-11-30 2012-11-20 관능기 변성 탄소 재료 및 그의 제조 방법
US14/008,532 US9346748B2 (en) 2011-11-30 2012-11-20 Functional-group-modified carbon material, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-262158 2011-11-30
JP2011262157A JP5937812B2 (ja) 2011-11-30 2011-11-30 イソシアネート基変成炭素材料及びその製造方法
JP2011262158A JP5937813B2 (ja) 2011-11-30 2011-11-30 アミノ基変成炭素材料、その製造方法及び複合材料
JP2011-262157 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080843A1 true WO2013080843A1 (ja) 2013-06-06

Family

ID=48535305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080078 WO2013080843A1 (ja) 2011-11-30 2012-11-20 官能基変成炭素材料及びその製造方法

Country Status (5)

Country Link
US (1) US9346748B2 (ja)
EP (1) EP2786962B1 (ja)
KR (1) KR20140109246A (ja)
CN (1) CN103608288B (ja)
WO (1) WO2013080843A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135072B2 (en) * 2013-01-24 2018-11-20 National Taiwan University Of Science And Technology Method for manufacturing a composite

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912492B1 (ko) 2012-08-27 2018-10-26 세키스이가가쿠 고교가부시키가이샤 박편화 흑연ㆍ수지 복합 재료 및 그의 제조 방법
KR102313166B1 (ko) 2013-12-26 2021-10-15 세키스이가가쿠 고교가부시키가이샤 캐패시터용 전극재 및 그의 제조 방법, 및 전기 이중층 캐패시터
CN104130669B (zh) * 2014-08-13 2017-12-26 陕西科技大学 高疏水型防静电复合涂料及其制备方法
CN104630817B (zh) * 2014-12-18 2018-07-06 西安工业大学 导电聚苯胺/石墨烯大面积柔性电致变色材料的制备方法
CN104804477A (zh) * 2015-03-26 2015-07-29 苏州安鸿泰新材料有限公司 一种改性石墨烯纳米填充材料的制备方法和应用
US10707524B2 (en) 2016-10-19 2020-07-07 Semiconductor Energy Laboratory Co., Ltd. Graphene compound and manufacturing method thereof, electrolyte, and power storage device
CN106882800A (zh) * 2017-03-22 2017-06-23 德阳烯碳科技有限公司 一种用于原位聚合的石墨烯分散液的制备方法
CN107236285B (zh) * 2017-05-23 2021-07-13 兰州科时西西里健康科技有限公司 一种石墨烯水性聚氨酯安全套用水性聚氨酯乳液及其制备方法和应用
CN111099579A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种水分散性碳材料的制备方法
CN109811382B (zh) * 2019-03-28 2021-04-20 烟台恒诺新材料有限公司 一种氧化石墨烯导电浆在黑孔化直接电镀中的应用
CN109825863B (zh) * 2019-03-28 2021-02-05 烟台恒诺新材料有限公司 一种碳纳米管导电浆在黑孔化直接电镀中的应用
JPWO2022039251A1 (ja) * 2020-08-20 2022-02-24

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162203A (ja) * 2002-11-13 2004-06-10 Norio Tsubokawa 変性カーボンナノ繊維およびこれを含む樹脂組成物、塗料
JP2007169112A (ja) 2005-12-22 2007-07-05 Tokyo Univ Of Science 変性炭素材料及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04003996A (es) 2001-10-29 2004-07-23 Hyperion Catalysis Int Polimeros que contienen nanotubos de carbono funcionalizado.
JP4379002B2 (ja) 2003-05-30 2009-12-09 富士ゼロックス株式会社 カーボンナノチューブデバイスの製造方法、並びに、カーボンナノチューブ転写体
CN1275853C (zh) 2004-08-26 2006-09-20 复旦大学 一种表面羧基改性的碳纳米管的制备方法
US20060083762A1 (en) * 2004-10-13 2006-04-20 Gaelle Brun Uses of compositions comprising electrophilic monomers and micro-particles or nanoparticles
TW200724485A (en) * 2005-12-30 2007-07-01 Ind Tech Res Inst Functionalized nano-carbon materials and method for functionalizing nano-carbon materials
US8110026B2 (en) * 2006-10-06 2012-02-07 The Trustees Of Princeton University Functional graphene-polymer nanocomposites for gas barrier applications
CN101294009A (zh) * 2007-04-25 2008-10-29 北京化工大学 一种制备插层复合物的插层-分解方法
CN101386714B (zh) 2007-09-14 2012-11-14 南京理工大学 双亲氧化石墨及其制备方法
CN102127324B (zh) * 2011-01-13 2013-05-29 中国科学技术大学 改性氧化石墨烯的制备方法及含有改性氧化石墨烯的复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162203A (ja) * 2002-11-13 2004-06-10 Norio Tsubokawa 変性カーボンナノ繊維およびこれを含む樹脂組成物、塗料
JP2007169112A (ja) 2005-12-22 2007-07-05 Tokyo Univ Of Science 変性炭素材料及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYUNWOO KIM ET AL.: "Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods", POLYMER, vol. 52, no. 8, 23 February 2011 (2011-02-23), pages 1837 - 1846, XP028159139 *
NGUYEN DANG LUONG ET AL.: "Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization", POLYMER, vol. 52, no. 23, 24 September 2011 (2011-09-24), pages 5237 - 5242, XP028319838 *
PENG-GANG REN ET AL.: "Improved properties of highly oriented graphene/polymer nanocomposites", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 121, no. 6, 15 September 2011 (2011-09-15), pages 3167 - 3174, XP055072910 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135072B2 (en) * 2013-01-24 2018-11-20 National Taiwan University Of Science And Technology Method for manufacturing a composite

Also Published As

Publication number Publication date
EP2786962A4 (en) 2015-08-19
CN103608288A (zh) 2014-02-26
CN103608288B (zh) 2017-03-08
US20140080950A1 (en) 2014-03-20
EP2786962B1 (en) 2018-01-03
US9346748B2 (en) 2016-05-24
EP2786962A1 (en) 2014-10-08
KR20140109246A (ko) 2014-09-15

Similar Documents

Publication Publication Date Title
WO2013080843A1 (ja) 官能基変成炭素材料及びその製造方法
Deshmukh et al. Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites
Dao et al. Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly (methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity
Tong et al. Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface
Lei et al. Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions
JP6215372B2 (ja) 複合材料
JP2005063951A (ja) 炭素からなる骨格を持つ薄膜状粒子を含む分散液、導電性塗膜および導電性複合材料ならびにこれらの製造方法
CN109110750B (zh) 利用膨胀石墨制备石墨烯的方法
JP5937812B2 (ja) イソシアネート基変成炭素材料及びその製造方法
Tsou et al. High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol
Pan et al. Synergistic effects of hydrophilic nano-SiO2/graphene oxide@ copolymer nanocomposites in tanning leather
AU2019356795B2 (en) Dispersible edge functionalised graphene platelets
KR101590706B1 (ko) 그래핀―고분자 복합체 및 이의 제조방법
JP2012067277A (ja) アスファルト材料及びアスファルト材料の製造方法
Li et al. Micron-dimensional sulfonated graphene sheets co-stabilized emulsion polymerization to prepare acrylic latex used for reinforced anticorrosion coatings
JP5937813B2 (ja) アミノ基変成炭素材料、その製造方法及び複合材料
Xiao et al. In situ vitamin C reduction of graphene oxide for preparing flexible TPU nanocomposites with high dielectric permittivity and low dielectric loss
Tao et al. Reduction versus cross-linking: how to improve the tensile strength of graphene oxide/polyvinyl alcohol composite film
JP2012107233A (ja) 樹脂複合材料及び樹脂複合材料の製造方法
JP2021095568A (ja) 樹脂組成物およびそれを用いた硬化膜
Dai et al. Toughening of vinyl ester resins by two-dimensional MXene nanosheets
Lee et al. Nanocomposites of polystyrene/polystyrene-grafted graphene oxides synthesized by in-situ bulk polymerization
CN117385376A (zh) 一种基于电化学法的快速制备氧化石墨烯的方法及其应用
Guerrero-Bermea et al. Enzymatic synthesis of polyaniline/graphite oxide nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14008532

Country of ref document: US

Ref document number: 2012852901

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE