JP2012099275A - アルカリ蓄電池正極用粉末およびその製造方法 - Google Patents

アルカリ蓄電池正極用粉末およびその製造方法 Download PDF

Info

Publication number
JP2012099275A
JP2012099275A JP2010244396A JP2010244396A JP2012099275A JP 2012099275 A JP2012099275 A JP 2012099275A JP 2010244396 A JP2010244396 A JP 2010244396A JP 2010244396 A JP2010244396 A JP 2010244396A JP 2012099275 A JP2012099275 A JP 2012099275A
Authority
JP
Japan
Prior art keywords
positive electrode
powder
particles
alkaline storage
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010244396A
Other languages
English (en)
Other versions
JP2012099275A5 (ja
Inventor
Makoto Saito
誠 斉藤
Takashi Mukai
孝志 向井
Tetsuo Sakai
哲男 境
Kazuo Tsutsumi
香津雄 堤
Kazuya Nishimura
和也 西村
Tomoaki Takasaki
智昭 高▲崎▼
Naotoshi Kinoshita
直俊 木下
Yoshiyuki Kano
良幸 加納
Takuya Nagato
琢也 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Kawasaki Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Powrex KK
Kawasaki Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powrex KK, Kawasaki Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Powrex KK
Priority to JP2010244396A priority Critical patent/JP2012099275A/ja
Publication of JP2012099275A publication Critical patent/JP2012099275A/ja
Publication of JP2012099275A5 publication Critical patent/JP2012099275A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】正極活物質粒子の表面において、電気化学的な酸化、還元いずれにも耐性を有する炭素からなる導電材を均一にコートして活物質粒子に導電性を付与することにより、適用される電池の高出力化と低コスト化を両立できるとともに、過充電および過放電に強く、組電池に適したアルカリ蓄電池正極用粉末およびその製造方法を提供する。
【解決手段】アルカリ蓄電池の正極に用いられる粉末が、正極活物質からなる核粒子31と、炭素からなる導電材粒子33とを含んでおり、前記核粒子31の表面に、前記正極活物質と水酸イオンとの反応部37と、前記導電材粒子33によって覆われた導電部35とが形成されている。
【選択図】図3

Description

本発明は、活物質表面に炭素を付着させてなるアルカリ蓄電池正極用粉末およびその製造方法に関する。
近年、環境への配慮から、風力発電や太陽光発電のような自然エネルギーのロードレベリングや、自動車や電車などの車両の動力源に使用される大型の二次電池が開発されている。自然エネルギー分野においては、主として、エネルギーの発生とその供給との平準化を図るために二次電池が用いられている。また、車両に二次電池を搭載した場合には、ブレーキ時に生じる回生電力をこの搭載電池に蓄えておき、車両の動力源として使用することができるので、車両の運行エネルギー効率を高めることができる。このような二次電池としては、エネルギー密度、負荷変動追従性、耐久性、製造コストなどの諸条件から、例えば、アルカリ蓄電池の一種で、水酸化ニッケルを主体とする正極と、水素吸蔵合金を主体とする負極からなるニッケル水素二次電池が適しているとされる。
このような高出力用途に使用される大型電池の電極材料には、高い導電性と低い製造コストが要求される。従来、アルカリ二次電池用正極材料の導電性を高める技術として、例えば、活物質である水酸化ニッケルに、導電材として水酸化コバルトのようなコバルト化合物を混合したり、水酸化ニッケル粒子表面をコバルト化合物でコーティングすることが提案されている(例えば、特許文献1,2参照)。
しかし、導電材としてコバルト化合物を用いた場合には、長時間のエージング工程や低率での初期充放電工程が必要であることから生産性が低いとともに、高価なコバルトを使用するため、電池コストが増大する要因となる。コバルト以外の安価な導電材として炭素材が用いられうるが、通常の炭素材、例えばケッチェンブラック、アセチレンブラック、ハードカーボンなどは、電池の過充電時に酸化されやすく、正極導電材として用いることができない。この問題を解決するため、充電時にも酸化されにくい耐酸化性の炭素材料として、カーボンブラックを熱処理して得られる、ラマン分光法により分析した黒鉛化度(G値)が0.3以上0.8以下の粒子状炭素材を導電材として用いることも提案されている(例えば、特許文献3参照)。
特公平4−029189号公報 特開平7−320733号公報 特開2006−054084号公報
しかし、特許文献3に記載のカーボン導電材は、活物質とは別に用意された粉末状のものを、スラリー作製時に活物質粒子と混合することにより正極を作製するので、活物質と導電材の密着度が不十分であり、また、活物質と導電材の分布が不均一で、正極全体としては十分な導電性を得られない。これを解消するために、例えば、各活物質粒子をカーボン導電材でコーティングする手法が有効である。
粒子表面にカーボン導電剤をコーティングする手法としては、例えば、粒子表面にカーボン前駆体をコーティングし、これを加熱処理する手法を用いることが考えられるが、水酸化ニッケルを加熱すると不可逆的に酸化ニッケルに変化し、電池活物質として用いることができなくなるという問題があった。
また、大型車両駆動、電車のエネルギー回生システム、自然エネルギーの系統安定化などに二次電池を用いる場合、高出力を得るために組電池を構成することが多いが、複数の電池を直列に接続して組電池を構成する場合には、電池ごとの放電電圧の微妙なバラつきによって特定のセルのみが過放電されやすい傾向がある。従来のコバルト化合物によるコーティングでは、過放電によってコバルト化合物が還元されて、導電材としての機能が低下し、セルの放電容量が低下する問題があった。充放電サイクルを繰り返すことによって、さらに過放電の影響が大きくなり、組電池全体の性能劣化をも引き起こす。上記のような産業用途向けの組電池には、10〜20年といった長期間の耐久性が要求されるので、過放電特性の改善はきわめて重要である。
本発明の目的は、上記の課題を解決するために、正極活物質粒子の表面において、電気化学的な酸化、還元いずれにも耐性を有する炭素からなる導電材を均一にコートして活物質粒子に導電性を付与することにより、適用される電池の高出力化と低コスト化を両立できるとともに、過充電および過放電に強く、組電池に適したアルカリ蓄電池正極用粉末およびその製造方法を提供することにある。
前記した目的を達成するために、本発明に係るアルカリ蓄電池正極用粉末は、正極活物質からなる核粒子と、炭素からなる導電材粒子とを含み、前記核粒子の表面に、前記正極活物質と水酸イオンとの反応部と、前記導電材粒子によって覆われた導電部とが形成されている。前記正極活物質は、例えば水酸化ニッケル(Ni(OH))である。
上記構成は、流動層コーティングによって得られるものであり、正極活物質である核粒子の各表面に、均一に炭素からなる導電材粒子を付着させることができる。その結果、集電体から供給された電子は核粒子全体に行きわたるため、集電体と接触した核粒子の充放電効率が向上する。さらに、正極活物質間に強固な導電ネットワークが形成されるので、集電体と直接接触せず、集電体と接触した核粒子を経由して間接的に電子供給を受ける核粒子も均一に充電されやすくなる。したがって、大電流によって急速充放電を行っても、利用率が低下しにくい。また、炭素材料はコバルト化合物よりも安価であることから、当該粉末を用いて、高出力特性を有する電池を安価に製造することができる。また、この粉末を用いた場合には、単に正極活物質と炭素とを混合して正極合材スラリーを作製する場合に必要となる有機溶媒を用いずに、水系の溶媒によって正極合材スラリーを作成することができるので、工程管理が容易となり、この点からも電池の製造コスト低減が可能となる。
なお、一般的なアルカリ蓄電池用正極としては、孔のサイズが100μmφ程度の発泡状ニッケル多孔体が集電体に用いられ、この集電体に直径が約10μmφの水酸化ニッケル粒子を充填したものが用いられる。このため、充填された水酸化ニッケル粒子には、集電体に直接接触しているものとそうでないものがある。また、本発明によって得られる粉末は、2個以上の活物質粒子が結合している場合がある。この結合体の大きさが100μmφ程度までであれば、発泡状ニッケル集電体の孔サイズと同程度であるから、充填に支障はなく、電池特性にも大きな問題はない。
本発明の一実施形態に係るアルカリ蓄電池正極用粉末において、前記導電材粒子が、前記核粒子よりも小さい粒径を有しており、前記核粒子の表面の一部が前記導電材粒子によって被覆されていることが好ましい。この構成によれば、核粒子の表面に導電材粒子が存在することにより、十分な導電性を確保することができるとともに、核粒子表面の一部のみが導電材粒子によって覆われており、粒子表面に導電材粒子が存在しない部分が残されていることにより、正極活物質の反応面積が確保され、正極活物質の利用率の低下が抑制される。具体的には、前記核粒子の前記導電材粒子による表面被覆率が10〜95%の範囲内にあることが好ましい。また、核粒子と導電性粒子の粒径比は、例えば5:1〜100:1の範囲内にあることが好ましい。
本発明の一実施形態に係るアルカリ蓄電池正極用粉末において、前記導電性粒子が、黒鉛化度(G値)0.3〜0.8の炭素材料で形成されていることが好ましい。この構成によれば、正極活物質粒子に高い導電性が付与されるとともに、耐酸化性能が向上する。
本発明の一実施形態に係るアルカリ蓄電池正極用粉末において、前記核粒子に前記導電材粒子を付着させるバインダとしてエチレン系コポリマーを含むことが好ましい。この構成によれば、核粒子と導電性粒子とを安定的に、かつ均一に結着させることができる。
本発明に係るアルカリ蓄電池正極用粉末の製造方法は、正極活物質からなる核粒子の粉末に、下方から空気流を吹き付けて前記核粒子粉末を流動化させる流動化工程と、炭素からなる導電材粒子とバインダを溶媒に分散させてコーティング液を作製するコーティング液作製工程と、前記流動化した核粒子粉末に向けて、前記コーティング液を噴霧して、前記核粒子の表面に前記導電材粒子を付着させる噴霧工程とを含む。この構成によれば、流動層コーティングによって、正極活物質である核粒子の各表面に、均一に炭素からなる導電材粒子が付着する。その結果、活物質粒子同士、および活物質と集電体との間に強固な導電ネットワークが形成され、電池の内部抵抗上昇が抑制されるので、当該粉末を用いて、高出力特性を有する電池を安価に製造することができる。
本発明の一実施形態に係るアルカリ蓄電池正極用粉末の製造方法において、前記流動化工程が、前記正極活物質として水酸化ニッケルを用いることを含み、前記コーティング液作製工程が、前記バインダとしてエチレン系コポリマーを用いることを含むことが好ましい。この構成によれば、溶媒中に炭素粒子を均一に分散させることができるので、正極活物質粒子の表面に炭素がきわめて均一にコートされる。
また、本発明の一実施形態に係るアルカリ蓄電池正極用粉末の製造方法において、さらに、前記流動化工程における前記空気流を利用して、前記導電材料粒子が付着した前記核粒子を乾燥する乾燥工程を含んでいることが好ましい。この構成によれば、粉末を流動化させるための空気流を利用して効率的に乾燥を行うことができるので、一層低コストで電池を製造することが可能になる。特に有機溶媒を前記コーティング液の溶媒として用いた場合、流動層乾燥を利用することで、乾燥後粉末の有機溶媒の残留量を少なくすることができるため、被覆後の粉末の保存安定性が向上し、ハンドリング面でも人体への有機溶媒の暴露を予防することができる。
本発明に係るアルカリ蓄電池正極およびアルカリ蓄電池は、本発明に係る上記正極用粉末、もしくは上記製造方法によって製造された正極用粉末を備える。この構成によれば、正極活物質粒子は良好な導電性を有するようになり、その結果、活物質粒子同士、および活物質と集電体の間に強固な導電ネットワークが形成され、電池の内部抵抗上昇が抑制されるので、電池性能、特には高率放電性能と繰り返し充放電サイクル寿命が大幅に向上する。
本発明に係る組電池は、上記アルカリ蓄電池を複数直列に接続して構成される。この構成によれば、各単電池が過放電に強い材料を正極に含んでいるので、単電池間の容量ばらつきに起因する過放電の影響を受けることなく、組電池としても良好な長期サイクル特性が得られる。
以上のように、本発明に係るアルカリ蓄電池正極用粉末によれば、導電材である炭素粒子が活物質粒子表面で微粉化して均一にコートされることにより、正極の活物質粒子間に強固な導電ネットワークが形成されるので、この正極用粉末が適用されるアルカリ蓄電池の内部抵抗が大幅に低減する。
本発明の一実施形態に係る正極用粉末が適用されるアルカリ蓄電池を示す斜視図である。 図1の電池内部の電極体の構造を模式的に示す断面図である。 本発明の一実施形態に係る正極用粉末の構造を示す模式図である。 図3の正極用粉末の製造に用いられる流動層コーティング装置の概略構成図である。 図4の流動層コーティング装置に用いられるノズルを示す断面図である。 本発明の一実施形態に係る正極用粉末のSEM写真像である。 本発明の実施例に係る電池と比較例に係る電池の充放電サイクル試験結果を示すグラフである。 本発明の実施例に係る電池と比較例に係る電池の高率放電試験結果を示すグラフである。 本発明の実施例に係る電池と比較例に係る電池の過放電特性試験結果を示すグラフであり、(a)が実施例の結果、(b)が比較例の結果である。 本発明の一実施形態に係る組電池を示す部分破断側面図である。
以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。
図1は、本発明の一実施形態に係るアルカリ蓄電池正極用粉末を備える角形のアルカリ蓄電池(以下単に「電池」という)1の構造を示す斜視図である。本実施形態に係る電池1は、水酸化ニッケルを主要な正極活物質とし、水素吸蔵合金を主要な負極活物質とし、アルカリ系水溶液を電解液とするニッケル水素二次電池として構成されており、正極および負極の集電板を兼ねる矩形の第1蓋部材3および第2蓋部材5と、これら第1および第2蓋部材3,5間に介在する絶縁素材からなる枠形部材7によって、電池1の角形のケーシング9が構成されている。
図2の断面図に模式的に示すように、ケーシング9の内方には、プリーツ状に折り曲げられたセパレータ11と、電極すなわち正極体13と負極体15とからなる電極ユニット17が収容されている。正極体13は、多孔質の発泡状ニッケルからなる正極基板に正極合材を充填して形成されている。同様に、負極体15は、パンチングメタル、または圧延した発泡状ニッケルやニッケル不織布からなる負極基板に負極合材を塗布するか、多孔質の発泡状ニッケルからなる負極基板に負極合材を充填して形成されている。
正極体13と負極体15とは、両電極体13,15が対向する方向Xに、セパレータ11を介して交互に積層されている。このように構成されている電極ユニット17は、その積層方向Xと、第1および第2蓋部材3,5の対向方向Yとが直交するように、ケーシング9内に配置されている。
なお、電池1は、本発明に係る正極用粉末が使用されるニッケル水素二次電池の一例であり、本発明に係る正極用粉末は、円筒形、角形等電池の形状を問わず、また、巻取り式、積層式等、電極体の構造を問わず使用することができる。
正極基板,負極基板としては、導電性材料、具体的には、例えば、上述の発泡状ニッケルなどの多孔質部材のほか、ニッケルめっきを施した鋼板のような平板状の部材、及びこれに穿孔したものやエキスパンド状のもの、金属細線及びこれからなる織布、不織布、カーボン繊維及びこれからなる織布、不織布などを使用することができる。正極基板,負極基板に平板状の部材を使用する場合には、正極・負極の合材を充填する代わりに各基板上に合材を塗布する。この場合、正極および負極基板を形成する素材としては、ニッケルめっき鋼板のほかにも、電気化学的な特性や機械的強度、耐食性などを考慮して、適宜選択することができ、例えば、ニッケル板、ステンレス鋼版、銅めっき鋼板、銀めっき鋼板、コバルトめっき鋼板、クロムめっき鋼板などが好ましく用いられる。
正極基板に充填される正極合材は、正極活物質である水酸化ニッケル、導電材である炭素材料およびバインダを主成分としている。これらのうち、正極活物質と導電材は、後に詳述するように、正極用粉末21として用意される。また、負極基板に充填される負極合材は、負極活物質である水素吸蔵合金、導電材およびバインダを主成分とし、これらを混合して作製される。
セパレータ11は、耐アルカリ系水溶液性および耐酸化性を有しており、保液性、通気性、貫通による電極同士の短絡を防ぐ機械的強度を有していることが好ましく、例えば、ポリエチレン繊維やポリプロピレン繊維などのポリオレフィン系繊維、ポリフェニレンサルファイド繊維、ポリフルオロエチレン系繊維、ポリアミド系繊維など、またはこれらに親水化処理を施したものの織布、不織布などを使用することができる。また、電解液としては、苛性アルカリ系水溶液、例えば、KOH水溶液、NaOH水溶液、LiOH水溶液、またはこれらの混合溶液などを用いることができる。
次に、本実施形態に係る正極体13に用いられる正極用粉末21の構成について詳しく説明する。
上述のように、本実施形態の正極用粉末21は、水酸化ニッケル(Ni(OH))を活物質として含み、さらに炭素を導電材として含んでいる。より具体的には、図3に模式的に示すように、正極用粉末21において、活物質である水酸化ニッケルからなる核粒子31の表面に、炭素からなる導電材粒子33が付着している。導電材粒子33は、核粒子31の表面に均一な分布で付着しており、この導電材粒子33を介して各核粒子31が互いに接触することにより、正極核粒子31間に導電ネットワークが形成されている。
特に、本実施形態に係る正極用粉末21においては、核粒子31の表面に、核粒子31よりも小さい粒径を有する導電材粒子33が、バインダによって強固に付着して、核粒子31の表面の一部を被覆している。導電材粒子33によって被覆された部分は高い導電性を有する導電部35を形成し、残りの部分は正極活物質と水酸イオンとが反応する反応部37を形成する。核粒子31の表面の導電材粒子33による被覆率は、10〜95%の範囲にあることが好ましく、30〜95%の範囲にあることがより好ましい。被覆率が10%より小さいと、核粒子同士を繋ぐ導電性ネットワークが充分に形成されず、充分に充電が行きとどかない核粒子があるため、高い利用率を得ることができない。一方、95%より多い場合、導電性は充分であるが、炭素の嵩高さが影響することによって活物質の基材への充填密度が低下し、体積あたりの電極容量が低下する。なお、平均粒径が10mmφの水酸化ニッケル粒子において被覆率10%以上を得るためには、炭素添加量を2重量%以上にすることが好ましく、95%以下にとどめるためには、添加量を8重量%以下にすることが好ましい。
このように、核粒子31の表面に導電材粒子33が存在することにより、十分な導電性を確保することができるとともに、核粒子31表面の一部のみが導電材粒子33によって覆われており、核粒子31表面に導電材粒子33が存在しない部分が残されていることにより、正極活物質表面の反応面積が確保され、正極活物質の反応速度の低下が抑制される。核粒子31と導電材粒子33との密着性および後に詳述する正極用粉末21の製造方法における噴霧工程での生産性を考慮して、核粒子31の粒子径は体積基準の50%径で3〜50μmの範囲内にあることが好ましく、5〜30μmの範囲内にあることがより好ましい。同様に、導電材粒子33の粒子径は、走査型電子顕微鏡による画像解析により0.01〜50μmの範囲内にあることが好ましく、0.1〜10μmの範囲内にあることがより好ましい。また、核粒子と炭素の粒径比は、5:1〜100:1の範囲内にあることが好ましい。
次に、本実施形態に係る正極用粉末21の製造方法を説明する。
本実施形態に係る正極用粉末21は、活物質からなる核粒子31の表面に、流動層コーティングによって、炭素からなる導電材粒子33を付着させることにより製造する。図4に、流動層コーティングを行う流動層コーティング装置41の概略構成例を示す。図4(a)に示すように、流動層コーティング装置41は、主要な構成要素として、流動層コーティングを行う空間を形成するほぼ筒状の流動槽43と、流動槽43の下方から流動槽43内へ、被コーティング粒子を流動化させるための空気流Aを送風する排風機45と、流動化した被コーティング粒子からなる流動層47に、コーティング粒子を含むコーティング液CLを噴霧する噴霧器49とを備えている。
流動層コーティングは、この流動層コーティング装置41を用いて、流動槽43内で、被コート粒子である核粒子31を排風機45による空気流Aによって流動化させて流動層47を形成し、核粒子31の流動層47に向けて、コート粒子である導電材粒子33を含むコーティング液CLを噴霧することにより、核粒子31の表面に導電材粒子33を付着させる方法である。
本実施形態では、まず、流動槽43内に導入された核粒子31の粉末に、排風機45によって下方から空気流Aを供給する。これによって、流動槽43内に、流動化した核粒子31の粉末からなる流動層47が形成される(流動化工程)。
流動層コーティング装置41は、図4(b)に示すように、底部にディスクロータ51を備える転動式のものが好ましい。この場合、底部のディスクロータ51による転動と、ディスクロータ51と壁面とのクリアランスから供給させる流動化空気流Aにより、流動層47が渦巻き状の循環流を形成している状態で、コーティング液CLが噴霧される。ディスクロータ51の回転速度および流動槽43内の流動層47を形成する空気流量を調節することにより、流動層47の流動状態を精度よく制御することができるので、より望ましいコーティングが可能になる。
流動槽43の底部には、正極活物質からなる粉体を装置41内に保持するとともに流動層47を形成するための空気流Aを整流する部材として、空気分散板53が配置されている。具体的には、空気分散板53としては、多孔板として、いわゆるうち抜きプレート、またメッシュ類としては、織金網(関西金網(株)製)、ポアメット(富士フィルタ工業(株)製)、ポワフロー(ニチダイフィルタ(株)製)などの金属製メッシュ等が使用可能である。正極活物質の粒子径を考慮し、最適なメッシュを選択することができる。
空気流Aの流量としては、空気分散板53の設置位置から上部5cmの位置の流動槽43の断面積を基準として、空塔速度(通過流量を断面積で除した値)を0.25〜1.4m/s、好ましくは0.28〜1.0m/s、さらに好ましくは0.30〜0.7m/sに設定する。空塔速度が小さすぎると流動化が不十分になる。空塔速度が大きすぎると、流動層47を空気流Aが吹き抜け、安定した流動層47を形成することができず、コーティングに好ましくない。
ディスクロータ51の外周部の速度(回転周速度)としては、1〜20m/sが好ましく、2〜15m/sがより好ましい。回転周速度が遅すぎる場合には、ディスクロータ51上に粉体が堆積しやすくなり、回転周速度が早すぎる場合には、核粒子31表面に加わる摩擦力が大きくなりすぎて、核粒子31表面に付着した導電材粒子33が剥がれてしまうおそれがある。より望ましい流動層コーティング装置41の形態として、図4(c)に示すように、ディスクロータ51の上部にインペラ55による解砕機構を備えてもよい。
上記流動化工程を行う一方で、炭素からなる導電材粒子33とバインダとを溶媒に分散させてコーティング液CLを作製しておく(コーティング液作製工程)。正極における、活物質に対する導電材の添加量としては、正極活物質に対して、導電材2〜8重量部添加するのが好ましく、導電材2.5〜6重量部添加するのがより好ましい。導電材の添加割合がこれよりも小さい場合には、十分な導電補助効果が得られず、活物質の利用率が低くなる。一方、導電材の添加割合がこれより大きい場合には、十分な電池のエネルギー密度が得られない。
本実施形態に用いられる炭素材料としては、導電性を有し、かつ電気化学的な酸化に耐え得る材料が好ましく、例えば、黒鉛化度(G値)が0.3〜0.8の炭素材料が好適に用いられる。
バインダを含む導電材のコーティング液CLの溶媒としては、活物質と反応することがなく、粘性が小さく、揮発し易い液体であれば特に限定することなく、水やエタノール、キシレンやトルエン等を使用可能であり、溶質もしくは分散質の溶解性・分散性を考慮して溶媒を選択する。本実施形態では、溶媒としてキシレンを使用しているが、操作性や安全面から水系の溶媒を使用することもできる。
バインダとしては、エチレンビニルアセテートなどのエチレン系コポリマー系樹脂や、ポリプロピレン等のポリオレフィン系樹脂、ポリテトラフルオロエチレン等を用いることができる。該バインダは、溶液、懸濁液、分散液、乳化物などいずれの形態でも用いることができる。
炭素材は、溶媒に対して0.01〜10重量%の割合で投入し、攪拌して混合する。溶媒に対する炭素材の割合が0.01重量%未満の場合は、後述の噴霧工程にかかる時間が長くなり、また、必要なコーティング液の量が多くなる。逆に、溶媒に対する炭素材の割合が10重量%を超える場合には、粘度が大きくなり、コーティング液の噴霧が困難となるとともに、均一に分散させることが困難となる。溶媒に添加するバインダ量としては、炭素材と同量程度、具体的には炭素材量に対して50〜150重量%であることが好ましい。バインダ量がこれよりも少ないと、炭素材の核粒子への密着性が充分でなく、炭素材が核粒子から剥離しやすい。一方、バインダ量が上記範囲よりも多い場合は、炭素材の抵抗が高くなるため、充放電効率や高率充放電性能の低下を引き起こす。
また、溶媒に対する炭素材の割合が0.01重量%に近い低い値であっても、一般的に炭素材の粉末はかさ密度が大きく、空気を取り込んでいるため、単に溶媒と攪拌・混合したのみでは、溶媒中で均一に分散させることが難しい。そこで、溶媒に界面活性剤を添加して、表面張力を低くしておくことが好ましい。界面活性剤の添加量は、炭素材に対して、0.01〜3重量%の範囲内に設定することが好ましい。界面活性剤の添加量がこれより少ない場合には、界面活性効果が十分に発揮されず、これより大きい場合には、電池としての性能が低下することがある。
さらには、炭素材の溶媒中の分散性を高めるために、分散剤を添加することが好ましい。分散剤としては、例えば、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、ポリアクリル酸ナトリウム、アクリル酸共重合体樹脂、セルロース系樹脂、膠等を使用することができる。分散剤の添加量は、炭素材に対して、0.01〜2重量%の範囲内に設定することが好ましい。分散剤の添加量がこれより少ない場合には、分散効果が十分に発揮されず、これより大きい場合には、電池としての性能が低下することがある。
次に、作製されたコーティング液CLを、図4の噴霧器49によって、流動槽43内の流動層47に向けて噴霧する(噴霧工程)。これにより、核粒子31の表面に炭素からなる導電材粒子33が付着する。
コーティング液CLは、噴霧器49の先端のノズル57から流動槽43内に供給される。ノズル57の構成は、コーティング液CLをミストにして噴霧することができるノズルであれば特に限定されず、正極活物質からなる粉体の粒子径を考慮し、最適なノズルを選択することができるが、先端に粉体が付着して閉塞するのを防止するため、図5に示す、ノズル57の径方向中心部に設けられた気体供給口59と、気体供給口の外周部に設けられた液体供給口61とを備えて、外周からの圧縮空気により噴霧液をミスト化する二流体ノズル57が好ましい。
二流体ノズル57の液体供給口61は、気体供給口59よりも、1mm以内の範囲で突出していることが好ましく、特には0.1mm〜1mmの範囲で突出していることが好ましく、0.3mm〜1mmの範囲で突出していることがさらに好ましい。電池活物質は、二粒体ノズルの先端において固着を起こしやすいので、液体供給口61が、気体供給口59よりも凹に構成されると、ノズル先端部において固着を起こしやすいからである。また、突出が微小であると、固着を回避しきれず、突出量が多すぎると、噴霧ノズルとしての微粒化性能が低下する。
コーティング液CLの噴霧は、図4の流動槽43内で上方から下方に向けての噴霧(トップスプレー)でも、下方から上方にむけての噴霧(ボトムスプレー)でも、また流動層47の側面から接線方向にむけての噴霧(接線スプレー)のいずれの方式でもよく、核粒子31の粒子径を考慮し選択すればよい。一般的に粒子径が十数μmオーダー以下で、真比重が1g/cm以上である正極活物質からなる核粒子31には、粉体に分散力を与えながら粒子表面に液滴を塗着させることのできる噴霧位置、すなわち接線またはボトムスプレーでの噴霧が好ましい。さらに、これらの各方法を組み合わせて噴霧してもよい。
噴霧するコーティング液CLの送液速度は、流動槽43内の温度コントロールと密接な関係があり、コーティングに影響を与える。また、排気される空気の温度は、噴霧器49のコーティング液CLの送り速度と、空気流Aの流量および温度とのバランスを考慮して設定され、おおむね30℃〜45℃とするのが好ましい。水系のスラリーを用いる場合には、断熱飽和温度より少なくとも2℃以上、好ましくは3℃以上高くなるようコーティング液CLが噴霧されることがより望ましい。排気温度が高すぎると、粉体にコーティング液CLが付着する前に、コーティング液CLの液滴中の溶媒が乾燥し、導電材粒子33が粉体に結着せず、導電材粒子33の結着効率が低下する。また、排気温度が断熱飽和温度より低いと流動槽43内の核粒子31が濡れすぎて流動性が低下し、流動不良による凝集が発生することがある。従って、排気温度は断熱飽和温度より3〜12℃高くなるよう噴霧するコーティング液CLの送液速度を調整することが望ましい。例えば、流動化空気Aの温度が80℃の場合、排気温度は30℃〜40℃程度が適切である。
次に、導電材粒子33が付着した核粒子31から溶媒を乾燥する(乾燥工程)。この場合、流動化工程における空気流Aを利用して乾燥を同時に行うことが効率的に好ましい。したがって、排風機45によって供給される空気流Aは、高温であること、具体的には、40℃〜120℃であることが好ましく、60℃〜110℃であることがより好ましく、70℃〜100℃であることがさらに好ましい。また、空気流Aの流量を調整することにより、流動状態を調整することが可能である。
本発明に製造方法に用いられる流動層コーティング装置は、正極活物質からなる粉体の流動層47を形成し、バインダを含むコーティング液CLを噴霧できれば、流動層、転動流動層、噴流流動層、解砕機構を備えた複合型流動層等においても、特に限定されることなく各々の装置が使用できる。対象となる粒子の粒子径を鑑み、最適な装置を選択すればよいが、正極活物質からなる粉体の粒子径が十数ミクロン以下の微小粒子の場合には、噴流型や転動流動型の流動層がより望ましい。
なお、装置上部には正極活物質からなる粉体と流動化空気流Aとを分離するためのフィルタ65が設置されている。フィルタ65にはポリエステル製織布、ポリエステル製不織布、メタルフィルタ等の公知のものを使用できる。上記の機能を満足するものであれば材質、形状等に限定されることなく使用できる。正極活物質からなる粉体の粒子径を考慮し、最適なフィルタ65を選択すればよいが、活物質は一般に10μm未満の粒子を多く含むため、メタルフィルタを利用することが好ましい。
さらには、フィルタ65に捕集された正極活物質からなる粉体をフィルタ65から払い落とすための払落し機構67が設置されている。払落し機構67によりフィルタ65から払い落とされた粉体は、コーティング液CLが噴霧されている噴霧ゾーンに戻される。このような循環を繰り返すことにより、均等に導電材粒子33を核粒子31に付着させることが可能となる。このとき、払落し機構67は、フィルタ65の材質、形状等を考慮し、最適なものを選択すればよい。例えば、シェーキング方式や高圧エアの逆に噴射によるパルスジェット方式が使用可能である。電池活物質の扱いにおいて特に好ましいのは、メタルフィルタとともに使用できるパルスジェット方式である。
本実施形態に係る正極用粉末21およびその製造方法によれば、以下の効果が得られる。
本実施形態に係る正極用粉末21においては、図3に模式的に示すように、流動層コーティングによって、正極活物質である核粒子31の各表面に、炭素からなる導電材粒子33が均一な分布で付着している。その結果、正極活物質間に強固な導電ネットワークが形成されるので、当該粉末21を用いて、高出力特性を有する電池を安価に製造することができる。また、この粉末21を用いた場合には、単に正極活物質と炭素とを混合して正極合材スラリーを作製する場合に必要となる有機溶媒を用いずに、水系の溶媒によって正極合材スラリーを作成することができるので、工程管理が容易となり、この点からも電池の製造コスト低減が可能となる。
以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
(正極用粉末の作製)
炭素からなる導電材粒子として、ラマン分光法により分析した黒鉛化度(G値)が0.33のカーボンブラックを用い、これとエチレンビニルアセテートバインダとを混合してカーボンブラック分散液(コーティング液)を調製した。このカーボンブラック分散液を転動式の流動層コーティング装置内で、水酸化ニッケル粒子に噴霧し、カーボン被覆処理を施した。具体的な作製方法を以下に説明する。
60℃に湯煎して加熱したキシレン95重量部中に、エチレンビニルアセテート樹脂50重量%とカーボン50重量%の混合物5重量部を、予め乳鉢にて予備粉砕してから溶解分散させ、所望のバインダを含む導電材粒子33のコーティング液CLを調整した。次に、流動層コーティング装置((株)パウレック製のMP−01)に、予め湿式レーザ回折・散乱法(MICROTRAC社製、MT3000II)により、全物質の平均粒子の屈折率1.81、分散溶媒の屈折率1.333で粒度分布を測定した正極活物質(水酸化ニッケル、D50=12μm)を1000g投入し、90℃に加熱した0.25m/min.の流動化空気と300min−1.で回転させた流層底部のロータで、水酸化ニッケルからなる核粒子を転動かつ流動化させた。
流動層コーティング装置のメッシュには、平畳織り、110Mesh、ろ過粒度150μmの金属製メッシュを使用した。また、フィルタには円筒状の綾畳織り2μmの金属製フィルタを使用し、払い落としは、パルスジェット方式により、フィルタ上部から0.5MPaの圧縮空気を、インターバル3秒間隔で、0.2秒間で噴射した。
続いて、前記調製したバインダを含む導電助剤のコーティング液CLを、マグネチッククスターラー(MAG・MIXER、ヤマト科学(株)製)で攪拌しながら、チュービングポンプ(ワトソンマーロ製505S)により2〜3g/min.で送液し、シュリック製、970−S23によりミスト化し、流動層内に接線スプレーで噴霧した。
このとき、コーティング液CLをミスト化する空気流量(アトマイズエア)を45L/min.とした。正極活物質からなる粉体と分離されて、装置外に排気された空気(排気)の温度は37〜45℃であった。調整したコーティング液CLを噴霧し、投入した原料粉体に対してカーボンの重量割合が6重量%になったところで、コーティングを終了した。このようにして作製した正極用粉末の電子顕微鏡写真(SEM写真)を図6に示す。同図に示すように、水酸化ニッケルの核粒子の表面の一部を、この核粒子よりも小さい粒径を有する導電材粒子が覆っていた。この電子顕微鏡写真から測定した核粒子の導電材粒子による表面被覆率は、およそ30〜50%であった。
[実施例2]
実施例1と同様の方法を用いて正極用粉末を作製した。コーティング液CLを噴霧し、カーボンの割合が投入した原料粉体に対して4重量%になったところでコーティングを終了した。作製した正極粉末の電子顕微鏡写真から測定した核粒子の導電材粒子による表面被覆率は、およそ20〜50%であった。
[実施例3]
実施例1と同様の方法を用いて正極用粉末を作製した。コーティング液CLを噴霧し、カーボンの割合が投入した原料粉体に対して2.5重量%になったところでコーティングを終了した。作製した正極粉末の電子顕微鏡写真から測定した核粒子の導電材粒子による表面被覆率は、およそ10〜30%であった。
(試験電池の作製)
このようにして得られたカーボン被覆水酸化ニッケル(実施例1〜3)をCMC水溶液に分散させて水分量20重量%のスラリーを作製し、0.65mmtに調厚した発泡状ニッケル集電体に充填し、次いで乾燥させてからローラープレス機を用いて0.35mmtにプレスすることによってニッケル正極とした。電極重量から発泡基材の重量を差し引き、実施例1〜3の正極容量を見積もったところ、それぞれ580mAh、540mAh、590mAhであった。負極にはLa−Ni系水素吸蔵合金を、電解液には6.5M・KOH/1.5M・LiOH水溶液を用いてSub−C型密閉電池セルを作製して、実施例1〜3に係る試験電池(ニッケル水素二次電池)とした。
また、比較例1として、水酸化ニッケル、カーボン、エチレンビニルアセテート樹脂(昭和高分子製;水系エマルジョン)を100:5:5の重量比で水を加えて混合し、水分量20重量%としたスラリーを調整し、実施例と同様に発泡状ニッケル基材に充填する方法で正極を得た。この正極の容量は575mAhであった。この正極を用いたほかは、実施例と同様にして試験電池を作製し、比較例電池1とした。さらに、比較例2として、市販のコバルトコート水酸化ニッケル(田中化学研究所製)に水酸化コバルト、カルボキシメチルセルロース(ダイセル化学製)、ポリテトラフルオロエチレン(ダイキン製)をそれぞれ3重量%、0.2重量%、2重量%添加し、さらに水を加えて水分量20重量%としたスラリーを調整し、実施例と同様に発泡状ニッケル基材に充填してプレスすることによって正極を得た。この正極の容量は550mAhであった。この正極を用いたほかは実施例と同様にして試験電池を作製し、比較例電池2とした。
(充放電試験)
実施例電池および比較例電池について、充放電特性を比較するために、充放電サイクル特性試験および高率放電特性試験を行った。充放電サイクル試験の試験条件は以下のとおりである。
・試験環境温度:25℃
・充電:1C、100%
・放電:1C,1.0V終止(50サイクル毎に0.2C,1.0V終止)
また、高率放電特性試験の試験条件は以下のとおりである。
・試験環境温度:25℃
・充電:0.2C、120%
・放電:10C,0.6V終止
(試験結果)
図7に、実施例電池および比較例電池の1Cサイクル特性を示す。実施例電池1〜3では、サイクル試験の初期から利用率90〜95%が得られており、比較例2のコバルトコートした水酸化ニッケルと同等の高い利用率が実現された。500サイクル経過後においても放電容量の低下は見られず、電極の劣化は認められなかったことから、EVA及びカーボンブラックの酸化は起こっていないものと考えられる。さらにサイクル試験を継続した結果、実施例電池1は1000サイクルを経ても、ほぼ90%の利用率を保持していることがわかった。実施例電池2、比較例電池2のサイクル寿命はそれぞれ、800、880サイクルであった。これから、カーボンコート水酸化ニッケルは従来のコバルトコート水酸化ニッケルと同等またはそれ以上のサイクル寿命特性を保持していることがわかった。一方、比較例1はサイクル試験の初期から利用率約70%に留まり、サイクル数を経てもほとんど増大せず、350サイクル〜450サイクルにかけて急激な容量低下が起こった。比較例1のようにカーボンとバインダを物理的に混合するだけでは、導電材粒子と活物質の接触が悪く、所望の性能が得られないといえる。
また、図8に、実施例電池1と比較例電池2の10C放電カーブを示す。実施例電池1は放電初期から末期までを通して、比較例電池2よりも高い放電電圧を示した。これは導電材として用いたカーボンブラックが、コバルト化合物よりも高い導電性を有しているためと考えられる。本実施例で用いたカーボンブラックは、従来用いられているコバルト化合物よりも安価であることから、高価なコバルト化合物に替えて安価なカーボンブラックを用いることで、電池特性を向上させつつコストダウンを達成できることが確認された。
さらに、実施例電池1および比較例電池2で用いたのと同様の電極を用い、負極にはLa−Ni系水素吸蔵合金を、電解液には6.5M・KOH/1.5M・LiOH水溶液を用いて開放型電池セルを作製して、それぞれ実施例4と比較例3とした。電池容量は120mAhとして、以下の条件にて過放電特性試験を実行した。
(1)充電:0.25C、120% (環境温度:25℃)
(2)放電:0.25C,1.0V終止 (環境温度:25℃)
(3)正極端子と負極端子を短絡させ、45℃恒温槽内で一定期間保管。
(1)〜(3)をこの順番で実行し、(3)が終了した時点で、再び(1)に戻るというサイクルを繰り返した。ただし、このとき、サイクルが進むにしたがって、保管期間を3日間、1週間、2週間と徐々に伸ばしていった。
図9(a),(b)に、実施例4と比較例3に関して、保管前、3日保管後、1週間保管後、2週間保管後の各放電カーブを測定した結果をそれぞれ示す。同図(a)に示すように、実施例4のカーボンコート水酸化ニッケルは短絡状態での保持期間の長さにかかわらず一定の放電容量を保持していたが、比較例3のコバルトコート水酸化ニッケルは、同図(b)に示すように、容量が徐々に低下していった。これは、短絡状態で高温に保持した結果、オキシ水酸化コバルトが水酸化コバルトに還元され、電解液中に散逸した結果、導電ネットワークの一部が機能しなくなったためと考えられる。一方、カーボン材料はこのような処理によっても還元されないため、導電ネットワークの機能は保持されていると考えられる。このように、カーボンコーティングはコバルトコーティングよりも過放電に対する耐久性に優れていることが確認された。
図1の電池1を直列に接続して構成される、図10に示す組電池(電池モジュール)Bでは、放電容量の微妙なばらつきの影響により、特定の電池が過放電状態になりやすい傾向がある。コバルトコーティングを用いた場合、過放電された電池の放電容量が減少するので、次のサイクルの放電時には再び過放電されることになる。このため、組電池のサイクル寿命は1つの電池の場合と比べて大きく低下することになる。一方、本実施形態に係るカーボンコーティング技術を用いることによって、たとえ過放電が生じたとしても、電池容量はほとんど影響を受けないので、組電池のサイクル寿命の低下が抑制される。
なお、本実施形態では、電池1をニッケル水素二次電池として構成した例について説明したが、本発明は、他の種類のアルカリ蓄電池に使用される電極にも適用することが可能である。例えば、正極としては空気電極や酸化銀電極、負極としてはカドミウム、亜鉛、鉄などを主要な活物質とする電極に適用することができる。
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 電池
13 正極体
21 正極用粉末
31 核粒子(正極活物質)
33 導電材粒子(炭素)
35 導電部
37 反応部
41 流動層コーティング装置
47 流動層
49 噴霧器
A 空気流
B 組電池
CL コーティング液

Claims (16)

  1. アルカリ蓄電池の正極に用いられる粉末であって、
    正極活物質からなる核粒子と、
    炭素からなる導電材粒子と、
    を含み、
    前記核粒子の表面に、前記正極活物質と水酸イオンとの反応部と、前記導電材粒子によって覆われた導電部とが形成されている、
    アルカリ蓄電池正極用粉末。
  2. 請求項1において、前記核粒子が、炭素を介して2個以上結合しているアルカリ蓄電池正極用粉末。
  3. 請求項1または2において、前記導電材粒子が、前記核粒子よりも小さい粒径を有しており、前記核粒子の表面の一部が前記導電材粒子によって覆われているアルカリ蓄電池正極用粉末。
  4. 請求項3において、前記核粒子の前記導電材粒子による表面被覆率が10〜95%の範囲にあるアルカリ蓄電池用正極用粉末。
  5. 請求項1から4のいずれか一項において、前記正極活物質が水酸化ニッケルであるアルカリ蓄電池用正極粉末。
  6. 請求項1から5のいずれか一項において、前記導電性粒子が、黒鉛化度(G値)0.3〜0.8の炭素材料で形成されているアルカリ電池用正極粉末。
  7. 請求項1から6のいずれか一項において、前記核粒子と前記導電性粒子の粒径比が5:1〜100:1の範囲内にあるアルカリ蓄電池用正極粉末。
  8. 請求項1から7のいずれか一項において、前記核粒子に前記導電材粒子を付着させるバインダとしてエチレン系コポリマーを含むアルカリ蓄電池用正極粉末。
  9. 請求項8において、前記バインダの添加量が、前記炭素との重量比で50〜150重量%であり、前記正極活物質との重量比で0.1〜10重量%であるアルカリ蓄電池用正極粉末。
  10. アルカリ蓄電池に使用される正極粉末を製造する方法であって、
    正極活物質からなる核粒子の粉末に、下方から空気流を吹き付けて前記核粒子粉末を流動化させる流動化工程と、
    炭素からなる導電材粒子とバインダを溶媒に分散させてコーティング液を作製するコーティング液作製工程と、
    前記流動化した核粒子粉末に向けて、前記コーティング液を噴霧して、前記核粒子の表面に前記導電材粒子を付着させる噴霧工程と、
    を含む、
    アルカリ蓄電池正極用粉末の製造方法。
  11. 請求項10において、前記流動化工程が、前記正極活物質として水酸化ニッケルを用いることを含み、前記コーティング液作製工程が、前記バインダとしてエチレン系コポリマーを用いることを含むアルカリ蓄電池正極用粉末の製造方法。
  12. 請求項10または11において、さらに、前記流動化工程における前記空気流を利用して、前記導電材粒子が付着した前記核粒子を乾燥する乾燥工程を含むアルカリ蓄電池正極用粉末の製造方法。
  13. 請求項10から12のいずれか一項に記載の製造方法によって製造された正極用粉末。
  14. 請求項1から9のいずれか一項に記載の正極用粉末、もしくは請求項10から12のいずれか一項に記載の製造方法によって製造された粉末を用いたアルカリ蓄電池用正極。
  15. 請求項1から9のいずれか一項に記載の正極用粉末、もしくは請求項10から12のいずれか一項に記載の製造方法によって製造された正極用粉末を正極に含むアルカリ蓄電池。
  16. 請求項15に記載のアルカリ蓄電池を複数直列に接続してなる組電池。
JP2010244396A 2010-10-29 2010-10-29 アルカリ蓄電池正極用粉末およびその製造方法 Pending JP2012099275A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244396A JP2012099275A (ja) 2010-10-29 2010-10-29 アルカリ蓄電池正極用粉末およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244396A JP2012099275A (ja) 2010-10-29 2010-10-29 アルカリ蓄電池正極用粉末およびその製造方法

Publications (2)

Publication Number Publication Date
JP2012099275A true JP2012099275A (ja) 2012-05-24
JP2012099275A5 JP2012099275A5 (ja) 2014-01-16

Family

ID=46390985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244396A Pending JP2012099275A (ja) 2010-10-29 2010-10-29 アルカリ蓄電池正極用粉末およびその製造方法

Country Status (1)

Country Link
JP (1) JP2012099275A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013251A (ko) * 2012-06-12 2015-02-04 도요타 지도샤(주) 나트륨 전지용 정극 재료 및 그 제조 방법
JPWO2014181778A1 (ja) * 2013-05-09 2017-02-23 旭硝子株式会社 正極材料、及びその製造方法
JP2018137222A (ja) * 2017-02-22 2018-08-30 三洋化成工業株式会社 リチウムイオン電池用被覆正極活物質
US10699820B2 (en) 2013-03-15 2020-06-30 Lawrence Livermore National Security, Llc Three dimensional radioisotope battery and methods of making the same
CN113571258A (zh) * 2021-08-18 2021-10-29 苏州诺菲纳米科技有限公司 一种用金属复合浆料替代hjt光伏低温银浆的方法
WO2023145701A1 (ja) * 2022-01-25 2023-08-03 株式会社豊田自動織機 ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266770A (ja) * 1987-04-23 1988-11-02 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JPH06187984A (ja) * 1992-12-18 1994-07-08 Matsushita Electric Ind Co Ltd アルカリ蓄電池の製造方法
JP2005190831A (ja) * 2003-12-25 2005-07-14 Tdk Corp 電極及び電気化学素子、並びに電極の製造方法及び電気化学素子の製造方法
JP2006060193A (ja) * 2004-07-22 2006-03-02 Nippon Zeon Co Ltd 複合粒子の製造方法
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2006179539A (ja) * 2004-12-21 2006-07-06 Tdk Corp 電極塗料、複合化粒子、電極および電気化学素子
JP2009289601A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp 電極板、二次電池、及び電極板の製造方法
WO2010058574A1 (ja) * 2008-11-19 2010-05-27 独立行政法人産業技術総合研究所 ファイバー電池用ニッケル正極

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266770A (ja) * 1987-04-23 1988-11-02 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JPH06187984A (ja) * 1992-12-18 1994-07-08 Matsushita Electric Ind Co Ltd アルカリ蓄電池の製造方法
JP2005190831A (ja) * 2003-12-25 2005-07-14 Tdk Corp 電極及び電気化学素子、並びに電極の製造方法及び電気化学素子の製造方法
JP2006060193A (ja) * 2004-07-22 2006-03-02 Nippon Zeon Co Ltd 複合粒子の製造方法
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2006179539A (ja) * 2004-12-21 2006-07-06 Tdk Corp 電極塗料、複合化粒子、電極および電気化学素子
JP2009289601A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp 電極板、二次電池、及び電極板の製造方法
WO2010058574A1 (ja) * 2008-11-19 2010-05-27 独立行政法人産業技術総合研究所 ファイバー電池用ニッケル正極

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013251A (ko) * 2012-06-12 2015-02-04 도요타 지도샤(주) 나트륨 전지용 정극 재료 및 그 제조 방법
KR101703405B1 (ko) 2012-06-12 2017-02-06 도요타 지도샤(주) 나트륨 전지용 정극 재료 및 그 제조 방법
US10699820B2 (en) 2013-03-15 2020-06-30 Lawrence Livermore National Security, Llc Three dimensional radioisotope battery and methods of making the same
JPWO2014181778A1 (ja) * 2013-05-09 2017-02-23 旭硝子株式会社 正極材料、及びその製造方法
JP2018137222A (ja) * 2017-02-22 2018-08-30 三洋化成工業株式会社 リチウムイオン電池用被覆正極活物質
JP7058515B2 (ja) 2017-02-22 2022-04-22 三洋化成工業株式会社 リチウムイオン電池用被覆正極活物質
CN113571258A (zh) * 2021-08-18 2021-10-29 苏州诺菲纳米科技有限公司 一种用金属复合浆料替代hjt光伏低温银浆的方法
WO2023145701A1 (ja) * 2022-01-25 2023-08-03 株式会社豊田自動織機 ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池

Similar Documents

Publication Publication Date Title
CN108520985B (zh) 一种提高锌电池循环寿命的方法及其应用
TW508860B (en) Paste-like thin electrode for battery, its manufacturing method, and battery
JP5412909B2 (ja) 鉛蓄電池用電極および鉛蓄電池
CN104025347B (zh) 电极材料、电极板、锂离子电池以及电极材料的制造方法、电极板的制造方法
JP5119577B2 (ja) ニッケル水素電池
JP2012099275A (ja) アルカリ蓄電池正極用粉末およびその製造方法
WO1993008611A1 (en) Method for production of nickel plate and alkali storage battery
TW201421785A (zh) 具有高密度之陽極活性材料及其製法
JP6094902B2 (ja) アルカリ蓄電池用正極およびそれを用いたアルカリ蓄電池
JP4292436B2 (ja) 金属多孔質体とその製造方法およびそれを用いた電池用集電体
CN101662012B (zh) 一种负极片及其制备方法和包括该负极片的电池
JP2012204177A (ja) コバルトフリーのアルカリ二次電池
CN116799210A (zh) 复合补锂材料及制备方法、补锂涂层及制备方法和锂电池
JP5629187B2 (ja) アルカリ蓄電池用正極体およびその製造方法
KR102518691B1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차 전지, 및 음극 활물질의 제조 방법
JP5110380B2 (ja) 集電体、電極および蓄電装置
JP3729815B2 (ja) ニッケル−水素蓄電池用負極板およびその製造方法ならびにそれを用いたニッケル−水素蓄電池
JP4956863B2 (ja) アルカリ蓄電池用正極活物質およびこれを用いたアルカリ蓄電池
JP4747536B2 (ja) アルカリ蓄電池
JP5348130B2 (ja) 鉛蓄電池用電極
WO2016051688A1 (ja) 電極用合金粉末、それを用いたニッケル水素蓄電池用負極およびニッケル水素蓄電池
JP5309479B2 (ja) アルカリ蓄電池
JP2016048609A (ja) ニッケル水素電池用負極およびその製造方法
JP3384109B2 (ja) ニッケル極板
JP3113534B2 (ja) 非焼結型ニッケル電極およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428