JP2012069530A - 発光装置及びその作製方法 - Google Patents

発光装置及びその作製方法 Download PDF

Info

Publication number
JP2012069530A
JP2012069530A JP2011262456A JP2011262456A JP2012069530A JP 2012069530 A JP2012069530 A JP 2012069530A JP 2011262456 A JP2011262456 A JP 2011262456A JP 2011262456 A JP2011262456 A JP 2011262456A JP 2012069530 A JP2012069530 A JP 2012069530A
Authority
JP
Japan
Prior art keywords
film
electrode
light
insulating film
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011262456A
Other languages
English (en)
Inventor
Masayuki Sakakura
真之 坂倉
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011262456A priority Critical patent/JP2012069530A/ja
Publication of JP2012069530A publication Critical patent/JP2012069530A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】本発明では発光素子の下部に発生した凹凸が発光素子に悪影響を及ぼすことが無い表示装置の作製方法を提供することを課題とする。もしくは、透湿性の高い膜を通しての表示発光装置内部への水の侵入を工程数の大幅な増加なしに低減できる表示装置の作製方法を提供することを課題とする。もしくはその両方を同時に満たすことが可能な表示装置及びその作製方法を提供することを課題とする。
【解決手段】上記課題を解決することが出来る本発明の表示装置は、基板上に形成された絶縁表面上に薄膜トランジスタと、発光素子とを有し、発光素子は第1の電極と第2の電極との間に発光積層体を挟んでなっており、第1の電極は薄膜トランジスタ上に形成された第1の絶縁膜上に形成され、第1の電極と絶縁膜との間には第1の電極に対応して平坦化膜が形成されていることを特徴とする。
【選択図】なし

Description

本発明は、電極間に発光性材料を挟む電極間に電流を流すことで発光する素子(発光素
子)を用いた表示装置及びその作製方法に関する。
近年、発光素子を用いた薄型軽量ディスプレイの開発が盛んに行われている。発光素子
は、電流を流すことで発光する材料を一対の電極間に挟み込むことで作製されるが、液晶
と異なりそれ自体が発光するのでバックライトなどの光源がいらないうえ、素子自体が非
常に薄いため薄型軽量ディスプレイを作製するにあたり非常に有利である。
しかし、このような大きな長所を備えながら実用化に至っていない背景の一つに、信頼
性の問題がある。有機系の材料を用いた発光素子は湿気(水)により劣化を起こすものが
多く、長期の信頼性を得にくいという欠点を有する。水により劣化した発光素子は輝度低
下を起こしたり、発光しなくなってしまったりする。これが発光素子を用いた表示装置に
おけるダークスポット(黒点)やシュリンク(表示装置端部からの輝度劣化)の原因にな
っていると考えられており、このような劣化を抑制するために様々な対策が提案されてい
る(例えば特許文献1、特許文献2参照)。
しかし、これらのような対策を適用したとしても未だ十分な信頼性を得るまでには至っ
ておらず、さらなる信頼性の向上が望まれている。
また、薄膜発光素子は非常に薄い膜を積層してなっており、発光素子の下部に凹凸が存
在すると段差部にかかる膜や配線が切れてしまい、不良となる。
特開平9−148066号公報 特開平7−169567号公報
上記のような不良の発生を抑制するためには、発光素子の下部に存在する凹凸を緩和す
れば良く、平坦化膜を凹凸が存在する表面の上に形成することで解決される。
しかし、このような平坦化膜に用いられる絶縁膜はその多くが高い透湿性を有する。そ
のため、当該絶縁膜が外部雰囲気に曝されることによりそれを介して表示装置の内部に水
が侵入する恐れがある。また、当該絶縁膜が外部雰囲気に触れることが無いようにエッチ
ング等で除去する場合は、新たにマスクが必要になり、それに伴う工程の増加が看過でき
ない。
上記課題を鑑み、本発明では発光素子の下部に発生した凹凸が発光素子に悪影響を及ぼ
すことが無い表示装置及びその作製方法を提供することを課題とする。もしくは、透湿性
の高い膜を通しての表示装置内部への水の侵入を工程数の大幅な増加なしに低減できる表
示装置の作製方法を提供することを課題とする。もしくはその両方を同時に満たすことが
可能な表示装置及びその作製方法を提供することを課題とする。
上記課題を解決することが出来る本発明の表示装置は、基板上に形成された絶縁表面上
に薄膜トランジスタと、発光素子とを有し、発光素子は第1の電極と第2の電極との間に
発光積層体を挟んでなっており、第1の電極は薄膜トランジスタ上に形成された第1の絶
縁膜上に形成され、第1の電極と絶縁膜との間には少なくとも第1の電極の位置に対応し
て平坦化膜が配置されていることを特徴とする。
上記課題を解決することが出来る本発明の表示装置は、基板上の絶縁表面上に薄膜トラ
ンジスタと、発光素子とを有し、発光素子は第1の電極と第2の電極との間に発光積層体
を挟んでなっており、第1の電極は薄膜トランジスタ上に形成された第1の絶縁膜上に形
成され、少なくとも第1の電極と絶縁膜との間には少なくとも第1の電極の位置に対応し
て平坦化膜が配置されており、基板におけるシール材形成領域より外側に平坦化膜が形成
されていないことを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜、ゲート絶縁膜、ゲート電極を形成し、ゲート電極上に第1の絶縁膜を形成し、
ゲート絶縁膜及び第1の絶縁膜をエッチングして半導体膜に達するコンタクトホールを形
成し、第1の絶縁膜上に半導体膜に電気的に接続する導電膜を形成し、第1の絶縁膜及び導
電膜を覆って、自己平坦性を有する材料により第2の絶縁膜を形成し、第2の絶縁膜をエ
ッチングし導電膜の少なくとも一部を露出させ、導電膜と電気的に接続する画素電極を形
成し、画素電極をマスクとして画素電極に覆われていない領域の第2の絶縁膜をエッチン
グにより除去し、画素電極を一方の電極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜を覆って自己平坦性を有する材料により第2の絶縁膜を形成し、第2の絶縁
膜上に画素電極を形成し、画素電極をマスクとして画素電極に覆われていない領域の第2
の絶縁膜をエッチングにより除去し、第2の絶縁膜及びゲート絶縁膜に、半導体膜に達す
るコンタクトホールを形成し、第1の絶縁膜上にコンタクトホールを介して半導体膜に電
気的に接続する配線を形成し、配線の一部は画素電極とも電気的に接続しており、画素電
極を一方の電極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜を覆って自己平坦性を有する材料により第2の絶縁膜を形成し、第2の絶縁
膜上に画素電極を形成し、第2の絶縁膜、第1の絶縁膜及びゲート絶縁膜に、半導体膜に
達するコンタクトホールを形成し、絶縁膜上にコンタクトホールを介して半導体膜に電気
的に接続する導電膜を形成し、導電膜及び画素電極をマスクとしてエッチングにより導電
膜及び画素電極に覆われていない領域の絶縁膜を除去し、導電膜の一部は画素電極とも電
気的に接続しており、画素電極を一方の電極とする発光素子を形成することを特徴とする
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜を覆って自己平坦性を有する材料により第2の絶縁膜を形成し、第2の絶縁
膜、第1の絶縁膜及びゲート絶縁膜に、半導体膜に達するコンタクトホールを形成し、第
2の絶縁膜上にコンタクトホールを介して半導体膜に電気的に接続する導電膜を形成し、
絶縁膜上に導電膜と少なくとも一部重なるように画素電極を形成し、画素電極を一方の電
極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、基板上に形成
された絶縁表面上に半導体膜、ゲート絶縁膜、ゲート電極を形成し、前記ゲート電極を覆
って第1の絶縁膜を形成し、ゲート絶縁膜及び第1の絶縁膜をエッチングして半導体膜に
達するコンタクトホールを形成し、絶縁膜上にコンタクトホールを介して半導体膜に電気
的に接続する導電膜を形成し、第1の絶縁膜及び導電膜上に自己平坦性を有する材料によ
り第2の絶縁膜を形成し、第2の絶縁膜をエッチングして導電膜の少なくとも一部を露出
させ、第2の絶縁膜及び導電膜の露出部を覆って第3の絶縁膜を形成し、第3の絶縁膜上
にマスクを形成し、エッチングすることにより導電膜に達するコンタクトホールを形成す
ると共に、上記マスクを用いて基板端部における第2の絶縁膜をエッチングにより除去し
、コンタクトホールを介して導電膜と電気的に接続する画素電極を形成し、画素電極を一
方の電極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜、ゲート絶縁膜、ゲート電極を形成し、ゲート電極上に第1の絶縁膜を形成し、
ゲート絶縁膜及び第1の絶縁膜をエッチングして半導体膜に達するコンタクトホールを形
成し、第1の絶縁膜上にコンタクトホールを介して半導体膜に電気的に接続する第1の導
電膜を形成し、1の絶縁膜及び第1の導電膜上に第2の絶縁膜を形成し、第2の絶縁膜をエ
ッチングすることにより第1の導電膜に達するコンタクトホールを形成し、第1の導電膜
の少なくとも一部と電気的に接続する第2の導電膜を形成し、第2の絶縁膜及び第2の導
電膜を覆って自己平坦性を有する材料により第3の絶縁膜を形成し、第3の絶縁膜をエッ
チングして第2の導電膜の少なくとも一部を露出させ、第3の絶縁膜上にマスクを用いて
第2の導電膜と電気的に接続する画素電極を形成し、上記マスク及び画素電極をマスクと
して上記マスク及び画素電極に覆われていない領域の第3の絶縁膜をエッチングにより除
去し、画素電極を一方の電極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜及びゲート絶縁膜に、半導体膜に達するコンタクトホールを形成し、第1の
絶縁膜上にコンタクトホールを介して半導体膜に電気的に接続する第1の導電膜を形成し
、第1の絶縁膜及び第1の導電膜を覆って第2の絶縁膜を形成し、第2の絶縁膜を覆って
自己平坦性を有する材料により第3の絶縁膜を形成し、第3の絶縁膜上にマスクを用いて
画素電極を形成し、上記マスク及び画素電極をマスクとしてエッチングにより上記マスク
及び上記画素電極に覆われていない領域の第3の絶縁膜を除去し、第2の絶縁膜に、第1
の導電膜に達するコンタクトホールを形成し、第2の絶縁膜上にコンタクトホールを介し
て第1の導電膜に電気的に接続する第2の導電膜を形成し、第2の導電膜の一部は画素電
極とも電気的に接続しており、画素電極を一方の電極とする発光素子を形成することを特
徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜及びゲート絶縁膜に、半導体膜に達するコンタクトホールを形成し、第1の
絶縁膜上にコンタクトホールを介して半導体膜に電気的に接続する第1の導電膜を形成し
、第1の絶縁膜及び第1の導電膜を覆って第2の絶縁膜を形成し、第2の絶縁膜を覆って
自己平坦性を有する材料により第3の絶縁膜を形成し、第3の絶縁膜上にマスクを用いて
画素電極を形成し、第3の絶縁膜及び第2の絶縁膜に、第1の導電膜に達するコンタクト
ホールを形成し、第3の絶縁膜上にコンタクトホールを介して第1の導電膜に電気的に接
続する第2の導電膜をマスクを用いて形成し、画素電極及び第2の導電膜をマスクとして
画素電極及び第2の導電膜に覆われていない領域の第3の絶縁膜を除去し、画素電極を一
方の電極とする発光素子を形成することを特徴とする。
上記課題を解決することが出来る本発明の表示装置の作製方法の一つは、絶縁表面上に
半導体膜を形成し、半導体膜を覆ってゲート絶縁膜を形成し、ゲート絶縁膜及び半導体膜
上にゲート電極を形成し、ゲート絶縁膜及びゲート電極を覆って第1の絶縁膜を形成し、
第1の絶縁膜及びゲート絶縁膜に、半導体膜に達するコンタクトホールを形成し、第1の
絶縁膜上にコンタクトホールを介して半導体膜に電気的に接続する第1の導電膜を形成し
、第1の絶縁膜及び第1の導電膜を覆って第2の絶縁膜を形成し、第2の絶縁膜を覆って
自己平坦性を有する材料により第3の絶縁膜を極薄く形成し、第3の絶縁膜及び第2の絶
縁膜に、第1の導電膜に達するコンタクトホールを形成し、第3の絶縁膜上にコンタクト
ホールを介して第1の導電膜に電気的に接続する第2の導電膜をマスクを用いて形成し、
第2の導電膜に接するように画素電極を形成し、画素電極を一方の電極とする発光素子を
形成することを特徴とする。
本発明の表示装置の作製方法により発光素子の下部に発生した凹凸が発光素子に悪影響
を及ぼすことが無い発光装置を作製することが可能となる。また、透湿性の高い膜を通し
ての発光装置内部への水の侵入を工程数の大幅な増加なしに低減できる発光装置を作製す
ることが可能となる。もしくはその両方を同時に満たすことが可能な発光装置を作製する
ことが可能となる。
本発明の表示装置の作製方法を表す図(実施の形態1)。 本発明の表示装置の作製方法を表す図(実施の形態1)。 本発明の表示装置の作製方法を表す図(実施の形態1)。 本発明の表示装置の作製方法を表す図(実施の形態1)。 本発明の表示装置の作製方法を表す図(実施の形態2)。 本発明の表示装置の作製方法を表す図(実施の形態2)。 本発明の表示装置の作製方法を表す図(実施の形態3)。 本発明の表示装置の作製方法を表す図(実施の形態3)。 本発明の表示装置の作製方法を表す図(実施の形態4)。 本発明の表示装置の作製方法を表す図(実施の形態4)。 本発明の表示装置の作製方法を表す図(実施の形態5)。 本発明の表示装置の作製方法を表す図(実施の形態5)。 本発明の表示装置の作製方法を表す図(実施の形態6)。 本発明の表示装置の作製方法を表す図(実施の形態6)。 本発明の表示装置の作製方法を表す図(実施の形態7)。 本発明の表示装置の作製方法を表す図(実施の形態7)。 本発明の表示装置の作製方法を表す図(実施の形態8)。 本発明の表示装置の作製方法を表す図(実施の形態8)。 本発明の表示装置の作製方法を表す図(実施の形態9)。 本発明の表示装置の作製方法を表す図(実施の形態9)。 本発明の表示装置の作製方法で作製された発光装置を例示した図(実施の形態1乃至4)。 本発明の表示装置の作製方法で作製された液晶表示装置を例示した図(実施の形態1乃至4)。 本発明の表示装置の作製方法で作製された表示装置を搭載したパネルの構成の一例を説明する図。 本発明の表示装置の作製方法で作製された表示装置を搭載した電子機器を例示した図。 表示装置に搭載される画素回路の一例を示す図。 表示装置に搭載される保護回路の一例を示す図。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多く
の異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱すること
なくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従っ
て、本実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本発明の表示装置の作製方法について図1〜図4を参照しながら説明する。
まず、基板100上に第1の下地絶縁膜101、第2の下地絶縁膜102を形成した後
、さらに半導体層を第2の下地絶縁膜102上に形成する。半導体層は、フォトレジスト
などのマスク105、106を用いてエッチングし、島状の半導体層103、104を形
成する。(図1(A))
基板100の材料としてはガラス、石英やプラスチック(ポリイミド、アクリル、ポリ
エチレンテレフタラート、ポリカーボネート、ポリアクリレート、ポリエーテルスルホン
など)等を用いることができる。これら基板は必要に応じてCMP等により研磨してから
使用しても良い。本実施の形態においてはガラス基板を用いる。
第1の下地絶縁膜101、第2の下地絶縁膜102は基板100中のアルカリ金属やア
ルカリ土類金属など、半導体層の特性に悪影響を及ぼすような元素が半導体層103、1
04中に拡散するのを防ぐ為に設ける。材料としては酸化ケイ素、窒化ケイ素、窒素を含
む酸化ケイ素、酸素を含む窒化ケイ素などを用いることができる。本実施の形態では第1
の下地絶縁膜101を窒化ケイ素で、第2の下地絶縁膜102を酸化ケイ素で形成する。
本実施の形態では、下地絶縁膜を第1の下地絶縁膜101、第2の下地絶縁膜102の2
層で形成したが、単層で形成してもかまわないし、2層以上の多層であってもかまわない
。また、基板からの不純物の拡散が問題にならないようであれば下地絶縁膜は設ける必要
がない。
続いて形成される半導体層は本実施の形態では非晶質ケイ素膜をレーザ結晶化して得る
。第2の下地絶縁膜102上に非晶質ケイ素膜を25〜100nm(好ましくは30〜6
0nm)の膜厚で形成する。作製方法としては公知の方法、例えばスパッタ法、減圧CV
D法またはプラズマCVD法などが使用できる。その後、500℃で1時間の加熱処理を
行い水素を形成したケイ素膜中から放出する。
続いてレーザ照射装置を用いて非晶質ケイ素膜を結晶化して結晶質ケイ素膜を形成する
。本実施の形態のレーザ結晶化ではエキシマレーザを使用し、発振されたレーザビームを
光学系を用いて線状のビームスポットに加工し非晶質ケイ素膜に照射することで結晶質ケ
イ素膜とし、半導体層として用いる。
非晶質ケイ素膜の他の結晶化の方法としては、他に、熱処理のみにより結晶化を行う方
法や結晶化を促進する触媒元素を用い加熱処理を行う事によって行う方法もある。結晶化
を促進する元素としてはニッケル、鉄、パラジウム、スズ、鉛、コバルト、白金、銅、金
などが挙げられ、このような元素を用いることによって熱処理のみで結晶化を行った場合
に比べ、低温、短時間で結晶化が行われるため、ガラス基板などへのダメージが少ない。
熱処理のみにより結晶化をする場合は、基板100を熱に強い石英基板などにすればよい
続いて、必要に応じて半導体層にトランジスタのゲート電圧のしきい値をコントロール
する為に微量の不純物添加、いわゆるチャネルドーピングを行う。要求されるしきい値を
得る為にN型もしくはP型を呈する不純物(リン、ボロンなど)をイオンドーピング法な
どにより添加する。
その後、図1(A)に示すように半導体層を所定の形状にパターニングし、島状の半導
体層103、104を得る。パターニングは半導体層にフォトレジストを塗布し、露光及
び現像により所定のマスク形状を形成し、焼成して、半導体層上にマスクを形成し、この
マスク105、106を用いてエッチングをすることにより行われる。
続いて半導体層103、104を覆うようにゲート絶縁膜107を形成し、次いで、ゲ
ート絶縁膜107上に第1の導電膜108及び第2の導電膜109を成膜する(図1(B
))。ゲート絶縁膜107はプラズマCVD法またはスパッタ法を用いて膜厚を40〜1
50nmとしてケイ素を含む絶縁膜で形成する。本実施の形態では酸化ケイ素を用いて形
成する。
第1の導電膜108、第2の導電膜109はタンタル、タングステン、チタン、モリブ
デン、アルミニウム、銅、クロム、ニオブから選ばれた元素、または上記元素を主成分と
する合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピ
ングした多結晶ケイ素膜に代表される半導体膜を用いてもよい。また、AgPdCu合金
を用いてもよい。
次に、ゲート絶縁膜107上の半導体層103、104と一部が重なる位置に、第1の
導電膜108、第2の導電膜109をエッチングしてゲート電極を形成する(図1(C)
)。本実施の形態では、ゲート絶縁膜107上に第1の導電膜108として膜厚30nm
の窒化タンタル(TaN)とその上に第2の導電膜109として膜厚370nmのタング
ステン(W)を形成する。なお、本実施の形態では第1の導電膜108を膜厚30nmの
TaN、第2の導電膜109を膜厚370nmのWとしたが、膜厚は第1の導電膜108
が20〜100nm、第2の導電膜109が100〜400nmの範囲で形成すれば良い
。また、本実施の形態では、2層の積層構造としたが、1層としてもよいし、もしくは3
層以上の積層構造としてもよい。
次に、第1の導電膜108、第2の導電膜109をエッチングしてゲート電極及び配線
を形成するため、フォトリソグラフィーにより露光工程を経てレジストなどによるマスク
114、115を形成する。第1のエッチング処理では第1のエッチング条件と第2のエ
ッチング条件で2度エッチングを行う。エッチング条件は適宜選択すれば良いが、本実施
の形態では以下の方法でエッチングを行う。
第1のエッチング処理はICP(誘導結合プラズマ)エッチング法を使用する。第1の
エッチング条件として、エッチング用ガスにCF4、Cl2とO2を用い、それぞれのガス
流量比を17:17:10とし、1.5Paの圧力でコイル型電極に500WのRF(1
3.56MHz)電力を投入してプラズマを生成してエッチングを行う。基板側(試料ス
テージ)にも120WのRF(13.56MHz)電力を投入し、実質的に負の自己バイ
アス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電
膜の端部をテーパー形状とする。
続いて、第2のエッチング条件に移ってエッチングを行う。レジストなどによるマスク
を除去せず、残したまま、エッチング用ガスにCF4とCl2を用い、それぞれのガス流量
比を20:20、圧力1.5Paでコイル型の電極に500WのRF(13.56MHz
)電力を投入してプラズマを生成して約17秒程度のエッチングを行う。基板側(試料ス
テージ)にも10WのRF(13.56MHz)電力を投入し、実質的に負の自己バイア
ス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜
とも同程度にエッチングされる。この第1のエッチング処理においては、基板側に印加さ
れたバイアス電圧の効果により第1の導電膜110、111及び第2の導電膜112、1
13の端部はテーパー状となる。
次いで、レジストなどによるマスクを除去せずに第2のエッチング処理を行う(図1(
D))。第2のエッチング処理では、エッチング用のガスにSF6とCl2とO2を用い、
それぞれのガス流量比を16/8/30とし、2.0Paの圧力でコイル側の電力に70
0WのRF(13.56MHz)電力を投入してプラズマを発生して25秒程度エッチン
グを行う。基板側(試料ステージ)には10WのRF(13.56MHz)電力を投入し
、実質的に負の自己バイアス電圧を印加した。このエッチング条件ではW膜が選択的にエ
ッチングされ、第2形状の導電膜を形成した。このとき第1の導電膜はほとんどエッチン
グされない。第1、第2のエッチング処理によって第1の導電膜116、117、第2の
導電膜118、119よりなるゲート電極が形成される。
そして、レジストなどによるマスクを除去せず、第1のドーピング処理を行う。これに
より、結晶性半導体層にN型を付与する不純物が低濃度に添加される。第1のドーピング
処理はイオンドープ法又はイオン注入法で行えば良い。イオンドープ法の条件はドーズ量
が1×1013〜5×1014atoms/cm2、加速電圧が40〜80kVで行えばよい
。本実施例では加速電圧を50kVとして行った。N型を付与する不純物元素としては1
5族に属する元素を用いることができ、代表的にはリン(P)または砒素(As)が用い
られる。本実施の形態ではリン(P)を使用した。その際、第1の導電膜116、117
をマスクとして、自己整合的に低濃度の不純物が添加されている第1の不純物領域120
、121(N--領域)が形成される。
続いて、レジストなどによるマスク114、115を除去する。そして新たにレジスト
などによるマスク122を形成して第1のドーピング処理よりも高い加速電圧で、第2の
ドーピング処理を行う(図1(E))。第2のドーピング処理もN型を付与する不純物を
添加する。イオンドープ法の条件はドーズ量を1×1013〜3×1015atoms/cm
2、加速電圧を60〜120kVとすれば良い。本実施の形態ではドーズ量を3.0×1
15atoms/cm2とし、加速電圧を65kVとして行った。第2のドーピング処理
は第2の導電膜118、119を不純物元素に対するマスクとして用い、第1の導電膜1
16、117の下方に位置する半導体層にも不純物元素が添加されるようにドーピングを
行う。
第2のドーピングを行うと、半導体層の第1の導電膜116、117と重なっている部
分のうち、第2の導電膜118、119に重なっていない部分もしくはマスクに覆われて
いない部分に、第2の不純物領域124(N-領域、Lov領域)が形成される。第2の
不純物領域124には1×1018〜5×1019atoms/cm3の濃度範囲でN型を付
与する不純物が添加される。また、半導体膜のうち、第1の導電膜にもマスクにも覆われ
ていない部分(第3の不純物領域123:N+領域)には1×1019〜5×1021ato
ms/cm3の範囲で高濃度にN型を付与する不純物が添加される。
なお、本実施の形態では2回のドーピング処理により各不純物領域を形成したが、これ
に限定されることは無く、適宜条件を設定して、一回もしくは複数回のドーピングによっ
て所望の不純物濃度を有する不純物領域を形成すれば良い。
次いで、レジストなどによるマスクを除去した後、新たにレジストなどによるマスク1
25を形成し、第3のドーピング処理を行う(図2(A))。第3のドーピング処理によ
り、Pチャネル型TFTとなる半導体層に第1の導電型及び第2の導電型とは逆の導電型
を付与する不純物元素が添加された第4の不純物領域126(P+領域)及び第5の不純
物領域127(P-領域)が形成される。
第3のドーピング処理では、レジストなどによるマスク125に覆われておらず、更に
第1の導電膜117とも重なっていない部分に、第4の不純物領域126(P+領域)が
形成され、レジストなどによるマスクに覆われておらず、且つ第1の導電膜と重なってお
り、第2の導電膜と重なっていない部分に第5の不純物領域127(P-領域)が形成さ
れる。P型を付与する不純物元素としては、ホウ素(B)、アルミニウム(Al)、ガリ
ウム(Ga)など周期律表第13族の元素が知られている。
本実施例では、第4の不純物領域126及び第5の不純物領域127を形成するP型の
不純物元素としてはホウ素(B)を選択し、ジボラン(B26)を用いたイオンドープ法
で形成した。イオンドープ法の条件としては、ドーズ量を1×1016atoms/cm2
とし、加速電圧を80kVとした。
なお、第3のドーピング処理の際には、Nチャネル型TFTを形成する半導体層はレジ
ストなどによるマスク125に覆われている。
ここで、第1及び第2のドーピング処理によって、第4の不純物領域126(P+領域
)及び第5の不純物領域127(P-領域)にはそれぞれ異なる濃度でリンが添加されて
いる。しかし、第4の不純物領域126(P+領域)及び第5の不純物領域127(P-
域)のいずれの領域においても、第3のドーピング処理によって、P型を付与する不純物
元素の濃度が1×1019〜5×1021atoms/cm2となるようにドーピング処理さ
れる。そのため、第4の不純物領域(P+領域)及び第5の不純物領域(P-領域)は、P
チャネル型TFTのソース領域及びドレイン領域として問題無く機能する。
なお、本実施の形態では、第3のドーピング1回で、第4の不純物領域126(P+
域)及び第5の不純物領域127(P-領域)を形成したが、これに限定はされない。ド
ーピング処理の条件によって適宜複数回のドーピング処理を行って第4の不純物領域12
6(P+領域)及び第5の不純物領域127(P-領域)を形成してもよい。
これにより半導体層、ゲート絶縁膜、ゲート電極よりなる薄膜トランジスタが形成され
る。また、半導体層103、ゲート絶縁膜107、ゲート電極116、118からなる駆
動回路部のTFT146(nチャネル型)と半導体層104、ゲート絶縁膜107、ゲー
ト電極117、119からなる画素部用(発光素子の駆動用)TFT147(pチャネル
型)が形成される。なお、薄膜トランジスタの作製方法についてはこれに限らず、適宜公
知の作製方法により作製すればよい。また、TFTの極性についても使用者が自由に設計
することが可能である。
本実施の形態では、レーザ結晶化を使用して結晶化した結晶性ケイ素膜を用いたトップ
ゲートの薄膜トランジスタを作製しているが、非晶質半導体膜を用いたボトムゲート型の
薄膜トランジスタを画素部に用いることも可能である。非晶質半導体はケイ素だけではな
くケイ素ゲルマニウムも用いることができ、ケイ素ゲルマニウムを用いる場合、ゲルマニ
ウムの濃度は0.01〜4.5atom%程度であることが好ましい。
また非晶質半導体中に0.5nm〜20nmの結晶を粒観察することができる微結晶半
導体膜(セミアモルファス半導体)を用いてもよい。また0.5nm〜20nmの結晶を
粒観察することができる微結晶はいわゆるマイクロクリスタル(μc)とも呼ばれている
セミアモルファス半導体であるセミアモルファスケイ素(SASとも表記する)は、珪
化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体として
は、SiH4であり、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、S
iF4などを用いることができる。この珪化物気体を水素、水素とヘリウム、アルゴン、
クリプトン、ネオンから選ばれた一種または複数種の希ガス元素で希釈して用いることで
SASの形成を容易なものとすることができる。希釈率は10倍〜1000倍の範囲で珪
化物気体を希釈することが好ましい。グロー放電分解による被膜の反応生成は0.1Pa
〜133Paの範囲の圧力で行えば良い。グロー放電を形成するための電力は1MHz〜
120MHz、好ましくは13MHz〜60MHzの高周波電力を供給すれば良い。基板
加熱温度は300度以下が好ましく、100〜250度の基板加熱温度が好適である。
このようにして形成されたSASはラマンスペクトルが520cm-1よりも低波数側に
シフトしており、X線回折ではSi結晶格子に由来するとされる(111)、(220)
の回折ピークが観測される。未結合手(ダングリングボンド)のを終端する為に、水素ま
たはハロゲンを少なくとも1原子%またはそれ以上含ませている。膜中の不純物元素とし
て、酸素、窒素、炭素などの大気成分の不純物は1×1020cm-1以下とすることが望ま
しく、特に、酸素濃度は5×1019/cm3以下、好ましくは1×1019/cm3以下とす
る。TFTにしたときのμ=1〜10cm2/Vsecとなる。
また、このSASをレーザでさらに結晶化して用いても良い。
続いて、ゲート電極、ゲート絶縁膜107を覆って絶縁膜(水素化膜)128を窒化ケ
イ素により形成し、410℃で1時間程度加熱を行って、不純物元素の活性化及び半導体
層103、104の水素化を行う。続いて絶縁膜(水素化膜)128を覆う層間絶縁膜1
29を形成する(図2(B))。層間絶縁膜129を形成する材料としては酸化ケイ素や
窒化ケイ素、Low−k材料などの無機絶縁膜を用いるとよい。本実施の形態では酸化ケ
イ素膜を層間絶縁膜として形成する。
次に、半導体層103、104に至るコンタクトホールを開口する(図2(C))。コ
ンタクトホールはレジストなどによるマスク130を用いて、半導体層103、104が
露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ドライ
エッチングどちらでも形成することができる。なお、条件によって一回でエッチングを行
ってしまっても良いし、複数回に分けてエッチングを行っても良い。また、複数回でエッ
チングする際は、ウエットエッチングとドライエッチングの両方を用いても良い。
そして、当該コンタクトホールや層間絶縁膜を覆う導電膜を形成する。当該導電膜をレジ
ストなどによるマスク131を用いて所望の形状に加工し、導電膜よりなる配線、ソース
電極またはドレイン電極となる導電膜132〜136などが形成される(図2(D))。
この導電膜はアルミニウム、銅などの単体金属やアルミニウムと炭素とチタンの合金、ア
ルミニウムと炭素とニッケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウ
ム合金に代表される金属合金もしくは化合物等の単層でも良いが、本実施の形態では下か
らモリブデン、アルミニウム、モリブデンの積層構造とする。積層構造としてはチタン、
アルミニウム、チタンやチタン、窒化チタン、アルミニウム、チタンもしくはチタン、ア
ルミニウム合金といった構造でも良い。
その後、導電膜132〜136及び層間絶縁膜129を覆って平坦化膜137を形成す
る(図2(E))。平坦化膜137の材料としてはその膜を形成することで下層に形成さ
れた段差を緩和することのできる自己平坦性を有したアクリル、ポリイミド、シロキサン
などの塗布膜が好適に利用できる。すなわち、下層に形成された層の段差よりも小さな段
差を有する膜を形成できる材料を好適に利用できる。また、一度形成した膜をリフローや
研磨することによって段差を緩和した膜であっても良い。これらの膜を総称して以下平坦
化膜と呼ぶこととする。本実施の形態ではシロキサンを平坦化膜137として用いる。こ
のシロキサンなどの自己平坦性を有する絶縁膜を塗布することで、半導体層103、10
4のリッジが転写されて現れていた凹凸や、層間絶縁膜の僅かな凹凸、導電膜132〜1
36を形成する際などに発生した下層の凹凸を緩和し、平坦化することができる。尚、本
発明においてシロキサンとは、珪素と酸素との結合で骨格構造が構成され、置換基として
少なくとも水素を含む有機基(例えばアルキル基、アリール基)、フルオロ基、又は少な
くとも水素を含む有機基及びフロオロ基を有する材料のことを指すこととする。
続いて平坦化膜137をエッチバックして画素部用(発光素子の駆動用)TFT147
のドレイン電極である導電膜136の表面を露出させる(図3(A))。これにより、表
面の平坦性を保ったまま、且つ、新たにマスクを設けることなく電極とのコンタクトを取
ることができるようになり、大幅な工程数の増加無しに下層の凹凸が原因で発生する不良
を低減させることができるようになる。
そして平坦化膜137と導電膜136の露出部を覆って、透光性を有する導電膜を形成
したのち、当該透光性を有する導電膜をレジストなどによるマスク139を用いてエッチ
ングにより加工し、薄膜発光素子の第1の電極(陽極)140を形成する(図3(B))
。ここで第1の電極(陽極)140は導電膜136と電気的に接触している。第1の電極
(陽極)140の材料としては、仕事関数の大きい(仕事関数4.0eV以上)金属、合
金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。例えばIT
O(indium tin oxide)、ケイ素を含有するITO(ITSO)、酸化
インジウムに2〜20[atom%]の酸化亜鉛(ZnO)を混合したIZO(indi
um zinc oxide)、酸化亜鉛、酸化亜鉛にガリウムを含有したGZO(Ga
lium Zinc Oxide)の他、金(Au)、白金(Pt)、ニッケル(Ni)
、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(
Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(TiN)等を用い
ることができる。本実施の形態ではITSOを第1の電極(陽極)140として用いた。
第1の電極(陽極)140を形成したら、レジストなどによるマスク139を除去せず
、第1の電極(陽極)140及びマスク139をマスクとして平坦化膜137をエッチン
グにより除去する(図3(C))。この工程で平坦化膜137を除去することで、第1の
電極140に対応して平坦化膜が残存し第1の電極(陽極)140の下部、すなわち発光
素子が形成されている部分は平坦化されつつ、それ以外の部分における平坦化膜137は
除去されるので、シール材形成領域より外側に平坦化膜が露出せず、外部雰囲気に平坦化
膜137が曝されなくなる。このため、平坦化膜137を介したパネル内への水の侵入が
なくなり、水による発光素子の劣化を低減することが可能となる。また、発光素子の第1
の電極(陽極)140の下部は平坦化膜137が残存している為、平坦化されており、発
光素子の下部に存在する凹凸起因の不良の発生を低減させることができるようになる。な
お、この工程は新たに専用のマスクを必要とせず、第1の電極(陽極)140及び陽極を
作製する際に用いられたレジストなどによるマスク139を用いて行われるため、新たに
フォトリソグラフィーなどの工程を設ける必要が無く、大幅な工程数の増加なしに陽極の
平坦化を達成することができる。
このように形成された素子基板を用い、第1の電極(陽極)140を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い物となる。な
お、発光素子の第1の電極(本実施の形態では第1の電極(陽極)140)が有する凹凸
は1画素内のP−V値(最大高低差)が30nm以下、好ましくは15nm以下、さらに
好ましくは10nm以下であることが望ましい。第1の電極が有する凹凸の一画素内のP
−V値が上記範囲であることで、駆動時間の累積に伴って増加する欠陥(非発光領域の出
現、及び拡大などをいう。以下増加型欠陥という)を大幅に低減することが可能となる。
以下に本実施の形態によって作製した第1の電極(陽極)140を用いた発光素子及び
表示装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関しては
これに限定されない。
層間絶縁膜129及び第1の電極(陽極)140を覆って有機材料もしくは無機材料か
らなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)140の一部が露出す
るように加工し、隔壁141を形成する(図3(D))。隔壁141の材料としては、感
光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感光性を有
さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料にチタンブ
ラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散し、隔壁
141を黒くすることでブラックマトリクスとして用いても良い。隔壁141の第1の電
極(陽極)140に向かう端面は曲率を有し、当該曲率が連続的に変化するテーパー形状
をしていることが望ましい。
なお、隔壁141の第1の電極140側に向かう端面と、第1の電極140とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで、約4
3度の好ましい角度を得ることができる。また、パターニングのための露光、現像を行っ
た後、焼成を行う前に全面を再度露光すると、さらに当該角度を小さく形成することも可
能となる。
次に、隔壁141から露出した第1の電極(陽極)140を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図4(
A))。これによって第1の電極(陽極)140と発光積層体142と第2の電極(陰極
)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形成
に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、合
金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰極
材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類金
属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合金
を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極と
して用いた。
また、発光素子の第1の電極と発光積層体との間にバッファ層を形成しても良い。
バッファ層は、発光素子の第1の電極が陽極である場合には、正孔輸送性の材料と当該
正孔輸送性の材料から電子を受け取ることができる電子受容性の材料の両方を含む層やP
型半導体の層、もしくはP型半導体を含む層により形成する。上記正孔輸送性の材料とし
ては例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニル−アミノ]−ビフェ
ニル(略称:α−NPD)や4,4’−ビス[N−(3−メチルフェニル)−N−フェニ
ル−アミノ]−ビフェニル(略称:TPD)や4,4’,4’’−トリス(N,N−ジフ
ェニル−アミノ)−トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリ
ス[N−(3−メチルフェニル)−N−フェニル−アミノ]−トリフェニルアミン(略称
:MTDATA)や4,4’−ビス(N−(4−(N,N−ジ−m−トリルアミノ)フェ
ニル)−N−フェニルアミノ)ビフェニル(略称:DNTPD)などの芳香族アミン系(
即ち、ベンゼン環−窒素の結合を有する)の化合物やフタロシアニン(略称:H2Pc)
、銅フタロシアニン(略称:CuPc)、バナジルフタロシアニン(略称:VOPc)等
のフタロシアニン化合物を用いることができる。また、これら正孔輸送性の材料から電子
を受け取ることができる電子受容性の材料としては、例えば、モリブデン酸化物、バナジ
ウム酸化物、7,7,8,8,−テトラシアノキノジメタン(略称:TCNQ)、2,3
−ジシアノナフトキノン(略称:DCNNQ)、2,3,5,6−テトラフルオロ−7,
7,8,8,−テトラシアノキノジメタン(略称:F4−TCNQ)等が挙げられるが、
正孔輸送性の材料との組み合わせによってそれぞれ電子受容が可能な電子受容性の材料を
選択する。また、P型半導体としてはモリブデン酸化物、バナジウム酸化物、ルテニウム
酸化物、コバルト酸化物、ニッケル酸化物及び銅酸化物などの金属酸化物を用いることが
できる。
また、発光素子の第1の電極が陰極である場合には、電子輸送性の材料と当該電子輸送
性の材料に電子を供与することができる電子供与性の材料の両方を含む層やN型半導体の
層、もしくはN型半導体を含む層により形成する。上記電子輸送性の材料としては例えば
、トリス(8−キノリノラト)アルミニウム(略称:Alq3)、トリス(4−メチル−
8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ
[h]−キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリ
ノラト)−4−フェニルフェノラト−アルミニウム(略称:BAlq)等キノリン骨格ま
たはベンゾキノリン骨格を有する金属錯体等からなる材料を用いることができる。また、
この他、ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(略称:Zn
(BOX)2)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称
:Zn(BTZ)2)などのオキサゾール系、チアゾール系配位子を有する金属錯体など
の材料も用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−
5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD
)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾ
ール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル
)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TA
Z)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4
−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナン
トロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等を用いることがで
きる。また、これら電子輸送性の材料に電子を与えることができる電子供与性の材料とし
ては、例えば、リチウム、セシウムなどのアルカリ金属及びそれらの酸化物、マグネシウ
ム、カルシウムなどのアルカリ土類金属及びそれらの酸化物、エルビウム、イッテルビウ
ムなどの希土類金属などを用いることができるが、電子輸送性の材料との組み合わせによ
ってそれぞれ電子供与が可能な電子供与性の材料を選択する。また、N型半導体としては
金属酸化物などの金属化合物も用いることができ、亜鉛酸化物、亜鉛硫化物、亜鉛セレン
化物、チタン酸化物などを用いることができる。
これらの材料により形成されるバッファ層は、駆動電圧を大幅に上昇させることなく厚
膜化することが可能であるため、バッファ層を形成することによって第1の電極の凹凸の
影響をさらに低減することが可能となり、増加型欠陥をさらに抑制することが可能となる
。バッファ層を形成した場合は、バッファ層の厚みをdnmとした場合、発光素子の第1
の電極の画素部におけるP−V値が30nm+d×0.2nm以下、好ましくは15nm
+d×0.2nm以下、さらに好ましくは10nm+d×0.2nm以下であると良好に
凹凸を緩和することができる。
なお、バッファ層は発光積層体と第2の電極(本実施の形態では第2の電極(陰極)1
43)との間に設けても良い。
なお、本実施の形態では、発光素子の駆動用TFTのドレイン電極となる導電膜136
に電気的に接触している電極は陽極であったが、導電膜136に電気的に接触している電
極は陰極であっても良い。
その後、プラズマCVD法により窒素を含む酸化ケイ素膜をパッシベーション膜として
形成してもよい。窒素を含む酸化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸化窒化ケイ素膜、またはSiH4、N2Oから作製され
る酸化窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形成される酸化
窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される酸化窒化水素化
ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定されるもの
ではなく、他のケイ素を含む絶縁膜を積層構造として用いても良い。また、窒化炭素膜と
窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ素膜やダイヤモンドライク
カーボン膜を代わりに形成してもよい。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図4(B))。対向基板145を封止に用いる場合は、絶縁性のシール材144によ
り貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活性
気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を貼
り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シー
ル材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても良
い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
また、本発明の表示装置の作製方法を他の形状の薄膜トランジスタを有する発光装置に
適用した例を図21(A)に示す。図21(A)と図4(B)とはゲート絶縁膜の構成及
びゲート電極の形状に違いがある。図21(A)において、ゲート絶縁膜は第1のゲート
絶縁膜400及び第2のゲート絶縁膜401の2層よりなっている。また、ゲート電極4
02はその端部にテーパー形状を有する単層構造となっている。第1のゲート絶縁膜40
0は半導体層と接する為、絶縁性に優れ、トラップ準位も少ない酸化ケイ素系の膜で作製
することが望ましく、また第2のゲート絶縁膜401は窒化ケイ素系の膜とすることでゲ
ート電極402をMo等の比較的酸化されやすい材料で形成したとしても、安定に動作さ
せることができるようになる。また、シール材144は層間絶縁膜129と重畳している
また、本発明の表示装置の作製方法を用いて作製した液晶表示装置の一例について図2
2(A)に示す。液晶表示装置は図3(C)の状態まで作製した後、絶縁膜を形成してパ
ターニングすることでスペーサ301を形成してから、露出表面の全面に配向膜302を
形成し、ラビング処理を行う。
続いてシール材144を液滴吐出法などにより形成し、液晶300を滴下、対向基板3
06により液晶300を封入する。液晶の封入の方法はシール材144のパターンを閉じ
たパターンとし、液晶滴下装置により液晶を滴下し封入しても良いし、シール材144の
パターンに開口部を形成しておき、対向基板306を固着した後、毛細管現象を利用した
ディップ式(くみ上げ式)により行っても良い。また、シール材144は層間絶縁膜12
9と重畳している。
対向基板306には予め対向基板306側から対向電極304と配向膜303を設けて
おく。
図22(A)でスペーサ301は絶縁膜をパターニングすることによって形成しているが
、別途用意した球状のスペーサを配向膜302上に分散してセルギャップの制御を行うよ
うにしても良い。
このようにして本発明の表示装置の作製方法を適用し、液晶表示装置を形成することが
可能となる。
(実施の形態2)
実施の形態1とは異なる本発明の表示装置の作製方法について図5、図6を参照しなが
ら説明する。工程の途中までは実施の形態1と同様であるので説明及び図示を省略する。
実施の形態1を参照されたい。図5(A)は図2(B)に相当する。
実施の形態1に従って図5(A)の状態まで作製したら、層間絶縁膜129を覆って平
坦化膜150を形成する(図5(B))。平坦化膜150の材料としてはその膜を形成す
ることで下層に形成された段差を緩和することのできる自己平坦性を有したアクリル、ポ
リイミド、シロキサンなどの塗布膜が好適に利用できる。すなわち、下層に形成された層
の段差よりも小さな段差を有する膜を形成できる材料を公的に利用できる。また、一度形
成した膜をリフローや研磨することによって段差を緩和した膜であっても良い。本実施の
形態ではシロキサンを平坦化膜150として用いる。このシロキサンなどの自己平坦性を
有する絶縁膜を塗布することで、半導体層103、104のリッジを反映して現れる凹凸
や層間絶縁膜の僅かな凹凸を緩和し、平坦化することができる。
続いて平坦化膜150を覆って、透光性を有する導電膜を形成したのち、当該透光性を
有する導電膜をレジストなどによるマスク151を用いて加工し、薄膜発光素子の第1の
電極(陽極)152を形成する(図5(C))。第1の電極(陽極)152の材料は実施
の形態1と同様であるので説明を省略する。実施の形態1を参照されたい。本実施の形態
ではITOを第1の電極(陽極)152として用いる。
第1の電極(陽極)152を形成したら、レジストなどによるマスク151を除去せず
、第1の電極(陽極)152及びマスク151をマスクとして平坦化膜150をエッチン
グにより除去する(図5(D))。この工程で平坦化膜150を除去することで、第1の
電極152に対応して平坦化膜150が残存し、第1の電極(陽極)152の下部、すな
わち発光素子が形成されている部分は平坦化されつつ、それ以外の部分における平坦化膜
150は除去されるので、シール材形成領域より外側に平坦化膜が露出せず、外部雰囲気
に平坦化膜150が曝されなくなる。このため、平坦化膜150を介したパネル内への水
の侵入がなくなり、水による発光素子の劣化を低減することが可能となる。
また、発光素子の第1の電極(陽極)152の下部には平坦化膜137が残存している
為、第1の電極は平坦化されており、発光素子の下部に存在する凹凸起因の不良の発生を
低減させることができるようになる。なお、発光素子の第1の電極が有する凹凸は1画素
内のP−V値が30nm以下、好ましくは15nm以下、さらに好ましくは10nm以下
であることが望ましい。第1の電極が有する凹凸の一画素内のP−V値が上記範囲である
ことで、増加型欠陥を大幅に低減することが可能となる。
この工程は新たに専用のマスクを必要とせず、第1の電極(陽極)152及び陽極を作
製する際に用いられたレジストなどによるマスク151を用いて行われるため、新たにフ
ォトリソグラフィーなどの工程を設ける必要が無く、大幅な工程の増加なしに達成するこ
とができる。
次に、半導体層103、104に至るコンタクトホールを開口する(図5(E))。コ
ンタクトホールはレジストなどによるマスク153を用いて、半導体層103、104が
露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ドライ
エッチングどちらでも形成することができる。なお、条件によって一回でエッチングを行
ってしまっても良いし、複数回に分けてエッチングを行っても良い。また、複数回でエッ
チングする際は、ウエットエッチングとドライエッチングの両方を用いても良い。
そして、当該コンタクトホールや層間絶縁膜を覆う導電膜を形成する。当該導電膜をレジ
ストなどによるマスク154を用いて所望の形状に加工し、配線、ソース電極またはドレ
イン電極となる導電膜155〜157が形成される(図6(A))。この導電膜はアルミ
ニウム、銅などの単体金属やアルミニウムと炭素とチタンの合金、アルミニウムと炭素と
ニッケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウム合金に代表される
金属合金もしくは化合物等の単層でも良いが、本実施の形態では作製順にモリブデン、ア
ルミニウム、モリブデンの積層構造とする。積層構造としてはチタン、アルミニウム、チ
タンやチタン、窒化チタン、アルミニウム、チタンもしくはチタン、アルミニウム合金と
いった積層構造でも良い。また、画素部の駆動用TFTのドレイン電極となる導電膜15
9は画素電極である第1の電極(陽極)152と電気的に接触している。
このように形成された素子基板を用い、第1の電極(陽極)152を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い物となる。以
下に本実施の形態によって作製した第1の電極(陽極)152を用いた発光素子及び表示
装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関してはこれ
に限定されない。
層間絶縁膜129及び第1の電極(陽極)152を覆って有機材料もしくは無機材料か
らなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)152の一部が露出す
るように加工し、隔壁141を形成する(図6(B))。隔壁141の材料としては、感
光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感光性を有
さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料にチタンブ
ラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散し、隔壁
141を黒くすることでブラックマトリクスとして用いても良い。隔壁141の第1の電
極(陽極)152に向かう端面は曲率を有し、当該曲率が連続的に変化するテーパー形状
をしていることが望ましい。
なお、隔壁141の第1の電極152側に向かう端面と、第1の電極152とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度とすることで約43度の
好ましい角度を得ることができる。また、パターニングのための露光、現像した後、焼成
を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成することも
可能となる。
次に、隔壁141から露出した第1の電極(陽極)140を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図6(
C))。これによって第1の電極(陽極)140と発光積層体142と第2の電極(陰極
)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形成
に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、合
金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰極
材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類金
属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合金
を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極と
して用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTのドレイン電極である導電膜159
に電気的に接触している電極は陽極であったが、導電膜159に電気的に接触している電
極は陰極であっても良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから酸
素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形成される酸
素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される酸化窒化水素化
ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定されるもの
ではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても良い。
また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ素膜や
ダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよい。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図6(D))。対向基板145を封止に用いる場合は、絶縁性のシール材144によ
り貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活性
気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を貼
り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シー
ル材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても良
い。
また、本発明の表示装置の作製方法を他の形状の薄膜トランジスタを有する発光装置に
適用した例を図21(B)に示す。図21(B)と図6(D)とはゲート絶縁膜の構成及
びゲート電極の形状に違いがある。図21(B)において、ゲート絶縁膜は第1のゲート
絶縁膜400及び第2のゲート絶縁膜401の2層よりなっている。また、ゲート電極4
02はその端部にテーパー形状を有する単層構造となっている。第1のゲート絶縁膜40
0は半導体層と接する為、絶縁性に優れ、トラップ準位も少ない酸化ケイ素系の膜で作製
することが望ましく、また第2のゲート絶縁膜401は窒化ケイ素系の膜とすることでゲ
ート電極402をMo等の比較的酸化されやすい材料で形成したとしても、安定に動作さ
せることができるようになる。また、シール材144は層間絶縁膜129と重畳している
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い発光装置とな
る。
また、本発明の表示装置の作製方法を用いて作製した液晶表示装置の一例について図2
2(B)に示す。液晶表示装置は図6(A)の状態まで作製した後、絶縁膜を形成してパ
ターニングすることでスペーサ301を形成してから、全面に配向膜302を形成し、ラ
ビング処理を行う。
続いてシール材144を液滴吐出法などにより形成し、液晶300を滴下、対向基板3
06により液晶300を封入する。液晶の封入の方法はシール材144のパターンを閉じ
たパターンとし、液晶滴下装置により液晶を滴下し封入しても良いし、シール材144の
パターンに開口部を形成しておき、対向基板306を固着した後、毛細管現象を利用した
ディップ式(くみ上げ式)により行っても良い。また、シール材144は層間絶縁膜12
9と重畳している。
対向基板306には予め対向電極304と配向膜303を設けておく。
図22(B)でスペーサ301は絶縁膜をパターニングすることによって形成しているが
、別途用意した球状のスペーサを配向膜302上に分散してセルギャップの制御を行うよ
うにしても良い。
このようにして本発明の表示装置の作製方法を適用し、液晶表示装置を形成することが
可能となる。
(実施の形態3)
実施の形態1及び実施の形態2とは異なる本発明の表示装置の作製方法について図7、
図8を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明及び
図示を省略する。実施の形態1を参照されたい。図7(A)は図2(B)に相当する。
実施の形態1に従って図7(A)の状態まで作製したら、層間絶縁膜129を覆って平
坦化膜150を形成する(図7(B))。平坦化膜150の材料としてはその膜を形成す
ることで下層に形成された段差を緩和することのできる自己平坦性を有したアクリル、ポ
リイミド、シロキサンなどの塗布膜が好適に利用できる。すなわち、下層に形成された層
の段差よりも小さな段差を有する膜を形成できる材料を公的に利用できる。また、一度形
成した膜をリフローや研磨することによって段差を緩和した膜であっても良い。本実施の
形態ではシロキサンを平坦化膜150として用いる。このシロキサンなどの自己平坦性を
有する絶縁膜を塗布することで、半導体層103、104のリッジを反映して現れる凹凸
や層間絶縁膜の僅かな凹凸を緩和し、平坦化することができる。
続いて平坦化膜150を覆って、透光性を有する導電膜を形成したのち、当該透光性を
有する導電膜をレジストなどによるマスク151を用いて加工し、薄膜発光素子の第1の
電極(陽極)152を形成する(図7(C))。第1の電極(陽極)152の材料は実施
の形態1と同様であるので説明を省略する。実施の形態1を参照されたい。本実施の形態
ではITOを第1の電極(陽極)152として用いる。
次に、半導体層103、104に至るコンタクトホールを開口する(図7(D))。コ
ンタクトホールはレジストなどによるマスク170を用いて、半導体層103、104が
露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ドライ
エッチングどちらでも形成することができる。なお、条件によって1回でエッチングを行
ってしまっても良いし、複数回に分けてエッチングを行っても良い。また、複数回でエッ
チングする際は、ウエットエッチングとドライエッチングの両方を用いても良い。
そして、当該コンタクトホールや層間絶縁膜を覆う導電膜を形成する。当該導電膜をレジ
ストなどによるマスク171を用いて所望の形状に加工することで、配線、ソース電極ま
たはドレイン電極となる導電膜172〜176が形成される(図7(E))。この導電膜
はアルミニウム、銅などの単体金属やアルミニウムと炭素とチタンの合金、アルミニウム
と炭素とニッケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウム合金に代
表される金属合金もしくは化合物等の単層でも良いが、本実施の形態では形成順にモリブ
デン、アルミニウム、モリブデンの積層構造とする。積層構造としてはチタン、アルミニ
ウム、チタンやチタン、窒化チタン、アルミニウム、チタンもしくはチタン、アルミニウ
ム合金といった構造でも良い。また、画素部の駆動用TFTのドレイン電極となる導電膜
159は画素電極である第1の電極(陽極)152と電気的に接触している。
また、続いて、導電膜172〜176及び第1の電極(陽極)152をマスクとして、
平坦化膜150をエッチングにより除去する(図5(D))。この平坦化膜150の除去
は導電膜172〜176を形成する際のエッチングと同時に行っても良いし、別に行って
も良い。この工程で平坦化膜150を除去することで、第1の電極152に対応して平坦
化膜150が残存し、第1の電極(陽極)152の下部、すなわち発光素子が形成されて
いる部分は平坦化されつつ、それ以外の部分における平坦化膜150は除去されるので、
シール材形成領域より外側に平坦化膜が露出せず、外部雰囲気に平坦化膜150が曝され
なくなる。このため、平坦化膜150を介したパネル内への水の侵入がなくなり、水によ
る発光素子の劣化を低減することが可能となる。
また、発光素子の第1の電極(陽極)152の下部は平坦化膜137が残存している為
、平坦化されており、発光素子の下部に存在する凹凸起因の不良の発生を低減させること
ができるようになる。なお、発光素子の第1の電極が有する凹凸は1画素内のP−V値が
30nm以下、好ましくは15nm以下、さらに好ましくは10nm以下であることが望
ましい。第1の電極が有する凹凸の一画素内のP−V値が上記範囲であることで、増加型
欠陥を大幅に低減することが可能となる。
この工程は新たに専用のマスクを必要とせず、導電膜172〜176、第1の電極(陽
極)152及びそれらを作製する際に用いられたレジストなどによるマスク171を用い
て行われるため、新たにフォトリソグラフィーなどの工程を設ける必要が無く、大幅な工
程数の増加なしに達成することができる。
このように形成された素子基板を用い、第1の電極(陽極)152を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い物となる。以
下に本実施の形態によって作製した第1の電極(陽極)152を用いた発光素子及び表示
装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関してはこれ
に限定されない。
層間絶縁膜129及び第1の電極(陽極)152を覆って有機材料もしくは無機材料か
らなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)152の一部が露出す
るように加工し、隔壁141を形成する(図8(A))。隔壁141の材料としては、感
光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感光性を有
さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料にチタンブ
ラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散し、隔壁
141を黒くすることでブラックマトリクスとして用いても良い。隔壁141の第1の電
極(陽極)140に向かう端面は曲率を有し、当該曲率が連続的に変化するテーパー形状
をしていることが望ましい。
なお、隔壁141の第1の電極152側に向かう端面と、第1の電極152とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43
度の好ましい角度を得ることができる。また、パターニングのための露光、現像した後、
焼成を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成するこ
とも可能となる。
次に、隔壁141から露出した第1の電極(陽極)152を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図8(
B))。これによって第1の電極(陽極)152と発光積層体142と第2の電極(陰極
)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形成
に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、合
金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰極
材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類金
属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合金
を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極と
して用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTのドレイン電極である導電膜176
に電気的に接触している電極は陽極であったが、導電膜176に電気的に接触している電
極は陰極であっても良い。
その後、プラズマCVD法により窒素を含む酸化ケイ素膜をパッシベーション膜として
形成してもよい。窒素を含む酸化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸化窒化ケイ素膜、またはSiH4、N2Oから作製され
る酸化窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形成される酸化
窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される酸化窒化水素化
ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定されるもの
ではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても良い。
また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ素膜や
ダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよい。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図8(C))。対向基板145を封止に用いる場合は、絶縁性のシール材144によ
り貼り合わせる。本実施の形態では、配線となる導電膜172の下部に平坦化膜150が
残存している為、シール材144は引き回し部分の導電膜172と重ならないように設け
ると良い。このようにシール材を設けることによって、シール材144及び導電膜172
下の平坦化膜150を介しての水の侵入を効果的に遮断することができる。
対向基板145と素子基板との間の空間には乾燥した窒素などの不活性気体を充填して
も良いし、シール材を画素部全面に塗布しそれにより対向基板145を貼り合わせても良
い。シール材144には紫外線硬化樹脂などを用いると好適である。シール材144には
乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い発光装置とな
る。
また、本発明の表示装置の作製方法を他の形状の薄膜トランジスタを有する発光装置に
適用した例を図21(C)に示す。図21(C)と図8(C)とはゲート絶縁膜の構成及
びゲート電極の形状に違いがある。図21(C)において、ゲート絶縁膜は第1のゲート
絶縁膜400及び第2のゲート絶縁膜401の2層よりなっている。また、ゲート電極4
02はその端部にテーパー形状を有する単層構造となっている。第1のゲート絶縁膜40
0は半導体層と接する為、絶縁性に優れ、トラップ準位も少ない酸化ケイ素系の膜で作製
することが望ましく、また第2のゲート絶縁膜401は窒化ケイ素系の膜とすることでゲ
ート電極402をMo等の比較的酸化されやすい材料で形成したとしても、安定に動作さ
せることができるようになる。また、シール材144は層間絶縁膜129と重畳している
また、本発明の表示装置の作製方法を用いて作製した液晶表示装置の一例について図2
2(C)に示す。液晶表示装置は図7(E)の状態まで作製した後、絶縁膜を形成してパ
ターニングすることでスペーサ301を形成してから、全面に配向膜302を形成し、ラ
ビング処理を行う。
続いてシール材144を液滴吐出法などにより形成し、液晶300を滴下、対向基板3
06により液晶300を封入する。液晶の封入の方法はシール材144のパターンを閉じ
たパターンとし、液晶滴下装置により液晶を滴下し封入しても良いし、シール材144の
パターンに開口部を形成しておき、対向基板306を固着した後、毛細管現象を利用した
ディップ式(くみ上げ式)により行っても良い。また、シール材144は層間絶縁膜12
9と重畳している。
対向基板306には予め対向基板306側から対向電極304と配向膜303を設けて
おく。
図22(C)でスペーサ301は絶縁膜をパターニングすることによって形成しているが
、別途用意した球状のスペーサを配向膜302上に分散してセルギャップの制御を行うよ
うにしても良い。
このようにして本発明の表示装置の作製方法を適用し、液晶表示装置を形成することが
可能となる。
(実施の形態4)
実施の形態1乃至実施の形態3とは異なる本発明の表示装置の作製方法について図9、
図10を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明及
び図示を省略する。実施の形態1を参照されたい。図7(A)は図2(B)に相当する。
実施の形態1に従って図9(A)の状態まで作製したら、層間絶縁膜129を覆って極
薄く、層間絶縁膜129上の凹凸が隠れる程度に平坦化膜190を形成する(図9(B)
)。平坦化膜137の材料としてはその膜を形成することで下層に形成された段差を緩和
することのできる自己平坦性を有したアクリル、ポリイミド、シロキサンなどの塗布膜が
好適に利用できる。すなわち、下層に形成された層の段差よりも小さな段差を有する膜を
形成できる材料を公的に利用できる。また、一度形成した膜をリフローや研磨することに
よって段差を緩和した膜であっても良い。本実施の形態ではシロキサンを平坦化膜190
として用いる。このシロキサンなどの自己平坦性を有する絶縁膜を塗布することで、半導
体層103、104のリッジが反映されて現れる凹凸や層間絶縁膜の僅かな凹凸を緩和し
、平坦化することができる。
次に、半導体層103、104に至るコンタクトホールを開口する(図9(C))。コ
ンタクトホールはレジストなどによるマスク191を用いて、半導体層103、104が
露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ドライ
エッチングどちらでも形成することができる。なお、条件によって1回でエッチングを行
ってしまっても良いし、複数回に分けてエッチングを行っても良い。また、複数回でエッ
チングする際は、ウエットエッチングとドライエッチングの両方を用いても良い。
そして、当該コンタクトホールや層間絶縁膜を覆う導電膜を形成する。当該導電膜をレジ
ストなどによるマスク192を用いて所望の形状に加工することで、配線、ソース電極ま
たはドレイン電極となる導電膜193〜197が形成される(図9(3))。この導電膜
はアルミニウム、銅などの単体金属やアルミニウムと炭素とチタンの合金、アルミニウム
と炭素とニッケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウム合金に代
表される金属合金もしくは化合物等を用いる。導電膜は単層で形成しても良いが、本実施
の形態では形成順にモリブデン、アルミニウム、モリブデンの積層構造とする。積層構造
としてはチタン、アルミニウム、チタンやチタン、窒化チタン、アルミニウム、チタンも
しくはチタン、アルミニウム合金といった積層構造でも良い。
そして層間絶縁膜129と導電膜193〜197を覆って、透光性を有する導電膜を形
成したのち、当該透光性を有する導電膜をレジストなどによるマスク198を用いてエッ
チングにより加工し、薄膜発光素子の第1の電極(陽極)199を形成する(図9(E)
)。ここで第1の電極(陽極)199は発光素子の駆動用TFTの導電膜197と電気的
に接触している。第1の電極(陽極)199の材料は実施の形態1と同様であるので説明
を省略する。実施の形態1を参照されたい。本実施の形態ではITOを第1の電極(陽極
)199として用いる。
このように形成された素子基板を用い、第1の電極(陽極)199を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、平坦化膜190が極薄いことから外部雰囲気から平坦化膜を介しての水の侵入が
少ない為、信頼性も高い物となる。以下に本実施の形態によって作製した第1の電極(陽
極)199を用いた発光素子及び表示装置の作製方法の一例を示す。もちろん、発光素子
や表示装置の作製方法に関してはこれに限定されない。
なお、発光素子の第1の電極が有する凹凸は1画素内のP−V値が30nm以下、好ま
しくは15nm以下、さらに好ましくは10nm以下であることが望ましい。第1の電極
が有する凹凸の一画素内のP−V値が上記範囲であることで、増加型欠陥を大幅に低減す
ることが可能となる。
層間絶縁膜129及び第1の電極(陽極)199を覆って有機材料もしくは無機材料か
らなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)152の一部が露出す
るように加工し、隔壁141を形成する(図10(A))。隔壁141の材料としては、
感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感光性を
有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料にチタン
ブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散し、隔
壁141を黒くすることでブラックマトリクスとして用いても良い。隔壁141の第1の
電極(陽極)152に向かう端面は曲率を有し、当該曲率が連続的に変化するテーパー形
状をしていることが望ましい。
なお、隔壁141の第1の電極199側に向かう端面と、第1の電極199との角度は
45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141の材
料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニング
のための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43度の
好ましい角度を得ることができる。また、パターニングのための露光、現像した後、焼成
を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成することも
可能となる。
次に、隔壁141から露出した第1の電極(陽極)199を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図10
(B))。これによって第1の電極(陽極)140と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTの導電膜197に電気的に接触して
いる電極は陽極であったが、導電膜197に電気的に接触している電極は陰極であっても
良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される水素と酸素とを
含む窒化ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定さ
れるものではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いて
も良い。また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケ
イ素膜やダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成しても
よい。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図10(C))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。本実施の形態では、配線となる導電膜193の下部に平坦化膜190
が残存している為、シール材144は引き回し部分の導電膜193と重ならないように設
けると良い。このようにシール材を設けることによって、シール材144及び導電膜19
3下の平坦化膜190を介しての水の侵入を効果的に遮断することができる。
対向基板145と素子基板との間の空間には乾燥した窒素などの不活性気体を充填して
も良いし、シール材を画素部全面に塗布しそれにより対向基板145を貼り合わせても良
い。シール材144には紫外線硬化樹脂などを用いると好適である。シール材144には
乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い発光装置とな
る。
また、本発明の表示装置の作製方法を他の形状の薄膜トランジスタを有する発光装置に
適用した例を図21(D)に示す。図21(D)と図10(C)とはゲート絶縁膜の構成
及びゲート電極の形状に違いがある。図21(D)において、ゲート絶縁膜は第1のゲー
ト絶縁膜400及び第2のゲート絶縁膜401の2層よりなっている。また、ゲート電極
402はその端部にテーパー形状を有する単層構造となっている。第1のゲート絶縁膜4
00は半導体層と接する為、絶縁性に優れ、トラップ準位も少ない酸化ケイ素系の膜で作
製することが望ましく、また第2のゲート絶縁膜401は窒化ケイ素系の膜とすることで
ゲート電極402をMo等の比較的酸化されやすい材料で形成したとしても、安定に動作
させることができるようになる。また、シール材144は層間絶縁膜129と重畳してい
る。
また、本発明の表示装置の作製方法を用いて作製した液晶表示装置の一例について図2
2(D)に示す。液晶表示装置は図9(E)の状態まで作製した後、絶縁膜を形成してパ
ターニングすることでスペーサ301を形成してから、露出表面の全面に配向膜302を
形成し、ラビング処理を行う。
続いてシール材144を液滴吐出法などにより形成し、液晶300を滴下、対向基板3
06により液晶300を封入する。液晶の封入の方法はシール材144のパターンを閉じ
たパターンとし、液晶滴下装置により液晶を滴下し封入しても良いし、シール材144の
パターンに開口部を形成しておき、対向基板306を固着した後、毛細管現象を利用した
ディップ式(くみ上げ式)により行っても良い。また、シール材144は層間絶縁膜12
9と重畳している。
対向基板306には予め対向基板306側から対向電極304と配向膜303を設けて
おく。
図22(A)でスペーサ301は絶縁膜をパターニングすることによって形成しているが
、別途用意した球状のスペーサを配向膜302上に分散してセルギャップの制御を行うよ
うにしても良い。
このようにして本発明の表示装置の作製方法を適用し、液晶表示装置を形成することが
可能となる。
(実施の形態5)
実施の形態1乃至実施の形態4とは異なる本発明の表示装置の作製方法について図11
、図12を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明
及び図示を省略する。実施の形態1を参照されたい。図11(A)は図3(A)に相当す
る。
図11(A)の状態まで形成したら、平坦化膜137と導電膜136の露出部を覆って
、第2の層間絶縁膜200を形成する。第2の層間絶縁膜200は酸化ケイ素や窒化ケイ
素、Low−k材料などの無機絶縁膜を用いて形成する。本実施の形態では酸化ケイ素膜
を第2の層間絶縁膜として形成する。
次に、導電膜136に至るコンタクトホールを第2の層間絶縁膜200に形成する。コ
ンタクトホールはレジストなどによるマスク201を用いてソース電極または導電膜13
6が露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ド
ライエッチングどちらでも形成することができる。
コンタクトホールを形成したら、レジストなどによるマスク201を除去せず、マスク
201をマスクとして平坦化膜137をエッチングにより除去する(図11(B))。
続いて導電膜136の露出部を覆って、透光性を有する導電膜を形成したのち、当該透
光性を有する導電膜をレジストなどによるマスク202を用いてエッチングにより加工し
、薄膜発光素子の第1の電極(陽極)203を形成する(図11(C))。ここで第1の
電極(陽極)203は発光素子の駆動用TFTの導電膜136と電気的に接触している。
第1の電極(陽極)203の材料としては、仕事関数の大きい(仕事関数4.0eV以上
)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。
例えばITO(indium tin oxide)、ケイ素を含有するITO(ITS
O)、酸化インジウムに2〜20[atom%]の酸化亜鉛(ZnO)を混合したIZO
(indium zinc oxide)、酸化亜鉛、酸化亜鉛にガリウムを含有したG
ZO(Galium Zinc Oxide)の他、金(Au)、白金(Pt)、ニッケ
ル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、
コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(TiN
)等を用いることができる。本実施の形態ではITSOを第1の電極(陽極)203とし
て用いた。
この工程で平坦化膜137を除去することで、第1の電極203に対応して平坦化膜13
7が残存し、第1の電極(陽極)203の下部、すなわち発光素子が形成されている部分
は平坦化されつつ、基板100周辺部における平坦化膜137は除去されるので、シール
材形成領域より外側に平坦化膜が露出せず、外部雰囲気に平坦化膜137が曝されなくな
る。このため、平坦化膜137を介したパネル内への水の侵入がなくなり、水による発光
素子の劣化を低減することが可能となる。また、発光素子の第1の電極(陽極)203の
下部は平坦化膜137が残存している為、平坦化されており、発光素子の下部に存在する
凹凸起因の不良の発生を低減させることができるようになる。なお、発光素子の第1の電
極が有する凹凸は1画素内のP−V値が30nm以下、好ましくは15nm以下、さらに
好ましくは10nm以下であることが望ましい。第1の電極が有する凹凸の一画素内のP
−V値が上記範囲であることで、増加型欠陥を大幅に低減することが可能となる。
平坦化膜137を除去する工程は新たに専用のマスクを必要とせず、第2の層間絶縁膜
200にコンタクトホールを作製する際に用いられたレジストなどによるマスク201を
用いて行われるため、新たにフォトリソグラフィーなどの工程を設ける必要が無く、大幅
な工程数の増加なしに達成することができる。
このように形成された素子基板を用い、第1の電極(陽極)203を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い物となる。以
下に本実施の形態によって作製した第1の電極(陽極)203を用いた発光素子及び表示
装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関してはこれ
に限定されない。
第2の層間絶縁膜200及び第1の電極(陽極)203を覆って有機材料もしくは無機
材料からなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)203の一部が
露出するように加工し、隔壁141を形成する(図12(A))。隔壁141の材料とし
ては、感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感
光性を有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料に
チタンブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散
し、隔壁141を黒色化することでブラックマトリクスとして用いても良い。隔壁141
の第1の電極(陽極)203に向かう端面は曲率を有し、当該曲率が連続的に変化するテ
ーパー形状をしていることが望ましい。
なお、隔壁141の第1の電極203側に向かう端面と、第1の電極203とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43
度の好ましい角度を得ることができる。また、パターニングのための露光、現像した後、
焼成を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成するこ
とも可能となる。
次に、隔壁141から露出した第1の電極(陽極)203を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図12
(B))。これによって第1の電極(陽極)203と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTの導電膜136に電気的に接触して
いる電極は陽極であったが、導電膜136に電気的に接触している電極は陰極であっても
良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される水素と酸素を含
む窒化ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定され
るものではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても
良い。また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ
素膜やダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよ
い。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図12(C))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活
性気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を
貼り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シ
ール材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても
良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
(実施の形態6)
実施の形態1乃至実施の形態5とは異なる本発明の表示装置の作製方法について図13
、図14を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明
及び図示を省略する。実施の形態1を参照されたい。図13(A)は図2(D)に相当す
る。
図13(A)の状態まで形成したら、マスク131を除去してから、導電膜132〜1
36及び層間絶縁膜129を覆って、第2の層間絶縁膜210を形成する。第2の層間絶
縁膜210は酸化ケイ素や窒化ケイ素、Low−k材料などの無機絶縁膜をもちいて形成
する。本実施の形態では酸化ケイ素膜を第2の層間絶縁膜210として形成する。
次に、導電膜136に至るコンタクトホールを第2の層間絶縁膜210に形成する(図
13(B))。コンタクトホールはレジストなどによるマスク211を用いて導電膜13
6が露出するまでエッチングをおこなうことで形成することができ、ウエットエッチング
、ドライエッチングどちらでも形成することができる。
そして、マスク211を除去し、当該コンタクトホールや第2の層間絶縁膜210を覆
う導電膜を形成する。当該導電膜をレジストなどによるマスクを用いて所望の形状に加工
し、導電膜136に電気的に接続する配線212が形成される。この導電膜はアルミニウ
ム、銅などの単体金属やアルミニウムと炭素とチタンの合金、アルミニウムと炭素とニッ
ケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウム合金に代表される金属
合金もしくは化合物等を用いて形成する。導電膜136は単層で形成しても良いが、本実
施の形態では形成順にモリブデン、アルミニウム、モリブデンの積層構造とする。積層構
造としてはチタン、アルミニウム、チタンやチタン、窒化チタン、アルミニウム、チタン
もしくはチタン、アルミニウム合金といった構造でも良い。
続いて第2の層間絶縁膜210及び配線212を覆って平坦化膜213を形成する(図
13(C))。平坦化膜213の材料としてはその膜を形成することで下層に形成された
段差を緩和することのできる自己平坦性を有したアクリル、ポリイミド、シロキサンなど
の塗布膜が好適に利用できる。すなわち、下層に形成された層の段差よりも小さな段差を
有する膜を形成できる材料を公的に利用できる。また、一度形成した膜をリフローや研磨
することによって段差を緩和した膜であっても良い。本実施の形態ではシロキサンを平坦
化膜213として用いる。このシロキサンなどの自己平坦性を有する絶縁膜を塗布するこ
とで、半導体層103、104のリッジが反映されて現れる凹凸や、層間絶縁膜の僅かな
凹凸、導電膜132〜136、配線212を形成する際などに発生した下層の凹凸を緩和
し、平坦化することができる。
次に少なくとも配線212の一部を覆って、透光性を有する導電膜を形成したのち、当
該透光性を有する導電膜をレジストなどによるマスク214を用いて加工し、薄膜発光素
子の第1の電極(陽極)215を形成する。ここで第1の電極(陽極)215は発光素子
の駆動用TFTの導電膜136と配線212を介して電気的に接触している。第1の電極
(陽極)215の材料としては、仕事関数の大きい(仕事関数4.0eV以上)金属、合
金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。例えばIT
O(indium tin oxide)、ケイ素を含有するITO(ITSO)、酸化
インジウムに2〜20[atom%]の酸化亜鉛(ZnO)を混合したIZO(indi
um zinc oxide)、酸化亜鉛、酸化亜鉛にガリウムを含有したGZO(Ga
lium Zinc Oxide)の他、金(Au)、白金(Pt)、ニッケル(Ni)
、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(
Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(TiN)等を用い
ることができる。本実施の形態ではITSOを第1の電極(陽極)215として用いた。
第1の電極(陽極)215を形成したら、レジストなどによるマスク214を除去せず
、第1の電極(陽極)215及びマスク214をマスクとして平坦化膜213をエッチン
グにより除去する(図13(D))。この工程で平坦化膜213を除去することで、第1
の電極215に対応して平坦化膜213が残存し、第1の電極(陽極)215の下部、す
なわち発光素子が形成されている部分は平坦化されつつ、それ以外の部分における平坦化
膜213は除去されるので、シール材形成領域より外側に平坦化膜が露出せず、外部雰囲
気に平坦化膜213が曝されなくなる。このため、平坦化膜213を介したパネル内への
水の侵入がなくなり、水による発光素子の劣化を低減することが可能となる。
また、発光素子の第1の電極(陽極)215の下部は平坦化膜213が残存している為
、平坦化されており、発光素子の下部に存在する凹凸起因の不良の発生を低減させること
ができるようになる。なお、発光素子の第1の電極が有する凹凸は1画素内のP−V値が
30nm以下、好ましくは15nm以下、さらに好ましくは10nm以下であることが望
ましい。第1の電極が有する凹凸の一画素内のP−V値が上記範囲内であることで、増加
型欠陥を大幅に低減することが可能となる。
この工程は新たに専用のマスクを必要とせず、第1の電極(陽極)215及び陽極を作
製する際に用いられたレジストなどによるマスク214を用いて行われるため、新たにフ
ォトリソグラフィーなどの工程を設ける必要が無く、大幅な工程数の増加なしに達成する
ことができる。
このように形成された素子基板を用い、第1の電極(陽極)215を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高い物となる。
以下に本実施の形態によって作製した第1の電極(陽極)215を用いた発光素子及び表
示装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関してはこ
れに限定されない。
第2の層間絶縁膜210及び第1の電極(陽極)215を覆って有機材料もしくは無機
材料からなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)215の一部が
露出するように加工し、隔壁141を形成する(図14(A))。隔壁141の材料とし
ては、感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感
光性を有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料に
チタンブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散
し、隔壁141を黒色化することでブラックマトリクスとして用いても良い。隔壁141
の第1の電極(陽極)215に向かう端面は曲率を有し、当該曲率が連続的に変化するテ
ーパー形状をしていることが望ましい。
なお、隔壁141の第1の電極215側に向かう端面と、第1の電極215とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43
度の好ましい角度を得ることができる。また、パターニングのための露光、現像した後、
焼成を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成するこ
とも可能となる。
次に、隔壁141から露出した第1の電極(陽極)215を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図14
(B))。これによって第1の電極(陽極)215と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTの導電膜136に電気的に接触して
いる電極は発光素子の陽極であったが、導電膜136に電気的に接触している電極は陰極
であっても良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される水素と酸素を含
む窒化ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定され
るものではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても
良い。また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ
素膜やダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよ
い。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図14(C))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活
性気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を
貼り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シ
ール材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても
良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
(実施の形態7)
実施の形態1乃至実施の形態6とは異なる本発明の表示装置の作製方法について図15
、図16を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明
及び図示を省略する。実施の形態1を参照されたい。図15(A)は図2(D)に相当す
る。
図15(A)の状態まで形成したら、層間絶縁膜129と導電膜132〜136を覆っ
て、第2の層間絶縁膜220を形成する。第2の層間絶縁膜220は酸化ケイ素や窒化ケ
イ素、Low−k材料などの無機絶縁膜を用いて形成する。本実施の形態では酸化ケイ素
膜を第2の層間絶縁膜220として形成する。
その後、第2の層間絶縁膜220を覆って平坦化膜221を形成する(図15(B))
。平坦化膜221の材料としてはその膜を形成することで下層に形成された段差を緩和す
ることのできる自己平坦性を有したアクリル、ポリイミド、シロキサンなどの塗布膜が好
適に利用できる。すなわち、下層に形成された層の段差よりも小さな段差を有する膜を形
成できる材料を好適に利用できる。また、一度形成した膜をリフローや研磨することによ
って段差を緩和した膜であっても良い。本実施の形態ではポリイミドを平坦化膜221と
して用いる。このポリイミドなどの自己平坦性を有する絶縁膜を塗布することで、半導体
層103、104のリッジが反映されて現れる凹凸や、層間絶縁膜の僅かな凹凸、導電膜
132〜136を形成する際などに発生した下層の凹凸を緩和し、平坦化することができ
る。
続いて平坦化膜221を覆って、透光性を有する導電膜を形成したのち、当該透光性を
有する導電膜をレジストなどによるマスク222を用いて加工し、薄膜発光素子の第1の
電極(陽極)223を形成する。第1の電極(陽極)223の材料としては、仕事関数の
大きい(仕事関数4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合
物などを用いることが好ましい。例えばITO(indium tin oxide)、
ケイ素を含有するITO(ITSO)、酸化インジウムに2〜20[atom%]の酸化
亜鉛(ZnO)を混合したIZO(indium zinc oxide)、酸化亜鉛、
酸化亜鉛にガリウムを含有したGZO(Galium Zinc Oxide)の他、金
(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モ
リブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、
または金属材料の窒化物(TiN)等を用いることができる。本実施の形態ではITSO
を第1の電極(陽極)223として用いた。
第1の電極(陽極)223を形成したら、レジストなどによるマスク222を除去せず
、第1の電極(陽極)223及びマスク222をマスクとして平坦化膜221をエッチン
グにより除去する(図15(C))。この工程で平坦化膜221を除去することで、第1
の電極223に対応して平坦化膜221が残存し、第1の電極(陽極)223の下部、す
なわち発光素子が形成されている部分は平坦化されつつ、それ以外の部分における平坦化
膜221は除去されるので、シール材形成領域より外側に平坦化膜が露出せず、外部雰囲
気に平坦化膜221が曝されなくなる。このため、平坦化膜221を介したパネル内への
水の侵入が非常に低減され、水による発光素子の劣化を低減することが可能となる。
また、発光素子の第1の電極(陽極)223の下部は平坦化膜221が残存している為
、平坦化されており、発光素子の下部に存在する凹凸起因の不良の発生を低減させること
ができるようになる。なお、発光素子の第1の電極が有する凹凸は1画素内のP−V値が
30nm以下好ましくは15nm以下、さらに好ましくは10nm以下であることが望ま
しい。第1の電極が有する凹凸の1画素内のP−V値が上記範囲であることで、増加型欠
陥を大幅に低減することが可能となる。
この工程は新たに専用のマスクを必要とせず、第1の電極(陽極)223及び陽極を作
製する際に用いられたレジストなどによるマスク222を用いて行われるため、新たにフ
ォトリソグラフィーなどの工程を設ける必要が無く、大幅な工程数の増加なしに達成する
ことができる。
次に、導電膜136に至るコンタクトホールを第2の層間絶縁膜220に形成する(図
15(D))。コンタクトホールはレジストなどによるマスク224を用いて導電膜13
6が露出するまでエッチングを行うことで形成することができ、ウエットエッチング、ド
ライエッチングどちらでも形成することができる。
そして、マスク224を除去し、当該コンタクトホールや第2の層間絶縁膜220を覆
う導電膜を形成する。当該導電膜をレジストなどによるマスクを用いて所望の形状に加工
し、導電膜136及び第1の電極(陽極)223に電気的に接続する導電膜よりなる配線
225などが形成される(図16(A))。この導電膜はアルミニウム、銅などの単体金
属やアルミニウムと炭素とチタンの合金、アルミニウムと炭素とニッケルの合金、アルミ
ニウムと炭素とチタンの合金等のアルミニウム合金に代表される金属合金もしくは化合物
等を用いて形成すればよい。導電膜106は単層でも良いが、本実施の形態では下からモ
リブデン、アルミニウム、モリブデンの積層構造とする。積層構造としてはチタン、アル
ミニウム、チタンやチタン、窒化チタン、アルミニウム、チタンもしくはチタン、アルミ
ニウム合金といった構造でも良い。
このように形成された素子基板を用い、第1の電極(陽極)223を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い物となる。以
下に本実施の形態によって作製した第1の電極(陽極)223を用いた発光素子及び表示
装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関してはこれ
に限定されない。
第2の層間絶縁膜220及び第1の電極(陽極)223を覆って有機材料もしくは無機
材料からなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)223の一部が
露出するように加工し、隔壁141を形成する(図16(B))。隔壁141の材料とし
ては、感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感
光性を有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料に
チタンブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散
し、隔壁141を黒色化することでブラックマトリクスとして用いても良い。隔壁141
の第1の電極(陽極)223に向かう端面は曲率を有し、当該曲率が連続的に変化するテ
ーパー形状をしていることが望ましい。
なお、隔壁141の第1の電極223側に向かう端面と、第1の電極223とのなす角
度は45度±5度程度であることが望ましい。なお、隔壁141の材料として感光性のポ
リイミドを用い、その膜厚を1.0μm程度で形成し、パターニングのための露光、現像
を行った後に行う焼成の温度を、300度程度とすることで約43度の好ましい角度を得
ることができる。また、パターニングのための露光、現像した後、焼成を行う前に全面を
再度露光する工程を加えると、さらに当該角度を小さく形成することも可能となる。
次に、隔壁141から露出した第1の電極(陽極)223を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図16
(C))。これによって第1の電極(陽極)223と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTの導電膜136に電気的に接触して
いる電極は陽極であったが、導電膜136に電気的に接触している電極は陰極であっても
良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される酸化窒化水素化
ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定されるもの
ではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても良い。
また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ素膜や
ダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよい。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図16(D))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活
性気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を
貼り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シ
ール材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても
良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
(実施の形態8)
実施の形態1乃至実施の形態7とは異なる本発明の表示装置の作製方法について図17
、図18を参照しながら説明する。工程の途中までは実施の形態7と同様であるので説明
及び図示を省略する。実施の形態7を参照されたい。図17(A)は図15(B)に相当
する。
図15(A)の状態まで形成したら、第2の層間絶縁膜220を覆って平坦化膜230
を形成する。平坦化膜230の材料としてはその膜を形成することで下層に形成された段
差を緩和することのできる自己平坦性を有したアクリル、ポリイミド、シロキサンなどの
塗布膜が好適に利用できる。すなわち、下層に形成された層の段差よりも小さな段差を有
する膜を形成できる材料を公的に利用できる。また、一度形成した膜をリフローや研磨す
ることによって段差を緩和した膜であっても良い。本実施の形態ではポリイミドを平坦化
膜230として用いる。このポリイミドなどの自己平坦性を有する絶縁膜を塗布すること
で、半導体層103、104のリッジが反映されて現れる凹凸や、層間絶縁膜の僅かな凹
凸、配線、ソース電極またはドレイン電極となる導電膜132〜136を形成する際など
に発生した下層の凹凸を緩和し、平坦化することができる。
続いて平坦化膜230を覆って、透光性を有する導電膜を形成したのち、当該透光性を
有する導電膜をレジストなどによるマスク231を用いて加工し、薄膜発光素子の第1の
電極(陽極)232を形成する(図17(B))。第1の電極(陽極)232の材料とし
ては、仕事関数の大きい(仕事関数4.0eV以上)金属、合金、電気伝導性化合物、お
よびこれらの混合物などを用いることが好ましい。例えばITO(indium tin
oxide)、ケイ素を含有するITO(ITSO)、酸化インジウムに2〜20[a
tom%]の酸化亜鉛(ZnO)を混合したIZO(indium zinc oxid
e)、酸化亜鉛、酸化亜鉛にガリウムを含有したGZO(Galium Zinc Ox
ide)の他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、ク
ロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラ
ジウム(Pd)、または金属材料の窒化物(TiN)等を用いることができる。本実施の
形態ではITSOを第1の電極(陽極)232として用いた。
次に、導電膜136に至るコンタクトホールを平坦化膜230及び第2の層間絶縁膜2
20に形成する(図17(B))。コンタクトホールはレジストなどによるマスク233
を用いて導電膜136が露出するまでエッチングをおこなうことで形成することができ、
ウエットエッチング、ドライエッチングどちらでも形成することができる。
そして、マスク233を除去し、当該コンタクトホールや第2の層間絶縁膜220を覆
う導電膜を形成する。当該導電膜をレジストなどによるマスクを用いて所望の形状に加工
し、導電膜136及び第1の電極(陽極)232に電気的に接続する配線234などが形
成される(図17(C))。この導電膜はアルミニウム、銅などの単体金属やアルミニウ
ムと炭素とチタンの合金、アルミニウムと炭素とニッケルの合金、アルミニウムと炭素と
チタンの合金等のアルミニウム合金に代表される金属合金もしくは化合物等を用いて形成
することができる。導電層は単層で形成されても良いが、本実施の形態では下からモリブ
デン、アルミニウム、モリブデンの積層構造とする。積層構造としてはチタン、アルミニ
ウム、チタンやチタン、窒化チタン、アルミニウム、チタンもしくはチタン、アルミニウ
ム合金といった構造でも良い。
配線234を形成したら、レジストなどによるマスクを除去せず、配線234及びレジ
ストなどによるマスクをマスクとして平坦化膜230をエッチングにより除去する(図1
7(D))。この工程で平坦化膜230を除去することで、第1の電極232に対応して
平坦化膜230が残存し、第1の電極(陽極)232の下部、すなわち発光素子が形成さ
れている部分は平坦化されつつ、それ以外の部分における平坦化膜230は除去されるの
で、シール材形成領域より外側に平坦化膜が露出せず、外部雰囲気に平坦化膜230が曝
されなくなる。このため、平坦化膜230を介したパネル内への水の侵入が非常に低減さ
れ、水による発光素子の劣化を低減することが可能となる。また、発光素子の第1の電極
(陽極)232の下部は平坦化膜230が残存している為、平坦化されており、発光素子
の下部に存在する凹凸起因の不良の発生を低減させることができるようになる。なお、発
光素子の第1の電極が有する凹凸は1画素内のP−V値が30nm以下好ましくは15n
m以下、さらに好ましくは10nm以下であることが望ましい。第1の電極が有する凹凸
の一画素内のP−V値が上記範囲であることで、増加型欠陥を大幅に低減することが可能
となる。
なお、この工程は新たに専用のマスクを必要とせず、配線234及び陽極を作製する際
に用いられたレジストなどによるマスクを用いて行われるため、新たにフォトリソグラフ
ィーなどの工程を設ける必要が無く、大幅な工程数の増加なしに達成することができる。
このように形成された素子基板を用い、第1の電極(陽極)232を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水が侵入しないので信頼性も高い発光装置とな
る。以下に本実施の形態によって作製した第1の電極(陽極)232を用いた発光素子及
び表示装置の作製方法の一例を示す。もちろん、発光素子や表示装置の作製方法に関して
はこれに限定されない。
第2の層間絶縁膜220及び第1の電極(陽極)232を覆って有機材料もしくは無機
材料からなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)232の一部が
露出するように加工し、隔壁141を形成する(図18(A))。隔壁141の材料とし
ては、感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感
光性を有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料に
チタンブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散
し、隔壁141を黒色化することでブラックマトリクス様に用いても良い。隔壁141の
第1の電極(陽極)232に向かう端面は曲率を有し、当該曲率が連続的に変化するテー
パー形状をしていることが望ましい。
なお、隔壁141の第1の電極232側に向かう端面と、第1の電極232とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43
度の好ましい角度を得ることができる。また、パターニングのための露光、現像した後、
焼成を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成するこ
とも可能となる。
次に、隔壁141から露出した第1の電極(陽極)232を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図18
(B))。これによって第1の電極(陽極)232と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、発光素子の駆動用TFTの導電膜136に電気的に接触して
いる電極は陽極であったが、導電膜136に電気的に接触している電極は陰極であっても
良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される水素と酸素を含
む窒化ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定され
るものではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても
良い。また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ
素膜やダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよ
い。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図18(C))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活
性気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を
貼り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シ
ール材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても
良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
(実施の形態9)
実施の形態1乃至実施の形態8とは異なる本発明の表示装置の作製方法について図19
、図20を参照しながら説明する。工程の途中までは実施の形態1と同様であるので説明
及び図示を省略する。実施の形態1を参照されたい。図19(A)は図2(D)に相当す
る。
図19(A)の状態まで形成したら、マスク131を除去し、層間絶縁膜129と導電
膜132〜136を覆って、第2の層間絶縁膜240を形成する。第2の層間絶縁膜24
0は酸化ケイ素や窒化ケイ素、Low−k材料などの無機絶縁膜をもちいて形成する。本
実施の形態では酸化ケイ素膜を第2の層間絶縁膜240として形成する(図19(B))
その後、第2の層間絶縁膜240を覆って平坦化膜241を極薄く形成する。平坦化膜
241の材料としてはその膜を形成することで下層に形成された段差を緩和することので
きる自己平坦性を有したアクリル、ポリイミド、シロキサンなどの塗布膜が好適に利用で
きる。すなわち、下層に形成された層の段差よりも小さな段差を有する膜を形成できる材
料を公的に利用できる。また、一度形成した膜をリフローや研磨することによって段差を
緩和した膜であっても良い。本実施の形態ではアクリルを平坦化膜241として用いる。
このアクリルなどの自己平坦性を有する絶縁膜を塗布することで、半導体層103、10
4のリッジが反映されて現れる凹凸や、層間絶縁膜の僅かな凹凸、導電膜132〜136
を形成する際などに発生した下層の凹凸を緩和し、平坦化することができる。
続いて、導電膜136に至るコンタクトホールを平坦化膜241及び第2の層間絶縁膜
240に形成する(図19(C))。コンタクトホールはレジストなどによるマスク24
2を用いて導電膜136が露出するまでエッチングをおこなうことで形成することができ
、ウエットエッチング、ドライエッチングどちらでも形成することができる。
マスク242を除去した後、当該コンタクトホールや平坦化膜241上を覆う導電膜を
形成する。当該導電膜をレジストなどによるマスクを用いて所望の形状に加工し、導電膜
136に電気的に接続する配線243が形成される(図19(D))。この導電膜はアル
ミニウム、銅などの単体金属やアルミニウムと炭素とチタンの合金、アルミニウムと炭素
とニッケルの合金、アルミニウムと炭素とチタンの合金等のアルミニウム合金に代表され
る金属合金もしくは化合物等によって形成すればよい。導電層は単層で形成しても良いが
、本実施の形態では形成順にモリブデン、アルミニウム、モリブデンの積層構造とする。
積層構造としてはチタン、アルミニウム、チタンやチタン、窒化チタン、アルミニウム、
チタンもしくはチタン、アルミニウム合金といった構造でも良い。
次に、平坦化膜241、配線243を覆って透光性を有する導電膜を形成したのち、当
該透光性を有する導電膜をレジストなどによるマスク244を用いて加工し、薄膜発光素
子の第1の電極(陽極)245を形成する(図20(A))。第1の電極(陽極)245
の材料としては、仕事関数の大きい(仕事関数4.0eV以上)金属、合金、電気伝導性
化合物、およびこれらの混合物などを用いることが好ましい。例えばITO(indiu
m tin oxide)、ケイ素を含有するITO(ITSO)、酸化インジウムに2
〜20[atom%]の酸化亜鉛(ZnO)を混合したIZO(indium zinc
oxide)、酸化亜鉛、酸化亜鉛にガリウムを含有したGZO(Galium Zi
nc Oxide)の他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン
(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(C
u)、パラジウム(Pd)、または金属材料の窒化物(TiN)等を用いることができる
。本実施の形態ではITSOを第1の電極(陽極)245として用いた。
このように形成された素子基板を用い、第1の電極(陽極)245を発光素子の第1の
電極として用いて作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気から平坦化膜を介して水の侵入が平坦化膜241が極薄いことから少
ない為信頼性も高い物となる。以下に本実施の形態によって作製した第1の電極(陽極)
245を用いた発光素子及び表示装置の作製方法の一例を示す。もちろん、発光素子や表
示装置の作製方法に関してはこれに限定されない。なお、発光素子の第1の電極が有する
凹凸は1画素内のP−V値が30nm以下好ましくは15nm以下、さらに好ましくは1
0nm以下であることが望ましい。第1の電極が有する凹凸の一画素内のP−V値が30
nm以下好ましくは15nm以下、さらに好ましくは10nm以下であることで、増加型
欠陥を大幅に低減することが可能となる。
続いて平坦化膜241及び第1の電極(陽極)245を覆って有機材料もしくは無機材
料からなる絶縁膜を形成する。続いて当該絶縁膜を第1の電極(陽極)245の一部が露
出するように加工し、隔壁141を形成する(図20(B))。隔壁141の材料として
は、感光性を有する有機材料(アクリル、ポリイミドなど)が好適に用いられるが、感光
性を有さない有機材料や無機材料で形成してもかまわない。また、隔壁141の材料にチ
タンブラックやカーボンナイトライドなどの黒色顔料や染料を分散材などを用いて分散し
、隔壁141を黒くすることでブラックマトリクスとして用いても良い。隔壁141の第
1の電極245に向かう端面は曲率を有し、当該曲率が連続的に変化するテーパー形状を
していることが望ましい。
なお、隔壁141の第1の電極245側に向かう端面と、第1の電極245とのなす角
度は45度±5度程度であることが望ましい。このような形状を得る為には、隔壁141
の材料として感光性のポリイミドを用い、その膜厚を1.0μm程度で形成し、パターニ
ングのための露光、現像を行った後に行う焼成の温度を300度程度とすることで約43
度の好ましい角度を得ることができる。また、パターニングのための露光、現像した後、
焼成を行う前に全面を再度露光する工程を加えると、さらに当該角度を小さく形成するこ
とも可能となる。
次に、隔壁141から露出した第1の電極(陽極)245を覆う発光積層体142を形
成する。発光積層体142は蒸着法、スピンコート法、インクジェット法等により形成す
ればよい。続いて発光積層体142を覆う第2の電極(陰極)143を形成する(図20
(C))。これによって第1の電極(陽極)245と発光積層体142と第2の電極(陰
極)143とからなる発光素子を作製することができる。第2の電極(陰極)143の形
成に用いられる陰極材料としては、仕事関数の小さい(仕事関数3.8eV以下)金属、
合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。なお、陰
極材料の具体例としては、元素周期律の1族または2族に属する元素、すなわちLiやC
s等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含
む合金(Mg:Ag、Al:Li)や化合物(LiF、CsF、CaF2)の他、希土類
金属を含む遷移金属を用いて形成することができるが、Al、Ag、ITO等の金属(合
金を含む)との積層により形成することもできる。本実施の形態ではアルミニウムを陰極
として用いた。
なお、発光素子にはバッファ層を設けても良い。バッファ層についての説明は実施の形
態1を参照されたい。
なお、本実施の形態では、導電膜136に電気的に接触している電極は陽極であったが
、導電膜136に電気的に接触している電極は陰極であっても良い。
その後、プラズマCVD法により酸素を含む窒化ケイ素膜をパッシベーション膜として
形成してもよい。酸素を含む窒化ケイ素膜を用いる場合には、プラズマCVD法でSiH
4、N2O、NH3から作製される酸素を含む窒化ケイ素膜、またはSiH4、N2Oから作
製される酸素を含む窒化ケイ素膜、あるいはSiH4、N2OをArで希釈したガスから形
成される酸素を含む窒化ケイ素膜を形成すれば良い。
また、パッシベーション膜としてSiH4、N2O、H2から作製される水素と酸素を含
む窒化ケイ素膜を適用しても良い。もちろん、パッシベーション膜は単層構造に限定され
るものではなく、他のケイ素を含む絶縁膜を単層構造、もしくは積層構造として用いても
良い。また、窒化炭素膜と窒化ケイ素膜の多層膜やスチレンポリマーの多層膜、窒化ケイ
素膜やダイヤモンドライクカーボン膜を窒素を含む酸化ケイ素膜の代わりに形成してもよ
い。
パッシベーション膜を形成することによって発光素子の上面からの発光素子の劣化を促
進する元素の侵入を抑制することができ、信頼性の向上につながる。
続いて発光素子を水などの劣化を促進する物質から保護するために、表示部の封止を行
う(図20(D))。対向基板145を封止に用いる場合は、絶縁性のシール材144に
より貼り合わせる。対向基板145と素子基板との間の空間には乾燥した窒素などの不活
性気体を充填しても良いし、シール材を画素部全面に塗布しそれにより対向基板145を
貼り合わせても良い。シール材144には紫外線硬化樹脂などを用いると好適である。シ
ール材144には乾燥剤や基板間のギャップを一定に保つための粒子を混入しておいても
良い。
このようにして作製された発光装置は発光素子下部に位置する凹凸起因の不良が少なく
、また、外部雰囲気に平坦化膜が接しておらず、平坦化膜を介して水が侵入しないので信
頼性も高い発光装置となる。
(実施の形態10)
本実施の形態では、実施の形態1乃至実施の形態4のいずれかを適用して作製された発
光装置のパネルの外観について図23を用いて説明する。図23は基板上に形成されたト
ランジスタおよび発光素子を対向基板4006との間に形成したシール材によって封止し
たパネルの上面図であり、図23(B)は図23(A)の断面図に相応する。
基板4001上に設けられた画素部4002と信号線駆動回路4003と走査線駆動回
路4004とを囲むようにして、シール材4005が設けられている。また、画素部40
02と信号線駆動回路4003と、走査線駆動回路4004の上に対向基板4006が設
けられている。よって画素部4002と信号線駆動回路4003と、走査線駆動回路40
04とは基板4001とシール材4005と対向基板4006とによって密封されている
また、基板4001上に設けられた画素部4002と信号線駆動回路4003と走査線
駆動回路4004とは薄膜トランジスタを複数有しており、図23(B)では信号線駆動
回路4003に含まれる薄膜トランジスタ4008と、画素部4002に含まれる薄膜ト
ランジスタ4010とを示す。なお、トランジスタ4008、4010のソース電極及び
ドレイン電極及び画素電極の下部には平坦化膜4021が示されている。本実施例では平
坦化膜をソース電極、ドレイン電極、画素電極の下部に設ける構成を示したが、本実施例
は実施形態1から9に示したその他の構成に従って設けても良い。
また、発光素子4011は、薄膜トランジスタ4010と電気的に接続されている。
また、引き回し配線4014は画素部4002と信号線駆動回路4003と、走査線駆
動回路4004とに、信号、または電源電圧を層供給する為の配線に相当する。引き回し
配線4014は接続端子部4016において異方性導電膜4019を介してとフレキシブ
ルプリントサーキット(FPC)4018と電気的に接続されている。
なお、表示機能を有するこのような発光装置には、アナログのビデオ信号、デジタルの
ビデオ信号のどちらを用いてもよい。デジタルのビデオ信号を用いる場合はそのビデオ信
号が電圧を用いているものと、電流を用いているものとに分けられる。発光素子の発光時
において、画素に入力されるビデオ信号は、定電圧のものと、定電流のものがあり、ビデ
オ信号が定電圧のものには、発光素子に印加される電圧が一定のものと、発光素子に流れ
る電流が一定のものとがある。またビデオ信号が定電流のものには、発光素子に印加され
る電圧が一定のものと、発光素子に流れる電流が一定のものとがある。この発光素子に印
加される電圧が一定のものは定電圧駆動であり、発光素子に流れる電流が一定のものは定
電流駆動である。定電流駆動は、発光素子の抵抗変化によらず、一定の電流が流れる。本
発明の発光表示装置及びその駆動方法には、上記したいずれの駆動方法を用いても良い。
なお、本発明の表示装置は発光素子を有する画素部が形成されたパネルと、該パネルに
ICが実装されたモジュールとをその範疇に含む。
本実施の形態のようなパネル及びモジュールは、発光素子下部に位置する凹凸起因の不
良が少なく、また、外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高い
パネル及びモジュールである。
(実施の形態11)
実施の形態10にその一例を示したようなモジュールを搭載した本発明を用いて作製さ
れた電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッド
マウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオコン
ポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、
携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDig
ital Versatile Disc(DVD)等の記録媒体を再生し、その画像を
表示しうるディスプレイを備えた装置)などが挙げられる。それらの電子機器の具体例を
図24に示す。
図24(A)は発光表示装置でありテレビ受像器やパーソナルコンピュータのモニター
などがこれに当たる。筐体2001、表示部2003、スピーカー部2004等を含む。
本発明は表示部2003を作製する際に用いられ、発光素子下部に位置する凹凸起因の不
良が少なく、また、外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高い
表示装置とすることができる。画素部にはコントランスを高めるため、偏光板、又は円偏
光板を備えるとよい。例えば、封止基板へ1/4λ板、1/2λ板、偏光板の順にフィル
ムを設けるとよい。さらに偏光板上に反射防止膜を設けてもよい。
図24(B)は携帯電話であり、本体2101、筐体2102、表示部2103、音声
入力部2104、音声出力部2105、操作キー2106、アンテナ2108等を含む。
本発明は表示部2103を作製する際に用いられ、発光素子下部に位置する凹凸起因の不
良が少なく、また、外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高い
携帯電話とすることができる。
図24(C)はコンピュータであり、本体2201、筐体2202、表示部2203、
キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む
。本発明は表示部2203を作製する際に用いられ、発光素子下部に位置する凹凸起因の
不良が少なく、また、外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高
いノートコンピュータとすることができる。図24(C)ではノート型のコンピュータを
例示したが、ハードディスクと表示部が一体化したデスクトップ型のコンピュータなどに
も適用することが可能である。
図24(D)はモバイルコンピュータであり、本体2301、表示部2302、スイッ
チ2303、操作キー2304、赤外線ポート2305等を含む。本発明は表示部230
3を作製する際に用いられ、発光素子下部に位置する凹凸起因の不良が少なく、また、外
部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高いモバイルコンピュータ
とすることができる。
図24(E)は携帯型のゲーム機であり、筐体2401、表示部2402、スピーカー
部2403、操作キー2404、記録媒体挿入部2405等を含む。本発明は表示部24
03を作製する際に用いられ、発光素子下部に位置する凹凸起因の不良が少なく、また、
外部雰囲気から平坦化膜を介して水が侵入しにくいので信頼性も高い携帯型ゲーム機とす
ることができる。
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器を作製する際に
用いることが可能である。
(実施の形態12)
本実施の形態では発光積層体142の構成について詳しく説明する。
発光層は、有機化合物又は無機化合物を含む電荷注入輸送物質及び発光材料で形成し、
その分子数から低分子系有機化合物、中分子系有機化合物(昇華性を有さず、且つ分子数
が20以下、又は連鎖する分子の長さが10μm以下の有機化合物を指していう)、高分
子系有機化合物から選ばれた一種又は複数種の層を含み、電子注入輸送性又は正孔注入輸
送性の無機化合物と組み合わせても良い。
電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8−キ
ノリノラト)アルミニウム(略称:Alq3)、トリス(5−メチル−8−キノリノラト
)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]−キノリナ
ト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)−4−フ
ェニルフェノラト−アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキ
ノリン骨格を有する金属錯体等が挙げられる。また正孔輸送性の高い物質としては、例え
ば4,4’−ビス[N−(1−ナフチル)−N−フェニル−アミノ]−ビフェニル(略称
:α−NPD)や4,4’−ビス[N−(3−メチルフェニル)−N−フェニル−アミノ
]−ビフェニル(略称:TPD)や4,4’,4’’−トリス(N,N−ジフェニル−ア
ミノ)−トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(
3−メチルフェニル)−N−フェニル−アミノ]−トリフェニルアミン(略称:MTDA
TA)などの芳香族アミン系(即ち、ベンゼン環−窒素の結合を有する)の化合物が挙げ
られる。
また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム
(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアル
カリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq3のような
電子輸送性の高い物質とマグネシウム(Mg)のようなアルカリ土類金属との混合物であ
ってもよい。
電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物
(MoOx)やバナジウム酸化物(VOx)、ルテニウム酸化物(RuOx)、タングス
テン酸化物(WOx)、マンガン酸化物(MnOx)等の金属酸化物が挙げられる。また
、この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPc)等のフタ
ロシアニン系の化合物が挙げられる。
発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成とし
ても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成す
る。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルター(着色層
)を設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図
ることができる。フィルター(着色層)を設けることで、従来必要であるとされていた円
偏光板などを省略することが可能となり、発光層から放射される光の損失を無くすことが
できる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減すこ
とができる。
発光中心には様々な材料がある。低分子系有機発光材料では、4−ジシアノメチレン−
2−メチル−6−(1,1,7,7−テトラメチルジュロリジル−9−エニル) −4H
−ピラン(略称:DCJT)、4−ジシアノメチレン−2−t−ブチル−6−(1,1,
7,7−テトラメチルジュロリジル−9−エニル) −4H−ピラン(略称:DPA)、
ペリフランテン、2,5−ジシアノ−1,4−ビス(10−メトキシ−1,1,7,7−
テトラメチルジュロリジル−9−エニル)ベンゼン、N,N’−ジメチルキナクリドン(
略称:DMQd)、クマリン6、クマリン545T、トリス(8−キノリノラト)アルミ
ニウム(略称:Alq3)、9,9’−ビアントリル、9,10−ジフェニルアントラセ
ン(略称:DPA)や9,10−ビス(2−ナフチル)アントラセン(略称:DNA)等
を用いることができる。また、この他の物質でもよい。
一方、高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の耐久性が高
い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。高
分子系有機発光材料を用いた発光素子の構造は、低分子系有機発光材料を用いたときと基
本的には同じであり、陰極、有機発光層、陽極の積層となる。しかし、高分子系有機発光
材料を用いた発光層を形成する際には、低分子系有機発光材料を用いたときのような積層
構造を形成させることは難しく、多くの場合2層構造となる。具体的には、陰極、発光層
、正孔輸送層、陽極という積層構造である。
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を
示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の電
界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン
系、ポリフルオレン系が挙げられる。
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV]
の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PP
V]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビ
ニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレ
ンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパ
ラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)
[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる
。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフ
ェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキ
シルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[
PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3
−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフ
ェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には
、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF
]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の
間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセ
プター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒
には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性
の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウス
ルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポ
リスチレンスルホン酸[PSS]の混合物等が挙げられる。
また、発光層は単色又は白色の発光を呈する構成とすることができる。白色発光材料を
用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)を設
けた構成としてカラー表示を可能にすることができる。
白色に発光する発光層を形成するには、例えば、Alq3、部分的に赤色発光色素であ
るナイルレッドをドープしたAlq3、Alq3、p−EtTAZ、TPD(芳香族ジアミ
ン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを
用いた塗布法によりELを形成する場合には、塗布した後、真空加熱で焼成することが好
ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ
(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、
発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジ
エン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチ
リル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビ
ニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。
発光層は単層で形成することもでき、ホール輸送性のポリビニルカルバゾール(PVK
)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。
また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン
6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示し
た白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤
色発光、緑色発光、または青色発光が得られる発光素子を作製することができる。
なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の
間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセ
プター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒
には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性
の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウス
ルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポ
リスチレンスルホン酸[PSS]の混合物等が挙げられる。
さらに、発光層は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用
いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素
のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、
他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝
度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した
場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低
消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で
形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高
い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ること
ができる。
三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、
第三遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金
属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られるこ
とはなく、上記構造を有し、且つ中心金属に周期表の8〜10属に属する元素を有する化
合物を用いることも可能である。
以上に掲げる発光層を形成する物質は一例であり、正孔注入輸送層、正孔輸送層、電子
注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層
を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた
混合層又は混合接合を形成しても良い。発光層の層構造は変化しうるものであり、特定の
電子注入領域や発光領域を備えていない代わりに、もっぱらこの目的用の電極を備えたり
、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲におい
て許容されうるものである。
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光
素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマト
リクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミ
ングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態と
なっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向
上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画
素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆
方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ
、発光装置の信頼性を向上させることができる。
(実施の形態13)
本実施の形態では、実施の形態10で示したパネル、モジュールが有する画素回路、保
護回路及びそれらの動作について説明する。
図25(A)に示す画素は、列方向に信号線1410及び電源線1411、1412、
行方向に走査線1414が配置される。また、スイッチング用TFT1401、駆動用T
FT1403、電流制御用TFT1404、容量素子1402及び発光素子1405を有
する。
図25(C)に示す画素は、駆動用TFT1403のゲート電極が、行方向に配置され
た電源線1412に接続される点が異なっており、それ以外は図25(A)に示す画素と
同じ構成である。つまり、図25(A)(C)に示す両画素は、同じ等価回路図を示す。
しかしながら、行方向に電源線1412が配置される場合(図25(A))と、列方向に
電源線1412が配置される場合(図25(C))とでは、各電源線は異なるレイヤーの
導電膜で形成される。ここでは、駆動用TFT1403のゲート電極が接続される配線に
注目し、これらを作製するレイヤーが異なることを表すために、図25(A)(C)とし
て分けて記載する。
図25(A)(C)に示す画素の特徴として、画素内に駆動用TFT1403と電流制
御用TFT1404が直列に接続されており、駆動用TFT1403のチャネル長L(1
403)、チャネル幅W(1403)、電流制御用TFT1404のチャネル長L(14
04)、チャネル幅W(1404)は、L(1403)/W(1403):L(1404
)/W(1404)=5〜6000:1を満たすように設定するとよい。
なお、駆動用TFT1403は、飽和領域で動作し発光素子1405に流れる電流値を
制御する役目を有し、電流制御用TFT1404は線形領域で動作し発光素子1405に
対する電流の供給を制御する役目を有する。両TFTは同じ導電型を有していると作製工
程上好ましく、本実施の形態ではnチャネル型TFTとして形成する。また駆動用TFT
1403には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いても
よい。上記構成を有する本発明は、電流制御用TFT1404が線形領域で動作するため
に、電流制御用TFT1404のVgsの僅かな変動は、発光素子1405の電流値に影
響を及ぼさない。つまり、発光素子1405の電流値は、飽和領域で動作する駆動用TF
T1403により決定することができる。上記構成により、TFTの特性バラツキに起因
した発光素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる
図25(A)〜(D)に示す画素において、スイッチング用TFT1401は、画素に
対するビデオ信号の入力を制御するものであり、スイッチング用TFT1401がオンと
なると、画素内にビデオ信号が入力される。すると、容量素子1402にそのビデオ信号
の電圧が保持される。なお図25(A)(C)には、容量素子1402を設けた構成を示
したが、本発明はこれに限定されず、ビデオ信号を保持する容量がゲート容量などでまか
なうことが可能な場合には、容量素子1402を設けなくてもよい。
図25(B)に示す画素は、TFT1406と走査線1414を追加している以外は、
図25(A)に示す画素構成と同じである。同様に、図25(D)に示す画素は、TFT
1406と走査線1414を追加している以外は、図25(C)に示す画素構成と同じで
ある。
TFT1406は、新たに配置された走査線1414によりオン又はオフが制御される
。TFT1406がオンとなると、容量素子1402に保持された電荷は放電し、電流制
御用TFT1404がオフとなる。つまり、TFT1406の配置により、強制的に発光
素子1405に電流が流れない状態を作ることができる。そのためTFT1406を消去
用TFTと呼ぶことができる。従って、図25(B)(D)の構成は、全ての画素に対す
る信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始
することができるため、デューティ比を向上することが可能となる。
図25(E)に示す画素は、列方向に信号線1410、電源線1411、行方向に走査
線1414が配置される。また、スイッチング用TFT1401、駆動用TFT1403
、容量素子1402及び発光素子1405を有する。図25(F)に示す画素は、TFT
1406と走査線1415を追加している以外は、図7(E)に示す画素構成と同じであ
る。なお、図25(F)の構成も、TFT1406の配置により、デューティ比を向上す
ることが可能となる。
以上のように、多様な画素回路を採用することができる。特に、非晶質半導体膜から薄
膜トランジスタを形成する場合、駆動用TFT1403の半導体膜を大きくすると好まし
い。そのため、上記画素回路において、電界発光層からの光が封止基板側から射出する上
面発光型とすると好ましい。
このようなアクティブマトリクス型の発光装置は、画素密度が増えた場合、各画素にT
FTが設けられているため低電圧駆動でき、有利であると考えられている。
本実施の形態では、一画素に各TFTが設けられるアクティブマトリクス型の発光装置
について説明したが、一列毎にTFTが設けられるパッシブマトリクス型の発光装置を形
成することもできる。パッシブマトリクス型の発光装置は、各画素にTFTが設けられて
いないため、高開口率となる。発光が電界発光層の両側へ射出する発光装置の場合、パッ
シブマトリクス型の表示装置を用いる透過率が高まる。
これらのような画素回路をさらに有する本発明の表示装置は、駆動電圧が小さく、駆動
電圧の経時上昇も小さい上、各々の特徴を有する表示装置とすることができる。
続いて、図25(E)に示す等価回路を用い、走査線及び信号線に保護回路としてダイ
オードを設ける場合について説明する。
図26には、画素部1500にスイッチング用TFT1401、1403、容量素子1
402、発光素子1405が設けられている。信号線1410には、ダイオード1561
と1562が設けられている。ダイオード1561と1562は、スイッチング用TFT
1401又は1403と同様に、上記実施の形態に基づき作製され、ゲート電極、半導体
層、ソース電極及びドレイン電極等を有する。ダイオード1561と1562は、ゲート
電極と、ドレイン電極又はソース電極とを接続することによりダイオードとして動作させ
ている。
ダイオードと接続する共通電位線1554、1555はゲート電極と同じレイヤーで形
成している。従って、ダイオードのソース電極又はドレイン電極と接続するには、ゲート
絶縁膜にコンタクトホールを形成する必要がある。
走査線1414に設けられるダイオードも同様な構成である。
このように、本発明によれば、入力段に設けられる保護ダイオードを同時に形成するこ
とができる。なお、保護ダイオードを形成する位置は、これに限定されず、駆動回路と画
素との間に設けることもできる。
本発明の表示装置は、このような保護回路を有する場合、駆動電圧が小さく、駆動電圧
の経時上昇も小さい上、表示装置としての信頼性も高めることが可能となる。

Claims (1)

  1. 基板上の絶縁表面上に薄膜トランジスタと発光素子とを有する画素を有し、
    前記発光素子は第1の電極、第2の電極及び前記第1の電極と第2の電極との間に挟まれた発光積層体を有し、
    前記第1の電極は前記薄膜トランジスタ上に形成された絶縁膜上に形成され、
    少なくとも前記第1の電極と前記絶縁膜との間には前記第1の電極の平坦化膜が配置されている表示装置。
JP2011262456A 2004-10-01 2011-11-30 発光装置及びその作製方法 Withdrawn JP2012069530A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262456A JP2012069530A (ja) 2004-10-01 2011-11-30 発光装置及びその作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004290313 2004-10-01
JP2004290313 2004-10-01
JP2011262456A JP2012069530A (ja) 2004-10-01 2011-11-30 発光装置及びその作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005286997A Division JP2006128099A (ja) 2004-10-01 2005-09-30 表示装置及びその作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013150135A Division JP2013258151A (ja) 2004-10-01 2013-07-19 発光装置

Publications (1)

Publication Number Publication Date
JP2012069530A true JP2012069530A (ja) 2012-04-05

Family

ID=36770187

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2011262456A Withdrawn JP2012069530A (ja) 2004-10-01 2011-11-30 発光装置及びその作製方法
JP2013150135A Withdrawn JP2013258151A (ja) 2004-10-01 2013-07-19 発光装置
JP2014162007A Active JP5820514B2 (ja) 2004-10-01 2014-08-08 発光装置
JP2015166355A Active JP6293098B2 (ja) 2004-10-01 2015-08-26 発光装置
JP2016152436A Active JP6433466B2 (ja) 2004-10-01 2016-08-03 発光装置
JP2017219747A Withdrawn JP2018066998A (ja) 2004-10-01 2017-11-15 表示装置
JP2019073694A Active JP6891210B2 (ja) 2004-10-01 2019-04-08 表示装置
JP2021042177A Withdrawn JP2021106160A (ja) 2004-10-01 2021-03-16 表示装置

Family Applications After (7)

Application Number Title Priority Date Filing Date
JP2013150135A Withdrawn JP2013258151A (ja) 2004-10-01 2013-07-19 発光装置
JP2014162007A Active JP5820514B2 (ja) 2004-10-01 2014-08-08 発光装置
JP2015166355A Active JP6293098B2 (ja) 2004-10-01 2015-08-26 発光装置
JP2016152436A Active JP6433466B2 (ja) 2004-10-01 2016-08-03 発光装置
JP2017219747A Withdrawn JP2018066998A (ja) 2004-10-01 2017-11-15 表示装置
JP2019073694A Active JP6891210B2 (ja) 2004-10-01 2019-04-08 表示装置
JP2021042177A Withdrawn JP2021106160A (ja) 2004-10-01 2021-03-16 表示装置

Country Status (3)

Country Link
US (5) US8148895B2 (ja)
JP (8) JP2012069530A (ja)
CN (1) CN100550410C (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095643B1 (ko) * 2004-08-20 2011-12-19 삼성전자주식회사 버퍼층을 포함하는 액정 표시 패널 및 이를 갖는 액정표시장치
US8148895B2 (en) * 2004-10-01 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
EP2924498A1 (en) 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
TWI675243B (zh) 2006-05-16 2019-10-21 日商半導體能源研究所股份有限公司 液晶顯示裝置
US7847904B2 (en) 2006-06-02 2010-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
KR20080035150A (ko) * 2006-10-18 2008-04-23 삼성전자주식회사 박막 트랜지스터 기판의 제조 방법
US8114532B2 (en) * 2007-01-26 2012-02-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US8334537B2 (en) * 2007-07-06 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7738050B2 (en) 2007-07-06 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
TWI456663B (zh) 2007-07-20 2014-10-11 Semiconductor Energy Lab 顯示裝置之製造方法
KR101845480B1 (ko) * 2010-06-25 2018-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
CN102683277A (zh) * 2012-05-08 2012-09-19 深圳市华星光电技术有限公司 一种薄膜晶体管阵列基板及其制作方法
KR101947166B1 (ko) * 2012-11-19 2019-02-13 삼성디스플레이 주식회사 기판 및 상기 기판을 포함하는 표시장치
KR20150137214A (ko) * 2014-05-28 2015-12-09 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
KR102360783B1 (ko) * 2014-09-16 2022-02-10 삼성디스플레이 주식회사 디스플레이 장치
KR102284756B1 (ko) 2014-09-23 2021-08-03 삼성디스플레이 주식회사 디스플레이 장치
CN104465704B (zh) 2014-12-03 2019-08-23 京东方科技集团股份有限公司 显示面板及其封装方法、显示装置
KR102377531B1 (ko) * 2015-01-23 2022-03-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106816558B (zh) * 2017-04-14 2019-09-03 京东方科技集团股份有限公司 顶发射有机电致发光显示面板、其制作方法及显示装置
CN107195640A (zh) * 2017-06-28 2017-09-22 京东方科技集团股份有限公司 阵列基板及其制备方法和显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119219A (ja) * 2002-09-26 2004-04-15 Seiko Epson Corp 電気光学装置、パネル基板及び電子機器
WO2004057920A1 (ja) * 2002-12-19 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. 表示装置及び表示装置の作製方法
JP2004192890A (ja) * 2002-12-10 2004-07-08 Sony Corp 有機電界発光素子

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169567A (ja) 1993-12-16 1995-07-04 Idemitsu Kosan Co Ltd 有機el素子
US5818481A (en) * 1995-02-13 1998-10-06 Minolta Co., Ltd. Ink jet printing head having a piezoelectric driver member
JPH09148066A (ja) 1995-11-24 1997-06-06 Pioneer Electron Corp 有機el素子
US6288764B1 (en) * 1996-06-25 2001-09-11 Semiconductor Energy Laboratory Co., Ltd. Display device or electronic device having liquid crystal display panel
JPH11195487A (ja) * 1997-12-27 1999-07-21 Tdk Corp 有機el素子
TW527735B (en) 1999-06-04 2003-04-11 Semiconductor Energy Lab Electro-optical device
TW483287B (en) 1999-06-21 2002-04-11 Semiconductor Energy Lab EL display device, driving method thereof, and electronic equipment provided with the EL display device
JP3423261B2 (ja) * 1999-09-29 2003-07-07 三洋電機株式会社 表示装置
JP2001102169A (ja) * 1999-10-01 2001-04-13 Sanyo Electric Co Ltd El表示装置
TW525122B (en) 1999-11-29 2003-03-21 Semiconductor Energy Lab Electronic device
JP4727029B2 (ja) 1999-11-29 2011-07-20 株式会社半導体エネルギー研究所 El表示装置、電気器具及びel表示装置用の半導体素子基板
JP2001160486A (ja) * 1999-12-03 2001-06-12 Sony Corp 有機elディスプレイの製造方法及び有機elディスプレイ
JP2001175198A (ja) 1999-12-14 2001-06-29 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2001242803A (ja) 2000-02-29 2001-09-07 Sony Corp 表示装置及びその製造方法
JP4731714B2 (ja) 2000-04-17 2011-07-27 株式会社半導体エネルギー研究所 発光装置
TW493282B (en) 2000-04-17 2002-07-01 Semiconductor Energy Lab Self-luminous device and electric machine using the same
US7525165B2 (en) 2000-04-17 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP4889872B2 (ja) 2000-04-17 2012-03-07 株式会社半導体エネルギー研究所 発光装置及びそれを用いた電気器具
US7579203B2 (en) * 2000-04-25 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4152603B2 (ja) 2000-04-27 2008-09-17 株式会社半導体エネルギー研究所 発光装置
TW531901B (en) 2000-04-27 2003-05-11 Semiconductor Energy Lab Light emitting device
JP3783099B2 (ja) 2000-05-16 2006-06-07 株式会社豊田中央研究所 有機電界発光素子
TW522454B (en) 2000-06-22 2003-03-01 Semiconductor Energy Lab Display device
US6720577B2 (en) 2000-09-06 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4986351B2 (ja) 2000-09-06 2012-07-25 株式会社半導体エネルギー研究所 半導体装置
JP2002190390A (ja) 2000-10-10 2002-07-05 Semiconductor Energy Lab Co Ltd 発光装置の修理方法及び作製方法
TW530427B (en) 2000-10-10 2003-05-01 Semiconductor Energy Lab Method of fabricating and/or repairing a light emitting device
JP4678933B2 (ja) * 2000-11-07 2011-04-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW522577B (en) 2000-11-10 2003-03-01 Semiconductor Energy Lab Light emitting device
KR100495701B1 (ko) * 2001-03-07 2005-06-14 삼성에스디아이 주식회사 유기 전계 발광 표시장치의 제조방법
JP3841198B2 (ja) * 2001-03-13 2006-11-01 日本電気株式会社 アクティブマトリクス基板及びその製造方法
JP4801278B2 (ja) 2001-04-23 2011-10-26 株式会社半導体エネルギー研究所 発光装置及びその作製方法
US7294517B2 (en) 2001-06-18 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of fabricating the same
US6686605B2 (en) 2001-07-27 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and method of manufacturing the same
JP3917494B2 (ja) * 2001-09-17 2007-05-23 株式会社半導体エネルギー研究所 発光装置の駆動方法
JP3810724B2 (ja) * 2001-09-17 2006-08-16 株式会社半導体エネルギー研究所 発光装置及び電子機器
JP2003202834A (ja) * 2001-10-24 2003-07-18 Semiconductor Energy Lab Co Ltd 半導体装置およびその駆動方法
JP4498669B2 (ja) * 2001-10-30 2010-07-07 株式会社半導体エネルギー研究所 半導体装置、表示装置、及びそれらを具備する電子機器
JP4103373B2 (ja) * 2001-11-08 2008-06-18 松下電器産業株式会社 エレクトロルミネッセンス表示装置およびエレクトロルミネッセンス表示装置の製造方法
CN100380673C (zh) 2001-11-09 2008-04-09 株式会社半导体能源研究所 发光设备及其制造方法
US7042024B2 (en) 2001-11-09 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method for manufacturing the same
JP3983037B2 (ja) 2001-11-22 2007-09-26 株式会社半導体エネルギー研究所 発光装置およびその作製方法
JP4101511B2 (ja) * 2001-12-27 2008-06-18 株式会社半導体エネルギー研究所 発光装置及びその作製方法
US6953735B2 (en) 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
JP4567941B2 (ja) * 2001-12-28 2010-10-27 株式会社半導体エネルギー研究所 半導体装置の作製方法及び表示装置の作製方法
JP4627966B2 (ja) 2002-01-24 2011-02-09 株式会社半導体エネルギー研究所 発光装置およびその作製方法
SG143063A1 (en) 2002-01-24 2008-06-27 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US7098069B2 (en) 2002-01-24 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of preparing the same and device for fabricating the same
JP2003288983A (ja) 2002-01-24 2003-10-10 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法、及び製造装置
JP2004145244A (ja) 2002-01-25 2004-05-20 Semiconductor Energy Lab Co Ltd 表示装置
TWI258317B (en) 2002-01-25 2006-07-11 Semiconductor Energy Lab A display device and method for manufacturing thereof
JP2003234179A (ja) 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd Oledディスプレイ
EP1343206B1 (en) * 2002-03-07 2016-10-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus, electronic apparatus, illuminating device and method of fabricating the light emitting apparatus
TW200305119A (en) * 2002-03-15 2003-10-16 Sanyo Electric Co Electroluminescence display device and method for making the same
TWI263339B (en) * 2002-05-15 2006-10-01 Semiconductor Energy Lab Light emitting device and method for manufacturing the same
JP2003347044A (ja) 2002-05-30 2003-12-05 Sanyo Electric Co Ltd 有機elパネル
JP4171258B2 (ja) * 2002-07-25 2008-10-22 三洋電機株式会社 有機elパネル
TWI283914B (en) 2002-07-25 2007-07-11 Toppoly Optoelectronics Corp Passivation structure
JP4615197B2 (ja) * 2002-08-30 2011-01-19 シャープ株式会社 Tftアレイ基板の製造方法および液晶表示装置の製造方法
US20040084305A1 (en) 2002-10-25 2004-05-06 Semiconductor Energy Laboratory Co., Ltd. Sputtering system and manufacturing method of thin film
JP2004165655A (ja) 2002-10-25 2004-06-10 Semiconductor Energy Lab Co Ltd スパッタリング装置及び薄膜の作製方法
JP2004207084A (ja) 2002-12-25 2004-07-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP4373086B2 (ja) * 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 発光装置
JP2004214406A (ja) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd 半導体膜及び半導体素子の作製方法
US7164228B2 (en) * 2002-12-27 2007-01-16 Seiko Epson Corporation Display panel and electronic apparatus with the same
US7452257B2 (en) * 2002-12-27 2008-11-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a display device
JP4741192B2 (ja) * 2003-01-17 2011-08-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2004259696A (ja) * 2003-02-07 2004-09-16 Seiko Epson Corp エレクトロルミネッセンス装置及びその製造方法並びに電子機器
JP4432367B2 (ja) 2003-05-28 2010-03-17 カシオ計算機株式会社 表示パネル
KR100531294B1 (ko) * 2003-06-23 2005-11-28 엘지전자 주식회사 유기 el 소자 및 그 제조 방법
SG142140A1 (en) 2003-06-27 2008-05-28 Semiconductor Energy Lab Display device and method of manufacturing thereof
JP3912393B2 (ja) * 2003-08-08 2007-05-09 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
US7928654B2 (en) 2003-08-29 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP4741177B2 (ja) 2003-08-29 2011-08-03 株式会社半導体エネルギー研究所 表示装置の作製方法
US7816863B2 (en) * 2003-09-12 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
JP4428979B2 (ja) * 2003-09-30 2010-03-10 三洋電機株式会社 有機elパネル
JP4716699B2 (ja) * 2003-09-30 2011-07-06 三洋電機株式会社 有機elパネル
CN1638538B (zh) 2003-12-26 2010-06-09 乐金显示有限公司 有机电致发光器件及其制造方法
KR100615212B1 (ko) 2004-03-08 2006-08-25 삼성에스디아이 주식회사 평판 표시 장치
JP4849821B2 (ja) 2004-04-28 2012-01-11 株式会社半導体エネルギー研究所 表示装置、電子機器
US7692378B2 (en) 2004-04-28 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device including an insulating layer with an opening
JP5222455B2 (ja) 2004-04-28 2013-06-26 株式会社半導体エネルギー研究所 表示装置
KR100635065B1 (ko) * 2004-05-17 2006-10-16 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 제조방법
JP4570420B2 (ja) * 2004-08-23 2010-10-27 三菱電機株式会社 アクティブマトリクス型表示装置およびアクティブマトリクス型表示装置の製造方法
US8148895B2 (en) 2004-10-01 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
DE102006007067A1 (de) 2006-02-15 2007-08-16 Robert Bosch Gmbh Linearmodul mit separaten Umlaufeinheiten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119219A (ja) * 2002-09-26 2004-04-15 Seiko Epson Corp 電気光学装置、パネル基板及び電子機器
JP2004192890A (ja) * 2002-12-10 2004-07-08 Sony Corp 有機電界発光素子
WO2004057920A1 (ja) * 2002-12-19 2004-07-08 Semiconductor Energy Laboratory Co., Ltd. 表示装置及び表示装置の作製方法

Also Published As

Publication number Publication date
US9054230B2 (en) 2015-06-09
US20150280007A1 (en) 2015-10-01
CN100550410C (zh) 2009-10-14
JP6293098B2 (ja) 2018-03-14
US8148895B2 (en) 2012-04-03
US20060186413A1 (en) 2006-08-24
JP2013258151A (ja) 2013-12-26
US20130126877A1 (en) 2013-05-23
JP2018066998A (ja) 2018-04-26
US20120064648A1 (en) 2012-03-15
US20180130911A1 (en) 2018-05-10
JP2014239062A (ja) 2014-12-18
US9887294B2 (en) 2018-02-06
US10333003B2 (en) 2019-06-25
JP2019140113A (ja) 2019-08-22
US8357021B2 (en) 2013-01-22
JP6891210B2 (ja) 2021-06-18
JP6433466B2 (ja) 2018-12-05
CN1779984A (zh) 2006-05-31
JP5820514B2 (ja) 2015-11-24
JP2021106160A (ja) 2021-07-26
JP2015213093A (ja) 2015-11-26
JP2016213200A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6433466B2 (ja) 発光装置
US11417856B2 (en) Light-emitting device
JP2006114493A (ja) 発光装置
JP4785415B2 (ja) エレクトロルミネッセンス表示装置の作製方法
JP2006128099A (ja) 表示装置及びその作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130722