WO2023145701A1 - ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池 - Google Patents

ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池 Download PDF

Info

Publication number
WO2023145701A1
WO2023145701A1 PCT/JP2023/001995 JP2023001995W WO2023145701A1 WO 2023145701 A1 WO2023145701 A1 WO 2023145701A1 JP 2023001995 W JP2023001995 W JP 2023001995W WO 2023145701 A1 WO2023145701 A1 WO 2023145701A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
metal hydride
nickel metal
Prior art date
Application number
PCT/JP2023/001995
Other languages
English (en)
French (fr)
Inventor
博之 佐々木
聡 河野
修平 持田
敬介 白井
憲史 吉田
敬章 石川
岳太 岡西
大樹 寺島
政伸 大内
裕之 海谷
素宜 奥村
広幸 中野
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2023145701A1 publication Critical patent/WO2023145701A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a nickel metal hydride battery, a positive electrode for a nickel metal hydride battery, and a nickel metal hydride battery.
  • Patent Document 1 describes a pasty nickel electrode for storage batteries containing an alkaline electrolyte.
  • a pasty nickel electrode comprises a nickel hydroxide-based active material and a carbon-based conductor. It also describes adding cobalt compounds such as metallic cobalt, cobalt hydroxide, and cobalt oxide in order to improve the electrical conductivity of the paste-like nickel electrode.
  • Substitute materials for cobalt compounds include, for example, carbon materials. However, if a carbon material is used as a substitute material for the cobalt compound, there is a possibility that the carbon material will be corroded. Corrosion of the carbon material may increase the cell resistance.
  • a method for manufacturing a nickel metal hydride battery that achieves the above object comprises laminating a raw material composition having a positive electrode active material powder containing nickel hydroxide, a cobalt compound, and flake graphite on a current collector. , a positive electrode manufacturing step of manufacturing a positive electrode comprising a positive electrode active material layer in which the content of the cobalt compound is 3% by mass or less and the degree of graphitization obtained by Raman spectroscopy is 0.4 or less; A negative electrode preparation step of laminating a raw material composition having a negative electrode active material powder to prepare a negative electrode, placing a separator between the positive electrode and the negative electrode, and impregnating the separator with an electrolytic solution to form an electrode body. and an overdischarge step in which the electrode body is charged, overdischarged, and then charged.
  • the average particle size of the flake graphite is 0.4 times or more the average particle size of the positive electrode active material powder.
  • a positive electrode for a nickel metal hydride battery that achieves the above object is a positive electrode for a nickel metal hydride battery that includes a current collector and a positive electrode active material layer, wherein the positive electrode active material layer comprises a positive electrode active material, It has a cobalt compound layer covering the positive electrode active material and flake graphite, the content of the cobalt compound in the positive electrode active material layer is 3% by mass or less, and the cobalt compound layer with respect to the positive electrode active material The coverage is 50% or more, and the positive electrode active material layer has a degree of graphitization of 0.4 or less as measured by Raman spectroscopy.
  • the cobalt compound layer has an average thickness of 10 nm or less.
  • the average particle size of the flake graphite is 0.3 times or more the average particle size of the positive electrode active material.
  • the content of the flake graphite in the positive electrode active material layer is 3% by mass or more and 10% by mass or less.
  • the cobalt compound layer is also formed on the surface of the flake graphite.
  • a nickel metal hydride battery that achieves the above object comprises the above positive electrode for a nickel metal hydride battery.
  • the increase in cell resistance can be suppressed while suitably reducing the content of the cobalt compound contained in the positive electrode active material layer.
  • FIG. 1 is a cross-sectional view of a nickel metal hydride battery
  • FIG. 3A and 3B are electron micrographs of a positive electrode active material layer before and after initial charging.
  • FIG. 3 is a schematic diagram showing a deposition mechanism of cobalt oxyhydroxide during initial charging.
  • 4 is a graph showing the dissolution potential of cobalt oxyhydroxide.
  • 4 is a graph showing potentials during normal discharge and during overdischarge.
  • FIG. 4 is a schematic diagram showing a deposition mechanism of cobalt hydroxide during an overdischarge process.
  • 4 is an electron micrograph of a positive electrode active material layer after an overdischarge process.
  • the nickel metal hydride battery 1 includes a positive electrode for a nickel metal hydride battery (hereinafter also simply referred to as “positive electrode”) including a current collector foil 20 as a current collector and a positive electrode active material layer 21. .) have 2.
  • the positive electrode active material layer 21 is laminated on one surface of the current collector foil 20 .
  • the nickel metal hydride battery 1 has a nickel metal hydride negative electrode (hereinafter also simply referred to as "negative electrode") 3 including a current collector foil 30 as a current collector and a negative electrode active material layer 31 .
  • the negative electrode active material layer 31 is laminated on the other surface of the current collector foil 30 .
  • the nickel metal hydride battery 1 has a current collector foil 40 with a positive electrode active material layer 41 laminated on one side thereof and a negative electrode active material layer 42 laminated on the other side of the current collector foil 40 . It has curved electrodes 4 .
  • “one side” shall mean the upper part in FIG. 1, and "the other side” shall mean the lower part in FIG.
  • a plurality of hyperbolic electrodes 4 are stacked with separators 5 interposed therebetween. Specifically, the hyperbolic electrodes 4 are in a state in which the positive electrode active material layer 41 of one hyperbolic electrode 4 faces the negative electrode active material layer 42 of another hyperbolic electrode 4 with the separator 5 interposed therebetween. , and this stacking state is repeated.
  • the negative electrode active material layer 42 of the hyperbolic electrode 4 is laminated on the surface of the positive electrode active material layer 21 of the positive electrode 2 with the separator 5 interposed therebetween.
  • the positive electrode active material layer 41 of the hyperbolic electrode 4 is laminated on the surface of the negative electrode active material layer 31 of the negative electrode 3 with the separator 5 interposed therebetween.
  • the separators 5 are arranged between the positive electrode 2, the negative electrode 3 and the hyperbolic electrode 4, respectively.
  • a negative electrode 3 is arranged at one end of the hyperbolic electrode 4 in the stacking direction, and a positive electrode 2 is arranged at the other end thereof.
  • the separator 5 is impregnated with an electrolytic solution.
  • An electrode assembly is formed by laminating the positive electrode 2, the negative electrode 3, and the hyperbolic electrode 4 with the separator 5 interposed therebetween.
  • the electrode body is also called a battery module.
  • the plurality of collector foils 20, 30, 40 of the battery module have the same shape.
  • a plurality of separators 5 included in the battery module also have the same shape.
  • the collector foils 20 , 30 , 40 have shapes larger than the positive electrode active material layers 21 , 41 , the negative electrode active material layers 31 , 42 , and the separator 5 .
  • the separator 5 has a shape larger than the positive electrode active material layers 21 and 41 and the negative electrode active material layers 31 and 42 .
  • the peripheral edges of the current collector foils 20, 30, and 40 are fixed to the outer frame 7 made of synthetic resin.
  • a sealing member 6 made of fluororesin is arranged inside the outer frame 7 .
  • the sealing member 6 is attached to the peripheral edges of the current collector foils 20 , 30 , 40 on both one side and the other side of the plurality of current collector foils 20 , 30 , 40 . Since the sealing member 6 is attached to the periphery of the current collector foils 20, 30, 40, the spaces between the plurality of current collector foils 20, 30, 40 are sealed.
  • a pair of cooling members 8 are arranged at one end and the other end of the battery module. Specifically, the cooling member 8 is arranged on the collector foil 20 of the positive electrode 2 that constitutes the battery module. A cooling member 8 is arranged on the collector foil 30 of the negative electrode 3 constituting the battery module. These pair of cooling members 8 are configured in a plate shape having a plurality of through holes 80 .
  • a module positive electrode 22 is arranged on the cooling member 8 arranged on the current collector foil 20 of the positive electrode 2 among the pair of cooling members 8 .
  • the module negative electrode 32 is arranged on the cooling member 8 arranged on the current collector foil 30 of the negative electrode 3 .
  • the module positive electrode 22 and the module negative electrode 32 are configured in a metal rectangular plate shape.
  • a pair of restraints 9 are arranged on the module positive electrode 22 and the module negative electrode 32 .
  • a pair of restraints 9 are fastened with a plurality of bolts and nuts (not shown).
  • the battery module is pressed along the thickness direction of the positive electrode 2 , the negative electrode 3 , and the hyperbolic electrode 4 by the restraints 9 .
  • a pair of cooling members 8 , a module positive electrode 22 , and a module negative electrode 32 are arranged in the battery module and bound by a pair of restraints 9 to form the nickel metal hydride battery 1 .
  • the nickel metal hydride battery 1 having the hyperbolic electrodes 4 is also called a hyperbolic nickel metal hydride battery or a bipolar metal hydride battery.
  • the positive electrode 2, the negative electrode 3, the hyperbolic electrode 4, and the separator 5 are described below.
  • the positive electrode 2 includes a current collector foil 20 as a current collector and a positive electrode active material layer 21 .
  • a current collector is an inert electrical conductor. The current collector keeps current flowing through the cathode active material layer 21 during discharge or charge of the nickel metal hydride battery.
  • the material of the current collector is not particularly limited, but examples include silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and the like. be done.
  • one of the above materials may be used alone, or two or more may be used in combination. When two or more are used in combination, they may be used as solid solutions or alloys, for example, stainless steel may be used.
  • the shape of the current collector is not limited to foil. A shape that allows current to flow through the positive electrode active material layer 21 can be selected as appropriate. Examples of the shape of the current collector other than foil include sheet, film, linear, bar, mesh, sponge, and the like.
  • the thickness of the current collector is not particularly limited.
  • the thickness of the current collector is preferably, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material layer 21 includes a positive electrode active material powder containing nickel hydroxide or high-order nickel hydroxide having an average valence of nickel greater than divalent, a cobalt compound layer covering the positive electrode active material powder, It has flake graphite.
  • the content of the cobalt compound in the positive electrode active material layer is 3% by mass or less, and the coverage of the cobalt compound layer with respect to the positive electrode active material is 50% or more. Further, the degree of graphitization of the positive electrode active material layer 21 obtained by Raman spectroscopy is 0.4 or less.
  • the positive electrode active material powder containing nickel hydroxide or higher nickel hydroxide is also simply referred to as a positive electrode active material.
  • the nickel hydroxide may be doped with a metal other than nickel.
  • metals other than nickel include group 2 elements such as magnesium and calcium, group 9 elements such as cobalt, rhodium and iridium, and group 12 elements such as zinc and cadmium.
  • the particle size of nickel hydroxide is not particularly limited, but the average particle size is preferably 3 ⁇ m or more and 40 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less, and further preferably 7 ⁇ m or more and 20 ⁇ m or less.
  • the content of nickel hydroxide in the positive electrode active material layer 21 is not particularly limited, it is preferably 75% by mass or more and 98% by mass or less, more preferably 85% by mass or more and 95% by mass or less.
  • the cobalt compound that constitutes the cobalt compound layer is not particularly limited as long as it has high conductivity.
  • higher order cobalt oxides such as cobalt oxyhydroxide (CoOOH) can be mentioned.
  • Cobalt oxyhydroxide (CoOOH) is used as a conductive aid.
  • the average thickness of the cobalt compound layer covering the positive electrode active material is preferably 10 nm or less. Furthermore, the average thickness of the cobalt compound layer is more preferably 8 nm or less, and even more preferably 6 nm or less.
  • the lower limit of the average thickness of the cobalt compound layer is not particularly limited. It can be set as appropriate within a range in which the function as a conductive aid can be suitably maintained. Among them, the average thickness of the cobalt compound layer is preferably 0.5 nm or more, more preferably 1 nm or more.
  • the content in the positive electrode active material layer 21 can be suitably reduced while maintaining the function as a conductive aid.
  • the average thickness of the cobalt compound layer can be measured by observation with a known TEM-EELS or the like.
  • the coverage of the cobalt compound layer with respect to the positive electrode active material is preferably 70% or more, 80% or more, 85% or more, 90% or more, and 95% or more.
  • the coverage of the cobalt compound layer with respect to the positive electrode active material means the ratio of the cobalt compound layer to the surface of the positive electrode active material. When the surface of the positive electrode active material is completely covered with the cobalt compound layer, the coverage is 100%.
  • the coverage of the cobalt compound layer with respect to the positive electrode active material can be measured by observation with TEM-EELS or the like.
  • the content of the cobalt compound in the positive electrode active material layer 21 is preferably 2.5% by mass or less. Moreover, it is preferably 0.4% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more.
  • the content of the cobalt compound is within the above numerical range, it becomes easy to make the average thickness of the cobalt compound layer 10 nm or less when the cobalt compound layer covering the positive electrode active material is formed by the method described later. Moreover, since the capacity utilization rate of the battery can be 90% or more, the battery characteristics can be made suitable.
  • Flaky graphite is used as a conductive aid.
  • the flake graphite is not particularly limited, and known flake graphite can be used.
  • the dimensions of the flake graphite are the thickness t, which is the dimension in the stacking direction of the graphite six-membered ring, and the maximum length in the direction along the plane of the six-membered ring, in other words, the length of the long side, which is the diameter r. do.
  • Graphite that satisfies the following relational expression is called flake graphite.
  • the above diameter r is regarded as the particle size of flake graphite.
  • the flake graphite has a diameter r larger than a thickness t, and has a flat shape as a whole.
  • Graphite flakes are also referred to as nanographene.
  • the average particle size which is the average value of the diameter r of flake graphite, is preferably 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, and 7 ⁇ m or less.
  • the average particle size of flake graphite is preferably 1 ⁇ m or more, 3 ⁇ m or more, or 5 ⁇ m or more.
  • the average particle size of flake graphite is preferably 0.3 times or more, more preferably 0.5 times or more, that of the positive electrode active material.
  • the average particle size of flake graphite is preferably 3 times or less, preferably 2 times or less, preferably 1.5 times or less, and 1.25 times the average particle size of the positive electrode active material. The following are more preferable.
  • the average particle diameter of the flake graphite is 0.3 times or more the average particle diameter of the positive electrode active material, the particle diameter of the flake graphite does not become too small with respect to the particle diameter of the positive electrode active material, and is constant. It becomes a state with a size. Therefore, in the positive electrode active material layer 21, the graphite flakes can straddle the plurality of positive electrode active materials, in other words, the graphite flakes can be in contact with the plurality of positive electrode active materials. As a result, a conductive path can be suitably secured, and an increase in the internal resistance of the positive electrode active material layer 21 can be suppressed.
  • the average particle size of flake graphite is 3 times or less than the average particle size of the positive electrode active material, more flake graphite can be contained when the content of flake graphite is the same. becomes possible. By securing more conductive paths, it is possible to suppress an increase in the internal resistance of the positive electrode active material layer 21 .
  • the dimensions of flake graphite can be measured by observation with a known scanning electron microscope.
  • the flake graphite preferably has a degree of graphitization of 0.3 or less, more preferably 0.25 or less, as measured by Raman spectroscopy. A method for evaluating the degree of graphitization will be described later.
  • the specific surface area of flake graphite is preferably 20 m 2 /g or less, 15 m 2 /g or less, 10 m 2 /g or less, or 5 m 2 /g or less. If the specific surface area of flake graphite is small, the proportion of carbon bond defects tends to decrease. Therefore, the smaller the specific surface area of flake graphite, the lower the reactivity tends to be.
  • the specific surface area of flake graphite is, for example, B. E. It can be measured by the T method.
  • the T specific surface area can be determined by the one-point method after measuring the adsorption/desorption isotherm with nitrogen gas using a specific surface area/pore size analyzer (QUADRASORB evo manufactured by Anton Paar).
  • the content of flake graphite in the positive electrode active material layer 21 is not particularly limited, but is preferably 1% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 8% by mass or less. More preferably, it is at least 8% by mass and no more than 8% by mass.
  • the positive electrode active material layer 21 has a graphitization degree of 0.4 or less obtained by Raman spectroscopy.
  • the positive electrode active material layer 21 preferably has a degree of graphitization of 0.3 or less as measured by Raman spectroscopy.
  • the intensity IG of the peak detected at 1580 to 1620 cm ⁇ 1 in the Raman spectrum is the intensity of the peak called G-Band derived from graphite.
  • the intensity ID of the peak detected at 1300 to 1400 cm ⁇ 1 in the Raman spectroscopic spectrum is the intensity of the peak called D-Band derived from carbon bond defects.
  • the intensity of each peak may be the height of the peak or the area of the peak.
  • the ratio R of the intensity ID to the intensity IG is small.
  • the reason is as follows.
  • the above R (hereinafter also referred to as R value) is also referred to as the degree of graphitization.
  • the reason why the battery resistance is relatively high when using a positive electrode with a carbon conductive agent is that the carbon conductive agent contained in the positive electrode decomposes during charging and discharging to generate substances such as CO and CO2 . This is thought to be the cause. And, the portion of the carbon-made conductive aid where the bond is missing is considered to be a portion with high reactivity. Therefore, it can be said that a carbon-made conductive aid with a small R value, which means that the proportion of bond defects is low, is lower in reactivity than a carbon-made conductive aid with a large R-value. Therefore, since the carbon-made conductive aid having a small R value is excellent in resistance to decomposition, the generation of substances that cause an increase in battery resistance is suppressed. Therefore, it can be said that a positive electrode comprising a carbon-made conductive aid with a small R value can suppress an increase in battery resistance.
  • the R value of the flake graphite By setting the R value of the flake graphite to be 0.3 or less, it is possible to suppress corrosion of the flake graphite, which is a carbon-made conductive additive. Similarly, when the positive electrode active material layer 21 has an R value of 0.4 or less, corrosion of flake graphite can be suppressed. Thereby, an increase in cell resistance can be suppressed.
  • the numerical range of the ratio R of ID/IG which is the degree of graphitization of flake graphite, is not particularly limited, but 0 ⁇ ID/IG ⁇ 0.4, 0 ⁇ ID/IG ⁇ 0.3, 0 ⁇ ID/IG. ⁇ 0.25, 0.002 ⁇ ID/IG ⁇ 0.2, 0.002 ⁇ ID/IG ⁇ 0.15, 0.002 ⁇ ID/IG ⁇ 0.14, 0.05 ⁇ ID/IG ⁇ 0 .2, 0.08 ⁇ ID/IG ⁇ 0.15, and 0.1 ⁇ ID/I ⁇ 0.14.
  • R value and B.V. of flake graphite E.
  • the reactivity of flake graphite can also be evaluated by multiplying it by the T specific surface area (m 2 /g).
  • R value and B.V. of flake graphite E.
  • the numerical value obtained by multiplying the T specific surface area (m 2 /g) is preferably 3.0 or less, 2.5 or less, 2.0 or less, 1.5 or less, 1.0 or less, and 0.5 or less. .
  • the positive electrode active material layer 21 may contain other components in addition to the positive electrode active material containing nickel hydroxide, the cobalt compound layer covering the positive electrode active material, and flake graphite.
  • Examples of other components include conductive aids other than flake graphite, binders, additives, antioxidants, and the like.
  • Examples of conductive aids other than flake graphite include, but are not limited to, acetylene black and carbon black.
  • the content of the conductive aid other than flake graphite is not particularly limited, it is preferably less than the content of flake graphite, and more preferably half or less of the content of flake graphite.
  • the content of the conductive additive other than flake graphite is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less.
  • the binder has a role of binding the material contained in the positive electrode active material layer 21 to the surface of the current collector.
  • the binder is not particularly limited, and those used as binders for electrodes of nickel metal hydride batteries can be appropriately employed.
  • binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, polyolefin resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethylcellulose, methylcellulose, Cellulose derivatives such as hydroxypropyl cellulose, copolymers such as styrene-butadiene rubber, polyacrylic acid containing (meth)acrylic acid derivatives as monomer units, polyacrylic acid esters, polymethacrylic acid, polymethacrylic acid esters such as (meth) ) acrylic resins.
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber
  • polyolefin resins such as polypropylene and polyethylene
  • imide resins such as polyimide and polyamideimide
  • carboxymethylcellulose methylcellulose
  • Cellulose derivatives
  • the content of the binder is not particularly limited, but is preferably 0.1% by mass or more and 15% by mass or less, more preferably 0.3% by mass or more and 10% by mass or less, and 0.5% by mass. % or more and 7 mass % or less.
  • additives include zinc oxide and yttrium oxide.
  • the content of the additive is not particularly limited, but is preferably 0.05% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, and 0.1% by mass. It is more preferable that the content is not less than 5% by mass or less.
  • the antioxidant is not particularly limited, and known antioxidants can be used. Specific examples of antioxidants include phosphorus antioxidants, amine antioxidants, sulfur antioxidants, phenol antioxidants, and the like.
  • a phosphorus antioxidant and a phenolic antioxidant may be used in combination. Since the amine-based antioxidant may reduce the self-discharge characteristics due to the shuttle effect of the nitrogen compound, it is preferable that the content is small or not included.
  • the content of the antioxidant is not particularly limited, but is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.3% by mass or more and 2% by mass or less, and 0.5% by mass. % or more and 1 mass % or less.
  • the total content of other components is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 7% by mass or less.
  • the positive electrode active material layer 21 of the present invention does not include those produced by using raw material nickel hydroxide particles pre-coated with a cobalt compound.
  • the negative electrode 3 includes a current collector foil 30 as a current collector and a negative electrode active material layer 31 .
  • the material and shape of the current collector are not particularly limited. Materials and shapes similar to those used for the positive electrode can be employed.
  • the negative electrode active material layer 31 contains a hydrogen storage alloy as a negative electrode active material.
  • the hydrogen-absorbing alloy is an alloy of metal A, which readily reacts with hydrogen but has poor hydrogen-releasing ability, and metal B, which does not readily react with hydrogen but has excellent hydrogen-releasing ability.
  • the hydrogen storage alloy is not particularly limited, and those used as negative electrode active materials for nickel metal hydride batteries can be appropriately employed.
  • the metal A include Group 2 elements such as Mg, Group 3 elements such as Sc and lanthanides, Group 4 elements such as Ti and Zr, Group 5 elements such as V and Ta, and a plurality of rare earth elements. Examples include misch metals containing elements (hereinafter sometimes abbreviated as Mm), Pd, and the like.
  • metal B include Fe, Co, Ni, Cr, Pt, Cu, Ag, Mn, Zn, and Al.
  • hydrogen storage alloys include, for example, AB 5 type showing a hexagonal CaCu 5 type crystal structure, hexagonal MgZn 2 type crystal structure, or AB 2 type showing a cubic MgCu 2 type crystal structure, and cubic CsCl type crystal structure.
  • the hydrogen storage alloy may have one type of the above crystal structure alone, or may have two or more types. Also, in each crystal structure, a part of the metal may be replaced with one or two or more other metals or elements.
  • the particle size of the hydrogen storage alloy is not particularly limited.
  • the average particle size is preferably 1 ⁇ m or more and 40 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, and even more preferably 4 ⁇ m or more and 20 ⁇ m or less. Further, it is even more preferably 5 ⁇ m or more and 15 ⁇ m or less, and most preferably 5 ⁇ m or more and 12 ⁇ m or less.
  • the negative electrode active material layer 31 may contain other components such as a conductive aid and a binder.
  • a hydrogen storage alloy having an oxidized surface may also be used as the negative electrode active material.
  • the hyperbolic electrode 4 includes a current collector foil 40 as a current collector, a positive electrode active material layer 41 laminated on one side of the current collector foil 40, and a negative electrode laminated on the other side of the current collector foil 40. and an active material layer 42 .
  • the hyperbolic electrode 4 is also called a bipolar electrode.
  • the separator 5 separates the positive electrode 2, the negative electrode 3, and the hyperbolic electrode 4 to prevent a short circuit due to contact between them, and provides a storage space and a passageway for the electrolytic solution.
  • the material of the separator 5 is not particularly limited, and known materials can be appropriately adopted.
  • Specific examples of materials for the separator 5 include synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid, polyester, and polyacrylonitrile, polysaccharides such as cellulose and amylose, fibroin, keratin, lignin, and suberin. and porous bodies made of electrically insulating materials such as ceramics, non-woven fabrics, and woven fabrics.
  • the material of the separator 5 may be used singly or in combination of two or more.
  • the electrolyte with which the separator 5 is impregnated is an aqueous solution in which an alkali metal hydroxide is dissolved.
  • Alkali metal hydroxides include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • the above alkali metal hydroxides may be used singly or in combination of two or more, but preferably contain all three.
  • the method for manufacturing the nickel metal hydride battery 1 includes a positive electrode manufacturing process, a negative electrode manufacturing process, a hyperbolic electrode manufacturing process, an electrode body manufacturing process, and an overdischarge process.
  • a raw material composition containing a positive electrode active material powder containing nickel hydroxide, a cobalt compound such as metallic cobalt, and flake graphite is laminated on the current collector foil 20 to obtain a positive electrode having an R value of 0.0. It is a step of manufacturing the positive electrode 2 including the positive electrode active material layer 21 having a thickness of 4 or less.
  • the method of laminating the raw material composition on the current collector foil 20 is not particularly limited.
  • the raw material composition may be kneaded and the kneaded raw material composition may be applied onto the current collector foil 20 for lamination.
  • the kneaded raw material composition may be coated on a known transfer sheet, attached on the current collector foil 20 together with the transfer sheet, and then laminated by removing the transfer sheet.
  • the sheet-shaped raw material composition may be laminated on the current collector foil 20 by lamination.
  • known solvents, binders, additives, and the like may be added to the raw material composition as other components.
  • the raw material composition can be kneaded using a known kneader.
  • Kneading conditions include, for example, shear force.
  • the average particle size of flake graphite is preferably 0.4 times or more the average particle size of the positive electrode active material powder.
  • the average particle diameter of the flake graphite is 0.4 times or more the average particle diameter of the positive electrode active material
  • the particle diameter of the flake graphite is equal to the particle diameter of the positive electrode active material.
  • the negative electrode manufacturing step is a step of manufacturing the negative electrode 3 by laminating the raw material composition containing the negative electrode active material powder on the current collector foil 30 .
  • the negative electrode manufacturing process can be manufactured by the same method as the positive electrode manufacturing process.
  • a raw material composition having a positive electrode active material is laminated on one side of the current collector foil 40 to manufacture a positive electrode, and a raw material having a negative electrode active material powder on the other side of the current collector foil 40. This is a step of laminating the composition to produce a negative electrode.
  • the positive electrode and the negative electrode can be produced by the same method as the positive electrode production process and the negative electrode production process.
  • the electrode assembly step is a step of sandwiching the separator 5 between the positive electrode 2, the negative electrode 3, and the hyperbolic electrode 4 and impregnating the separator 5 with an electrolytic solution to fabricate the electrode assembly.
  • a separator 5 is arranged between a positive electrode 2 , a negative electrode 3 and a hyperbolic electrode 4 . Since the hyperbolic electrode 4 also functions as a positive electrode and a negative electrode, it can be said that the electrode body is in a state in which the separator 5 is arranged between the positive electrode and the negative electrode.
  • the overdischarge step is a step of charging, overdischarging, and then charging the electrode body.
  • the overdischarge step first, the electrode body is charged. Charging of the electrode body is performed at a cell voltage of 1 V or higher.
  • the cell voltage in the overdischarge step is preferably 0.2V or more and less than 1.0V, and more preferably 0.7V or more and less than 1.0V.
  • the cell voltage may be converted into a positive electrode potential (V vs. Hg/HgO). That is, the preferred range of the overdischarge step may be represented by the positive electrode potential.
  • the positive electrode potential in the overdischarge step is preferably -0.6V or more and less than 0.2V, and more preferably -0.1V or more and less than 0.2V.
  • cobalt hydroxide is selectively deposited on the positive electrode active material. Then, a coating layer of a cobalt compound such as cobalt oxyhydroxide (a high-order cobalt oxide in which the average valence of cobalt is greater than divalent) is formed on the positive electrode active material with an average thickness of 10 nm or less.
  • cobalt oxyhydroxide a high-order cobalt oxide in which the average valence of cobalt is greater than divalent
  • a coating layer of the cobalt compound is also formed on the surface of the flake graphite.
  • the thickness of the coat layer on the flake graphite is thinner than the thickness of the coat layer on the positive electrode active material.
  • a pair of cooling members 8, a module positive electrode 22, and a module negative electrode 32 are arranged on the electrode assembly subjected to the overdischarge process, and restrained by restraints 9, whereby the nickel metal hydride battery 1 is manufactured.
  • the overdischarge process may be performed after manufacturing the nickel metal hydride battery 1. good.
  • the positive electrode active material layer contains a mixture of nickel hydroxide particles as a positive electrode active material, a cobalt compound such as metallic cobalt, and flake graphite.
  • Metal cobalt dissolves when the electrolyte is injected into the storage space during assembly of the nickel metal hydride battery.
  • cobalt hydroxide is selectively deposited on the surface of the flake graphite, and the cobalt hydroxide is further oxidized to produce cobalt oxyhydroxide having excellent conductivity.
  • the mechanism by which cobalt hydroxide is selectively deposited on the surface of flake graphite is considered as follows. As shown in FIG. 3, when nickel hydroxide particles and flake graphite in the positive electrode active material layer are compared at the time of initial charge, flake graphite has higher conductivity than nickel hydroxide particles. Cobalt hydroxide is more likely to be deposited at locations where electrons flow more easily, so that cobalt hydroxide is selectively deposited on flake graphite. Since the concentration of cobalt ions (Co 2+ ) decreases around the flake graphite, cobalt hydroxide is more likely to precipitate on the flake graphite.
  • the mechanism by which cobalt hydroxide is selectively deposited on the positive electrode active material is considered as follows. As shown in FIG. 6, when the overdischarge step is performed, the positive electrode active material tends to have a higher potential than the positive electrode active material because the graphite flake has higher conductivity than the positive electrode active material. Cobalt hydroxide is likely to be deposited at a cell voltage of 1 V or higher, and is thus likely to be deposited on the positive electrode active material having a higher potential. In addition, since the content of the positive electrode active material in the positive electrode active material layer is greater than the content of flake graphite, the positive electrode active material has a relatively large surface area in the positive electrode active material layer. Therefore, cobalt hydroxide is deposited more thinly on the positive electrode active material while aggregation is suppressed.
  • cobalt hydroxide As shown in FIG. 7, by performing the overdischarge process, the amount of cobalt hydroxide deposited on the flake graphite can be reduced. In addition, cobalt hydroxide can be selectively deposited on almost all surfaces of the nickel hydroxide particles that come into contact with the electrolytic solution to form a cobalt oxyhydroxide layer with an average thickness of 10 nm or less.
  • a raw material composition containing a positive electrode active material powder containing nickel hydroxide, a cobalt compound, and flake graphite is laminated on a current collector.
  • the method includes a positive electrode manufacturing step of manufacturing a positive electrode including the positive electrode active material layers 21 and 41 having a cobalt compound content of 3% by mass or less and an R value of 0.4 or less.
  • a negative electrode preparation step of laminating a raw material composition having a negative electrode active material powder on a current collector to prepare a negative electrode, placing a separator 5 between the positive electrode and the negative electrode, and impregnating the separator 5 with an electrolytic solution. and an electrode body fabricating step of fabricating the electrode body.
  • after charging the electrode body it has an over-discharge step of over-discharging and further charging.
  • cobalt hydroxide can be selectively deposited on the positive electrode active material. Furthermore, the cobalt hydroxide is oxidized, so that the positive electrode active material is coated with cobalt oxyhydroxide, which has excellent electrical conductivity. Therefore, an increase in cell resistance can be suppressed while suitably reducing the content of the cobalt compound contained in the positive electrode active material layer.
  • the average particle size of flake graphite is 0.4 times or more the average particle size of the positive electrode active material powder. Therefore, when the raw material composition is kneaded, it becomes easier to prevent the particle size of the flake graphite from becoming too small relative to the particle size of the positive electrode active material powder.
  • a positive electrode for a nickel metal hydride battery comprising a current collector and a positive electrode active material layer, wherein the positive electrode active material layer comprises a positive electrode active material, a cobalt compound layer covering the positive electrode active material, and a scaly and graphite, and the content of the cobalt compound in the positive electrode active material layer is 3% by mass or less. Moreover, the coverage of the cobalt compound layer with respect to the positive electrode active material is 50% or more, and the degree of graphitization of the positive electrode active material layer obtained by Raman spectroscopy is 0.4 or less.
  • the content in the positive electrode active material layers 21 and 41 can be suitably reduced while maintaining the function of the cobalt compound layer as a conductive aid.
  • the average particle size of flake graphite is 0.3 times or more the average particle size of the positive electrode active material.
  • the particle size of the flake graphite does not become too small with respect to the particle size of the positive electrode active material, and has a certain size. Therefore, in the positive electrode active material layers 21 and 41, the graphite flakes can straddle the plurality of positive electrode active materials, in other words, the graphite flakes can be in contact with the plurality of positive electrode active materials. Therefore, it is possible to suitably secure a conductive path and suppress an increase in the internal resistance of the positive electrode active material layers 21 and 41 .
  • the content of flake graphite in the positive electrode active material layers 21 and 41 is 3% by mass or more and 10% by mass or less. Therefore, the electrical conductivity can be improved while maintaining the necessary contents of the positive electrode active material and the cobalt compound in the positive electrode active material layers 21 and 41 .
  • the manufacturing method of the nickel metal hydride battery 1 includes a positive electrode manufacturing process, a negative electrode manufacturing process, a hyperbolic electrode manufacturing process, an electrode body manufacturing process, and an overdischarge process.
  • the hyperbolic electrode fabrication step may be omitted. That is, the nickel metal hydride battery 1 may not have the hyperbolic electrode 4, and the electrode body may be formed by placing the positive electrode 2 and the negative electrode 3 with the separator 5 interposed therebetween.
  • the overdischarge step was performed as one step in the method of manufacturing the nickel metal hydride battery 1, but it is not limited to this aspect.
  • the overdischarge step may be performed as one step in the method of manufacturing the electrode assembly. That is, an overdischarge step may be performed as a method of manufacturing the electrode body.
  • the overdischarge step may be performed as one step in the manufacturing method of the positive electrode.
  • an electrode body for performing the overdischarge step may be used separately.
  • An electrode body or a nickel metal hydride battery may be newly manufactured using the positive electrode manufactured through the overdischarge process.
  • Example 1 Nickel hydroxide having an average particle size of 8 ⁇ m was used as the positive electrode active material.
  • the flake graphite has an average particle size of 5 ⁇ m, an R value of 0.15, and a B.I. E. One having a T specific surface area of 11.7 m 2 /g was used.
  • the nickel hydroxide, metallic cobalt, and flake graphite were blended so that the solid content ratios were 90.2% by mass, 1% by mass, and 6% by mass. Furthermore, 1% by mass of polyolefin and 1% by mass of carboxymethyl cellulose were blended as binders. As additives, 0.3% by mass of zinc oxide and 0.5% by mass of yttrium oxide were blended to prepare a raw material composition.
  • the blending amount of the raw material composition is substantially constant even after the positive electrode 2 is produced. That is, the blending amount in the raw material composition is substantially equal to the content in the positive electrode 2 .
  • the raw material composition was kneaded using a known kneader.
  • the shearing force during kneading was set to 524 Pa.
  • the raw material composition after kneading was applied onto the current collector foil 20 and dried to prepare the positive electrode 2 .
  • the negative electrode 3 and the hyperbolic electrode 4 were manufactured by performing the negative electrode manufacturing process and the hyperbolic electrode manufacturing process.
  • the above electrode body fabrication process was performed to fabricate an electrode body. After charging to 1.2V with respect to the produced electrode body, it over-discharged to 0.9V. After that, it was charged to 1.2V again.
  • a nickel metal hydride battery 1 was produced using a pair of cooling members 8 , a module positive electrode 22 , a module negative electrode 32 and a pair of restraints 9 .
  • Example 2 A nickel metal hydride battery 1 was produced in the same manner as in Example 1, except that the shear force when kneading the raw material composition was changed to 131 Pa.
  • Example 3 A nickel metal hydride battery 1 was produced in the same manner as in Example 1, except that the shear force when kneading the raw material composition was changed to 1833 Pa.
  • Example 4 The blending amount of metallic cobalt was changed to 2% by mass, the blended amount of nickel hydroxide was changed to 89.2% by mass, the R value of flake graphite was changed to 0.18, and the shear force during kneading was changed to 100 Pa.
  • a nickel metal hydride battery 1 was produced in the same manner as in Example 1 except for the above.
  • Example 5 As flake graphite, the average particle size is 7 ⁇ m, the R value is 0.15, and B.I. E. A nickel metal hydride battery 1 was produced in the same manner as in Example 4, except that a battery with a T specific surface area of 9.5 m 2 /g was used.
  • Example 6 As flake graphite, the average particle size is 3 ⁇ m, the R value of flake graphite is 0.20, and B.I. E. A nickel metal hydride battery 1 was produced in the same manner as in Example 4, except that a battery with a T specific surface area of 16.4 m 2 /g was used.
  • Example 7 A nickel metal hydride battery was prepared in the same manner as in Example 1, except that the blending amounts of nickel hydroxide, metallic cobalt, and flake graphite were set as shown in Table 1, and the shear force during kneading was set to 100 Pa. 1 was produced.
  • Example 8 A nickel metal hydride battery was produced in the same manner as in Example 7, except that nickel hydroxide having an average particle size of 5 ⁇ m was used as the positive electrode active material.
  • Example 9 A nickel metal hydride battery 1 was produced in the same manner as in Example 7, except that nickel hydroxide having an average particle size of 14 ⁇ m was used as the positive electrode active material.
  • Example 10 A nickel metal hydride battery 1 was produced in the same manner as in Example 1, except that the shear force during kneading was 100 Pa.
  • Nickel metal was prepared in the same manner as in Example 10, except that the blending amounts of nickel hydroxide, metallic cobalt, and flake graphite were set as shown in Table 1, and the blending amount of carboxymethyl cellulose was set to 1.5% by mass. A hydride battery 1 was produced.
  • Example 12 A nickel metal hydride battery 1 was produced in the same manner as in Example 10, except that the blending amounts of nickel hydroxide, metallic cobalt, and flake graphite were set as shown in Table 1.
  • Example 13 As flake graphite, the average particle size is 19 ⁇ m, the R value is 0.08, and B.I. E. A nickel metal hydride battery 1 was produced in the same manner as in Example 12, except that a battery with a T specific surface area of 4.0 m 2 /g was used.
  • Example 14 A nickel metal hydride battery 1 was produced in the same manner as in Example 12, except that an antioxidant was used.
  • an antioxidant As the antioxidant, IRGAFOS168 (manufactured by BASF Japan Ltd.), which is a commercially available phosphorus antioxidant, was used.
  • the blending amount of the antioxidant was set to 5% by mass with respect to the blending amount of flake graphite.
  • the antioxidant was coated on the graphite flakes by dry-mixing the flake graphite and the phosphorus-based antioxidant while heating to about 200° C. in an air atmosphere.
  • Example 15 A nickel metal hydride battery 1 was produced in the same manner as in Example 12, except that graphite flakes having an R value of 0.02 were used. Graphite flake with an R value of 0.02 was prepared by heat-treating the graphite flake of Example 1 at about 2800° C. in a nitrogen atmosphere.
  • Example 1 A nickel metal hydride battery was produced in the same manner as in Example 1, except that the shear force when kneading the raw material composition was changed to 2618 Pa.
  • Example 2 A nickel metal hydride battery was produced in the same manner as in Example 1, except that the shear force when kneading the raw material composition was changed to 2094 Pa.
  • Example 3 A nickel metal hydride battery was fabricated in the same manner as in Example 1, except that the fabricated electrode body was not subjected to the overdischarge step.
  • Comparative Example 4 A nickel metal hydride battery was produced in the same manner as in Comparative Example 3, except that the blending amounts of nickel hydroxide, metallic cobalt, and flake graphite were set as shown in Table 1.
  • antioxidant an antioxidant
  • shear force during kneading in the manufacturing process and the presence or absence of an overdischarge process are shown in Table 1 as “antioxidant ⁇ : yes ⁇ : absent” and “shear force during kneading (Pa)”.
  • overdischarge process ⁇ : Yes ⁇ : No column.
  • T specific surface area was determined by the one-point method after measuring the adsorption/desorption isotherm with nitrogen gas using a specific surface area/pore size analyzer (QUADRASORB evo, manufactured by Anton Paar).
  • the nickel metal hydride batteries of Examples 1 to 15 and Comparative Examples 1 to 4 were evaluated as follows. (Average particle size and particle size ratio) The average particle size of the positive electrode active material and flake graphite contained in the positive electrode active material layers 21 and 41 was measured using a known scanning electron microscope. 50 particles were measured at random, and the average particle size D50 was calculated using the long side of the flake graphite as the particle size. The results are shown in the "Average particle size ( ⁇ m)" column and the "Particle size ratio” column in Table 2.
  • the measurement conditions for Raman spectroscopic analysis using a Raman spectroscope are as follows. Apparatus: Raman-11 (manufactured by Nanophoton Co., Ltd.) Measurement mode: XY-average Objective lens: 50x Laser wavelength: 532 nm Laser power: 0.2mW Measurement time: 3 seconds Diffraction grating: 300 gr/mm Measurement temperature: Room temperature Measurement atmosphere: Air (Average thickness and coverage of the cobalt compound layer covering the positive electrode active material) The average thickness and coverage of the cobalt compound layer covering the positive electrode active material were observed and measured by TEM-EELS or the like.
  • cell resistance The cell resistance was measured when the battery was discharged for 0.2 seconds under the conditions of 25° C. and a state of charge (SOC) of 60%. The results are shown in the "0.2 second cell resistance (m ⁇ )" column of Table 2.
  • the nickel metal hydride batteries of Examples 1 to 15 and Comparative Examples 1 to 4 were charged at a temperature of 25° C. to an SOC of 100% at a 1/3C rate, and then charged to 1.0 V at a 1/3C rate. was discharged until Then, the charge/discharge efficiency of each nickel metal hydride battery was calculated using the following formula.
  • Charge/discharge efficiency (%) 100 x (discharge capacity)/(charge capacity)
  • the results are shown in the column of "charging and discharging efficiency (%)" in Table 2.
  • the nickel metal hydride batteries of Examples 4 and 12-15 were further evaluated as follows.
  • cell resistance increase The increase in cell resistance was measured after the 14,000 km durability test and before the durability test. The measurement conditions were 0° C. and a state of charge (SOC) of 60%, and the cell resistance was measured after discharging for 5 seconds. The results are shown in Table 2, "Increase in cell resistance (m ⁇ ) for 5 seconds at 0°C (after 14,000 km endurance - before endurance)".
  • the average thickness of the cobalt compound layer was 10 nm or less, and the coverage was 70% or more.
  • the average particle size of the flake graphite in the positive electrode active material layers 21 and 41 was all 3 ⁇ m or more, and they were not broken into small pieces. It was found that the cell resistance was kept low because flake graphite was likely to be in contact with a plurality of positive electrode active materials. Moreover, the degrees of graphitization of the positive electrode active material layers 21 and 41 were both 0.4 or less. Since the proportion of bond defects is small, the reactivity of the positive electrode active material layers 21 and 41 can be lowered.
  • the cell resistance was lower because the particle size ratio of nickel hydroxide and flake graphite was 0.3 or more.
  • the charge/discharge efficiency was also excellent at 94% or more.
  • Example 12 flake graphite with a smaller R value than in Example 4 was used. That is, flake graphite, which is highly graphitized, was used. As the graphitization progressed, the reactivity of flake graphite was lowered, so that the amount of increase in cell resistance was kept low.
  • Example 13 compared to Example 12, the average particle size was larger, and the B.I. E. Flaky graphite having a small T specific surface area and a small R value was used. R value and B.V. E. The value multiplied by the T specific surface area was 0.32.
  • the larger the average particle size of flake graphite, or B. E. Graphitization tends to progress as the T specific surface area decreases. As the graphitization progressed, the reactivity of the flake graphite decreased, so that the increase in cell resistance was kept low.
  • Example 14 differs from Example 12 in that an antioxidant is used. By using the antioxidant, the reactivity of flake graphite is lowered, so that the increase in cell resistance is suppressed.
  • Example 15 heat-treated flake graphite was used. Compared with Example 12, the R value was smaller, and graphitization was progressing. R value and B.V. E. The value multiplied by the T specific surface area was 0.23. Since the reactivity of flake graphite is lower, the increase in cell resistance was suppressed.
  • SYMBOLS 1... Nickel metal hydride battery, 2... Positive electrode, 3... Negative electrode, 4... Hyperbolic electrode, 5... Separator, 6... Seal member, 7... Outer frame, 8... Cooling member, 9... Restraint, 20... Collection Electrical foil 21 Positive electrode active material layer 22 Module positive electrode 30 Current collector foil 31 Negative electrode active material layer 32 Module negative electrode 40 Current collector foil 41 Positive electrode active material layer 42 Negative electrode active Material layer, 80... through hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

ニッケル金属水素化物電池(1)の製造方法は、集電体に、水酸化ニッケルを含有する正極活物質粉末と、コバルト化合物と、鱗片状黒鉛とを有する原料組成物を積層して、ラマン分光スペクトルにより得られる黒鉛化度が0.4以下である正極活物質層(21)を備える正極(2)を作製する正極作製工程を有する。また、集電体に、負極活物質粉末を有する原料組成物を積層して、負極(3)を作製する負極作製工程を有する。また、正極(2)と負極(3)の間にセパレータ(5)を配置するとともに、セパレータ(5)に電解液を含浸して電極体を作製する電極体作製工程と、電極体を充電した後、過放電し、さらに充電する過放電工程とを有する。

Description

ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池
 本発明は、ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池に関する。
 特許文献1は、アルカリ性電解質を含む蓄電池用のペースト状ニッケル電極について記載している。ペースト状ニッケル電極は、水酸化ニッケルをベースとする活物質と、炭素をベースとする導体とを備える。また、ペースト状ニッケル電極の導電性を向上させるために、金属コバルト、水酸化コバルト、酸化コバルト等のコバルト化合物を添加することが記載されている。
特開平11-273672号公報
 コバルト化合物は高価な材料であり、且つ、限られた資源であることから、電極に用いられるコバルト化合物の含有量を低減することが望まれている。コバルト化合物の代替材料としては、例えば炭素材料が挙げられる。しかし、コバルト化合物の代替材料として炭素材料を用いると、炭素材料に腐食が生じる虞があった。炭素材料に腐食が生じることによって、セル抵抗が上昇する虞があった。
 上記の目的を達成するニッケル金属水素化物電池の製造方法は、集電体に、水酸化ニッケルを含有する正極活物質粉末と、コバルト化合物と、鱗片状黒鉛とを有する原料組成物を積層して、前記コバルト化合物の含有量が3質量%以下であり、ラマン分光スペクトルにより得られる黒鉛化度が0.4以下である正極活物質層を備える正極を作製する正極作製工程と、集電体に、負極活物質粉末を有する原料組成物を積層して、負極を作製する負極作製工程と、前記正極と前記負極の間にセパレータを配置するとともに、前記セパレータに電解液を含浸して電極体を作製する電極体作製工程と、前記電極体を充電した後、過放電し、さらに充電する過放電工程とを有する。
 上記の目的を達成するニッケル金属水素化物電池の製造方法は、前記原料組成物において、前記鱗片状黒鉛の平均粒子径が、前記正極活物質粉末の平均粒子径の0.4倍以上である。
 上記の目的を達成するニッケル金属水素化物電池用正極は、集電体と、正極活物質層とを備えるニッケル金属水素化物電池用正極であって、前記正極活物質層は、正極活物質と、前記正極活物質を被覆するコバルト化合物層と、鱗片状黒鉛とを有し、前記正極活物質層内のコバルト化合物の含有量が3質量%以下であり、前記正極活物質に対する前記コバルト化合物層の被覆率が50%以上であり、前記正極活物質層は、ラマン分光スペクトルにより得られる黒鉛化度が、0.4以下である。
 上記の目的を達成するニッケル金属水素化物電池用正極は、前記コバルト化合物層の平均厚さが、10nm以下である。
 上記の目的を達成するニッケル金属水素化物電池用正極は、前記鱗片状黒鉛の平均粒子径が、前記正極活物質の平均粒子径の0.3倍以上である。
 上記の目的を達成するニッケル金属水素化物電池用正極は、前記正極活物質層における前記鱗片状黒鉛の含有量が、3質量%以上10質量%以下である。
 上記の目的を達成するニッケル金属水素化物電池用正極は、前記コバルト化合物層が、前記鱗片状黒鉛の表面にも形成されている。
 上記の目的を達成するニッケル金属水素化物電池は、上記のニッケル金属水素化物電池用正極を備える。
 本発明によれば、正極活物質層に含まれるコバルト化合物の含有量を好適に低減しつつ、セル抵抗の上昇を抑制することができる。
ニッケル金属水素化物電池の断面図である。 初充電前後の正極活物質層の電子顕微鏡写真である。 初充電時のオキシ水酸化コバルトの析出機構を示す模式図である。 オキシ水酸化コバルトの溶解電位を示すグラフである。 通常の放電時と、過放電時の電位を示すグラフである。 過放電工程時の水酸化コバルトの析出機構を示す模式図である。 過放電工程後の正極活物質層の電子顕微鏡写真である。
 以下、本発明を具体化した一実施形態を図面にしたがって説明する。
 まず、ニッケル金属水素化物電池を構成する電極体について説明する。
 <電極体>
 図1に示すように、ニッケル金属水素化物電池1は、集電体としての集電箔20と、正極活物質層21とを備えるニッケル金属水素化物電池用正極(以下、単に「正極」ともいう。)2を有する。正極活物質層21は、集電箔20の一方の面に積層されている。
 ニッケル金属水素化物電池1は、集電体としての集電箔30と、負極活物質層31とを備えるニッケル金属水素化物用負極(以下、単に「負極」ともいう。)3を有する。負極活物質層31は、集電箔30の他方の面に積層されている。
 ニッケル金属水素化物電池1は、集電体としての集電箔40の一方の面に正極活物質層41が積層され、集電箔40の他方の面に負極活物質層42が積層された双曲型電極4を有する。なお、「一方」は図1における上方を意味し、「他方」は図1における下方を意味するものとする。
 図1に示すように、双曲型電極4は、セパレータ5を介して複数積層されている。具体的には、双曲型電極4は、一つの双曲型電極4の正極活物質層41が、セパレータ5を介して、他の双曲型電極4の負極活物質層42と対面する状態で積層され、この積層状態が繰り返されている。
 正極2の正極活物質層21の表面に、セパレータ5を介して双曲型電極4の負極活物質層42が積層されている。また、負極3の負極活物質層31の表面に、セパレータ5を介して双曲型電極4の正極活物質層41が積層されている。言い換えれば、正極2と負極3と双曲型電極4の間に、それぞれセパレータ5が配置されている。双曲型電極4の積層方向における一方側の端部に負極3が配置され、他方側の端部に正極2が配置されている。
 セパレータ5には、電解液が含浸されている。これら、正極2、負極3、及び双曲型電極4がセパレータ5を介して積層されることによって電極体が形成される。電極体は、電池モジュールともいう。
 <ニッケル金属水素化物電池>
 図1に示すように、電池モジュールが有する複数の集電箔20、30、40は、それぞれ同一の形状を有している。電池モジュールが有する複数のセパレータ5も、それぞれ同一の形状を有している。集電箔20、30、40は、正極活物質層21、41、負極活物質層31、42、及びセパレータ5よりも大きな形状を有している。セパレータ5は、正極活物質層21、41、及び負極活物質層31、42よりも大きな形状を有している。
 図1に示すように、集電箔20、30、40の周縁は、合成樹脂製の外枠7に固定されている。外枠7の内側には、フッ素樹脂製のシール部材6が配置されている。シール部材6は、複数の集電箔20、30、40の一方の面と他方の面の両面において、集電箔20、30、40の周縁に結着されている。集電箔20、30、40の周縁にシール部材6が結着されていることにより、複数の集電箔20、30、40同士の間が密閉状態となっている。
 図1に示すように、電池モジュールの一方側と他方側の端部には、一対の冷却部材8が配置されている。具体的には、電池モジュールを構成する正極2の集電箔20に、冷却部材8が配置されている。また、電池モジュールを構成する負極3の集電箔30に、冷却部材8配置されている。これら一対の冷却部材8は、複数の貫通孔80を有する板状に構成されている。
 一対の冷却部材8のうち、正極2の集電箔20に配置された冷却部材8には、モジュール正極22が配置されている。一対の冷却部材8のうち、負極3の集電箔30に配置された冷却部材8には、モジュール負極32が配置されている。モジュール正極22、及びモジュール負極32は、金属製の矩形板状に構成されている。
 図1に示すように、モジュール正極22とモジュール負極32には、一対の拘束具9が配置されている。一対の拘束具9は、図示しない複数のボルト及びナットで締結されている。拘束具9によって、電池モジュールは、正極2、負極3、及び双曲型電極4の厚み方向に沿って加圧されている。電池モジュールに、一対の冷却部材8、モジュール正極22、及びモジュール負極32が配置され、これらが一対の拘束具9で拘束されることによって、ニッケル金属水素化物電池1が形成される。双曲型電極4を有するニッケル金属水素化物電池1は、双曲型ニッケル金属水素化物電池や、バイポーラ型金属水素化物電池ともいう。
 以下、正極2、負極3、双曲型電極4、セパレータ5について説明する。
 <正極>
 正極2は、集電体としての集電箔20と、正極活物質層21とを備える。
 (集電体)
 集電体は、不活性な電気伝導体である。集電体は、ニッケル金属水素化物電池の放電、又は充電の間、正極活物質層21に電流を流し続ける。
 集電体の材料としては、特に制限されないが、例えば銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデン等が挙げられる。
 集電体は、上記材料のうちの一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。二種以上を組み合わせて使用する場合、固溶体や合金として使用してもよく、例えばステンレス鋼を用いてもよい。
 集電体の形状は、箔に限定されない。正極活物質層21に電流を流すことが可能な形状を適宜選択することができる。集電体の箔以外の形状としては、例えばシート状、フィルム状、線状、棒状、メッシュ状、スポンジ状等が挙げられる。
 これらの中でも、箔、シート状、フィルム状であると、正極活物質層21やモジュール正極22との接触面積を大きくしやすいため好ましい。
 集電体の厚さは、特に制限されない。集電体の厚さは、例えば1μm以上100μm以下であることが好ましい。
 (正極活物質層)
 正極活物質層21は、水酸化ニッケル、若しくはニッケルの平均価数が2価よりも大の高次水酸化ニッケルを含有する正極活物質粉末と、正極活物質粉末を被覆するコバルト化合物層と、鱗片状黒鉛とを有する。正極活物質層内のコバルト化合物の含有量は3質量%以下であり、正極活物質に対するコバルト化合物層の被覆率が50%以上である。また、正極活物質層21のラマン分光スペクトルにより得られる黒鉛化度は、0.4以下である。なお、上記水酸化ニッケル、若しくは高次水酸化ニッケルを含有する正極活物質粉末を、単に正極活物質ともいうものとする。
 水酸化ニッケルは、ニッケル以外の金属がドープされていてもよい。ニッケル以外の金属としては、例えばマグネシウム、カルシウム等の第2族元素、コバルト、ロジウム、イリジウム等の第9族元素、亜鉛、カドミウム等の第12族元素が挙げられる。
 水酸化ニッケルの粒子径は、特に制限されないが、平均粒子径が、3μm以上40μm以下であることが好ましく、5μm以上30μm以下であることがより好ましく、7μm以上20μm以下であることがさらに好ましい。
 正極活物質層21における水酸化ニッケルの含有量は、特に制限されないが、75質量%以上98質量%以下であることが好ましく、85質量%以上95質量%以下であることがより好ましい。
 コバルト化合物層を構成するコバルト化合物としては、高導電性であれば、特に制限されない。例えば、オキシ水酸化コバルト(CoOOH)等の高次コバルト酸化物を挙げることができる。オキシ水酸化コバルト(CoOOH)は、導電助剤として用いられる。
 正極活物質を被覆するコバルト化合物層の平均厚さは、10nm以下であることが好ましい。さらにコバルト化合物層の平均厚さは8nm以下であることがより好ましく、6nm以下であることがさらに好ましい。コバルト化合物層の平均厚さの下限値は、特に制限されない。導電助剤としての機能を好適に保持できる範囲において適宜設定することができる。その中でも、コバルト化合物層の平均厚さは、0.5nm以上であることが好ましく、1nm以上であることがより好ましい。
 コバルト化合物層の平均厚さが上記数値範囲であると、導電助剤としての機能を保持しつつ、正極活物質層21における含有量を好適に低減することができる。
 コバルト化合物層の平均厚さは、公知のTEM-EELS等で観察することによって測定することができる。
 正極活物質に対するコバルト化合物層の被覆率は、70%以上、80%以上、85%以上、90%以上、95%以上であることが好ましい。
 なお、正極活物質に対するコバルト化合物層の被覆率とは、正極活物質の表面に占めるコバルト化合物層の割合を意味するものとする。正極活物質の表面がコバルト化合物層で完全に被覆されている場合、被覆率は100%となる。正極活物質に対するコバルト化合物層の被覆率は、TEM-EELS等で観察することによって測定することができる。
 正極活物質層21内のコバルト化合物の含有量は、2.5質量%以下であることが好ましい。また、0.4質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。
 コバルト化合物の含有量が上記数値範囲であることにより、後述の方法で正極活物質を被覆するコバルト化合物層を形成した際に、コバルト化合物層の平均厚さを10nm以下にすることが容易になる。また、電池の容量利用率を90%以上とすることができるため、電池特性を好適なものとすることができる。
 鱗片状黒鉛は、導電助剤として用いられる。鱗片状黒鉛としては、特に制限されず、公知の鱗片状黒鉛を用いることができる。
 ここで、鱗片状黒鉛の寸法は、黒鉛の六員環における積層方向の寸法を厚さtとし、六員環の面に沿う方向の最大長さ、言い換えれば、長辺の寸法を直径rとする。そして、以下の関係式を満たすものを鱗片状黒鉛というものとする。
 関係式;r/t>1、t<1μm
 なお、上記直径rを、鱗片状黒鉛の粒子径とみなす。鱗片状黒鉛は、厚さtよりも直径rの方が大きく、全体の形状が扁平状になっている。鱗片状黒鉛は、ナノグラフェンともいうものとする。
 鱗片状黒鉛の直径rの平均値である平均粒子径は、25μm以下、20μm以下、15μm以下、10μm以下、8μm以下、7μm以下であることが好ましい。鱗片状黒鉛の平均粒子径は、1μm以上、3μm以上、5μm以上であることが好ましい。
 また、鱗片状黒鉛の平均粒子径は、正極活物質の平均粒子径の0.3倍以上であることが好ましく、0.5倍以上であることが好ましい。鱗片状黒鉛の平均粒子径は、正極活物質の平均粒子径の3倍以下であることが好ましく、2倍以下であることが好ましく、1.5倍以下であることが好ましく、1.25倍以下であることがより好ましい。
 鱗片状黒鉛の平均粒子径が、正極活物質の平均粒子径の0.3倍以上であると、鱗片状黒鉛の粒子径が、正極活物質の粒子径に対して小さくなりすぎず、一定の大きさを有した状態となる。そのため、正極活物質層21において、鱗片状黒鉛が複数の正極活物質を跨った状態、言い換えれば、鱗片状黒鉛が複数の正極活物質に接した状態とすることができる。これにより、導電経路を好適に確保して、正極活物質層21の内部抵抗の上昇を抑制することができる。
 また、鱗片状黒鉛の平均粒子径が、正極活物質の平均粒子径の3倍以下であることにより、鱗片状黒鉛の含有量が同じである場合に、より多くの鱗片状黒鉛を含有させることが可能になる。より多くの導電経路を確保して、正極活物質層21の内部抵抗の上昇を抑制することができる。
 鱗片状黒鉛の寸法は、公知の走査型電子顕微鏡で観察することによって測定することができる。
 鱗片状黒鉛は、ラマン分光スペクトルにより得られる黒鉛化度が、0.3以下であることが好ましく、0.25以下であることがより好ましい。黒鉛化度の評価方法については後述する。
 鱗片状黒鉛の比表面積は、20m/g以下、15m/g以下、10m/g以下、5m/g以下であることが好ましい。鱗片状黒鉛の比表面積が小さいと、炭素の結合手欠損の割合が少なくなりやすい。そのため、鱗片状黒鉛の比表面積が小さいほど、反応性が低くなりやすい。
 鱗片状黒鉛の比表面積は、例えばB.E.T法によって測定することができる。B.E.T比表面積は、比表面積・細孔径分析装置(Anton Paar社製、QUADRASORB evo)を使用して、窒素ガスによる吸着脱離等温線を測定してから1点法により求めることができる。
 正極活物質層21における鱗片状黒鉛の含有量は、特に制限されないが、1質量%以上10質量%以下であることが好ましく、1質量%以上8質量%以下であることがより好ましいく、3質量%以上8質量%以下であることがさらに好ましい。
 鱗片状黒鉛の含有量が上記数値範囲であると、正極活物質層21内における正極活物質とコバルト化合物の必要な含有量を保持しつつ、導電性を向上させることができる。
 正極活物質層21は、ラマン分光スペクトルにより得られる黒鉛化度が、0.4以下である。正極活物質層21は、ラマン分光スペクトルにより得られる黒鉛化度が、0.3以下であることが好ましい。
 (ラマン分光スペクトルによる黒鉛化度の評価)
 ラマン分光スペクトルにおいて1580~1620cm-1に検出されるピークの強度IGは、グラファイトに由来するG-Bandと称されるピークの強度である。ラマン分光スペクトルにおいて1300~1400cm-1に検出されるピークの強度IDは、炭素の結合手欠損に由来するD-Bandと称されるピークの強度である。各ピークの強度は、ピークの高さとしてもよいし、ピークの面積としてもよい。
 強度IGに対する強度IDの比Rとしては、小さい方が好ましいと考えられる。その理由は以下のとおりである。なお、上記R(以下、R値ともいう。)を、黒鉛化度ともいう。
 炭素製導電助剤を備える正極を用いた場合に、電池抵抗が比較的高くなるのは、充放電時に正極に含まれる炭素製導電助剤が分解してCOやCOなどの物質を生成することが原因であると考えられる。そして、炭素製導電助剤における結合手欠損の部分は、反応性が高い箇所と考えられる。そのため、結合手欠損の割合が低いことを意味するR値が小さい炭素製導電助剤は、R値が大きい炭素製導電助剤よりも、反応性が低いといえる。よって、R値が小さい炭素製導電助剤は分解に対する耐性に優れるため、電池抵抗の上昇要因となる物質の生成が抑制される。したがって、R値が小さい炭素製導電助剤を備える正極は、電池抵抗の向上を抑制し得るといえる。
 鱗片状黒鉛のR値が0.3以下であることにより、炭素製導電助剤である鱗片状黒鉛の腐食を抑制することができる。同様に、正極活物質層21のR値が0.4以下であることにより、鱗片状黒鉛の腐食を抑制することができる。これによって、セル抵抗の上昇を抑制することができる。
 鱗片状黒鉛の黒鉛化度であるID/IGの比Rの数値範囲は、特に制限されないが、0≦ID/IG<0.4、0<ID/IG≦0.3、0<ID/IG≦0.25、0.002≦ID/IG≦0.2、0.002≦ID/IG≦0.15、0.002≦ID/IG≦0.14、0.05≦ID/IG≦0.2、0.08≦ID/IG≦0.15、0.1≦ID/I≦0.14を例示できる。
 鱗片状黒鉛のR値とB.E.T比表面積(m/g)とを掛けた数値で、鱗片状黒鉛の反応性を評価することもできる。鱗片状黒鉛のR値とB.E.T比表面積(m/g)とを掛けた数値は、3.0以下、2.5以下、2.0以下、1.5以下、1.0以下、0.5以下であることが好ましい。
 (その他成分)
 正極活物質層21は、水酸化ニッケルを含有する正極活物質、正極活物質を被覆するコバルト化合物層、及び鱗片状黒鉛以外に、その他成分を含んでいてもよい。
 その他成分としては、鱗片状黒鉛以外の導電助剤、結着剤、添加剤、酸化防止剤等が挙げられる。
 鱗片状黒鉛以外の導電助剤としては、特に制限されないが、アセチレンブラック、カーボンブラック等が挙げられる。
 鱗片状黒鉛以外の導電助剤の含有量は、特に制限されないが、鱗片状黒鉛の含有量未満であることが好ましく、鱗片状黒鉛の含有量の半分以下であることがより好ましい。鱗片状黒鉛以外の導電助剤の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。
 結着剤は、正極活物質層21に含まれる材料を集電体の表面に繋ぎ止める役割を有する。
 結着剤としては、特に制限されず、ニッケル金属水素化物電池の電極用結着剤として用いられるものを適宜採用することができる。
 結着剤の具体例としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、スチレンブタジエンゴム等の共重合体、(メタ)アクリル酸誘導体をモノマー単位として含有するポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸エステル等の(メタ)アクリル系樹脂が挙げられる。
 結着剤の含有量は、特に制限されないが、0.1質量%以上15質量%以下であることが好ましく、0.3質量%以上10質量%以下であることがより好ましく、0.5質量%以上7質量%以下であることがさらに好ましい。
 添加剤の具体例としては、例えば酸化亜鉛、酸化イットリウム等が挙げられる。
 添加剤の含有量は、特に制限されないが、0.05質量%以上5質量%以下であることが好ましく、0.1質量%以上10質量%以下であることがより好ましく、0.1質量%以上5質量%以下であることがさらに好ましい。
 酸化防止剤としては、特に制限されず、公知の酸化防止剤を用いることができる。酸化防止剤の具体例としては、例えばリン系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、フェノール系酸化防止剤等が挙げられる。
 これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。リン系酸化防止剤と、フェノール系酸化防止剤を組み合わせて使用してもよい。アミン系酸化防止剤は、窒素化合物によるシャトル効果によって自己放電特性が低下する虞があるため、含有量は少ない、もしくは含有させないことが好ましい。
 酸化防止剤の含有量は、特に制限されないが、0.1質量%以上5質量%以下であることが好ましく、0.3質量%以上2質量%以下であることがより好ましく、0.5質量%以上1質量%以下であることがさらに好ましい。
 その他成分の合計の含有量は、特に制限されないが、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、7質量%以下であることがさらに好ましい。
 なお、本発明の正極活物質層21は、原料の水酸化ニッケル粒子に予めコバルト化合物がコートされているものを用いて作製したものを含まないものとする。
 <負極>
 負極3は、集電体としての集電箔30と、負極活物質層31とを備える。
 (集電体)
 集電体の材料、及び形状は特に制限されない。正極で用いたものと同様の材料、及び形状を採用することができる。
 (負極活物質層)
 負極活物質層31は、負極活物質として水素吸蔵合金を含む。
 水素吸蔵合金は、容易に水素と反応するものの、水素の放出能力に劣る金属Aと、水素と反応しにくいものの、水素の放出能力に優れる金属Bとの合金である。
 水素吸蔵合金としては、特に制限されず、ニッケル金属水素化物電池の負極活物質として用いられるものを適宜採用することができる。
 金属Aの具体例としては、例えばMg等の第2族元素、Sc、ランタノイド等の第3族元素、Ti、Zr等の第4族元素、V、Ta等の第5族元素、複数の希土類元素を含有するミッシュメタル(以下、Mmと略すことがある。)、Pd等が挙げられる。
 金属Bの具体例としては、例えばFe、Co、Ni、Cr、Pt、Cu、Ag、Mn、Zn、Al等が挙げられる。
 水素吸蔵合金の具体例としては、例えば六方晶CaCu型結晶構造を示すAB型、六方晶MgZn型もしくは立方晶MgCu型結晶構造を示すAB型、立方晶CsCl型結晶構造を示すAB型、六方晶MgNi型結晶構造を示すAB型、体心立方晶構造を示す固溶体型、並びに、AB型及びAB型の結晶構造が組み合わされたAB型、A型、及び、A19型等が挙げられる。
 水素吸蔵合金は、上記結晶構造の一種を単独で有するものであってもよいし、二種以上を有するものであってもよい。また、各結晶構造において、一部の金属を他の一種類、もしくは二種類以上の金属、又は元素で置換してもよい。
 水素吸蔵合金の粒子径は、特に制限されない。平均粒子径が、1μm以上40μm以下であることが好ましく、3μm以上30μm以下であることがより好ましく、4μm以上20μm以下であることがさらに好ましい。また、5μm以上15μm以下であることがさらにより好ましく、5μm以上12μm以下であることが最も好ましい。
 負極活物質層31は、正極活物質層21と同様に、導電助剤、結着剤等のその他の成分を含有していてもよい。また、負極活物質として、表面が酸化された水素吸蔵合金を用いてもよい。
 <双曲型電極>
 双曲型電極4は、集電体としての集電箔40と、集電箔40の一方の面に積層された正極活物質層41と、集電箔40の他方の面に積層された負極活物質層42とを有する。
 集電箔40、正極活物質層41、及び負極活物質層42としては、正極2や負極3で用いられたものと同様の材料、及び形状を採用することができる。双曲型電極4は、バイポーラ電極ともいう。
 <セパレータ>
 セパレータ5は、正極2、負極3、及び双曲型電極4を隔離して、これらが接触することによる短絡を防止しつつ、電解液の貯留空間、及び通路を提供するものである。
 セパレータ5の材料としては、特に制限されず、公知の材料を適宜採用することができる。
 セパレータ5の材料の具体例としては、例えばポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックス等の電気絶縁性材料で作製された多孔体、不織布、織布等が挙げられる。
 上記セパレータ5の材料は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 セパレータ5に含浸される電解液は、アルカリ金属の水酸化物が溶解した水溶液である。アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 上記アルカリ金属の水酸化物は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよいが、三種を全て含んでいることが好ましい。
 <ニッケル金属水素化物電池の製造方法>
 ニッケル金属水素化物電池1の製造方法は、正極作製工程、負極作製工程、双曲型電極作製工程、電極体作製工程、及び、過放電工程を有する。
 以下、各工程について説明する。
 (正極作製工程)
 正極作製工程は、集電箔20に、水酸化ニッケルを含有する正極活物質粉末と、金属コバルト等のコバルト化合物と、鱗片状黒鉛とを有する原料組成物を積層して、R値が0.4以下である正極活物質層21を備える正極2を作製する工程である。
 集電箔20に上記原料組成物を積層する方法としては特に制限されない。例えば、原料組成物を混練して、混練した原料組成物を集電箔20上に塗布することによって積層してもよい。また、混練した原料組成物を公知の転写シート上に塗布し、集電箔20上に転写シートと共に貼り付けた後、転写シートを除去することによって積層してもよい。また、混練した原料組成物をシート状に成形した後、シート状の原料組成物を集電箔20に貼り合わせることによって積層してもよい。正極作製工程では、原料組成物に、その他成分として、公知の溶剤や結着剤、添加剤等を添加してもよい。また、原料組成物を乾燥する工程を有していてもよい。
 原料組成物の混練は、公知の混練機を用いて行うことができる。混練条件を変更することによって、混練後の原料組成物における鱗片状黒鉛の平均粒子径を調整することができる。混練条件としては、例えば剪断力が挙げられる。
 原料組成物において、鱗片状黒鉛の平均粒子径が、正極活物質粉末の平均粒子径の0.4倍以上であることが好ましい。鱗片状黒鉛の平均粒子径が、正極活物質の平均粒子径の0.4倍以上であると、原料組成物を混練した際に、鱗片状黒鉛の粒子径が、正極活物質の粒子径に対して小さくなりすぎることを抑制しやすくなる。
 (負極作製工程)
 負極作製工程は、集電箔30に、負極活物質粉末を有する原料組成物を積層して、負極3を作製する工程である。負極作製工程は、正極作製工程と同様の方法によって作製することができる。
 (双曲型電極作製工程)
 双曲型電極作製工程は、集電箔40の一方の面に正極活物質を有する原料組成物を積層して正極を作製し、集電箔40の他方の面に負極活物質粉末を有する原料組成物を積層して負極を作製する工程である。正極、及び負極は、正極作製工程、及び負極作製工程と同様の方法によって作製することができる。
 (電極体作製工程)
 電極体作製工程は、正極2、負極3、及び双曲型電極4で、セパレータ5を挟持するとともに、セパレータ5に電解液を含浸して電極体を作製する工程である。電極体は、正極2と負極3と双曲型電極4との間にセパレータ5が配置されている。双曲型電極4は、正極と負極の機能も有していることから、電極体は、正極と負極の間にセパレータ5が配置された状態であるともいえる。
 (過放電工程)
 過放電工程は、電極体を充電した後、過放電し、さらに充電する工程である。
 過放電工程では、まず、電極体の充電を行う。電極体の充電は、セル電圧が1V以上で行う。
 次に、電極体の過放電を行う。過放電工程におけるセル電圧は、0.2V以上1.0V未満であることが好ましく、0.7V以上1.0V未満であることがより好ましい。
 上記セル電圧は、正極電位(Vvs.Hg/HgO)に換算してもよい。すなわち、過放電工程の好ましい範囲は、正極電位で表してもよい。過放電工程における正極電位は、-0.6V以上0.2V未満であることが好ましく、-0.1V以上0.2V未満であることがより好ましい。
 過放電を行なった後、再度、セル電圧が1V以上になるまで充電を行うと、水酸化コバルトは、正極活物質上に選択的に析出する。そして、正極活物質上に平均厚さが10nm以下のオキシ水酸化コバルト等のコバルト化合物(コバルトの平均価数が2価よりも大の高次コバルト酸化物)のコート層が形成される。
 また、鱗片状黒鉛の表面にも、コバルト化合物のコート層が形成される。鱗片状黒鉛上のコート層の厚さは、正極活物質上のコート層の厚さよりも薄くなっている。
 さらに、過放電工程を行なった電極体に、一対の冷却部材8と、モジュール正極22、及びモジュール負極32を配置し、拘束具9で拘束することによってニッケル金属水素化物電池1が作製される。
 上記のように、電極体に対して過放電工程を行なった後に、ニッケル金属水素化物電池1を作製することに代えて、ニッケル金属水素化物電池1を作製した後に、過放電工程を行ってもよい。
 本実施形態の作用について説明する。
 まず、ニッケル金属水素化物電池1の製造方法において、過放電工程を行なわない場合について説明する。
 図2に示すように、正極活物質層は、正極活物質としての水酸化ニッケル粒子と、金属コバルト等のコバルト化合物と、鱗片状黒鉛とが混在している。ニッケル金属水素化物電池の組み立て時に貯留空間に電解液を注入すると金属コバルトが溶解する。そして、初充電を行うと、鱗片状黒鉛の表面に水酸化コバルトが選択的に析出し、さらに水酸化コバルトが酸化されて、導電性に優れるオキシ水酸化コバルトが生成される。
 水酸化コバルトが、鱗片状黒鉛の表面に選択的に析出するメカニズムは以下のように考えられる。
 図3に示すように、初充電時において、正極活物質層における水酸化ニッケル粒子と鱗片状黒鉛とを比較すると、水酸化ニッケル粒子よりも鱗片状黒鉛の方が導電性が高い。より電子の流れやすい箇所に水酸化コバルトは析出しやすいため、鱗片状黒鉛上に水酸化コバルトが選択的に析出する。鱗片状黒鉛の周囲では、コバルトイオン(Co2+)の濃度が低下するため、さらに鱗片状黒鉛上に水酸化コバルトが析出しやすくなる。
 次に、本実施形態の過放電工程を行なう場合について説明する。
 図4、5に示すように、過放電工程を行い、セル電圧が1.0V未満になるように放電させると、オキシ水酸化コバルトが還元されて溶解する。過放電を行った後、再度、セル電圧が1Vを超えるまで充電を行うと、水酸化コバルトは、正極活物質上に選択的に析出する。
 水酸化コバルトが、正極活物質上に選択的に析出するメカニズムは以下のように考えられる。
 図6に示すように、過放電工程を行なう際、正極活物質よりも鱗片状黒鉛の方が導電性が高いため、鱗片状黒鉛よりも正極活物質の方が電位が高い状態となりやすい。水酸化コバルトはセル電圧が1V以上で析出しやすいため、より電位の高い正極活物質上に析出しやすくなる。また、正極活物質層における正極活物質の含有量は、鱗片状黒鉛の含有量よりも多いため、正極活物質層において、正極活物質は、相対的に大きな表面積を有している。そのため、水酸化コバルトは、正極活物質上において、凝集が抑制された状態で、より薄く析出する。
 図7に示すように、過放電工程を行なうことにより、鱗片状黒鉛上に析出する水酸化コバルトを減少させることができる。また、電解液に接触する水酸化ニッケル粒子の略全ての表面に、水酸化コバルトを選択的に析出させ、平均厚さ10nm以下のオキシ水酸化コバルト層を形成することができる。
 本実施形態の効果について説明する。
 (1)集電体に、水酸化ニッケルを含有する正極活物質粉末と、コバルト化合物と、鱗片状黒鉛とを有する原料組成物を積層する。そして、コバルト化合物の含有量が3質量%以下であり、R値が0.4以下である正極活物質層21、41を備える正極を作製する正極作製工程を有する。また、集電体に、負極活物質粉末を有する原料組成物を積層して、負極を作製する負極作製工程と、正極と負極の間にセパレータ5を配置するとともに、セパレータ5に電解液を含浸して電極体を作製する電極体作製工程とを有する。また、電極体を充電した後、過放電し、さらに充電する過放電工程を有する。
 過放電工程を行なうことにより、水酸化コバルトを正極活物質上に選択的に析出させることができる。さらに水酸化コバルトが酸化されることにより、導電性に優れるオキシ水酸化コバルトで正極活物質が被覆された状態となる。したがって、正極活物質層に含まれるコバルト化合物の含有量を好適に低減しつつ、セル抵抗の上昇を抑制することができる。
 (2)原料組成物において、鱗片状黒鉛の平均粒子径が、正極活物質粉末の平均粒子径の0.4倍以上である。したがって、原料組成物を混練した際に、鱗片状黒鉛の粒子径が、正極活物質粉末の粒子径に対して小さくなりすぎることを抑制しやすくなる。
 (3)集電体と、正極活物質層とを備えるニッケル金属水素化物電池用正極であって、正極活物質層は、正極活物質と、正極活物質を被覆するコバルト化合物層と、鱗片状黒鉛とを有し、正極活物質層内のコバルト化合物の含有量が3質量%以下である。また、正極活物質に対するコバルト化合物層の被覆率が50%以上であり、正極活物質層は、ラマン分光スペクトルにより得られる黒鉛化度が、0.4以下である。
 したがって、コバルト化合物層の導電助剤としての機能を保持しつつ、正極活物質層21、41における含有量を好適に低減することができる。また、鱗片状黒鉛の腐食によるセル抵抗の上昇を抑制することができる。
 (4)鱗片状黒鉛の平均粒子径が、正極活物質の平均粒子径の0.3倍以上である。
 鱗片状黒鉛の粒子径が、正極活物質の粒子径に対して小さくなりすぎず、一定の大きさを有した状態となる。そのため、正極活物質層21、41において、鱗片状黒鉛が複数の正極活物質を跨った状態、言い換えれば、鱗片状黒鉛が複数の正極活物質に接した状態とすることができる。したがって、導電経路を好適に確保して、正極活物質層21、41の内部抵抗の上昇を抑制することができる。
 (5)正極活物質層21、41における鱗片状黒鉛の含有量が、3質量%以上10質量%以下である。したがって、正極活物質層21、41内における正極活物質とコバルト化合物の必要な含有量を保持しつつ、導電性を向上させることができる。
 <変更例>
 なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○本実施形態において、ニッケル金属水素化物電池1の製造方法の製造方法は、正極作製工程と、負極作製工程と、双曲型電極作製工程と、電極体作製工程と、過放電工程とを有していたが、この態様に限定されない。双曲型電極作製工程は省略されていてもよい。すなわち、ニッケル金属水素化物電池1が、双曲型電極4を有してなく、セパレータ5を介して正極2と負極3とが配置されて電極体が形成されていてもよい。
 ○本実施形態において、過放電工程は、ニッケル金属水素化物電池1の製造方法における一つの工程として行っていたが、この態様に限定されない。過放電工程は、電極体の製造方法における一つの工程として行ってもよい。すなわち、電極体の製造方法として過放電工程を行なってもよい。同様に、正極の製造方法における一つの工程として過放電工程を行ってもよい。正極の製造方法において過放電工程を行なう際には、過放電工程を実施するための電極体を別途使用してもよい。過放電工程を経て作製した正極を用いて、新たに電極体やニッケル金属水素化物電池を製造してもよい。
 以下に、上記実施形態をさらに具体化した実施例について説明する。
 (実施例1)
 正極活物質として、平均粒子径が8μmの水酸化ニッケルを用いた。
 コバルト化合物として、平均粒子径が5μmの金属コバルトを用いた。
 鱗片状黒鉛は、平均粒子径が5μmであり、R値が0.15、B.E.T比表面積が11.7m/gであるものを用いた。
 上記水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の固形分率比率が、90.2質量%、1質量%、6質量%となるように配合した。さらに、結着剤として、ポリオレフィンを1質量%、及びカルボキシメチルセルロースを1質量%配合した。また、添加剤として、酸化亜鉛を0.3質量%、酸化イットリウムを0.5質量%配合して原料組成物を作製した。なお、上記原料組成物の配合量は、正極2を作製した後においても略一定である。すなわち、原料組成物における配合量は、正極2における含有量と略等しくなる。
 次に、原料組成物を公知の混練機を用いて混練した。混練時の剪断力は、524Paとした。混練後の原料組成物を、集電箔20上に塗布し、乾燥して、正極2を作製した。
 また、上記の負極作製工程、及び双曲型電極作製工程を行ない、負極3と双曲型電極4を作製した。作製した正極2、負極3、及び双曲型電極4を用いて、上記の電極体作製工程を行ない、電極体を作製した。作製した電極体に対して、1.2Vまで充電した後、0.9Vまで過放電した。その後、再び1.2Vまで充電した。さらに、一対の冷却部材8、モジュール正極22、モジュール負極32、及び一対の拘束具9を用いて、ニッケル金属水素化物電池1を作製した。
 (実施例2)
 原料組成物を混練する際の剪断力を131Paに変更したこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例3)
 原料組成物を混練する際の剪断力を1833Paに変更したこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例4)
 金属コバルトの配合量を2質量%、水酸化ニッケルの配合量を89.2質量%にしたこと、鱗片状黒鉛のR値が0.18であること、混練時の剪断力を100Paに変更したこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例5)
 鱗片状黒鉛として平均粒子径が7μm、R値が0.15、B.E.T比表面積が9.5m/gであるものを用いたこと以外は、実施例4と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例6)
 鱗片状黒鉛として平均粒子径が3μm、鱗片状黒鉛のR値が0.20、B.E.T比表面積が16.4m/gであるものを用いたこと以外は、実施例4と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例7)
 水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の配合量を表1のようにしたこと、及び混練時の剪断力を100Paとしたこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例8)
 正極活物質として、平均粒子径が5μmの水酸化ニッケルを用いたこと以外は、実施例7と同様な方法によってニッケル金属水素化物電池を作製した。
 (実施例9)
 正極活物質として、平均粒子径が14μmの水酸化ニッケルを用いたこと以外は、実施例7と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例10)
 混練時の剪断力を100Paとしたこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例11)
 水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の配合量を表1のようにするとともに、カルボキシメチルセルロースの配合量を1.5質量%にしたこと以外は、実施例10と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例12)
 水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の配合量を表1のようにしたこと以外は、実施例10と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例13)
 鱗片状黒鉛として平均粒子径が19μm、R値が0.08、B.E.T比表面積が4.0m/gのものを用いたこと以外は、実施例12と同様な方法によってニッケル金属水素化物電池1を作製した。
 (実施例14)
 酸化防止剤を用いたこと以外は、実施例12と同様な方法によってニッケル金属水素化物電池1を作製した。酸化防止剤としては、市販のリン系酸化防止剤であるIRGAFOS168(BASFジャパン株式会社製)を用いた。鱗片状黒鉛の配合量に対して、酸化防止剤の配合量を5質量%にした。鱗片状黒鉛とリン系酸化防止剤とを、空気雰囲気下、約200℃に加熱しながら乾式混合することによって、酸化防止剤を鱗片状黒鉛に被覆した。
 (実施例15)
 鱗片状黒鉛としてR値が0.02であるものを用いたこと以外は、実施例12と同様な方法によってニッケル金属水素化物電池1を作製した。R値が0.02である鱗片状黒鉛は、実施例1の鱗片状黒鉛を窒素雰囲気下、約2800℃で熱処理することによって調製した。
 (比較例1)
 原料組成物を混練する際の剪断力を2618Paに変更したこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池を作製した。
 (比較例2)
 原料組成物を混練する際の剪断力を2094Paに変更したこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池を作製した。
 (比較例3)
 作製した電極体に対して、過放電工程を行なわなかったこと以外は、実施例1と同様な方法によってニッケル金属水素化物電池を作製した。
 (比較例4)
 水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の配合量を表1のようにしたこと以外は、比較例3と同様な方法によってニッケル金属水素化物電池を作製した。
 実施例1~15、比較例1~4の原料組成物における、水酸化ニッケル、金属コバルト、及び鱗片状黒鉛の平均粒子径、金属コバルトと鱗片状黒鉛の粒径比、原料の配合量、鱗片状黒鉛の黒鉛化度、鱗片状黒鉛のB.E.T比表面積、R値とB.E.T比表面積を掛けた値を表1に示す。それぞれ、表1の「平均粒子径(μm)」欄、「粒径比」欄、「配合量(wt%)」欄、「鱗片状黒鉛のR値」、「BET比表面積(m/g)」、「R値×BET比表面積」欄に記載したとおりである。
 また、酸化防止剤の有無、製造工程における混練時の剪断力、過放電工程の有無は、それぞれ、表1の「酸化防止剤○:有×:無」、「混練時剪断力(Pa)」欄、「過放電工程○:有×:無」欄に記載したとおりである。
 なお、B.E.T比表面積は、比表面積・細孔径分析装置(Anton Paar社製、QUADRASORB evo)を使用して、窒素ガスによる吸着脱離等温線を測定してから1点法により求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~15、比較例1~4のニッケル金属水素化物電池において、以下の評価を行った。
 (平均粒子径、及び粒径比)
 正極活物質層21、41に含まれる正極活物質と鱗片状黒鉛の平均粒子径を、公知の走査型電子顕微鏡を用いて測定した。無作為に50個の粒子を計測し、鱗片状黒鉛の長辺を粒子径として、平均粒子径D50を算出した。結果を表2の「平均粒子径(μm)」欄、「粒径比」欄に示す。
 (正極活物質層の黒鉛化度)
 正極活物質層21、41を、公知のラマン分光器を用いて測定した。得られたラマンスペクトルから、上記の方法によって黒鉛化度を算出した。結果を表2の「正極活物質層のR値」欄に示す。
 ラマン分光器を用いたラマン分光分析の測定条件は、以下のとおりである。
 装置:Raman-11(ナノフォトン株式会社製)
 測定モード:XY-average
 対物レンズ:50倍
 レーザー波長:532nm
 レーザー出力:0.2mW
 測定時間:3秒
 回折格子:300gr/mm
 測定温度:室温
 測定雰囲気:大気
 (正極活物質を被覆するコバルト化合物層の平均厚さと、被覆率)
 正極活物質を被覆するコバルト化合物層の平均厚さと、被覆率を、TEM-EELS等で観察して測定した。
 (セル抵抗)
 25℃、充電率(SOC)60%の条件で、0.2秒間放電した際のセル抵抗を測定した。結果を表2の「0.2秒セル抵抗(mΩ)」欄に示す。
 (充放電効率)
 実施例1~15、比較例1~4のニッケル金属水素化物電池に対して、温度25℃の条件下、1/3CレートでSOC100%まで充電を行った後に、1/3Cレートで1.0Vまで放電を行った。そして、以下の式を用いて、各ニッケル金属水素化物電池の充放電効率を算出した。
 充放電効率(%)=100×(放電容量)/(充電容量)
 結果を表2の「充放電効率(%)」欄に示す。
 実施例4、12~15ニッケル金属水素化物電池は、さらに以下の評価を行った。
 (セル抵抗増加量)
 1.4万kmの耐久試験後と、耐久試験前とにおけるセル抵抗増加量を測定した。測定条件は、0℃、充電率(SOC)60%の条件で、5秒間放電した際のセル抵抗を測定した。結果を表2の「0℃5秒セル抵抗増加量(mΩ)(耐久1.4万km後-耐久前)」欄に示す。
 (評価結果)
 比較例1、2では、正極活物質層内の鱗片状黒鉛の平均粒子径が0.5μmと小さくなっていた。混練時の剪断力が高いことによって、鱗片状黒鉛が破断されて小片化したものと思われる。鱗片状黒鉛が複数の正極活物質に接した状態になりにくいため、セル抵抗が高くなったと思われる。また、鱗片状黒鉛が小片化したことによって、正極活物質層の黒鉛化度が0.4を超えていた。
 比較例3、4では、過放電工程を行なっていないため、コバルト化合物層は、主に鱗片状黒鉛上に平均厚さが10nmを超えた状態で析出していた。正極活物質に対するコバルト化合物層の被覆率は約30%であった。
 実施例1~15、比較例1、2は、コバルト化合物層の平均厚さが10nm以下であり、被覆率は70%以上であった。
 実施例1~15では、正極活物質層21、41内の鱗片状黒鉛の平均粒子径がいずれも3μm以上であり、小片化していなかった。鱗片状黒鉛が複数の正極活物質に接した状態になりやすいため、セル抵抗が低く抑えられていることが分かった。また、正極活物質層21、41の黒鉛化度は、いずれも0.4以下であった。結合手欠損の割合が小さいため、正極活物質層21、41の反応性を低くすることができた。
 また、水酸化ニッケルと鱗片状黒鉛の粒径比が0.3以上であるため、セル抵抗がより低くなっていることが分かった。また、実施例1~15では、充放電効率も94%以上と優れていた。
 実施例12では、実施例4と比べて、R値が小さい鱗片状黒鉛を使用した。すなわち、黒鉛化が進んでいる鱗片状黒鉛を使用した。黒鉛化が進んでいることによって、鱗片状黒鉛の反応性が低くなるため、セル抵抗増加量が低く抑えられていた。
 実施例13では、実施例12と比べて、平均粒子径が大きく、B.E.T比表面積が小さく、R値が小さい鱗片状黒鉛を使用した。R値とB.E.T比表面積を掛けた値は、0.32であった。一般に、鱗片状黒鉛の平均粒子径が大きいほど、もしくはB.E.T比表面積が小さいほど、黒鉛化が進んでいる傾向がある。黒鉛化が進んでいるほど、鱗片状黒鉛の反応性は低くなるため、セル抵抗増加量が低く抑えられていた。
 実施例14では、実施例12と比べて、酸化防止剤を使用した点が異なっている。酸化防止剤を使用することによって、鱗片状黒鉛の反応性は低くなるため、セル抵抗増加量が低く抑えられていた。
 実施例15では、熱処理を行った鱗片状黒鉛を使用した。実施例12と比べて、R値が小さくなっており、黒鉛化が進んでいた。R値とB.E.T比表面積を掛けた値は、0.23であった。鱗片状黒鉛の反応性がより低くなっているため、セル抵抗増加量が低く抑えられていた。
 1…ニッケル金属水素化物電池、2…正極、3…負極、4…双曲型電極、5…セパレータ、6…シール部材、7…外枠、8…冷却部材、9…拘束具、20…集電箔、21…正極活物質層、22…モジュール正極、30…集電箔、31…負極活物質層、32…モジュール負極、40…集電箔、41…正極活物質層、42…負極活物質層、80…貫通孔。

Claims (8)

  1.  集電体に、水酸化ニッケルを含有する正極活物質粉末と、コバルト化合物と、鱗片状黒鉛とを有する原料組成物を積層して、前記コバルト化合物の含有量が3質量%以下であり、ラマン分光スペクトルにより得られる黒鉛化度が0.4以下である正極活物質層を備える正極を作製する正極作製工程と、
     集電体に、負極活物質粉末を有する原料組成物を積層して、負極を作製する負極作製工程と、
     前記正極と前記負極の間にセパレータを配置するとともに、前記セパレータに電解液を含浸して電極体を作製する電極体作製工程と、
     前記電極体を充電した後、過放電し、さらに充電する過放電工程とを有することを特徴とするニッケル金属水素化物電池の製造方法。
  2.  前記原料組成物において、前記鱗片状黒鉛の平均粒子径が、前記正極活物質粉末の平均粒子径の0.4倍以上である請求項1に記載のニッケル金属水素化物電池の製造方法。
  3.  集電体と、正極活物質層とを備えるニッケル金属水素化物電池用正極であって、
     前記正極活物質層は、正極活物質と、前記正極活物質を被覆するコバルト化合物層と、鱗片状黒鉛とを有し、
     前記正極活物質層内のコバルト化合物の含有量が3質量%以下であり、
     前記正極活物質に対する前記コバルト化合物層の被覆率が50%以上であり、
     前記正極活物質層は、ラマン分光スペクトルにより得られる黒鉛化度が、0.4以下であることを特徴とするニッケル金属水素化物電池用正極。
  4.  前記コバルト化合物層の平均厚さが、10nm以下である請求項3に記載のニッケル金属水素化物電池用正極。
  5.  前記鱗片状黒鉛の平均粒子径が、前記正極活物質の平均粒子径の0.3倍以上である請求項3に記載のニッケル金属水素化物電池用正極。
  6.  前記正極活物質層における前記鱗片状黒鉛の含有量が、3質量%以上10質量%以下である請求項3に記載のニッケル金属水素化物電池用正極。
  7.  前記コバルト化合物層が、前記鱗片状黒鉛の表面にも形成されている請求項3に記載のニッケル金属水素化物電池用正極。
  8.  請求項3~7のいずれか一項に記載のニッケル金属水素化物電池用正極を備えるニッケル金属水素化物電池。
PCT/JP2023/001995 2022-01-25 2023-01-24 ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池 WO2023145701A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009261 2022-01-25
JP2022-009261 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023145701A1 true WO2023145701A1 (ja) 2023-08-03

Family

ID=87472011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001995 WO2023145701A1 (ja) 2022-01-25 2023-01-24 ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池

Country Status (1)

Country Link
WO (1) WO2023145701A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115521A (ja) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極
JP2000012011A (ja) * 1998-06-26 2000-01-14 Sanyo Electric Co Ltd ニッケル−水素蓄電池の製造方法
JP2003257425A (ja) * 2002-02-28 2003-09-12 Yuasa Corp ニッケル水素蓄電池およびその製造方法
JP2012099275A (ja) * 2010-10-29 2012-05-24 National Institute Of Advanced Industrial & Technology アルカリ蓄電池正極用粉末およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115521A (ja) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極
JP2000012011A (ja) * 1998-06-26 2000-01-14 Sanyo Electric Co Ltd ニッケル−水素蓄電池の製造方法
JP2003257425A (ja) * 2002-02-28 2003-09-12 Yuasa Corp ニッケル水素蓄電池およびその製造方法
JP2012099275A (ja) * 2010-10-29 2012-05-24 National Institute Of Advanced Industrial & Technology アルカリ蓄電池正極用粉末およびその製造方法

Similar Documents

Publication Publication Date Title
KR100582343B1 (ko) 리튬 2차전지용 전극재료, 상기 전극재료를 포함하는전극구조체, 및 상기 전극구조체를 포함하는 2차전지
EP2131422A1 (en) Positive electrode-forming member, material for the same, method for producing the same, and lithium ion secondary battery
JP4654381B2 (ja) リチウム二次電池用負極及びその製造方法
JP2014143108A (ja) 正極活物質及び該活物質を用いたリチウム二次電池
JP5440888B2 (ja) リチウム二次電池およびその製造方法
JP2013134838A (ja) 鉄−空気二次電池用の負極合剤及び負極合剤スラリー、鉄−空気二次電池用の負極及びその製造方法、並びに鉄−空気二次電池
EP4239743A1 (en) Nonaqueous electrolyte secondary battery
EP4112555A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US7736808B2 (en) Non-aqueous electrolyte secondary battery
JP5796787B2 (ja) 水素吸蔵合金及びニッケル水素蓄電池
JP5577672B2 (ja) 水素吸蔵合金電極およびそれを用いたニッケル水素電池
JP2020149821A (ja) 非水電解質二次電池
EP3958349A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2023145701A1 (ja) ニッケル金属水素化物電池の製造方法、ニッケル金属水素化物電池用正極、及びニッケル金属水素化物電池
CN117981105A (zh) 锂离子二次电池
EP4012807A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
EP3993103A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP2015130249A (ja) アルカリ蓄電池用正極およびそれを用いたアルカリ蓄電池
JP2021144906A (ja) 全固体電池用正極および全固体電池
WO2023189467A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
EP4394935A1 (en) Negative electrode active material and lithium ion battery
WO2016194589A1 (ja) リチウムイオン二次電池
EP4113664A1 (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP4394934A1 (en) Negative electrode active substance and lithium-ion battery
EP4131480A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746912

Country of ref document: EP

Kind code of ref document: A1