JP2012023818A - 電動機の固定子 - Google Patents

電動機の固定子 Download PDF

Info

Publication number
JP2012023818A
JP2012023818A JP2010158273A JP2010158273A JP2012023818A JP 2012023818 A JP2012023818 A JP 2012023818A JP 2010158273 A JP2010158273 A JP 2010158273A JP 2010158273 A JP2010158273 A JP 2010158273A JP 2012023818 A JP2012023818 A JP 2012023818A
Authority
JP
Japan
Prior art keywords
stator
winding
electric motor
slot
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010158273A
Other languages
English (en)
Other versions
JP5393605B2 (ja
Inventor
Masahiro Nigo
昌弘 仁吾
Kazuhiko Baba
和彦 馬場
Tomoaki Oikawa
智明 及川
Kazunori Tsuchida
和慶 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010158273A priority Critical patent/JP5393605B2/ja
Publication of JP2012023818A publication Critical patent/JP2012023818A/ja
Application granted granted Critical
Publication of JP5393605B2 publication Critical patent/JP5393605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】PETフィルムのような薄いフィルム絶縁を用いて巻線断面積を拡大し、銅損を低減した高効率なモータを構成する場合に、薄いフィルム絶縁を用いても効率・巻線性を低下させることなく漏洩電流を低減させることができる電動機の固定子を提供する。
【解決手段】この発明に係る電動機の固定子は、インバータなどのPWM制御で可変速駆動される電動機の固定子において、電動機の固定子は、複数の分割ティースで構成され、分割ティース間にスロットが形成される固定子鉄心と、分割ティースのティースに集中巻方式で巻回される巻線と、巻線とスロット内周との間を絶縁するフィルム絶縁と、スロットの底辺に形成される所定の形状の溝と、を備えたものである。
【選択図】図11

Description

この発明は、インバータで駆動される電動機の固定子のスロット内絶縁構造に関する。
一般的に、電動機においては、スロット内巻線と固定子鉄心とを絶縁材で絶縁しても、巻線と固定子鉄心間に浮遊静電容量が存在し、高周波に対しては絶縁性が小さくなり漏れ電流が発生する場合がある。商用電源(50/60Hz)で電動機を駆動する場合は問題になることは少ないが、インバータなどのPWM制御による電動機の高周波運転を行う場合は、巻線と固定子鉄心間の浮遊静電容量に起因する漏れ電流が問題になる。
固定子を樹脂にてモールドするモールド固定子では、モールド固定子が樹脂で覆われているため、漏れ電流が問題になることは少ない。例えば、密閉型圧縮機においては、固定子が鋼板製の密閉容器に直に固定されるため、人体に影響がないよう電気用品取締法に規定されている値(充電部と器体の表面との間に流れる漏洩電流は、1mA以下のこと)以内にする対策が必要となる。
従来、電磁鋼板よりなる固定子コアシートを積層した固定子鉄心のスロット内に絶縁紙を介して銅線などの導体が巻線された固定子を有する電動機において、電動機の特性を落とすことなくまた組立性、コスト性にも影響を与えることなく電動機の漏れ電流を低減させることができる固定子を提供することを目的として、固定子コアシートのスロット内の形状を複数の凹凸状とし、これを積層した電動機の固定子鉄心が提案されている(例えば、特許文献1参照)。
特開平8−107642号公報
しかしながら、上記特許文献1記載のものは、スロット内周に凹凸を設けているため、確かに固定子鉄心と巻線との間の浮遊静電容量は低減できるが、凹凸によりティースの磁路が狭くなってしまう。そのため、ティースの磁束密度が増加し鉄損が増加する課題がある。
また、集中巻の場合、巻線をティース側面に押さえつけながら巻くため、凹凸が巻線の整列製を悪化させ、巻線の占積率が悪化し、銅損が増加する課題がある。更に、集中巻の場合、巻線が凹凸に嵌まり込むように配置された場合、巻線と固定子鉄心の間の距離は広がらないため浮遊静電容量の低減効果は小さくなり、漏洩電流低減効果は小さいと言える。
巻線と固定子鉄心との間の絶縁に、樹脂の成形品であるインシュレータ絶縁を使用するのが一般的であるが、電動機の特性を改善するために、インシュレータ絶縁に代えてフィルム絶縁(PETフィルム(PETフィルムとは、「ポリエチレンテレフタレート」という正式名称の高分子フィルム)のような薄い絶縁材)を用いる場合がある。インシュレータ絶縁に代えてフィルム絶縁にすることにより利用できるスロット面積が増え、例えば、約30%コイル量を増やすことができる。それに伴い銅損が低減して、モータ効率を大幅に改善することができる。
この場合、インシュレータ絶縁に比べてフィルム絶縁が薄くなるので、巻線と固定子鉄心間の浮遊静電容量に起因する漏れ電流が増加する。また、その電動機をインバータなどのPWM制御による高周波運転を行うと、更に漏れ電流が増加する。
この発明は、上記のような課題を解決するためになされたもので、PETフィルムのような薄いフィルム絶縁を用いて巻線断面積を拡大し、銅損を低減した高効率なモータを構成する場合に、薄いフィルム絶縁を用いても効率・巻線性を低下させることなく漏洩電流を低減させることができる電動機の固定子を提供する。
この発明に係る電動機の固定子は、インバータなどのPWM制御で可変速駆動される電動機の固定子において、
電動機の固定子は、
複数の分割ティースで構成され、分割ティース間にスロットが形成される固定子鉄心と、
分割ティースのティースに集中巻方式で巻回される巻線と、
巻線とスロット内周との間を絶縁するフィルム絶縁と、
スロットの底辺に形成される所定の形状の溝と、を備えたものである。
この発明の電動機固定子は、スロットの底辺に溝を設けたことで、スロットの底辺における巻線と固定子鉄心の間の距離を広くでき、薄いフィルム絶縁材を用いても、浮遊静電容量を低減し漏洩電流を低減できる効果がある。
比較例1を示す図で、電動機200の横断面図。 図1の固定子210の一ティース分を示す図。 図1の固定子210の一ティース分を示す図((a)は横断面図、(b)は(a)のA−A断面図)。 比較例2を示す図で、電動機300の横断面図。 図4の固定子310の一ティース分を示す図。 図4の固定子310の一ティース分を示す図((a)は横断面図、(b)は(a)のB−B断面図)。 比較例2を示す図で、端部インシュレータ313−1を施したティースコア311aを示す斜視図。 比較例2を示す図で、図7と見る角度を変えた端部インシュレータ313−1を施したティースコア311aを示す斜視図。 比較例1の固定子210(ティースコア211a側面の絶縁をインシュレータ213で構成した)と比較例2の固定子310(ティースコア311a側面の絶縁をフィルム絶縁313で構成した)との特性を比較した図。 実施の形態1を示す図で、電動機100の横断面図。 実施の形態1を示す図で、固定子110の横断面図。 図11の一ティース分を示す図。 実施の形態1を示す図で、固定子鉄心111の横断面図。 実施の形態1を示す図で、固定子鉄心111の斜視図。 実施の形態1を示す図で、ティースコア111aの平面図。 実施の形態1を示す図で、帯状に展開した固定子鉄心111の平面図。 実施の形態1を示す図で、固定子鉄心111をティース116が外側になるように逆曲げして巻線を行う状態を示す平面図。 実施の形態1を示す図で、電動機100の駆動回路1の回路図。 実施の形態1を示す図で、従来と本実施の形態の固定子鉄心と巻線間の浮遊静電容量の測定結果を示す図。 実施の形態1を示す図で、ティースコア111aの平面図。 実施の形態1を示す図で、変形例1のティースコア111a−1の平面図。 従来のスロットに溝のない電動機の磁束線解析結果を示す図。 本実施の形態のスロットに溝を設けた電動機の磁束線解析結果を示す図。 従来のスロットに溝のない電動機と本実施の形態のスロットに溝を設けた電動機との特性を比較した図。 実施の形態1を示す図で、変形例2のティースコア111a−2の平面図。 実施の形態1を示す図で、変形例2のティースコア111a−2に巻線112を施した状態を示す図。 実施の形態1を示す図で、変形例3のティースコア111a−3の平面図。 実施の形態1を示す図で、変形例3のティースコア111a−3に巻線112を施した状態を示す図。 実施の形態1を示す図で、変形例4の固定子鉄心411の斜視図。 実施の形態1を示す図で、変形例4の固定子鉄心411を構成する分割ティースであるティースコア411aの斜視図。 実施の形態1を示す図で、ティースコア411aを構成する第1のティースコア板411a−1及び第2のティースコア板411a−2の平面図((a)は第1のティースコア板411a−1、(b)は第2のティースコア板411a−2)。 実施の形態1を示す図で、インバータ駆動時の電流波形を示す図。
実施の形態1.
モータの損失は、主に銅損、鉄損で構成され、空気調和機などの省エネ機器に搭載されるモータの高効率化を図るためには両者を低減する必要がある。銅損Wcは、通電電流をI、巻線抵抗をRとすると、Wc=RIと表される。銅損Wcの低減には、通電電流Iもしくは巻線抵抗Rを小さくすることが求められる。電流は負荷条件が決まると任意に決まる値であるため、モータの銅損を低減するためには巻線抵抗を小さくするような構成が必要である。
巻線抵抗Rは、巻線の導電率をρ、巻線の断面積をS、巻線の長さをLとするとR=ρL/Sと表される。そのため、できるだけ太い巻線で、周長を短く、高密度で巻くことが求められる。
上記の要求に答えるために、従来の分布巻に代えて、固定子の一本のティースに絶縁材を介して巻線を単独で巻きつける集中巻の構成が多くとられるようになった。更に、各ティースを分割して構成し、巻線機で巻線を整列させて巻く製造技術が用いられるようになっている。
更に、巻線抵抗を低減する場合、ティースと巻線導体間の絶縁材の厚さを薄くしたいという要求がある。固定子のスロットの絶縁材のスペースに巻線を巻くことができれば、より太い巻線を巻くことができ銅損を削減することができる。
図1乃至図3は比較例1を示す図で、図1は電動機200の横断面図、図2は図1の固定子210の一ティース分を示す図、図3は図1の固定子210の一ティース分を示す図((a)は横断面図、(b)は(a)のA−A断面図)である。
図1に示すように、比較例1の電動機200(ブラシレスDCモータ)は、固定子210と、回転子220とを備える。
固定子210は、固定子鉄心211と、巻線212と、固定子鉄心211と巻線212とを絶縁するインシュレータ213とを備える。
固定子鉄心211は、複数個(図1の例は、9個)の分割鉄心であるティースコア211aを環状に形成したものである。ティースコア211aは、所定の形状に打ち抜かれた電磁鋼板を所定枚数、例えばカシメ等により積層して形成される。9個のティースコア211aは、例えば、ジョイントラップ(図示せず)により互いに変形可能に接続されていて、図1の正曲げの状態と逆の状態(逆曲げ)で巻線212が施される。巻線212が施こされる前に、各ティースコア211aには、インシュレータ213が組み付けられる。巻線完了後、逆曲げの状態から正曲げの状態に整形し、固定子鉄心211を溶接等により接合して固定子210が完成する。
インシュレータ213は、ティースコア211aを覆うようにティースコア211aの両端面から嵌め合う。図3(b)に示すように、インシュレータ213a,213bをティースコア211aの軸方向両端面から嵌める。この際、インシュレータ213には嵌め合いによる力が加わるので、強度確保のためにティースコア211a側面部のインシュレータ213の厚さt(図2参照)を1mm程度で設計している。このインシュレータ213の厚みによって、巻線断面積(スロット断面積−インシュレータ断面積)はスロット断面積に対し小さくなり、巻線径が細くせざるを得なかった。つまり、インシュレータ213の強度を確保するために厚みのあるインシュレータ213を巻線212と固定子鉄心211間に設けることで、巻線抵抗が増加し、モータ効率が悪化していた。図1〜図3の巻線212の線径は、例えば、φ0.8mmである。
上記の課題を解決するために、下記のような構成を検討した。図4乃至図6は比較例2を示す図で、図4は電動機300の横断面図、図5は図4の固定子310の一ティース分を示す図、図6は図4の固定子310の一ティース分を示す図((a)は横断面図、(b)は(a)のB−B断面図)である。
図4に示すように、比較例2の電動機300(ブラシレスDCモータ)は、固定子310と、回転子320とを備える。
比較例2の固定子310が固定子210と異なるのは、巻線断面積を大きくするために、絶縁材にPET(ポリエチレンテレフタレート)フィルムを用いた点である。
図4に示すように、比較例2の固定子310も、固定子鉄心311と、巻線312と、固定子鉄心311と巻線312とを絶縁するフィルム絶縁313とを備える。
固定子鉄心311は、固定子鉄心211と同様の構成である。即ち、複数個(図4の例は、9個)の分割鉄心であるティースコア311aを環状に形成したものである。ティースコア311aは、所定の形状に打ち抜かれた電磁鋼板を所定枚数、例えばカシメ等により積層して形成される。9個のティースコア311aは、例えば、ジョイントラップ(図示せず)により互いに変形可能に接続されていて、図4の正曲げの状態と逆の状態(逆曲げ)で巻線312が施こされる。巻線312が施される前に、各ティースコア311aには、フィルム絶縁313が組み付けられる。巻線完了後、逆曲げの状態から正曲げの状態に整形し、固定子鉄心311を溶接等により接合して固定子310が完成する。
図7、図8は比較例2を示す図で、図7は端部インシュレータ313−1を施したティースコア311aを示す斜視図、図8は図7と見る角度を変えた端部インシュレータ313−1を施したティースコア311aを示す斜視図である。本実施の形態1の固定子310の絶縁材は、ティースコア311aの側面部にPETフィルムで構成されるフィルム絶縁313を使用し、ティースコア311aの両端面部には、図7、図8に示す固定子210と同様の端部インシュレータ313−1を使用する。PETフィルムで構成されるフィルム絶縁313と端部インシュレータ313−1とは、嵌合い(端部インシュレータにPETフィルムを挟み込む溝を設ける)、接着、溶接等の方法により接合している。
フィルム絶縁313を構成するPETフィルムの厚さt1(図5参照)は0.1〜0.2mm程度であり、インシュレータ213の厚さt(1mm程度)に比べると、略1/5〜1/10程度である。
端部インシュレータ313−1は、ティースコア311aとほぼ同一の形状で設計されている。そして、端部インシュレータ313−1が、スロット(隣接するティースコア311a間に形成される空間をスロットという)断面積を覆わないように設計されている。端部インシュレータ313−1は、ティースコア311a端部と嵌め合い、接着、溶接等の方法により接合する。この製造方法では、端部インシュレータ313−1はスロット面積には影響しない。このような構成にすることで、スロット内周の絶縁厚さ(フィルム絶縁313の厚さt1)を薄くでき、巻線断面積を広くすることができた。
図4の固定子310の巻線312は、図1の固定子210と同じ巻数で線径をφ0.95mmに太くすることができた。固定子210の巻線212の線径がφ0.8mmであるから、φ0.8mm→φ0.95mm、即ち、線径+0.15mmを可能とした。
この際、端部インシュレータ313−1の厚さt2(図6(b)参照)は、5mm程度である。そして、端部インシュレータ313−1は、角に所定のRを設けて設計されている。コア端部では巻線312を曲げて巻かないといけないため、ある程度のRが必要であり、薄いフィルム絶縁で構成するのは好ましくない。また、巻線312の圧力はティースコア311a側面よりも幅の狭いコア端部に大きく働くため、端部インシュレータ313−1に厚みを持たせた方が良い。この点からも、薄いフィルム絶縁よりも端部インシュレータ313−1が好ましい。
図9は比較例1の固定子210(ティースコア211a側面の絶縁をインシュレータ213で構成した)と比較例2の固定子310(ティースコア311a側面の絶縁をフィルム絶縁313で構成した)との特性を比較した図である。比較例2の固定子310は、ティースコア311a側面の絶縁をフィルム絶縁313で構成したことにより、ティースコア側面の絶縁厚さは1mm→0.2mm(フィルム絶縁313を構成するPETフィルムの厚さt1(図5参照)は0.1〜0.2mm程度であるが、ここでは0.2mmとする)になる。それに伴い、巻線、モータ特性、浮遊静電容量が以下に示すように変化する。
(1)巻線断面積が40%増加;
(2)銅損が30%低減;
(3)モータ効率が1.5%改善;
(4)巻線と固定子鉄心間の浮遊静電容量が、450→900pFに増加。
このように、比較例2の固定子310は、ティースコア311a側面の絶縁をフィルム絶縁313で構成したことにより、モータ効率は1.5%改善されるが、巻線と固定子鉄心間の浮遊静電容量が、比較例1に対して約2倍(450→900pF)に増加する。これにより、次のような漏洩電流の課題が生じた。
漏洩電流は、スロット内の導体(巻線)と固定子鉄心間の浮遊静電容量の存在が原因となって起こる。漏洩電流の原理はコンデンサの原理と同じであり、漏洩電流をi、周波数をf、静電容量をC、電圧をVとすると、i=2πfCVの関係が成り立つ。
また、巻線と固定子鉄心の間の静電容量Cは、巻線と固定子間の誘電率をε、巻線と固定子の接触面積をS、巻線と固定子との距離をdとすると、C=εS/dの関係が成り立つ。すなわち、薄い絶縁材を用いると巻線と固定子間の距離dが縮まり、静電容量Cが大きくなり、漏洩電流iが流れやすくなる。
また、最近のモータは可変速駆動を行うためインバータ駆動が多く用いられているが、インバータなどのPWM制御では高周波のスイッチングで電流を生成するため周波数fが高く漏洩電流が流れやすい。スイッチングは高周波であるほど、モータ電流の波形生成率が向上するため、電流の高調波成分が低減し、銅損及び高調波鉄損を低減できるというメリットがある。特にスイッチングが高周波化するとインバータのスイッチングロスが増加してしまうが、SiC(詳細は後述する)のような通電損失の少ないデバイスを用いる場合は、スイッチングの高周波化のメリットは大きい。それ故に、漏洩電流を低減したいという要求も強い。
本発明は、インバータなどのPWM制御で可変速駆動するモータに関して、分割して巻線(集中巻)する固定子に関して、PETフィルムのような薄い絶縁材を用いることで銅損を低減し、更に、効率を低下させることなく浮遊静電容量を低減し、漏洩電流を抑制できる、性能と信頼性を両立させるモータ(電動機)に関するものである。
図10乃至図12は実施の形態1を示す図で、図10は電動機100の横断面図、図11は固定子110の横断面図、図12は図11の一ティース分を示す図である。図10乃至図12を参照しながら、実施の形態1の電動機100、固定子110について説明する。
図10に示すように、実施の形態1の電動機100(ブラシレスDCモータ)は、固定子110と、固定子110の内周に配置される回転子120とを備える。本実施の形態は、固定子110に特徴があるので、固定子110について詳細に説明する。回転子120は、6極の永久磁石型回転子であり、磁石挿入孔に永久磁石が挿入される埋め込み型永久磁石型回転子である。その他の説明は割愛する。
図11、図12に示すように、固定子110は、固定子鉄心111と、巻線112と、固定子鉄心111と巻線112とを絶縁するフィルム絶縁113とを備える。
図13、図14は実施の形態1を示す図で、図13は固定子鉄心111の横断面図、図14は固定子鉄心111の斜視図である。
固定子鉄心111は、複数個(図13の例は、9個)の分割鉄心であるティースコア111a(分割ティース)を環状に形成したものである。ティースコア111aは、所定の形状に打ち抜かれた、例えば、板厚0.35mmの薄い電磁鋼板を所定枚数、例えばカシメ等により積層して形成される。9個のティースコア111a(分割ティース)は、例えば、ジョイントラップ(図示せず)により互いに変形可能に接続されていて、図13の正曲げの状態と逆の状態(逆曲げ)で巻線112が施こされる。巻線112が施こされる前に、各ティースコア111a(分割ティース)には、フィルム絶縁113が組み付けられる。巻線完了後、逆曲げの状態から正曲げの状態に整形し、固定子鉄心111を溶接等により接合して固定子110が完成する。
固定子鉄心111において、隣接するティースコア111aの間の空間をスロット114という。巻線112は、各ティースコア111a(分割ティース)に直接巻かれるが、結果としては、巻線112がスロット114内に両端に分かれて収納される形になる。また、スロット114の間の鉄心部分をティース116という。ティース116は、ティースコア111aの一部である。固定子鉄心111は、9個のスロット114と、9個のティース116とを有する。さらに、固定子鉄心111の外周に形成されるリング状(環状)の鉄心部分をコアバック115という。
図15は実施の形態1を示す図で、ティースコア111aの平面図である。図15に示すように、各ティース116は、スロット114のスロット底辺114aがティース側面116aと略直角をなすように構成されている。そして、ティース側面116aと略直角をなすスロット114のスロット底辺に、所定の形状(ここでは、断面が長方形)の溝114a−1を設けている。この点に、本実施の形態は最大の特徴がある。溝114a−1は、ティースコア111aの全長に亘って形成されている。溝114a−1の深さ(径方向)は、例えば0.6mmである。また、溝114a−1を設けた領域は、スロット内周の約30%である。
図16は実施の形態1を示す図で、帯状に展開した固定子鉄心111の平面図である。図16に示すように、固定子鉄心111は、9個のティースコア111aが、関節部111a−5(ピンで連結しても良いし、凹凸で連結しても良い)により連結されている。従って、固定子鉄心111は、変形自在である。
図17は実施の形態1を示す図で、固定子鉄心111をティース116が外側になるように逆曲げして巻線を行う状態を示す平面図である。図17に示すように、固定子鉄心111に巻線112を施す場合は、固定子鉄心111をティース116が外側になるように逆曲げして、ティース116間を広げた巻線のしやすい状態で行う。図17では、一つのティースコア111aに巻線112を施す場合を示しているが、実際には連続して全てのティースコア111aに巻線112を施すものである。
次に、電動機100の駆動回路1について説明する。図18は実施の形態1を示す図で、電動機100の駆動回路1の回路図である。外部に設けられた商用交流電源2から交流の電力が駆動回路1に供給される。商用交流電源2から供給される交流電圧は、整流回路3で直流電圧に変換される。整流回路3で変換された直流電圧は、インバータ主回路4で可変周波数の交流電圧に変換されて電動機100に印加される。電動機100はインバータ主回路4から供給される可変周波数の交流電力により駆動される。尚、整流回路3には商用交流電源2から印加される電圧を昇圧するチョッパー回路や整流した直流電圧を平滑にする平滑コンデンサなどを有する。
インバータ主回路4は3相ブリッジのインバータ回路であり、インバータ主回路4のスイッチング部はインバータ主素子となる6つのIGBT6a〜6f(絶縁ゲートバイポーラトランジスタ)と6つのフライホイルダイオード(FRD)としてシリコンカーバイド(SiC)を用いたSiC−SBD7a〜7f(ショットキーバリアダイオード)を備えている。FRDであるSiC−SBD7a〜7fはIGBT6a〜6fが電流をONからOFFする時に生じる逆起電力を抑制する逆電流防止手段である。
尚、ここでは、IGBT6a〜6fとSiC−SBD7a〜7fは同一リードフレーム上に各チップが実装されエポキシ樹脂でモールドされてパッケージされたICモジュールとする。IGBT6a〜6fはシリコンを用いたIGBT(Si−IGBT)に代えてSiC、GaNを用いたIGBTとしてもよく、またIGBTに代えてSiもしくはSiC、GaNを用いたMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)などの他のスイッチング素子を使用してもよい。
整流回路3とインバータ主回路4の間には直列に接続された2つの分圧抵抗8a,8bが設けられており、この分圧抵抗8a,8bによる分圧回路にて高圧直流電圧を低圧化した電気信号をサンプリングし保持する直流電圧検出部8が設けられている。
また、電動機100は固定子110と回転子120とを備えており、インバータ主回路4から供給される交流電力により回転子120が回転する。
電動機100の端子電圧を検出して、電動機100の回転子120の位置を検出する回転子位置検出部10が設けられている。回転子位置検出部10は、電動機100の端子電圧の電気信号を処理して回転子120の位置情報に変換する。
回転子位置検出部10が検出する回転子120の位置情報は出力電圧演算部11に出力される。この出力電圧演算部11は、駆動回路1の外部から与えられる目標回転数Nの指令若しくは装置の運転条件の情報と回転子120の位置情報に基づいて、電動機100に加えられるべき最適なインバータ主回路4の出力電圧を演算する。出力電圧演算部11はその演算した出力電圧をPWM信号生成部12に出力する。PWMは、Pulse Width Modulationの略語である。
PWM信号生成部12は、出力電圧演算部11から与えられた出力電圧となるようなPWM信号をインバータ主回路4のそれぞれのIGBT6a〜6fを駆動する主素子駆動回路4aに出力し、インバータ主回路4のIGBT6a〜6fはそれぞれ主素子駆動回路4aによってスイッチングされる。
ここでワイドバンドギャップ半導体について説明する。ワイドバンドギャップ半導体はSiよりもバンドギャップが大きい半導体の総称であって、SiC−SBD7a〜7fに使用しているSiCはワイドバンドギャップ半導体の一つであり、その他には窒化ガリウム(GaN)、ダイヤモンドなどがある。さらにワイドバンドギャップ半導体、特にSiCはSiに比べて耐熱温度や絶縁破壊強度や熱伝導率が大きい。尚、ここでは、SiCをインバータ回路のFRDに用いる構成としているが、SiCに代えてその他のワイドバンドギャップ半導体を用いてもよい。
また、電動機100は、駆動回路1のインバータ(インバータ主回路4)によるPWM制御により可変速駆動を行うことにより、要求の製品負荷条件に合わせた高効率な運転を行っている。インバータのスイッチングキャリアは、例えば4.5kHzで波形生成されており、駆動電圧には運転周波数よりも高いスイッチングによる高周波が含まれている。PWM制御による高周波運転時には、スロット114内の導体(巻線112)と固定子鉄心111間の浮遊静電容量の存在が原因となって漏洩電流が流れやすくなる。漏洩電流の原理は、コンデンサの原理と同じであり、漏洩電流をi、周波数をf、静電容量をC、電圧をVとすると、i=2πfCVの関係性が成り立つ。
固定子110は、図11のような構成で、薄いPETフィルムのフィルム絶縁113を介し、集中巻(ティース116に直巻き)で巻線112が巻かれる。PETフィルムの厚さは、例えば0.1〜0.2mm程度である。
また、固定子鉄心111の軸方向両端部にも、絶縁材である端部インシュレータ(端部インシュレータ313−1(図7、図8)と同じもの)が配置される。
ティースコア111aの側面に配置されたフィルム絶縁113(PETフィルム)と、ティースコア111aの端部の端部インシュレータは、嵌合、接着、溶接等により隙間ができないように接合される。
固定子110の巻線112は、フライヤにより、分割されたティースコア111aのティース116の側面を沿うように巻線され、一段ずつ整列して俵状に積上げられていく。すなわち、スロット114の断面で見ると、巻線112の圧力はティース側面116aに加わり、ティース116側面と略直角をなすスロット底辺114aには加わらない。
つまり、スロット底辺114aに溝114a−1を設けても、巻線性に影響なく、整列性を保った高密度な巻線を行うことができる。特に、絶縁に薄いフィルム絶縁113(PETフィルム)を用いて巻線を行っているので、スロット114内に十分な巻線断面積を確保することができ、太い巻線で、抵抗を下げ、銅損を低減して、高効率な電動機100を構成できる。
この際、通常の固定子鉄心(例えば、比較例1の固定子鉄心211、比較例2の固定子鉄心311)であれば、固定子鉄心と巻線間の距離が狭くなるため、固定子鉄心と巻線間の浮遊静電容量が大きくなり、漏洩電流が増加するという問題が起きる。
しかし、本実施の形態のように固定子鉄心111を構成することで(スロット底辺114aに溝114a−1を設ける)、スロット底辺114aと巻線112間には溝114a−1による空隙が確保される。それにより、巻線112と固定子鉄心111の接触面積が低減し、巻線112と固定子鉄心111間の距離を拡大し、巻線112と固定子鉄心111間の浮遊静電容量を低減することができる。
集中巻(ティース116に直巻き)で巻線112の圧力が加わるティース側面116aには溝を設けていないことがポイントである。また、ティース側面116aと略直角をなすスロット底辺114aに溝114a−1を設けていることが、巻線性を悪化させず、溝114a−1による空隙を確実に確保するための工夫である。これにより、漏洩電流を低減することができ、信頼性の高い電動機100を構成することができる。
図19は実施の形態1を示す図で、従来と本実施の形態の固定子鉄心と巻線間の浮遊静電容量の測定結果を示す図である。本実施の形態の固定子110を実際に試作したところ、従来の溝のない固定子(例えば、比較例2の固定子鉄心311)に対して、同一の絶縁材、巻線条件の下で、巻線112と固定子鉄心111間の浮遊静電容量は、900pF→700pFに低減し、約23%の低減効果を確認することができた。また、巻乱れ等も見られず、占積率の高い巻線性を実現した。また、この浮遊静電容量の低下に比例した圧縮機での漏洩電流低減効果を確認することができた。
固定子鉄心111は鉄心として磁路の役割を持つが、固定子鉄心111に溝114a−1を設けると磁路を狭くしてしまい、磁気特性を悪化させてしまう。
磁束は回転子120からティース116を通り、コアバック115で分かれ、またティース116を通って回転子120に戻る。磁気特性を考える場合、磁束の通りやすさは、磁路の最も狭い部分で決まる。よって、磁束の流入口であるティース116の磁路を狭くすることは好ましくなく、ティース側面116aには溝を設けていない。
図20は実施の形態1を示す図で、ティースコア111aの平面図である。本実施の形態のティースコア111aは、巻線性を考慮してスロット底辺114aをティース側面116aに対して略直角で設けているため、コアバック115の磁路は一様ではない。すなわち、ティース分割面(ティースコア111aの分割面)で磁路が最小となるような構成となる。磁束の通りやすさは、磁路の最も狭い部分Wminで決まるため、最小磁路が狭くならないように(W≧Wmin)、コアバック115の磁路が広い部分に溝114a−1を設けることが好ましい。こうすることで、磁気特性を大きく悪化させることなく、巻線112と固定子鉄心111間の空隙を確保することができ、漏洩電流低減効果のある効率面でも優れた電動機100を構成することができる。
図21は実施の形態1を示す図で、変形例1のティースコア111a−1の平面図である。上述のように、磁束の通りやすさは、磁路の最も狭い部分Wminで決まるため、W=Wminとしても磁気特性を大きく悪化させることはない。従って、図21に示すような溝114a−2が好ましい形状である。溝114a−2の底辺が、磁路が最小なるティース分割面(ティースコア111aの分割面)の内側の交点を通る円に沿って形成される。溝114a−2により、巻線112と固定子鉄心111間の空隙が大きくなり、磁気特性を大きく悪化させることなく、浮遊静電容量を低減することができる。
図22は従来のスロットに溝のない電動機の磁束線解析結果を示す図、図23は本実施の形態のスロットに溝を設けた電動機の磁束線解析結果を示す図、図24は従来のスロットに溝のない電動機と本実施の形態のスロットに溝を設けた電動機との特性を比較した図である。
実際に電磁界解析で、損失の解析を実施したところ、磁束流入量(図22、図23参照)に変化はなく、銅損への影響は見られなかった(図24参照)。鉄損に関しては、部分的に磁束密度が高くなるため増加が見られたが0.9%と微増であり、モータ効率としても影響は0.03%の低下と非常に小さいことを確認した(図24参照)。実測のモータ試験においても効率の低下は0.0%と影響のない結果であった。
本実施の形態は、固定子110のスロット114内の構造(スロット底辺114aに溝114a−1を設ける)のみで漏洩電流を低減することができ、組立製などの製造面、コスト面でも優れている。
図25、図26は実施の形態1を示す図で、図25は変形例2のティースコア111a−2の平面図、図26は変形例2のティースコア111a−2に巻線112を施した状態を示す図である。
変形例2のティースコア111a−2のように、溝114a−3を複数に分散することで、フィルム絶縁113(PETフィルム)、及び、巻線112が溝114a−3に入り込みにくくなり、より確実に巻線112と固定子鉄心111間の空隙を確保し、浮遊静電容量を低減することができる。つまり、巻線112はティース側面116aを押し付けるように巻込むが、巻き上げていくと、積み重なった巻線112がスロット底辺114aに崩れ落ちようとする場合があり、その場合、溝114a−3のピッチが短い方が巻線112が入り込みにくく絶縁距離を確保しやすい。図25は溝114a−3を二分割にした形状であるが、溝を更に複数に分割しても良い。
図27、図28は実施の形態1を示す図で、図27は変形例3のティースコア111a−3の平面図、図28は変形例3のティースコア111a−3に巻線112を施した状態を示す図である。変形例3のティースコア111a−3は、スロット底辺114aに凹凸形状を設け、凹凸形状の凹部を溝114a−4としたものである。仮に、巻線112が溝114a−4に入り込んだ場合でも、巻線112と固定子鉄心111の接触面積は小さくなり、より確実に巻線112と固定子鉄心111間の空隙を確保し、浮遊静電容量を低減することができる。また、フィルム絶縁113(PETフィルム)と固定子鉄心111の接触面積と言う点でも、両者の接触部がスロット114内周に向けて凸になっている形状が接触面積を低減できて好ましい。
図29乃至図31は実施の形態1を示す図で、図29は変形例4の固定子鉄心411の斜視図、図30は変形例4の固定子鉄心411を構成する分割ティースであるティースコア411aの斜視図、図31はティースコア411aを構成する第1のティースコア板411a−1及び第2のティースコア板411a−2の平面図((a)は第1のティースコア板411a−1、(b)は第2のティースコア板411a−2)である。
スロットの底辺の溝は、コアバックの形状の異なる二つのティースコアを積層することでも、固定子鉄心の軸方向に溝を形成することができる。
図29に示す変形例4の固定子鉄心411は、図30に示す分割ティースであるティースコア411aを9個組み合わせて形成される。固定子鉄心411は、9個のティースコア411aの間に9個のスロット414が形成される。また、9個のスロット414の間に、径方向に放射状に延びてティース416が形成される。ティース416は、ティースコア411aの一部である。また、ティース416の外側側の端部に連結するリング状(環状)のコアバック415が形成される。
ティースコア411aは、例えば、図30に示すように、第1のティースコア板411a−1、第2のティースコア板411a−2が、交互に積層される。第1のティースコア板411a−1のコアバックの長さAは、第2のティースコア板411a−2のコアバックの長さBよりも、0.6mm程度長い(図31参照)。そのため、第1のティースコア板411a−1の間に溝414a−1(図30参照)が形成される。
変形例4の固定子鉄心411でも、ティースの幅は両者(第1のティースコア板411a−1、第2のティースコア板411a−2)で統一している(図31のC寸法)。従って、溝414a−1(図30参照)は、コアバック415のスロット414の底辺に設けるようにしている。その理由は、既に固定子鉄心111の説明で述べたとおりである。PETフィルム、端部インシュレータの構成は、固定子110と同様である。変形例4も、固定子110と同様の浮遊静電容量低減効果が確認され、漏洩電流低減効果がある。
本実施の形態は、インバータなどのPWM制御における高周波運転の電動機(モータ)において漏洩電流を低減できる。
図32は実施の形態1を示す図で、インバータ駆動時の電流波形を示す図である。図32は、電動機100を駆動回路1で駆動したときの電流波形の一例である。漏洩電流はインバータのスイッチング周波数が高いほど流れやすいため、SiCのようなデバイスで高速スイッチングするモータ、特にインバータキャリアが4kHz以上で駆動するモータの漏洩電流対策としても効果的である。
本実施の形態の電動機を圧縮機のような冷媒中で使用する場合、特にR32冷媒などは誘電率が大きいため、より効果的な漏洩電流対策となる。
本発明の活用例として、空調機用圧縮機に用いられるモータにおいて、絶縁材を薄くすることが可能となり、銅損を低減し、高効率なモータを提供できる。さらに、圧縮機の誘電率の高い冷媒中(R32)での漏洩電流対策として有効であり、また、SiCのような高周波スイッチングを行うインバータ駆動における漏洩電流対策としても有効であり、冷媒やインバータ用途の多様化も可能となる。
1 駆動回路、2 商用交流電源、3 整流回路、4 インバータ主回路、4a 主素子駆動回路、6a〜6f IGBT、7a〜7f SiC−SBD、8a 分圧抵抗、8b 分圧抵抗、10 回転子位置検出部、11 出力電圧演算部、12 PWM信号生成部、100 電動機、110 固定子、111 固定子鉄心、111a ティースコア、111a−1 ティースコア、111a−2 ティースコア、111a−3 ティースコア、111a−5 関節部、112 巻線、113 フィルム絶縁、114 スロット、114a スロット底辺、114a−1 溝、114a−2 溝、114a−3 溝、115 コアバック、116 ティース、116a ティース側面、120 回転子、200 電動機、210 固定子、211 固定子鉄心、211a ティースコア、212 巻線、213 インシュレータ、213a インシュレータ、213b インシュレータ、220 回転子、300 電動機、310 固定子、311 固定子鉄心、311a ティースコア、312 巻線、313 フィルム絶縁、313−1 端部インシュレータ、320 回転子、411 固定子鉄心、411a ティースコア、411a−1 第1のティースコア板、411a−2 第2のティースコア板、414 スロット、415 コアバック、416 ティース。

Claims (9)

  1. インバータなどのPWM制御で可変速駆動される電動機の固定子において、
    前記電動機の固定子は、
    複数の分割ティースで構成され、前記分割ティース間にスロットが形成される固定子鉄心と、
    前記分割ティースのティースに集中巻方式で巻回される巻線と、
    前記巻線と前記スロット内周との間を絶縁するフィルム絶縁と、
    前記スロットの底辺に形成される所定の形状の溝と、を備えたことを特徴とする電動機の固定子。
  2. 前記分割ティースの軸方向両端部を絶縁する端部インシュレータを備えたことを特徴とする請求項1記載の電動機の固定子。
  3. 前記フィルム絶縁と前記端部インシュレータとは、隙間ができないように接合されることを特徴とする請求項2記載の電動機の固定子。
  4. 前記溝を複数に分割したことを特徴とする請求項1乃至3のいずれかに記載の電動機の固定子。
  5. 前記スロットの底辺に凹凸形状を設け、前記溝を前記凹凸形状の凹部で形成したことを特徴とする請求項1乃至3のいずれかに記載の電動機の固定子。
  6. 前記固定子鉄心は前記スロットの周囲に環状のコアバックを備え、前記スロットの底辺に前記溝を設ける場合、前記コアバックの磁路幅Wが、前記コアバックの最短磁路Wminよりも狭くならないように構成することを特徴とする請求項1乃至5のいずれかに記載の電動機の固定子。
  7. 前記固定子鉄心は前記スロットの周囲に環状のコアバックを備え、前記コアバックの径方向の長さが異なる二種類の電磁鋼板を積層することで、前記溝が形成されることを特徴とする請求項1乃至3のいずれかに記載の電動機の固定子。
  8. インバータ主回路のスイッチング部にSiC(シリコンカーバイド)を用いるデバイスを使用する駆動回路により駆動される電動機に適用されることを特徴とする請求項1乃至7のいずれかに記載の電動機の固定子。
  9. 空調用圧縮機に搭載され、誘電率の高い冷媒(R32)中で駆動される電動機に適用されることを特徴とする請求項1乃至8のいずれかに記載の電動機の固定子。
JP2010158273A 2010-07-12 2010-07-12 電動機の固定子 Active JP5393605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010158273A JP5393605B2 (ja) 2010-07-12 2010-07-12 電動機の固定子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158273A JP5393605B2 (ja) 2010-07-12 2010-07-12 電動機の固定子

Publications (2)

Publication Number Publication Date
JP2012023818A true JP2012023818A (ja) 2012-02-02
JP5393605B2 JP5393605B2 (ja) 2014-01-22

Family

ID=45777595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158273A Active JP5393605B2 (ja) 2010-07-12 2010-07-12 電動機の固定子

Country Status (1)

Country Link
JP (1) JP5393605B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099975A (ja) * 2012-11-14 2014-05-29 Hitachi Industrial Equipment Systems Co Ltd インバータ駆動回転電機、およびその製造方法
JP2014222977A (ja) * 2013-05-14 2014-11-27 日立アプライアンス株式会社 電動機及びこれを用いた空気調和機
US20140348673A1 (en) * 2013-05-24 2014-11-27 Panasonic Corporation Electric motor and compressor with same
JPWO2013161041A1 (ja) * 2012-04-26 2015-12-21 株式会社日立製作所 回転電機の固定子コイル
JP2016140242A (ja) * 2016-04-20 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電動機及びこれを用いた空気調和機
WO2016167356A1 (ja) * 2015-04-16 2016-10-20 アイシン・エィ・ダブリュ株式会社 ステータコアおよびステータコアの製造方法
JP2016211417A (ja) * 2015-05-08 2016-12-15 三菱電機株式会社 ポンプとポンプの製造方法
WO2020021693A1 (ja) * 2018-07-27 2020-01-30 三菱電機株式会社 電動機、圧縮機、及び空気調和機
WO2020225872A1 (ja) * 2019-05-08 2020-11-12 三菱電機株式会社 電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置
US10886804B2 (en) 2015-04-16 2021-01-05 Aisin Aw Co., Ltd. Rotating electrical machine
DE102020112923A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine
WO2022113346A1 (ja) * 2020-11-30 2022-06-02 三菱電機株式会社 ステータ、モータ、圧縮機および冷凍サイクル装置
CN114598050A (zh) * 2022-05-11 2022-06-07 广东美的智能科技有限公司 用于电机的定子、电机以及定子的加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107642A (ja) * 1994-10-06 1996-04-23 Matsushita Electric Ind Co Ltd 電動機の固定子
JPH09154245A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Ind Co Ltd 電動機の固定子
JP2002078370A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd インバ一タ装置
JP2003125547A (ja) * 2001-10-15 2003-04-25 Nissan Motor Co Ltd 回転電機
JP2003299289A (ja) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd モータの電機子構造
WO2008105049A1 (ja) * 2007-02-26 2008-09-04 Mitsubishi Electric Corporation 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP2009089584A (ja) * 2008-04-25 2009-04-23 Sanyo Electric Co Ltd 電動機
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
JP2009254086A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 分割固定子鉄心の製造方法及び電動機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107642A (ja) * 1994-10-06 1996-04-23 Matsushita Electric Ind Co Ltd 電動機の固定子
JPH09154245A (ja) * 1995-11-29 1997-06-10 Matsushita Electric Ind Co Ltd 電動機の固定子
JP2002078370A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd インバ一タ装置
JP2003125547A (ja) * 2001-10-15 2003-04-25 Nissan Motor Co Ltd 回転電機
JP2003299289A (ja) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd モータの電機子構造
WO2008105049A1 (ja) * 2007-02-26 2008-09-04 Mitsubishi Electric Corporation 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP2009136101A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp モータ及びそれを備えた冷媒圧縮機
JP2009254086A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 分割固定子鉄心の製造方法及び電動機
JP2009089584A (ja) * 2008-04-25 2009-04-23 Sanyo Electric Co Ltd 電動機

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161041A1 (ja) * 2012-04-26 2015-12-21 株式会社日立製作所 回転電機の固定子コイル
JP2014099975A (ja) * 2012-11-14 2014-05-29 Hitachi Industrial Equipment Systems Co Ltd インバータ駆動回転電機、およびその製造方法
JP2014222977A (ja) * 2013-05-14 2014-11-27 日立アプライアンス株式会社 電動機及びこれを用いた空気調和機
CN106059155A (zh) * 2013-05-14 2016-10-26 日立空调·家用电器株式会社 电动机及使用了该电动机的空调机
CN104184226A (zh) * 2013-05-24 2014-12-03 松下电器产业株式会社 电动机以及具备该电动机的压缩机
JP2014230431A (ja) * 2013-05-24 2014-12-08 パナソニック株式会社 電動機およびそれを備えた圧縮機
US9444292B2 (en) * 2013-05-24 2016-09-13 Panasonic Intellectual Property Management Co., Ltd. Electric motor and compressor with same
US20140348673A1 (en) * 2013-05-24 2014-11-27 Panasonic Corporation Electric motor and compressor with same
US10886804B2 (en) 2015-04-16 2021-01-05 Aisin Aw Co., Ltd. Rotating electrical machine
WO2016167356A1 (ja) * 2015-04-16 2016-10-20 アイシン・エィ・ダブリュ株式会社 ステータコアおよびステータコアの製造方法
US10763718B2 (en) 2015-04-16 2020-09-01 Sisin Aw Co., Ltd. Stator core and method for manufacturing the same
CN107431403A (zh) * 2015-04-16 2017-12-01 爱信艾达株式会社 定子铁芯以及定子铁芯的制造方法
JPWO2016167356A1 (ja) * 2015-04-16 2017-12-14 アイシン・エィ・ダブリュ株式会社 ステータおよびステータの製造方法
US20180159398A1 (en) * 2015-04-16 2018-06-07 Aisin Aw Co., Ltd. Stator core and method for manufacturing the same
CN107431403B (zh) * 2015-04-16 2019-10-15 爱信艾达株式会社 定子以及定子的制造方法
JP2016211417A (ja) * 2015-05-08 2016-12-15 三菱電機株式会社 ポンプとポンプの製造方法
JP2016140242A (ja) * 2016-04-20 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電動機及びこれを用いた空気調和機
WO2020021693A1 (ja) * 2018-07-27 2020-01-30 三菱電機株式会社 電動機、圧縮機、及び空気調和機
JPWO2020021693A1 (ja) * 2018-07-27 2021-02-18 三菱電機株式会社 電動機、圧縮機、及び空気調和機
WO2020225872A1 (ja) * 2019-05-08 2020-11-12 三菱電機株式会社 電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置
DE102020112923A1 (de) 2020-05-13 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine
WO2022113346A1 (ja) * 2020-11-30 2022-06-02 三菱電機株式会社 ステータ、モータ、圧縮機および冷凍サイクル装置
CN114598050A (zh) * 2022-05-11 2022-06-07 广东美的智能科技有限公司 用于电机的定子、电机以及定子的加工方法

Also Published As

Publication number Publication date
JP5393605B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5393605B2 (ja) 電動機の固定子
JP5414900B2 (ja) 永久磁石埋込型モータの回転子及び圧縮機及び冷凍空調装置
KR102147313B1 (ko) 전기 모터
JP6766679B2 (ja) 回転電機
JP5661903B2 (ja) 圧縮機
JP5315782B2 (ja) モータおよびモータシステム
CN111765065B (zh) 电动压缩机
WO2006098065A1 (ja) 単相電動機及び密閉形圧縮機
JPWO2019008722A1 (ja) 固定子、電動機、駆動装置、圧縮機、空気調和装置および固定子の製造方法
JP2012120248A (ja) 電動機及び送風機
JP5708267B2 (ja) 回転電気機械及びそれを用いた圧縮機
JP2012253918A (ja) 回転電気機械及びそれを用いた圧縮機
JP5279794B2 (ja) 永久磁石埋込型電動機及び密閉型圧縮機
JP5462212B2 (ja) 圧縮機
JP5550583B2 (ja) 密閉型圧縮機
JP2015076906A (ja) 回転電機
JP5436374B2 (ja) 着磁方法及び位置決め治具
JP6903168B2 (ja) 電動機、圧縮機および空気調和装置
JP2020129959A (ja) 電動機及び圧縮機
JP6563090B2 (ja) 圧縮機、電動機、圧縮機の使用方法及び電動機の使用方法
JP5963835B2 (ja) 圧縮機
JP6491761B2 (ja) 電力変換回路
WO2024024355A1 (ja) コモンモードコイル、インバータ装置及び電動圧縮機
JP2015092081A (ja) 圧縮機
JP2013123278A (ja) モータ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250