JP2011166133A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2011166133A
JP2011166133A JP2011005537A JP2011005537A JP2011166133A JP 2011166133 A JP2011166133 A JP 2011166133A JP 2011005537 A JP2011005537 A JP 2011005537A JP 2011005537 A JP2011005537 A JP 2011005537A JP 2011166133 A JP2011166133 A JP 2011166133A
Authority
JP
Japan
Prior art keywords
transistor
insulating layer
source
electrode
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011005537A
Other languages
English (en)
Other versions
JP5651487B2 (ja
JP2011166133A5 (ja
Inventor
Yusuke Sekine
祐輔 関根
Yutaka Shionoiri
豊 塩野入
Kiyoshi Kato
清 加藤
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011005537A priority Critical patent/JP5651487B2/ja
Publication of JP2011166133A publication Critical patent/JP2011166133A/ja
Publication of JP2011166133A5 publication Critical patent/JP2011166133A5/ja
Application granted granted Critical
Publication of JP5651487B2 publication Critical patent/JP5651487B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Abstract

【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】酸化物半導体OSを用い、オフ状態でのソースとドレイン間のリーク電流(オフ電流)が少ない書き込み用トランジスタ162、書き込み用トランジスタ162と異なる半導体材料を用いた読み出し用トランジスタ160及び容量素子164を含む不揮発性のメモリセルを有する半導体装置において、メモリセルへの情報の書き込みは、書き込み用トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方と、読み出し用トランジスタ160のゲート電極とが電気的に接続されたノードFGに電位を供給し、ノードFGに所定量の電荷を保持させることで行う。書き込みを1×10回行う前後において、メモリセルのメモリウィンドウ幅の変化量は2%以内である。
【選択図】図1

Description

開示する発明は、半導体素子を利用した半導体装置およびその作製方法に関するものである。
半導体素子を利用した記憶装置は、電力の供給がなくなると記憶内容が失われる揮発性のものと、電力の供給がなくなっても記憶内容は保持される不揮発性のものとに大別される。
揮発性記憶装置の代表的な例としては、DRAM(Dynamic Random Access Memory)がある。DRAMは、記憶素子を構成するトランジスタを選択してキャパシタに電荷を蓄積することで、情報を記憶する。
上述の原理から、DRAMでは、情報を読み出すとキャパシタの電荷は失われるため、情報の読み込みの度に、再度の書き込み動作が必要となる。また、記憶素子を構成するトランジスタにはオフ状態でのソースとドレイン間のリーク電流(オフ電流)等によって、トランジスタが選択されていない状況でも電荷が流出、または流入するため、データ(情報)の保持期間が短い。このため、所定の周期で再度の書き込み動作(リフレッシュ動作)が必要であり、消費電力を十分に低減することは困難である。また、電力の供給がなくなると記憶内容が失われるため、長期間の記憶の保持には、磁性材料や光学材料を利用した別の記憶装置が必要となる。
揮発性記憶装置の別の例としてはSRAM(Static Random Access Memory)がある。SRAMは、フリップフロップなどの回路を用いて記憶内容を保持するため、リフレッシュ動作が不要であり、この点においてはDRAMより有利である。しかし、フリップフロップなどの回路を用いているため、記憶容量あたりの単価が高くなるという問題がある。また、電力の供給がなくなると記憶内容が失われるという点については、DRAMと変わるところはない。
不揮発性記憶装置の代表例としては、フラッシュメモリがある。フラッシュメモリは、トランジスタのゲート電極とチャネル形成領域との間にフローティングゲートを有し、当該フローティングゲートに電荷を保持させることで記憶を行うため、データの保持期間は極めて長く(半永久的)、揮発性記憶装置で必要なリフレッシュ動作が不要であるという利点を有している(例えば、特許文献1参照)。
しかし、書き込みの際に生じるトンネル電流によって記憶素子を構成するゲート絶縁層が劣化するため、所定回数の書き込みによって記憶素子が機能しなくなるという問題が生じる。この問題の影響を緩和するために、例えば、各記憶素子の書き込み回数を均一化する手法が採られるが、これを実現するためには、複雑な周辺回路が必要になってしまう。そして、このような手法を採用しても、根本的な寿命の問題が解消するわけではない。つまり、フラッシュメモリは、情報の書き換え頻度が高い用途には不向きである。
また、フローティングゲートに電荷を保持させるため、または、その電荷を除去するためには、高い電圧が必要であり、また、そのための回路も必要である。さらに、電荷の保持、または除去の動作には比較的長い時間を要し、書き込み、消去の高速化が容易ではないという問題もある。
特開昭57−105889号公報
上述の問題に鑑み、開示する発明の一態様では、電力が供給されない状態でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
本明細書等で開示する発明では、酸化物半導体を用い、オフ状態でのソースとドレイン間のリーク電流(オフ電流)が少ない書き込み用トランジスタ、該書き込み用トランジスタと異なる半導体材料を用いた読み出し用トランジスタ及び容量素子を含む不揮発性のメモリセルを有する半導体装置を提供する。該メモリセルへの情報の書き込み及び書き換えは、書き込み用トランジスタをオン状態とすることにより、書き込み用トランジスタのソース電極またはドレイン電極の一方と、容量素子の電極の一方と、読み出し用トランジスタのゲート電極とが電気的に接続されたノードに電位を供給し、その後、書き込み用トランジスタをオフ状態とすることにより、ノードに所定量の電荷を保持させることで行う。
開示する発明の一態様は、第1のトランジスタと、第2のトランジスタと、容量素子と、を含む不揮発性のメモリセルを有し、第1のトランジスタと、第2のトランジスタとは、異なる半導体材料を含んで構成され、第2のトランジスタは、酸化物半導体を含んで構成され、メモリセルへの情報の書き込みは、第2のトランジスタをオン状態とすることにより、第2のトランジスタのソース電極またはドレイン電極の一方と、第1のトランジスタのゲート電極と、容量素子の電極の一方と、が電気的に接続されたノードに電位を供給した後、第2のトランジスタをオフ状態としてノードに電荷を保持させることにより行い、メモリセルからの情報の読み出しは、容量素子の電極の他方に与える電位を制御して、第1のトランジスタのオン状態またはオフ状態を読み出すことにより行い、書き込みを1×10回行う前後において、メモリセルのメモリウィンドウ幅の変化量が2%以内である半導体装置である。
また、開示する発明の他の一態様は、第1のトランジスタと、第2のトランジスタと、容量素子と、を含む不揮発性のメモリセルを有し、第1のトランジスタと、第2のトランジスタとは、異なる半導体材料を含んで構成され、第2のトランジスタは、酸化物半導体を含んで構成され、オフ電流(ここでは、単位チャネル幅(1μm)あたりの値)が100zA/μm以下であり、メモリセルへの情報の書き込みは、第2のトランジスタをオン状態とすることにより、第2のトランジスタのソース電極またはドレイン電極の一方と、第1のトランジスタのゲート電極と、容量素子の電極の一方と、が電気的に接続されたノードに電位を供給した後、第2のトランジスタをオフ状態としてノードに電荷を保持させることにより行い、メモリセルからの情報の読み出しは、容量素子の電極の他方に与える電位を制御して、第1のトランジスタのオン状態またはオフ状態を読み出すことにより行い、書き込みを1×10回行う前後において、メモリセルのメモリウィンドウ幅の変化量が2%以内である半導体装置である。
また、上記の半導体装置において、第2のトランジスタのオフ電流は、第1のトランジスタのオフ電流よりも低いことが好ましい。
また、上記の半導体装置において、第1のトランジスタのスイッチング速度は、第2のトランジスタのスイッチング速度よりも大きいのが好ましい。
また、上記の半導体装置において、第2のトランジスタは、エネルギーギャップが3eVより大きい材料を含んで構成されるのが好ましい。
なお、上記においては、酸化物半導体を用いてオフ電流が少ない書き込み用トランジスタを実現しているが、開示する発明はこれに限定されない。酸化物半導体と同等のオフ電流特性が実現できる材料、例えば、炭化シリコンをはじめとするワイドギャップ材料(Eg>3eV)などを適用しても良い。
なお、本明細書等において、不揮発性のメモリセルとは、電力が供給されない状態でも、一定期間以上(少なくとも1×10秒以上、好ましくは1×10秒以上)情報を保持可能なメモリセルをいう。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が「直上」または「直下」であることを限定するものではない。例えば、「ゲート絶縁層上のゲート電極」の表現であれば、ゲート絶縁層とゲート電極との間に他の構成要素を含むものを除外しない。また、「上」「下」の用語は説明の便宜のために用いる表現に過ぎず、特に言及する場合を除き、その上下を入れ替えたものも含む。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
また、「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
なお、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。
例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
酸化物半導体を用いたトランジスタはオフ電流が極めて小さいため、これを用いることにより極めて長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができる。また、電力の供給がない場合であっても、長期にわたって記憶内容を保持することが可能である。
また、開示する発明に係る半導体装置では、情報の書き込みに高い電圧を必要とせず、素子の劣化の問題もない。例えば、従来の不揮発性メモリのように、浮遊ゲートへの電子の注入や、浮遊ゲートからの電子の引き抜きを行う必要がないため、ゲート絶縁層の劣化といった問題が全く生じない。すなわち、開示する発明に係る半導体装置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の書き込みが行われるため、高速な動作も容易に実現しうる。また、情報を消去するための動作が不要であるというメリットもある。
また、酸化物半導体以外の材料を用いたトランジスタは、十分な高速動作が可能であるため、これを、酸化物半導体を用いたトランジスタと組み合わせて用いることにより、半導体装置の動作(例えば、情報の読み出し動作)の高速性を十分に確保することができる。また、酸化物半導体以外の材料を用いたトランジスタにより、高速動作が要求される各種回路(論理回路、駆動回路など)を好適に実現することが可能である。
このように、酸化物半導体以外の半導体材料を用いたトランジスタと、酸化物半導体を用いたトランジスタとを一体に備えることで、これまでにない特徴を有する半導体装置を実現することができる。
半導体装置の回路図 半導体装置の回路図 半導体装置の回路図 半導体装置の断面図および平面図 半導体装置の作製工程に係る断面図 半導体装置の作製工程に係る断面図 半導体装置の断面図および平面図 半導体装置の作製工程に係る断面図 半導体装置の作製工程に係る断面図 半導体装置の断面図および平面図 半導体装置の作製工程に係る断面図 半導体装置を用いた電子機器を説明するための図 メモリウィンドウ幅の調査結果を示す図 酸化物半導体を用いたトランジスタの特性を示す図 酸化物半導体を用いたトランジスタの特性評価用回路図 酸化物半導体を用いたトランジスタの特性評価用タイミングチャート 酸化物半導体を用いたトランジスタの特性を示す図 酸化物半導体を用いたトランジスタの特性を示す図 しきい値の算出方法を示す概念図
本発明の実施の形態の一例について、図面を用いて以下に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
なお、本明細書等における「第1」、「第2」、「第3」などの序数は、構成要素の混同を避けるために付すものであり、数的に限定するものではないことを付記する。
(実施の形態1)
本実施の形態では、開示する発明の一態様に係る半導体装置の回路構成およびその動作について、図1を参照して説明する。なお、回路図においては、酸化物半導体を用いたトランジスタであることを示すために、OSの符号を併せて付す場合がある。
図1(A−1)に示す半導体装置は、トランジスタ160と、トランジスタ162と、容量素子164とを含む不揮発性のメモリセルを有する。図1(A−1)において、トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方と、トランジスタ160のゲート電極と、は電気的に接続されている。また、第1の配線(1st Line:ソース線とも呼ぶ)とトランジスタ160のソース電極とは、電気的に接続され、第2の配線(2nd Line:ビット線とも呼ぶ)とトランジスタ160のドレイン電極とは、電気的に接続されている。また、第3の配線(3rd Line:第1の信号線とも呼ぶ)とトランジスタ162のソース電極またはドレイン電極の他方とは、電気的に接続され、第4の配線(4th Line:第2の信号線とも呼ぶ)と、トランジスタ162のゲート電極とは、電気的に接続されている。そして、第5の配線(5th Line:ワード線とも呼ぶ)と、容量素子164の電極の他方は電気的に接続されている。
ここで、トランジスタ162には、酸化物半導体を用いたトランジスタが適用される。酸化物半導体を用いたトランジスタは、オフ電流が極めて小さいという特徴を有している。このため、トランジスタ162をオフ状態とすることで、トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方と、トランジスタ160のゲート電極とが電気的に接続されたノード(以下、ノードFG)の電位を極めて長時間にわたって保持することが可能である。そして、容量素子164を有することにより、ノードFGに与えられた電荷の保持が容易になり、また、保持された情報の読み出しが容易になる。
また、トランジスタ160にはオフ電流の制限はなく、メモリセルの動作速度を高速化するために、トランジスタ162よりもスイッチング速度が速い(例えば、電界効果移動度の値が大きい)トランジスタを用いる。すなわち、トランジスタ160には、酸化物半導体以外の半導体材料を用いたトランジスタが適用される。なお、選択する半導体材料によっては、トランジスタ160のオフ電流はトランジスタ162のオフ電流よりも高くなることがある。トランジスタ160に用いる半導体材料としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、またはガリウムヒ素等を用いることができ、単結晶半導体を用いるのが好ましい。このような半導体材料を用いたトランジスタ160は、記憶した情報の読み出しなどを高速に行うことが可能である。
図1(A−1)に示す半導体装置において、メモリセルに情報を記憶させる場合(書き込み)は、まず、第4の配線の電位を、トランジスタ162がオン状態となる電位にして、トランジスタ162をオン状態とする。これにより、第3の配線の電位が、ノードFGに供給され、ノードFGに所定量の電荷が蓄積される。ここでは、異なる二つの電位レベルを与える電荷(以下、ロー(Low)レベル電荷、ハイ(High)レベル電荷という)のいずれかが与えられるものとする。その後、第4の配線の電位を、トランジスタ162がオフ状態となる電位にして、トランジスタ162をオフ状態とする。これより、ノードFGが浮遊状態となるため、ノードFGには所定の電荷が保持されたままの状態となる。以上のように、ノードFGに所定量の電荷を蓄積及び保持させることで、メモリセルに情報を記憶させることができる。
トランジスタ162のオフ電流は極めて小さいため、ノードFGに供給された電荷は長時間にわたって保持される。したがって、リフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度を極めて低くすることが可能となり、消費電力を十分に低減することができる。また、電力の供給がない場合であっても、長期にわたって記憶内容を保持することが可能である。
メモリセルに記憶された情報を読み出す場合(読み出し)は、第1の配線に所定の電位(定電位)を与えた状態で、第5の配線に適切な電位(読み出し電位)を与えると、ノードFGに保持された電荷量に応じて、トランジスタ160は異なる状態をとる。一般に、トランジスタ160をnチャネル型とすると、ノードFGにHighレベル電荷が保持されている場合のトランジスタ160の見かけのしきい値Vth_Hは、ノードFGにLowレベル電荷が保持されている場合のトランジスタ160の見かけのしきい値Vth_Lより低くなるためである。ここで、見かけのしきい値とは、トランジスタ160を「オン状態」とするために必要な第5の配線の電位をいうものとする。したがって、第5の配線の電位をVth_HとVth_Lの中間の電位Vとすることにより、ノードFGに保持された電荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合には、第5の配線の電位がV(>Vth_H)となれば、トランジスタ160は「オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の配線の電位がV(<Vth_L)となっても、トランジスタ160は「オフ状態」のままである。このため、第5の配線の電位を制御して、トランジスタ160のオン状態またはオフ状態を読み出す(第2の配線の電位を読み出す)ことで、記憶された情報を読み出すことができる。
なお、メモリセルをアレイ状に配置して用いる場合、所望のメモリセルの情報のみを読み出せることが必要になる。メモリセルの情報を読み出さない場合には、ノードFGの状態にかかわらずトランジスタ160が「オフ状態」となるような電位、つまり、Vth_Hより小さい電位を第5の配線に与えればよい。または、ノードFGの状態にかかわらずトランジスタ160が「オン状態」となるような電位、つまり、Vth_Lより大きい電位を第5の配線に与えればよい。
また、メモリセルに記憶させた情報を書き換える場合においては、上記の書き込みによって所定量の電荷を保持したノードFGに、新たな電位を供給することで、ノードFGに新たな情報に係る電荷を保持させる。具体的には、第4の配線の電位を、トランジスタ162がオン状態となる電位にして、トランジスタ162をオン状態とする。これにより、第3の配線の電位(新たな情報に係る電位)が、ノードFGに供給され、ノードFGに所定量の電荷が蓄積される。その後、第4の配線の電位をトランジスタ162がオフ状態となる電位にして、トランジスタ162をオフ状態とすることにより、ノードFGには、新たな情報に係る電荷が保持された状態となる。すなわち、ノードFGに第1の書き込みによって所定量の電荷が保持された状態で、第1の書き込みと同様の動作(第2の書き込み)を行うことで、メモリセルに記憶させた情報を上書きすることが可能である。
このように、開示する発明に係る半導体装置は、再度の情報の書き込みによって直接的に情報を書き換えることが可能である。このためフラッシュメモリなどにおいて必要とされる高い電圧を用いてのフローティングゲートからの電荷の引き抜きが不要であり、消去動作に起因する動作速度の低下を抑制することができる。つまり、半導体装置の高速動作が実現される。また、従来のフローティングゲート型トランジスタにおいて書き込みや消去の際に必要であった高電圧も不要となる。
なお、トランジスタ162のソース電極またはドレイン電極は、トランジスタ160のゲート電極と電気的に接続されることにより、不揮発性メモリ素子として用いられるフローティングゲート型トランジスタのフローティングゲートと同等の作用を奏する。トランジスタ162がオフ状態の場合、ノードFGは絶縁体中に埋設された(所謂、浮遊状態)と見ることができ、ノードFGには電荷が保持される。酸化物半導体を用いたトランジスタ162のオフ電流は、シリコン半導体などで形成されるトランジスタの10万分の1以下であるため、トランジスタ162のリークによる、ノードFGに蓄積される電荷の消失を無視することが可能である。つまり、酸化物半導体を用いたトランジスタ162により、電力の供給が無くても情報の保持が可能な不揮発性のメモリセルを実現することができる。
例えば、トランジスタ162の室温でのオフ電流が10zA(1zA(ゼプトアンペア)は1×10−21A)以下であり、容量素子164の容量値が10fF程度である場合には、少なくとも10秒以上のデータ保持が可能である。なお、当該保持時間が、トランジスタ特性や容量値によって変動することはいうまでもない。
また、従来のフローティングゲート型トランジスタでは、書き込み(書き換え)時にゲート絶縁膜(トンネル絶縁膜)中を電荷が移動するために、該ゲート絶縁膜(トンネル絶縁膜)の劣化が不可避であった。しかしながら、本実施の形態で示す半導体装置においてはトランジスタ162のスイッチング動作により単に第3の配線とノードFG間での電荷の移動が起こるだけであるため、従来問題とされていたゲート絶縁膜の劣化を解消することができる。これは、原理的な書き込み回数の制限が存在せず、書き換え耐性が極めて高いことを意味するものである。
本発明の一態様に係るメモリセルは、書き込み耐性が極めて高いため、1×10回(10億回)以上の書き込みを行った場合であっても、特性に影響なく使用することが可能である。例えば、メモリセルの特性を示す指標の一つであるメモリウィンドウ幅の変化量を1×10回の書き込み前後において、2%以内と極めて少なくすることができる。なお、本明細書において、メモリウィンドウ幅とは、ノードFGにHighレベル電荷が保持されている場合に読み出し用トランジスタであるトランジスタ160をオン状態にするために必要な第5の配線の電位Vth_Hと、ノードFGにLowレベル電荷が保持されている場合に読み出し用トランジスタであるトランジスタ160をオン状態にするために必要な第5の配線の電位Vth_Lと、の差分をいうものとする。
図1(A−1)に示す半導体装置は、当該半導体装置を構成するトランジスタなどの要素が抵抗および容量を含むものとして、図1(A−2)のように考えることが可能である。つまり、図1(A−2)では、トランジスタ160および容量素子164が、それぞれ、抵抗および容量を含んで構成されると考えていることになる。R1およびC1は、それぞれ、容量素子164の抵抗値および容量値であり、抵抗値R1は、容量素子164を構成する絶縁層による抵抗値に相当する。また、R2およびC2は、それぞれ、トランジスタ160の抵抗値および容量値であり、抵抗値R2はトランジスタ160がオン状態の時のゲート絶縁層による抵抗値に相当し、容量値C2はいわゆるゲート容量(ゲート電極と、ソース電極及び/またはドレイン電極との間に形成される容量、及び、ゲート電極とチャネル形成領域との間に形成される容量)値に相当する。
トランジスタ162がオフ状態にある場合のソース電極とドレイン電極の間の抵抗値(実効抵抗とも呼ぶ)をROSとすると、トランジスタ162のゲートリークが十分に小さい条件において、R1およびR2が、R1は、ROS以上、R2は、ROS以上を満たす場合には、電荷の保持期間(情報の保持期間ということもできる)は、主としてトランジスタ162のオフ電流によって決定されることになる。
逆に、当該条件を満たさない場合には、トランジスタ162のオフ電流が十分に小さくとも、保持期間を十分に確保することが困難になる。トランジスタ162のオフ電流以外のリーク電流(例えば、ソース電極とゲート電極の間において生じるリーク電流等)が大きいためである。このことから、本実施の形態において開示する半導体装置は、上述の関係を満たすものであることが望ましいといえる。
一方で、C1とC2は、C1は、C2以上の関係を満たすことが望ましい。C1を大きくすることで、第5の配線によってノードFGの電位を制御する際(例えば、読み出しの際)に、第5の配線の電位の変動を低く抑えることができるためである。
上述の関係を満たすことで、より好適な半導体装置を実現することが可能である。なお、R1およびR2は、トランジスタ160やトランジスタ162のゲート絶縁層によって制御される。C1およびC2についても同様である。よって、ゲート絶縁層の材料や厚さなどを適宜設定し、上述の関係を満たすようにすることが望ましい。
本実施の形態で示す半導体装置においては、ノードFGが、フラッシュメモリ等のフローティングゲート型のトランジスタのフローティングゲートと同等の作用をするが、本実施の形態のノードFGは、フラッシュメモリ等のフローティングゲートと本質的に異なる特徴を有する。フラッシュメモリでは、コントロールゲートに印加される電圧が高いため、その電位の影響が、隣接するセルのフローティングゲートに及ぶことを防ぐために、セルとセルとの間隔をある程度保つ必要が生じる。このことは、半導体装置の高集積化を阻害する要因の一つである。そして、当該要因は、高電界をかけてトンネル電流を発生させるというフラッシュメモリの根本的な原理に起因するものである。
また、フラッシュメモリの上記原理によって、絶縁膜の劣化が進行し、書き換え回数の限界(10000回程度)という別の問題も生じる。
開示する発明に係る半導体装置は、酸化物半導体を用いたトランジスタのスイッチングによって動作し、上述のようなトンネル電流による電荷注入の原理を用いない。すなわち、フラッシュメモリのような、電荷を注入するための高電界の印加が不要である。これにより、隣接セルに対する、コントロールゲートによる高電界の影響を考慮する必要がないため、セルとセルとの間隔を狭くでき、高集積化が容易になる。
また、トンネル電流による電荷注入の原理を用いないため、メモリセルの劣化の原因が存在しない。つまり、フラッシュメモリと比較して高い耐久性および信頼性を有することになる。
また、高電界が不要であり、大型の周辺回路(昇圧回路など)が不要である点も、フラッシュメモリに対するアドバンテージである。
なお、容量素子164を構成する絶縁層の比誘電率εr1と、トランジスタ160を構成する絶縁層の比誘電率εr2とを異ならせる場合には、容量素子164を構成する絶縁層の面積S1と、トランジスタ160においてゲート容量を構成する絶縁層の面積S2とが、2・S2は、S1以上(望ましくはS2は、S1以上)を満たしつつ、C1は、C2以上を実現することが容易である。すなわち、容量素子164を構成する絶縁層の面積を小さくしつつ、C1はC2以上を実現することが容易である。具体的には、例えば、容量素子164を構成する絶縁層においては、酸化ハフニウムなどの高誘電率(high−k)材料でなる膜、または酸化ハフニウムなどの高誘電率(high−k)材料でなる膜と酸化物半導体でなる膜との積層構造を採用してεr1を10以上、好ましくは15以上とし、ゲート容量を構成する絶縁層においては、酸化シリコンを採用して、εr2=3〜4とすることができる。
このような構成を併せて用いることで、開示する発明に係る半導体装置の、より一層の高集積化が可能である。
なお、上記説明は、電子を多数キャリアとするn型トランジスタ(nチャネル型トランジスタ)を用いる場合についてのものであるが、n型トランジスタに代えて、正孔を多数キャリアとするp型トランジスタ(pチャネル型トランジスタ)を用いることができるのはいうまでもない。
以上示したように、開示する発明の一態様の半導体装置は、オフ状態でのソースとドレイン間のリーク電流(オフ電流)が少ない書き込み用トランジスタ、該書き込み用トランジスタと異なる半導体材料を用いた読み出し用トランジスタ及び容量素子を含む不揮発性のメモリセルを有する。
書き込み用トランジスタのオフ電流は、使用時の温度(例えば、25℃)で100zA(1×10−19A)以下、好ましくは10zA(1×10−20A)以下、さらに好ましくは、1zA(1×10−21A)以下であることが望ましい。通常のシリコン半導体では、上述のように低いオフ電流を得ることは困難であるが、酸化物半導体を適切な条件で加工して得られたトランジスタにおいては達成しうる。このため、書き込み用トランジスタとして、酸化物半導体を含むトランジスタを用いることが好ましい。
さらに酸化物半導体を用いたトランジスタはサブスレッショルドスイング値(S値)が小さいため、比較的移動度が低くてもスイッチング速度を十分大きくすることが可能である。よって、該トランジスタを書き込み用トランジスタとして用いることで、ノードFGに与えられる書き込みパルスの立ち上がりを極めて急峻にすることができる。また、オフ電流が小さいため、ノードFGに保持させる電荷量を少なくすることが可能である。つまり、酸化物半導体を用いたトランジスタを書き込み用トランジスタとして用いることで、情報の書き換えを高速に行うことができる。
読み出し用トランジスタとしては、オフ電流についての制限はないが、読み出しの速度を高くするために、高速で動作するトランジスタを用いることが好ましい。例えば、読み出し用トランジスタとしてスイッチング速度が1ナノ秒以下のトランジスタを用いることが好ましい。
メモリセルへの情報の書き込みは、書き込み用トランジスタをオン状態とすることにより、書き込み用トランジスタのソース電極またはドレイン電極の一方と、容量素子の電極の一方と、読み出し用トランジスタのゲート電極とが電気的に接続されたノードに電位を供給し、その後、書き込み用トランジスタをオフ状態とすることにより、ノードに所定量の電荷を保持させることで行う。ここで、書き込み用トランジスタのオフ電流は極めて小さいため、ノードに供給された電荷は長時間にわたって保持される。オフ電流が例えば実質的に0であれば、従来のDRAMで必要とされたリフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度を極めて低く(例えば、一ヶ月乃至一年に一度程度)することが可能となり、半導体装置の消費電力を十分に低減することができる。
また、メモリセルへの再度の情報の書き込みによって、直接的に情報を書き換えることが可能である。このためフラッシュメモリなどにおいて必要とされる消去動作が不要であり、消去動作に起因する動作速度の低下を抑制することができる。つまり、半導体装置の高速動作が実現される。また、従来のフローティングゲート型トランジスタで書き込みや消去の際に必要とされていた高い電圧を必要としないため、半導体装置の消費電力をさらに低減することができる。本実施の形態に係るメモリセルに印加される電圧(メモリセルの各端子に同時に印加される電位の最大のものと最小のものの差)の最大値は、2段階(1ビット)の情報を書き込む場合、一つのメモリセルにおいて、5V以下、好ましくは3V以下である。
開示する発明に係る半導体装置に配置されるメモリセルは、書き込み用トランジスタと、読み出し用トランジスタと、容量素子とを少なくとも含んでいればよく、また、容量素子の面積は小さくても動作可能である。したがって、メモリセルあたりの面積を、例えば、1メモリセルあたり6つのトランジスタを必要とするSRAMと比較して、十分に小さくすることが可能であり、半導体装置においてメモリセルを高密度で配置することができる。
また、従来のフローティングゲート型トランジスタでは、書き込み時にゲート絶縁膜(トンネル絶縁膜)中を電荷が移動するために、該ゲート絶縁膜(トンネル絶縁膜)の劣化が不可避であった。しかしながら、本発明の一態様に係るメモリセルにおいては、書き込み用トランジスタのスイッチング動作によりノードに所定量の電荷を保持させることで情報の書き込みがなされるため、従来問題とされていたゲート絶縁膜の劣化を解消することができる。これは、原理的な書き込み回数の制限が存在せず、書き換え耐性が極めて高いことを意味するものである。例えば、本発明の一態様に係るメモリセルは、1×10回以上の書き込み前後において、メモリウィンドウ幅の変化量を2%以内とすることが可能である。
さらに、メモリセルの書き込み用トランジスタとして酸化物半導体を用いたトランジスタを用いる場合、酸化物半導体は、エネルギーギャップが3.0〜3.5eVと大きく熱励起キャリアが極めて少ないこともあり、例えば、150℃もの高温環境下でもメモリセルの電流−電圧特性に劣化が見られない。
本発明者らは、鋭意研究の結果、酸化物半導体を用いたトランジスタは、150℃の高温下であっても特性の劣化を起こさず、且つオフ電流が室温で100zAと極めて低いという優れた特性を有することを初めて見出した。開示する発明の一態様は、このような優れた特性を有するトランジスタをメモリセルの書き込み用トランジスタとして適用し、従来にない特徴を有する半導体装置を提供するものである。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、先に実施の形態に示す半導体装置の応用例につき、図2および図3を用いて説明する。
図2(A)および図2(B)は、図1(A−1)に示す半導体装置(以下、メモリセル190とも記載する。)を複数用いて形成される半導体装置の回路図である。図2(A)は、メモリセル190が直列に接続された、いわゆるNAND型の半導体装置の回路図であり、図2(B)は、メモリセル190が並列に接続された、いわゆるNOR型の半導体装置の回路図である。
図2(A)に示す半導体装置は、ソース線SL、ビット線BL、第1信号線S1、複数本の第2信号線S2、複数本のワード線WL、複数のメモリセル190を有する。図2(A)では、ソース線SLおよびビット線BLを1本ずつ有する構成となっているが、これに限られることなく、ソース線SLおよびビット線BLを複数本有する構成としてもよい。
各メモリセル190において、トランジスタ160のゲート電極と、トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方とは、電気的に接続されている。また、第1信号線S1とトランジスタ162のソース電極またはドレイン電極の他方とは、電気的に接続され、第2信号線S2と、トランジスタ162のゲート電極とは、電気的に接続されている。そして、ワード線WLと、容量素子164の電極の他方は電気的に接続されている。
また、メモリセル190が有するトランジスタ160のソース電極は、隣接するメモリセル190のトランジスタ160のドレイン電極と電気的に接続され、メモリセル190が有するトランジスタ160のドレイン電極は、隣接するメモリセル190のトランジスタ160のソース電極と電気的に接続される。ただし、直列に接続された複数のメモリセルのうち、一方の端に設けられたメモリセル190が有するトランジスタ160のドレイン電極は、ビット線と電気的に接続される。また、直列に接続された複数のメモリセルのうち、他方の端に設けられたメモリセル190が有するトランジスタ160のソース電極は、ソース線と電気的に接続される。
図2(A)に示す半導体装置は、行ごとの書き込み動作および読み出し動作を行う。書き込み動作は次のように行われる。書き込みを行う行の第2の信号線S2にトランジスタ162がオン状態となる電位を与え、書き込みを行う行のトランジスタ162をオン状態にする。これにより、指定した行のトランジスタ160のゲート電極に第1の信号線S1の電位が与えられ、該ゲート電極に所定の電荷が与えられる。このようにして、指定した行のメモリセルにデータを書き込むことができる。
また、読み出し動作は次のように行われる。まず、読み出しを行う行以外のワード線WLに、トランジスタ160のゲート電極の電荷によらず、トランジスタ160がオン状態となるような電位を与え、読み出しを行う行以外のトランジスタ160をオン状態とする。それから、読み出しを行う行のワード線WLに、トランジスタ160のゲート電極が有する電荷によって、トランジスタ160のオン状態またはオフ状態が選択されるような電位(読み出し電位)を与える。そして、ソース線SLに定電位を与え、ビット線BLに接続されている読み出し回路(図示しない)を動作状態とする。ここで、ソース線SL−ビット線BL間の複数のトランジスタ160は、読み出しを行う行を除いてオン状態なので、ソース線SL−ビット線BL間のコンダクタンスは、読み出しを行う行のトランジスタ160の状態によって決定される。つまり、読み出しを行う行のトランジスタ160のゲート電極が有する電荷によって、読み出し回路が読み出すビット線BLの電位は異なる値をとる。このようにして、指定した行のメモリセルからデータを読み出すことができる。
図2(B)に示す半導体装置は、ソース線SL、ビット線BL、第1信号線S1、第2信号線S2、およびワード線WLをそれぞれ複数本有し、複数のメモリセル190を有する。各トランジスタ160のゲート電極と、トランジスタ162のソース電極またはドレイン電極の一方と、容量素子164の電極の一方とは、電気的に接続されている。また、ソース線SLとトランジスタ160のソース電極とは、電気的に接続され、ビット線BLとトランジスタ160のドレイン電極とは、電気的に接続されている。また、第1信号線S1とトランジスタ162のソース電極またはドレイン電極の他方とは、電気的に接続され、第2信号線S2と、トランジスタ162のゲート電極とは、電気的に接続されている。そして、ワード線WLと、容量素子164の電極の他方は電気的に接続されている。
図2(B)に示す半導体装置は、行ごとの書き込み動作および読み出し動作を行う。書き込み動作は、上述の図2(A)に示す半導体装置と同様の方法で行われる。読み出し動作は次のように行われる。まず、読み出しを行う行以外のワード線WLに、トランジスタ160のゲート電極の電荷によらず、トランジスタ160がオフ状態となるような電位を与え、読み出しを行う行以外のトランジスタ160をオフ状態とする。それから、読み出しを行う行のワード線WLに、トランジスタ160のゲート電極が有する電荷によって、トランジスタ160のオン状態またはオフ状態が選択されるような電位(読み出し電位)を与える。そして、ソース線SLに定電位を与え、ビット線BLに接続されている読み出し回路(図示しない)を動作状態とする。ここで、ソース線SL−ビット線BL間のコンダクタンスは、読み出しを行う行のトランジスタ160の状態によって決定される。つまり、読み出しを行う行のトランジスタ160のゲート電極が有する電荷によって、読み出し回路が読み出すビット線BLの電位は異なる値をとる。このようにして、指定した行のメモリセルからデータを読み出すことができる。
次に、図2に示す半導体装置などに用いることができる読み出し回路の一例について図3を用いて説明する。
図3(A)には、読み出し回路の概略を示す。当該読み出し回路は、トランジスタとセンスアンプ回路を有する。
読み出し時には、端子Aは読み出しを行うメモリセルが接続されたビット線に接続される。また、トランジスタのゲート電極にはバイアス電位Vbiasが印加され、端子Aの電位が制御される。
メモリセル190は、格納されるデータに応じて、異なる抵抗値を示す。具体的には、選択したメモリセル190のトランジスタ160がオン状態の場合には低抵抗状態となり、選択したメモリセル190のトランジスタ160がオフ状態の場合には高抵抗状態となる。
メモリセル190が高抵抗状態の場合、端子Aの電位が参照電位Vrefより高くなり、センスアンプは端子Aの電位に対応する電位(データ”1”)を出力する。一方、メモリセル190が低抵抗状態の場合、端子Aの電位が参照電位Vrefより低くなり、センスアンプ回路は端子Aの電位に対応する電位(データ”0”)を出力する。
このように、読み出し回路を用いることで、メモリセル190からデータを読み出すことができる。なお、本実施の形態の読み出し回路は一例である。他の公知の回路を用いても良い。また、読み出し回路は、プリチャージ回路を有しても良い。参照電位Vrefの代わりに参照用のビット線が接続される構成としても良い。
図3(B)に、センスアンプ回路の一例である差動型センスアンプを示す。差動型センスアンプは、入力端子Vin(+)と入力端子Vin(−)と出力端子Voutを有し、Vin(+)とVin(−)の差を増幅する。Vin(+)>Vin(−)であればVoutは、概ねHigh出力、Vin(+)<Vin(−)であればVoutは、概ねLow出力となる。当該差動型センスアンプを読み出し回路に用いる場合、Vin(+)とVin(−)の一方は端子Aと接続し、Vin(+)とVin(−)の他方には参照電位Vrefを与える。
図3(C)に、センスアンプ回路の一例であるラッチ型センスアンプを示す。ラッチ型センスアンプは、入出力端子V1および入力端子V2と、制御用信号Spの入力端子、制御用信号Snの入力端子を有する。まず、信号SpをHigh、信号SnをLowとして、電源電位(Vdd)を遮断する。そして、比較を行う電位をV1とV2に与える。その後、信号SpをLow、信号SnをHighとして、電源電位(Vdd)を供給すると、比較を行う電位V1inとV2inがV1in>V2inの関係にあれば、V1の出力はHigh、V2の出力はLowとなり、V1in<V2inの関係にあれば、V1の出力はLow、V2の出力はHighとなる。このような関係を利用して、V1inとV2inの差を増幅することができる。当該ラッチ型センスアンプを読み出し回路に用いる場合、V1とV2の一方は、スイッチを介して端子Aおよび出力端子と接続し、V1とV2の他方には参照電位Vrefを与える。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、開示する発明の一態様に係る半導体装置の構成およびその作製方法について、図7乃至図9を参照して説明する。
〈半導体装置の断面構成および平面構成〉
図7は、半導体装置の構成の一例である。図7(A)には、半導体装置の断面を、図7(B)には、半導体装置の平面を、それぞれ示す。ここで、図7(A)は、図7(B)のA1−A2およびB1−B2における断面に相当する。図7(A)および図7(B)に示される半導体装置は、下部に酸化物半導体以外の半導体材料を用いたトランジスタ160を有し、上部に酸化物半導体を用いたトランジスタ162を有するものである。酸化物半導体以外の半導体材料を用いたトランジスタ160は、酸化物半導体材料よりも更に電界効果移動度の値が大きい材料を用いることで高速動作が可能になる。一方で、酸化物半導体材料を用いたトランジスタ162は、その特性により長時間の電荷保持を可能とする。
なお、上記トランジスタは、いずれもnチャネル型トランジスタであるものとして説明するが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、開示する発明の技術的な本質は、情報を保持するために酸化物半導体をトランジスタ162に用いる点にあるから、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図7におけるトランジスタ160は、半導体材料(例えば、シリコンなど)を含む基板100に設けられたチャネル形成領域116と、チャネル形成領域116を挟むように設けられた不純物領域114および高濃度不純物領域120(これらをあわせて単に不純物領域とも呼ぶ)と、チャネル形成領域116上に設けられたゲート絶縁層108aと、ゲート絶縁層108a上に設けられたゲート電極110aと、不純物領域と電気的に接続するソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bを有する。
ここで、ゲート電極110aの側面にはサイドウォール絶縁層118が設けられている。また、基板100の、表面に垂直な方向から見てサイドウォール絶縁層118と重ならない領域には、高濃度不純物領域120を有し、高濃度不純物領域120に接する金属化合物領域124が存在する。また、基板100上にはトランジスタ160を囲むように素子分離絶縁層106が設けられており、トランジスタ160を覆うように、層間絶縁層126および層間絶縁層128が設けられている。ソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bは、層間絶縁層126および層間絶縁層128に形成された開口を通じて、金属化合物領域124と電気的に接続されている。つまり、ソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bは、金属化合物領域124を介して高濃度不純物領域120および不純物領域114と電気的に接続されている。また、電極130cは、層間絶縁層126および層間絶縁層128に形成された開口を通じて、ゲート電極110aと電気的に接続されている。なお、トランジスタ160の集積化などのため、サイドウォール絶縁層118が形成されない場合もある。
図7におけるトランジスタ162は、層間絶縁層128上に設けられたソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bと、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bと電気的に接続されている酸化物半導体層144と、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142b、酸化物半導体層144を覆うゲート絶縁層146と、ゲート絶縁層146上に酸化物半導体層144と重畳するように設けられたゲート電極148aと、を有する。
ここで、酸化物半導体層144は水素などの不純物が十分に除去されることにより、または、十分な酸素が供給されることにより、高純度化されているものであることが望ましい。具体的には、例えば、酸化物半導体層144の水素濃度は5×1019atoms/cm以下、望ましくは5×1018atoms/cm以下、より望ましくは5×1017atoms/cm以下とする。なお、上述の酸化物半導体層144中の水素濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で測定したものである。このように、水素濃度が十分に低減されて高純度化され、十分な酸素の供給により酸素欠乏に起因するエネルギーギャップ中の欠陥準位が低減された酸化物半導体層144では、キャリア濃度が1×1012/cm未満、望ましくは、1×1011/cm未満、より望ましくは1.45×1010/cm未満となる。例えば、室温でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は100zA/μm以下、望ましくは10zA/μm(1zA(ゼプトアンペア)は1×10−21A)以下となる。このように、i型化(真性化)または実質的にi型化された酸化物半導体を用いることで、極めて優れたオフ電流特性のトランジスタ162を得ることができる。
なお、図7のトランジスタ162では、酸化物半導体層144が島状に加工されないため、加工の際のエッチングによる酸化物半導体層144の汚染を防止できる。
容量素子164は、ソース電極またはドレイン電極142a、酸化物半導体層144、ゲート絶縁層146、および電極148b、で構成される。すなわち、ソース電極またはドレイン電極142aは、容量素子164の一方の電極として機能し、電極148bは、容量素子164の他方の電極として機能することになる。
なお、図7の容量素子164では、酸化物半導体層144とゲート絶縁層146を積層させることにより、ソース電極またはドレイン電極142aと、電極148bとの間の絶縁性を十分に確保することができる。
なお、トランジスタ162および容量素子164において、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの端部は、テーパー形状であることが好ましい。ここで、テーパー角は、例えば、30°以上60°以下とする。なお、テーパー角とは、テーパー形状を有する層(例えば、ソース電極またはドレイン電極142a)を、その断面(基板の表面と直交する面)に垂直な方向から観察した際に、当該層の側面と底面がなす傾斜角を示す。ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bの端部をテーパー形状とすることにより、酸化物半導体層144の被覆性を向上し、段切れを防止することができるためである。
また、トランジスタ162および容量素子164の上には、層間絶縁層150が設けられており、層間絶縁層150上には層間絶縁層152が設けられている。
〈半導体装置の作製方法〉
次に、上記半導体装置の作製方法の一例について説明する。以下では、はじめに下部のトランジスタ160の作製方法について図8を参照して説明し、その後、上部のトランジスタ162の作製方法について図9を参照して説明する。
〈下部のトランジスタの作製方法〉
まず、半導体材料を含む基板100を用意する(図8(A)参照)。半導体材料を含む基板100としては、シリコンや炭化シリコンなどの単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどの化合物半導体基板、SOI基板などを適用することができる。ここでは、半導体材料を含む基板100として、単結晶シリコン基板を用いる場合の一例について示すものとする。なお、一般に「SOI基板」は、絶縁表面上にシリコン半導体層が設けられた構成の基板をいうが、本明細書等においては、絶縁表面上にシリコン以外の材料からなる半導体層が設けられた構成の基板も含む概念として用いる。つまり、「SOI基板」が有する半導体層は、シリコン半導体層に限定されない。また、SOI基板には、ガラス基板などの絶縁基板上に絶縁層を介して半導体層が設けられた構成のものが含まれるものとする。
基板100上には、素子分離絶縁層を形成するためのマスクとなる保護層102を形成する(図8(A)参照)。保護層102としては、例えば、酸化シリコンや窒化シリコン、酸窒化シリコンなどを材料とする絶縁層を用いることができる。なお、この工程の前後において、トランジスタのしきい値電圧を制御するために、n型の導電性を付与する不純物元素やp型の導電性を付与する不純物元素を基板100に添加してもよい。半導体がシリコンの場合、n型の導電性を付与する不純物としては、例えば、リン(P)や砒素(As)などを用いることができる。また、p型の導電性を付与する不純物としては、例えば、硼素(B)、アルミニウム(Al)、ガリウム(Ga)などを用いることができる。
次に、上記の保護層102をマスクとしてエッチングを行い、保護層102に覆われていない領域(露出している領域)の、基板100の一部を除去する。これにより他の半導体領域と分離された半導体領域104が形成される(図8(B)参照)。当該エッチングには、ドライエッチングを用いるのが好適であるが、ウェットエッチングを用いても良い。エッチングガスやエッチング液については被エッチング材料に応じて適宜選択することができる。
次に、半導体領域104を覆うように絶縁層を形成し、半導体領域104に重畳する領域の絶縁層を選択的に除去することで、素子分離絶縁層106を形成する(図8(B)参照)。当該絶縁層は、酸化シリコンや窒化シリコン、酸窒化シリコンなどを用いて形成される。絶縁層の除去方法としては、CMPなどの研磨処理やエッチング処理などがあるが、そのいずれを用いても良い。なお、半導体領域104の形成後、または、素子分離絶縁層106の形成後には、上記保護層102を除去する。
次に、半導体領域104上に絶縁層を形成し、当該絶縁層上に導電材料を含む層を形成する。
絶縁層は後のゲート絶縁層となるものであり、CVD法やスパッタリング法等を用いて得られる酸化シリコン、酸窒化シリコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化タンタル、酸化イットリウム、ハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムアルミネート(HfAlxOy(x>0、y>0))等を含む膜の単層構造または積層構造とすると良い。他に、高密度プラズマ処理や熱酸化処理によって、半導体領域104の表面を酸化、窒化することにより、上記絶縁層を形成してもよい。高密度プラズマ処理は、例えば、He、Ar、Kr、Xeなどの希ガス、酸素、酸化窒素、アンモニア、窒素、水素などの混合ガスを用いて行うことができる。また、絶縁層の厚さは、例えば、1nm以上100nm以下、好ましくは10nm以上50nm以下とすることができる。
導電材料を含む層は、アルミニウムや銅、チタン、タンタル、タングステン等の金属材料を用いて形成することができる。また、多結晶シリコンなどの半導体材料を用いて、導電材料を含む層を形成しても良い。形成方法も特に限定されず、蒸着法、CVD法、スパッタリング法、スピンコート法などの各種成膜方法を用いることができる。なお、本実施の形態では、導電材料を含む層を、金属材料を用いて形成する場合の一例について示すものとする。
その後、絶縁層および導電材料を含む層を選択的にエッチングして、ゲート絶縁層108a、ゲート電極110aを形成する(図8(C)参照)。
次に、ゲート電極110aを覆う絶縁層112を形成する(図8(C)参照)。そして、半導体領域104にリン(P)やヒ素(As)などを添加して、浅い接合深さの不純物領域114を形成する(図8(C)参照)。なお、ここではn型トランジスタを形成するためにリン(P)やヒ素(As)を添加しているが、p型トランジスタを形成する場合には、硼素(B)やアルミニウム(Al)などの不純物元素を添加すればよい。上記不純物領域114の形成により、半導体領域104のゲート絶縁層108a下部には、チャネル形成領域116が形成される(図8(C)参照)。ここで、添加する不純物の濃度は適宜設定することができるが、半導体素子が高度に微細化される場合には、その濃度を高くすることが望ましい。また、ここでは、絶縁層112を形成した後に不純物領域114を形成する工程を採用しているが、不純物領域114を形成した後に絶縁層112を形成する工程としても良い。
次に、サイドウォール絶縁層118を形成する(図8(D)参照)。サイドウォール絶縁層118は、絶縁層112を覆うように絶縁層を形成した後に、当該絶縁層及び絶縁層112に異方性の高いエッチング処理を行うことで、自己整合的に形成することができる。また、この際に、絶縁層112を部分的にエッチングして、ゲート電極110aの上面と、不純物領域114の上面を露出させると良い。なお、サイドウォール絶縁層118は、高集積化などの目的のために形成されない場合もある。
次に、ゲート電極110a、不純物領域114、サイドウォール絶縁層118等を覆うように、絶縁層を形成する。そして、不純物領域114と接する領域に、リン(P)やヒ素(As)などを添加して、高濃度不純物領域120を形成する(図8(E)参照)。その後、上記絶縁層を除去し、ゲート電極110a、サイドウォール絶縁層118、高濃度不純物領域120等を覆うように金属層122を形成する(図8(E)参照)。当該金属層122は、真空蒸着法、スパッタリング法、スピンコート法などの各種成膜方法を用いて形成することができる。金属層122は、半導体領域104を構成する半導体材料と反応することによって低抵抗な金属化合物となる金属材料を用いて形成することが望ましい。このような金属材料としては、例えば、チタン、タンタル、タングステン、ニッケル、コバルト、白金等がある。
次に、熱処理を施して、上記金属層122と半導体材料とを反応させる。これにより、高濃度不純物領域120に接する金属化合物領域124が形成される(図8(F)参照)。なお、ゲート電極110aとして多結晶シリコンなどを用いる場合には、ゲート電極110aの金属層122と接触する部分にも、金属化合物領域が形成されることになる。
上記熱処理としては、例えば、フラッシュランプの照射による熱処理を用いることができる。もちろん、その他の熱処理方法を用いても良いが、金属化合物の形成に係る化学反応の制御性を向上させるためには、ごく短時間の熱処理を実現できる方法を用いることが望ましい。なお、上記の金属化合物領域124は、金属材料と半導体材料との反応により形成されるものであり、十分に導電性が高められた領域である。当該金属化合物領域を形成することで、電気抵抗を十分に低減し、素子特性を向上させることができる。なお、金属化合物領域124を形成した後には、金属層122は除去する。
次に、上述の工程により形成された各構成を覆うように、層間絶縁層126、層間絶縁層128を形成する(図8(G)参照)。層間絶縁層126や層間絶縁層128は、酸化シリコン、酸窒化シリコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化タンタル等の無機絶縁材料を含む材料を用いて形成することができる。また、ポリイミド、アクリル等の有機絶縁材料を用いて形成することも可能である。なお、ここでは、層間絶縁層126と層間絶縁層128の積層構造としているが、開示する発明の一態様はこれに限定されない。1層としても良いし、3層以上の積層構造としても良い。層間絶縁層128の形成後には、その表面を、CMPやエッチング処理などによって平坦化しておくことが望ましい。
その後、上記層間絶縁層に、金属化合物領域124にまで達する開口を形成し、当該開口に、ソース電極またはドレイン電極130a、ソース電極またはドレイン電極130bを形成する(図8(H)参照)。ソース電極またはドレイン電極130aやソース電極またはドレイン電極130bは、例えば、開口を含む領域にPVD法やCVD法などを用いて導電層を形成した後、エッチング処理やCMPといった方法を用いて、上記導電層の一部を除去することにより形成することができる。
より具体的には、例えば、開口を含む領域にPVD法によりチタン膜を薄く形成し、CVD法により窒化チタン膜を薄く形成した後に、開口に埋め込むようにタングステン膜を形成する方法を適用することができる。ここで、PVD法により形成されるチタン膜は、被形成面の酸化膜(自然酸化膜など)を還元し、下部電極など(ここでは金属化合物領域124)との接触抵抗を低減させる機能を有する。また、その後に形成される窒化チタン膜は、導電性材料の拡散を抑制するバリア機能を備える。また、チタンや窒化チタンなどによるバリア膜を形成した後に、メッキ法により銅膜を形成してもよい。
なお、上記導電層の一部を除去してソース電極またはドレイン電極130aやソース電極またはドレイン電極130bを形成する際には、その表面が平坦になるように加工することが望ましい。例えば、開口を含む領域にチタン膜や窒化チタン膜を薄く形成した後に、開口に埋め込むようにタングステン膜を形成する場合には、その後のCMPによって、不要なタングステン膜、チタン膜、窒化チタン膜などを除去すると共に、その表面の平坦性を向上させることができる。このように、ソース電極またはドレイン電極130a、ソース電極またはドレイン電極130bを含む表面を平坦化することにより、後の工程において、良好な電極、配線、絶縁層、半導体層などを形成することが可能となる。
なお、ここでは、金属化合物領域124と接触するソース電極またはドレイン電極130aやソース電極またはドレイン電極130bのみを示しているが、この工程において、ゲート電極110aと接触する電極などをあわせて形成することができる。ソース電極またはドレイン電極130a、ソース電極またはドレイン電極130bとして用いることができる材料について特に限定はなく、各種導電材料を用いることができる。例えば、モリブデン、チタン、クロム、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジウムなどの導電性材料を用いることができる。また、後に行われる熱処理を考慮して、ソース電極またはドレイン電極130a、ソース電極またはドレイン電極130bは、熱処理に耐えうる程度の耐熱性を有する材料を用いて形成することが望ましい。
以上により、半導体材料を含む基板100を用いたトランジスタ160が形成される(図8(H)参照)。酸化物半導体以外の半導体材料を用いたトランジスタ160は、高速動作が可能である。
なお、上記工程の後には、さらに電極や配線、絶縁層などを形成しても良い。配線の構造として、層間絶縁層および導電層の積層構造で成る多層配線構造を採用することにより、高度に集積化した半導体装置を提供することができる。
〈上部のトランジスタの作製方法〉
次に、図9を用いて、層間絶縁層128上にトランジスタ162を作製する工程について説明する。なお、図9は、層間絶縁層128上の各種電極や、トランジスタ162などの作製工程を示すものであるから、トランジスタ162の下部に存在するトランジスタ160等については省略している。
まず、層間絶縁層128上に導電層を形成し、該導電層を選択的にエッチングして、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを形成する(図9(A)参照)。
導電層は、スパッタ法をはじめとするPVD法や、プラズマCVD法などのCVD法を用いて形成することができる。また、導電層の材料としては、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンからから選ばれた元素や、上述した元素を成分とする合金等を用いることができる。マンガン、マグネシウム、ジルコニウム、ベリリウムのいずれか、またはこれらを複数組み合わせた材料を用いてもよい。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素、またはこれらを複数組み合わせた材料を用いてもよい。
導電層は、単層構造であっても良いし、2層以上の積層構造としてもよい。例えば、チタン膜や窒化チタン膜の単層構造、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜が積層された2層構造、窒化チタン膜上にチタン膜が積層された2層構造、チタン膜とアルミニウム膜とチタン膜とが積層された3層構造などが挙げられる。なお、導電層を、チタン膜や窒化チタン膜の単層構造とする場合には、テーパー形状を有するソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bへの加工が容易であるというメリットがある。
また、導電層は、導電性の金属酸化物を用いて形成しても良い。導電性の金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウム酸化スズ合金(In―SnO、ITOと略記する場合がある)、酸化インジウム酸化亜鉛合金(In―ZnO)、または、これらの金属酸化物材料にシリコン若しくは酸化シリコンを含有させたものを用いることができる。
導電層のエッチングは、形成されるソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの端部が、テーパー形状となるように行うことが好ましい。ここで、テーパー角は、例えば、30°以上60°以下であることが好ましい。ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bの端部をテーパー形状となるようにエッチングすることにより、後に形成されるゲート絶縁層146の被覆性を向上し、段切れを防止することができる。
トランジスタのチャネル長(L)は、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの下端部との間隔によって決定される。なお、チャネル長(L)が25nm未満のトランジスタを形成する場合に用いるマスク形成の露光を行う際には、数nm〜数10nmと波長の短い超紫外線(Extreme Ultraviolet)を用いるのが望ましい。超紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成されるトランジスタのチャネル長(L)を、10nm以上1000nm(1μm)以下とすることも可能であり、回路の動作速度を高めることが可能である。また、微細化によって、半導体装置の消費電力を低減することも可能である。
なお、層間絶縁層128上には、下地として機能する絶縁層を設けても良い。当該絶縁層は、PVD法やCVD法などを用いて形成することができる。
また、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの上には、絶縁層を形成しても良い。当該絶縁層を設けることにより、後に形成されるゲート電極と、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bとの間の寄生容量を低減することが可能である。
次に、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bを覆うように、酸化物半導体層144を形成する(図9(B)参照)。
酸化物半導体層144は、四元系金属酸化物であるIn−Sn−Ga−Zn−O系や、三元系金属酸化物であるIn−Ga−Zn−O系、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系や、二元系金属酸化物であるIn−Zn−O系、Sn−Zn−O系、Al−Zn−O系、Zn−Mg−O系、Sn−Mg−O系、In−Mg−O系や、一元系金属酸化物であるIn−O系、Sn−O系、Zn−O系などの酸化物半導体を用いて形成することができる。
中でも、In−Ga−Zn−O系の酸化物半導体材料は、無電界時の抵抗が十分に高くオフ電流を十分に小さくすることが可能であり、また、通常のシリコン半導体と比較して電界効果移動度も高いため、半導体装置に用いる半導体材料としては好適である。
In−Ga−Zn−O系の酸化物半導体材料の代表例としては、InGaO(ZnO)(m>0)で表記されるものがある。また、Gaに代えてMを用い、InMO(ZnO)(m>0)のように表記される酸化物半導体材料がある。ここで、Mは、ガリウム(Ga)、アルミニウム(Al)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)などから選ばれた一の金属元素または複数の金属元素を示す。例えば、Mとしては、Ga、GaおよびAl、GaおよびFe、GaおよびNi、GaおよびMn、GaおよびCoなどを適用することができる。なお、上述の組成は結晶構造から導き出されるものであり、あくまでも一例に過ぎないことを付記する。
酸化物半導体層144をスパッタ法で作製するためのターゲットとしては、In:Ga:Zn=1:x:y(xは0以上、yは0.5以上5以下)の組成比で表されるものを用いるのが好適である。例えば、In:Ga:Zn=1:1:1[atom比](x=1、y=1)、(すなわち、In:Ga:ZnO=1:1:2[mol数比])の組成比を有するターゲットなどを用いることができる。また、In:Ga:Zn=1:1:0.5[atom比](x=1、y=0.5)、(すなわち、In:Ga:ZnO=1:1:1[mol数比])の組成比を有するターゲットや、In:Ga:Zn=1:1:2[atom比](x=1、y=2)、(すなわち、In:Ga:ZnO=1:1:4[mol数比])の組成比を有するターゲットや、In:Ga:Zn=1:0:1[atom比](x=0、y=1)、(すなわち、In:ZnO=1:2[mol数比])の組成比を有するターゲットを用いることもできる。
本実施の形態では、非晶質構造の酸化物半導体層144を、In−Ga−Zn−O系の金属酸化物ターゲットを用いるスパッタ法により形成することとする。
金属酸化物ターゲット中の金属酸化物の相対密度は80%以上、好ましくは95%以上、さらに好ましくは99.9%以上である。相対密度の高い金属酸化物ターゲットを用いることにより、緻密な構造の酸化物半導体層144を形成することが可能である。
酸化物半導体層144の形成雰囲気は、希ガス(代表的にはアルゴン)雰囲気、酸素雰囲気、または、希ガス(代表的にはアルゴン)と酸素との混合雰囲気とするのが好適である。具体的には、例えば、水素、水、水酸基、水素化物などの不純物が、濃度1ppm以下(望ましくは濃度10ppb以下)にまで除去された高純度ガス雰囲気を用いるのが好適である。
酸化物半導体層144の形成の際には、例えば、減圧状態に保持された処理室内に被処理物を保持し、被処理物の温度が100℃以上550℃未満、好ましくは200℃以上400℃以下となるように被処理物を熱する。または、酸化物半導体層144の形成の際の被処理物の温度は、室温としてもよい。そして、処理室内の水分を除去しつつ、水素や水などが除去されたスパッタガスを導入し、上記ターゲットを用いて酸化物半導体層144を形成する。被処理物を熱しながら酸化物半導体層144を形成することにより、酸化物半導体層144に含まれる不純物を低減することができる。また、スパッタによる損傷を軽減することができる。処理室内の水分を除去するためには、吸着型の真空ポンプを用いることが好ましい。例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプなどを用いることができる。また、ターボポンプにコールドトラップを加えたものを用いてもよい。クライオポンプなどを用いて排気することで、処理室から水素や水などを除去することができるため、酸化物半導体層144中の不純物濃度を低減できる。
酸化物半導体層144の形成条件としては、例えば、被処理物とターゲットの間との距離が170mm、圧力が0.4Pa、直流(DC)電力が0.5kW、雰囲気が酸素(酸素100%)雰囲気、またはアルゴン(アルゴン100%)雰囲気、または酸素とアルゴンの混合雰囲気、といった条件を適用することができる。なお、パルス直流(DC)電源を用いると、ごみ(成膜時に形成される粉状の物質など)を低減でき、膜厚分布も均一となるため好ましい。酸化物半導体層144の厚さは、1nm以上50nm以下、好ましくは1nm以上30nm以下、より好ましくは1nm以上10nm以下とする。このような厚さの酸化物半導体層144を用いることで、微細化に伴う短チャネル効果を抑制することが可能である。ただし、適用する酸化物半導体材料や、半導体装置の用途などにより適切な厚さは異なるから、その厚さは、用いる材料や用途などに応じて選択することもできる。
なお、酸化物半導体層144をスパッタ法により形成する前には、アルゴンガスを導入してプラズマを発生させる逆スパッタを行い、形成表面(例えば層間絶縁層128の表面)の付着物を除去するのが好適である。ここで、逆スパッタとは、通常のスパッタにおいては、スパッタターゲットにイオンを衝突させるところを、逆に、処理表面にイオンを衝突させることによってその表面を改質する方法のことをいう。処理表面にイオンを衝突させる方法としては、アルゴン雰囲気下で処理表面側に高周波電圧を印加して、被処理物付近にプラズマを生成する方法などがある。なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素などによる雰囲気を適用してもよい。
その後、酸化物半導体層144に対して、熱処理(第1の熱処理)を行うことが望ましい。この第1の熱処理によって酸化物半導体層144中の、過剰な水素(水や水酸基を含む)を除去し、酸化物半導体層の構造を整え、エネルギーギャップ中の欠陥準位を低減することができる。第1の熱処理の温度は、例えば、300℃以上550℃未満、または400℃以上500℃以下とする。
熱処理は、例えば、抵抗発熱体などを用いた電気炉に被処理物を導入し、窒素雰囲気下、450℃、1時間の条件で行うことができる。この間、酸化物半導体層144は大気に触れさせず、水や水素の混入が生じないようにする。
熱処理装置は電気炉に限られず、加熱されたガスなどの媒体からの熱伝導、または熱輻射によって、被処理物を加熱する装置を用いても良い。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて熱処理を行う装置である。ガスとしては、アルゴンなどの希ガス、または窒素のような、熱処理によって被処理物と反応しない不活性気体が用いられる。
例えば、第1の熱処理として、熱せられた不活性ガス雰囲気中に被処理物を投入し、数分間熱した後、当該不活性ガス雰囲気から被処理物を取り出すGRTA処理を行ってもよい。GRTA処理を用いると、短時間での高温熱処理が可能となる。また、被処理物の耐熱温度を超える温度条件であっても適用が可能となる。なお、処理中に、不活性ガスを、酸素を含むガスに切り替えても良い。酸素を含む雰囲気において第1の熱処理を行うことで、酸素欠損に起因するエネルギーギャップ中の欠陥準位を低減することができるためである。
なお、不活性ガス雰囲気としては、窒素、または希ガス(ヘリウム、ネオン、アルゴン等)を主成分とする雰囲気であって、水、水素などが含まれない雰囲気を適用するのが望ましい。例えば、熱処理装置に導入する窒素や、ヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上(すなわち、不純物濃度が1ppm以下、好ましくは0.1ppm以下)とする。
いずれにしても、第1の熱処理によって不純物を低減し、i型(真性半導体)またはi型に限りなく近い酸化物半導体層144を形成することで、極めて優れた特性のトランジスタを実現することができる。
ところで、上述の熱処理(第1の熱処理)には水素や水などを除去する効果があるから、当該熱処理を、脱水化処理や、脱水素化処理などと呼ぶこともできる。当該脱水化処理や、当該脱水素化処理は、酸化物半導体層の形成後やゲート絶縁層の形成後、ゲート電極の形成後、などのタイミングにおいて行うことも可能である。また、このような脱水化処理、脱水素化処理は、一回に限らず複数回行っても良い。
次に、酸化物半導体層144に接するゲート絶縁層146を形成する(図9(C)参照)。ゲート絶縁層146は、CVD法やスパッタ法等を用いて形成することができる。また、ゲート絶縁層146は、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、ハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムアルミネート(HfAlxOy(x>0、y>0))、などを含むように形成するのが好適である。ゲート絶縁層146は、単層構造としても良いし、積層構造としても良い。また、その厚さは特に限定されないが、半導体装置を微細化する場合には、トランジスタの動作を確保するために薄くするのが望ましい。例えば、酸化シリコンを用いる場合には、1nm以上100nm以下、好ましくは10nm以上50nm以下とすることができる。
上述のように、ゲート絶縁層を薄くすると、トンネル効果などに起因するゲートリークが問題となる。ゲートリークの問題を解消するには、ゲート絶縁層146に、酸化ハフニウム、酸化タンタル、酸化イットリウム、ハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムシリケート(HfSixOy(x>0、y>0))、窒素が添加されたハフニウムアルミネート(HfAlxOy(x>0、y>0))、などの高誘電率(high−k)材料を用いると良い。高誘電率(high−k)材料をゲート絶縁層146に用いることで、電気的特性を確保しつつ、ゲートリークを抑制するために膜厚を大きくすることが可能になる。なお、高誘電率(high−k)材料を含む膜と、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウムなどのいずれかを含む膜との積層構造としてもよい。
ゲート絶縁層146の形成後には、不活性ガス雰囲気下、または酸素雰囲気下で第2の熱処理を行うのが望ましい。熱処理の温度は、200℃以上450℃以下、望ましくは250℃以上350℃以下である。例えば、窒素雰囲気下で250℃、1時間の熱処理を行えばよい。第2の熱処理を行うことによって、トランジスタの電気的特性のばらつきを軽減することができる。また、ゲート絶縁層146が酸素を含む場合、酸化物半導体層144に酸素を供給し、該酸化物半導体層144の酸素欠損を補填して、i型(真性半導体)またはi型に限りなく近い酸化物半導体層を形成することもできる。
なお、本実施の形態では、ゲート絶縁層146の形成後に第2の熱処理を行っているが、第2の熱処理のタイミングはこれに特に限定されない。例えば、ゲート電極の形成後に第2の熱処理を行っても良い。また、第1の熱処理に続けて第2の熱処理を行っても良いし、第1の熱処理に第2の熱処理を兼ねさせても良いし、第2の熱処理に第1の熱処理を兼ねさせても良い。
次に、ゲート絶縁層146上において酸化物半導体層144と重畳する領域にゲート電極148aを形成し、ソース電極またはドレイン電極142aと重畳する領域に電極148bを形成する(図9(D)参照)。ゲート電極148aおよび電極148bは、ゲート絶縁層146上に導電層を形成した後に、当該導電層を選択的にエッチングすることによって形成することができる。ゲート電極148aおよび電極148bとなる導電層は、スパッタ法をはじめとするPVD法や、プラズマCVD法などのCVD法を用いて形成することができる。詳細は、ソース電極またはドレイン電極142aなどの場合と同様であり、これらの記載を参酌できる。
次に、ゲート絶縁層146、ゲート電極148a、および電極148b上に、層間絶縁層150および層間絶縁層152を形成する(図9(E)参照)。層間絶縁層150および層間絶縁層152は、PVD法やCVD法などを用いて形成することができる。また、酸化シリコン、酸窒化シリコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化タンタル等の無機絶縁材料を含む材料を用いて形成することができる。なお、本実施の形態では、層間絶縁層150と層間絶縁層152の積層構造としているが、開示する発明の一態様はこれに限定されない。1層としても良いし、3層以上の積層構造としても良い。また、層間絶縁層を設けない構成とすることも可能である。
なお、上記層間絶縁層152は、その表面が平坦になるように形成することが望ましい。表面が平坦になるように層間絶縁層152を形成することで、半導体装置を微細化した場合などにおいても、層間絶縁層152上に、電極や配線などを好適に形成することができるためである。なお、層間絶縁層152の平坦化は、CMP(化学的機械的研磨)などの方法を用いて行うことができる。
以上により、高純度化された酸化物半導体層144を用いたトランジスタ162が完成する(図9(E)参照)。また、容量素子164が完成する。
図9(E)に示すトランジスタ162は、酸化物半導体層144と、酸化物半導体層144と電気的に接続するソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bと、酸化物半導体層144、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを覆うゲート絶縁層146と、ゲート絶縁層146上のゲート電極148aと、を有する。また、容量素子164は、ソース電極またはドレイン電極142aと、酸化物半導体層144と、酸化物半導体144、ソース電極またはドレイン電極142aを覆うゲート絶縁層146と、ゲート絶縁層146上の電極148bと、を有する。
本実施の形態において示すトランジスタ162では、酸化物半導体層144が高純度化されているため、その水素濃度は、5×1019atoms/cm以下、望ましくは5×1018atoms/cm以下、より望ましくは5×1017atoms/cm以下である。また、酸化物半導体層144のキャリア密度は、一般的なシリコンウェハにおけるキャリア密度(1×1014/cm程度)と比較して、十分に小さい値(例えば、1×1012/cm未満、より好ましくは、1.45×1010/cm未満)をとる。そして、これにより、オフ電流が十分に小さくなる。例えば、トランジスタ162の室温でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は100zA/μm以下、望ましくは10zA/μm(1zA(ゼプトアンペア)は1×10−21A)以下となる。
このように高純度化され、真性化された酸化物半導体層144を用いることで、トランジスタのオフ電流を十分に低減することができる。そして、このようなトランジスタを用いることで、極めて長期にわたり記憶内容を保持することが可能な半導体装置が得られる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、実施の形態3とは異なる、開示する発明の一態様に係る半導体装置の構成およびその作製方法について、図10及び図11を参照して説明する。
〈半導体装置の断面構成および平面構成〉
図10は、半導体装置の構成の一例である。図10(A)には、半導体装置の断面を、図10(B)には、半導体装置の平面を、それぞれ示す。ここで、図10(A)は、図10(B)のA1−A2およびB1−B2における断面に相当する。図10(A)および図10(B)に示される半導体装置は、下部に酸化物半導体以外の半導体材料を用いたトランジスタ160を有し、上部に酸化物半導体を用いたトランジスタ162を有するものである。酸化物半導体以外の半導体材料を用いたトランジスタ160は、酸化物半導体材料よりも更に電界効果移動度の値が大きい材料を用いることで高速動作が可能になる。一方で、酸化物半導体材料を用いたトランジスタ162は、その特性により長時間の電荷保持を可能とする。
なお、上記トランジスタは、いずれもnチャネル型トランジスタであるものとして説明するが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、開示する発明の技術的な本質は、情報を保持するために酸化物半導体をトランジスタ162に用いる点にあるから、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図10におけるトランジスタ160は、半導体材料(例えば、シリコンなど)を含む基板100に設けられたチャネル形成領域116と、チャネル形成領域116を挟むように設けられた不純物領域114および高濃度不純物領域120(これらをあわせて単に不純物領域とも呼ぶ)と、チャネル形成領域116上に設けられたゲート絶縁層108aと、ゲート絶縁層108a上に設けられたゲート電極110aと、不純物領域と電気的に接続するソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bを有する。また、ソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130b上には、配線142c、および配線142dを有する。
ここで、ゲート電極110aの側面にはサイドウォール絶縁層118が設けられている。また、基板100の、表面に垂直な方向から見てサイドウォール絶縁層118と重ならない領域には、高濃度不純物領域120を有し、高濃度不純物領域120に接する金属化合物領域124が存在する。また、基板100上にはトランジスタ160を囲むように素子分離絶縁層106が設けられている。ゲート電極110a上に開口を有し且つ、トランジスタ160を覆うように、層間絶縁層126および層間絶縁層128が設けられている。ソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bは、層間絶縁層126および層間絶縁層128に形成された開口を通じて、金属化合物領域124と電気的に接続されている。つまり、ソース電極またはドレイン電極130a、およびソース電極またはドレイン電極130bは、金属化合物領域124を介して高濃度不純物領域120および不純物領域114と電気的に接続されている。なお、トランジスタ160の集積化などのため、サイドウォール絶縁層118が形成されない場合もある。
図10におけるトランジスタ162は、層間絶縁層128上に設けられたソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bと、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bと電気的に接続されている、島状の酸化物半導体層144と、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142b、島状の酸化物半導体層144を覆うゲート絶縁層146と、ゲート絶縁層146上に島状の酸化物半導体層144と重畳するように設けられたゲート電極148aと、を有する。
ここで、下部のトランジスタ160と上部のトランジスタ162は、ゲート電極110a上にソース電極またはドレイン電極142aが直接形成されることで電気的に接続されている。つまり、本実施の形態に示す半導体装置は、実施の形態3で示した半導体装置において、ゲート電極110aの上面より上部を除去し、下部のトランジスタ160の上に、上部トランジスタ162を形成した構成となっている。
なお、酸化物半導体層144は水素などの不純物が十分に除去されることにより、または、十分な酸素が供給されることにより、高純度化されているものであることが望ましい。具体的には、例えば、酸化物半導体層144の水素濃度は5×1019atoms/cm以下、望ましくは5×1018atoms/cm以下、より望ましくは5×1017atoms/cm以下とする。なお、上述の酸化物半導体層144中の水素濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)で測定したものである。このように、水素濃度が十分に低減されて高純度化され、十分な酸素の供給により酸素欠乏に起因するエネルギーギャップ中の欠陥準位が低減された酸化物半導体層144では、キャリア濃度が1×1012/cm未満、望ましくは、1×1011/cm未満、より望ましくは1.45×1010/cm未満となる。例えば、室温でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は100zA/μm以下、望ましくは10zA/μm(1zA(ゼプトアンペア)は1×10−21A)以下となる。このように、i型化(真性化)または実質的にi型化された酸化物半導体を用いることで、極めて優れたオフ電流特性のトランジスタ162を得ることができる。
容量素子164は、ソース電極またはドレイン電極142a、酸化物半導体層144、ゲート絶縁層146、および電極148b、で構成される。すなわち、ソース電極またはドレイン電極142aは、容量素子164の一方の電極として機能し、電極148bは、容量素子164の他方の電極として機能することになる。
なお、図10の容量素子164では、酸化物半導体層144とゲート絶縁層146を積層させることにより、ソース電極またはドレイン電極142aと、電極148bとの間の絶縁性を十分に確保することができる。
なお、トランジスタ162および容量素子164において、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの端部は、テーパー形状であることが好ましい。ここで、テーパー角は、例えば、30°以上60°以下とする。なお、テーパー角とは、テーパー形状を有する層(例えば、ソース電極またはドレイン電極142a)を、その断面(基板の表面と直交する面)に垂直な方向から観察した際に、当該層の側面と底面がなす傾斜角を示す。ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bの端部をテーパー形状とすることにより、酸化物半導体層144の被覆性を向上し、段切れを防止することができるためである。
また、トランジスタ162および容量素子164の上には、層間絶縁層150が設けられており、層間絶縁層150上には層間絶縁層152が設けられている。
〈半導体装置の作製方法〉
次に、上記半導体装置の作製方法の一例について説明する。以下では、下部のトランジスタ160を形成した後の工程、上部のトランジスタ162の作製方法について図11を参照して説明する。下部のトランジスタ160については、実施の形態3で示した方法と同様の方法で作製することができ、実施の形態3の記載を参酌することができる。
まず、実施の形態3に示す方法で下部のトランジスタ160を形成した後、トランジスタ160のゲート電極110aの上面より上部を除去する(図11(A)参照)。トランジスタ160の当該部分の除去は、ゲート電極110aの上面が露出するまで、下部のトランジスタ160に研磨処理(CMP処理)を行うことによってなされる。これにより、ゲート電極110aより上の、層間絶縁層126、128、ソース電極またはドレイン電極130a、130bは除去される。このとき、層間絶縁層126、128、ソース電極またはドレイン電極130a、130bを含む表面を平坦化することにより、後の工程において、良好な電極、配線、絶縁層、半導体層などを形成することが可能となる。また、実施の形態3で示した電極130cは、このCMP処理で完全に除去されてしまうので形成する必要はない。
このように、CMP処理を行い、ゲート電極110aの上面を露出させることにより、ゲート電極110aとソース電極またはドレイン電極142aとを直接接続することができるので、トランジスタ160とトランジスタ162の電気的接続を容易に取ることができる。
次に、層間絶縁層126及び128上に導電層を形成し、該導電層を選択的にエッチングして、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142b、配線142c、配線142dを形成する(図11(B)参照)。ここで、ソース電極またはドレイン電極142aはゲート電極110aと、配線142cはソース電極またはドレイン電極130aと、そして、配線142dはソース電極またはドレイン電極130bと、直接接続されるように形成する。
ここで、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142b、配線142c、配線142dを形成する導電層は、実施の形態3で示した材料と同様の材料を用いることができ、実施の形態3の記載を参酌することができる。また、導電層のエッチングについても、実施の形態3で示した方法と同様にすることができ、実施の形態3の記載を参酌することができる。
また、実施の形態3で示したように、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bの上には、絶縁層を形成しても良い。当該絶縁層を設けることにより、後に形成されるゲート電極と、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bとの間の寄生容量を低減することが可能である。
次に、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142b、配線142c及び配線142dを覆うように酸化物半導体層を成膜し、該酸化物半導体層を選択的にエッチングして、ソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142bと接するように酸化物半導体層144を形成する(図11(C)参照)。
酸化物半導体層は、実施の形態3で示した材料と同様の材料を用い、同様の方法で成膜することができる。よって、酸化物半導体層の材料と成膜方法について、実施の形態3を参酌することができる。
このように成膜した酸化物半導体層は、マスクを用いたエッチングなどの方法によって、島状に加工して、島状の酸化物半導体層144を形成する。
酸化物半導体層のエッチングには、ドライエッチング、ウェットエッチングのいずれを用いても良い。もちろん、その両方を組み合わせて用いることもできる。酸化物半導体層を所望の形状にエッチングできるよう、材料に合わせてエッチング条件(エッチングガスやエッチング液、エッチング時間、温度等)は適宜設定する。
また、酸化物半導体層144は、実施の形態3で示したように、熱処理(第1の熱処理)を行うことが望ましい。第1の熱処理は、実施の形態3で示した方法で行うことができ、実施の形態3を参酌することができる。第1の熱処理によって不純物を低減し、i型(真性半導体)またはi型に限りなく近い酸化物半導体層144を形成することで、極めて優れた特性のトランジスタを実現することができる。なお、第1の熱処理は、酸化物半導体層のエッチング前に行ってもよいし、エッチングして酸化物半導体層を島状に加工した後に行っても良い。
次に、酸化物半導体層144に接するゲート絶縁層146を形成する(図11(C)参照)。
ゲート絶縁層146は、実施の形態3で示した材料と同様の材料を用い、同様の方法で成膜することができる。よって、ゲート絶縁層146の材料と成膜方法について、実施の形態3を参酌することができる。
また、ゲート絶縁層146の形成後、実施の形態3で示したように、不活性ガス雰囲気下、または酸素雰囲気下で第2の熱処理を行うのが望ましい。第2の熱処理は、実施の形態3で示した方法で行うことができ、実施の形態3を参酌することができる。第2の熱処理を行うことで、トランジスタの電気的特性のばらつきを軽減することができる。また、ゲート絶縁層146が酸素を含む場合、酸化物半導体層144に酸素を供給し、該酸化物半導体層144の酸素欠損を補填して、i型(真性半導体)またはi型に限りなく近い酸化物半導体層を形成することもできる。
なお、本実施の形態では、ゲート絶縁層146の形成後に第2の熱処理を行っているが、第2の熱処理のタイミングはこれに特に限定されない。例えば、ゲート電極の形成後に第2の熱処理を行っても良い。また、第1の熱処理に続けて第2の熱処理を行っても良いし、第1の熱処理に第2の熱処理を兼ねさせても良いし、第2の熱処理に第1の熱処理を兼ねさせても良い。
次に、ゲート絶縁層146上において酸化物半導体層144と重畳する領域にゲート電極148aを形成し、ソース電極またはドレイン電極142aと重畳する領域に電極148bを形成する(図11(D)参照)。ゲート電極148aおよび電極148bは、ゲート絶縁層146上に導電層を形成した後に、当該導電層を選択的にエッチングすることによって形成することができる。ゲート電極148aおよび電極148bとなる導電層は、スパッタ法をはじめとするPVD法や、プラズマCVD法などのCVD法を用いて形成することができる。詳細は、ソース電極またはドレイン電極142aなどの場合と同様であり、これらの記載を参酌できる。
次に、実施の形態3で示したように、ゲート絶縁層146、ゲート電極148a、および電極148b上に、層間絶縁層150および層間絶縁層152を形成する。層間絶縁層150および層間絶縁層152は、実施の形態3で示した材料と同様の材料を用い、同様の方法で成膜することができる。よって、層間絶縁層150および層間絶縁層152の材料と成膜方法について、実施の形態3を参酌することができる。
なお、上記層間絶縁層152は、その表面が平坦になるように形成することが望ましい。表面が平坦になるように層間絶縁層152を形成することで、半導体装置を微細化した場合などにおいても、層間絶縁層152上に、電極や配線などを好適に形成することができるためである。なお、層間絶縁層152の平坦化は、CMP(化学的機械的研磨)などの方法を用いて行うことができる。
以上により、高純度化された酸化物半導体層144を用いたトランジスタ162が完成する(図10参照)。また、容量素子164が完成する。
図10に示すトランジスタ162は、酸化物半導体層144と、酸化物半導体層144と電気的に接続するソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bと、酸化物半導体層144、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを覆うゲート絶縁層146と、ゲート絶縁層146上のゲート電極148aと、を有する。また、容量素子164は、ソース電極またはドレイン電極142aと、酸化物半導体層144と、酸化物半導体144、ソース電極またはドレイン電極142aを覆うゲート絶縁層146と、ゲート絶縁層146上の電極148bと、を有する。
本実施の形態において示すトランジスタ162では、酸化物半導体層144が高純度化されているため、その水素濃度は、5×1019atoms/cm以下、望ましくは5×1018atoms/cm以下、より望ましくは5×1017atoms/cm以下である。また、酸化物半導体層144のキャリア密度は、一般的なシリコンウェハにおけるキャリア密度(1×1014/cm程度)と比較して、十分に小さい値(例えば、1×1012/cm未満、より好ましくは、1.45×1010/cm未満)をとる。そして、これにより、オフ電流が十分に小さくなる。例えば、トランジスタ162の室温でのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は100zA/μm以下、望ましくは10zA/μm(1zA(ゼプトアンペア)は1×10−21A)以下となる。
このように高純度化され、真性化された酸化物半導体層144を用いることで、トランジスタのオフ電流を十分に低減することができる。そして、このようなトランジスタを用いることで、極めて長期にわたり記憶内容を保持することが可能な半導体装置が得られる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、実施の形態3、実施の形態4とは異なる、開示する発明の一態様に係る半導体装置の構成およびその作製方法について、図4乃至図6を参照して説明する。
〈半導体装置の断面構成および平面構成〉
図4は、半導体装置の構成の一例である。図4(A)には、半導体装置の断面を、図4(B)には、半導体装置の平面を、それぞれ示す。ここで、図4(A)は、図4(B)のC1−C2およびD1−D2における断面に相当する。図4(B)の平面図においては、煩雑になることを避けるため、ソース電極またはドレイン電極154や、配線156など、構成要素の一部を省略している。図4(A)および図4(B)に示される半導体装置は、下部に酸化物半導体以外の半導体材料を用いたトランジスタ160を有し、上部に酸化物半導体を用いたトランジスタ162を有するものである。酸化物半導体以外の半導体材料を用いたトランジスタ160は、酸化物半導体材料よりも更に電界効果移動度の値が大きい材料を用いることで高速動作が可能になる。一方で、酸化物半導体材料を用いたトランジスタ162は、その特性により長時間の電荷保持を可能とする。
なお、上記トランジスタは、いずれもnチャネル型トランジスタであるものとして説明するが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、開示する発明の技術的な本質は、情報を保持するために酸化物半導体をトランジスタ162に用いる点にあるから、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図4に示される半導体装置と、先の実施の形態に示される半導体装置の相違の一は、半導体装置の平面レイアウトである。本実施の形態では、トランジスタ162および容量素子164が、トランジスタ160と重畳するように設けられている。このような、平面レイアウトを採用することにより、高集積化が可能である。例えば、最小加工寸法をFとして、メモリセルの占める面積を15F〜25Fとすることが可能である。
図4に示される半導体装置と、先の実施の形態に示される半導体装置の相違の他の一は、トランジスタ160におけるサイドウォール絶縁層118の有無である。つまり、図4に示される半導体装置は、サイドウォール絶縁層を有しない。また、サイドウォール絶縁層を形成しないことにより、不純物領域114が形成されていない。このように、サイドウォール絶縁層を設けない場合は、サイドウォール絶縁層118を設ける場合と比較して集積化が容易である。また、サイドウォール絶縁層118を設ける場合と比較して、作製工程を簡略化することが可能である。
図4に示される半導体装置と、先の実施の形態に示される半導体装置の相違の他の一は、トランジスタ160における層間絶縁層125の有無である。つまり、図4に示される半導体装置は、層間絶縁層125を有する。層間絶縁層125として、水素を含む絶縁層を適用することで、トランジスタ160に対して水素を供給しトランジスタ160の特性を向上させることが可能である。このような層間絶縁層125としては、例えば、プラズマCVD法により形成された水素を含む窒化シリコン層などがある。さらに、層間絶縁層126として、水素が十分に低減された絶縁層を適用することで、トランジスタ162の特性を悪化させるおそれがある水素の、トランジスタ162への混入を防ぐことが可能である。このような層間絶縁層126としては、例えば、スパッタ法により形成された窒化シリコン層などがある。このような構成を採用することにより、トランジスタ160とトランジスタ162の特性を十分に高めることができる。
図4に示される半導体装置と、先の実施の形態に示される半導体装置の相違の他の一は、トランジスタ162における絶縁層143aおよび絶縁層143bの有無である。つまり、図4に示される半導体装置は、絶縁層143aおよび絶縁層143bを有する。このように、絶縁層143aおよび絶縁層143bを設けることにより、ゲート電極148aと、ソース電極またはドレイン電極142a(または、ゲート電極148aと、ソース電極またはドレイン電極142b)とによる、いわゆるゲート容量を低減し、トランジスタ162の動作速度を向上させることができる。
なお、実施の形態4と同様、下部のトランジスタ160と上部のトランジスタ162は、ゲート電極110a上にソース電極またはドレイン電極142aが直接形成されることで電気的に接続されている。このような構成とすることで、電極や配線を別途設ける場合と比較して、集積度が向上する。また、作製工程が簡略化される。
なお、本実施の形態では、上述の相違点を一体に有する構成を示しているが、当該相違点のいずれか一のみを有する構成を採用しても良い。
〈半導体装置の作製方法〉
次に、上記半導体装置の作製方法の一例について説明する。以下では、下部のトランジスタ160を形成した後の工程、上部のトランジスタ162の作製方法について図5および図6を参照して説明する。下部のトランジスタ160については、実施の形態3で示した方法と同様の方法で作製することができる。詳細については、実施の形態3の記載を参酌できる。なお、本実施の形態では、トランジスタ160を覆うように層間絶縁層125、層間絶縁層126、層間絶縁層128、の三種類の層間絶縁層が形成されるものとする(図8(G)参考)。また、本実施の形態では、トランジスタ160の作製工程において、ソース電極またはドレイン電極130a、ソース電極またはドレイン電極130bを形成しないが(図8(H)参考)、ソース電極またはドレイン電極130aおよびソース電極またはドレイン電極130bが形成されていない状態であっても、便宜上、トランジスタ160と呼ぶことにする。
まず、実施の形態3に示す方法で下部のトランジスタ160を形成した後、トランジスタ160のゲート電極110aの上面より上部を除去する。当該除去工程には、CMP(化学的機械的研磨)などの研磨処理を適用すればよい。これにより、ゲート電極110a上面より上の、層間絶縁層125、層間絶縁層126、層間絶縁層128は除去される。なお、研磨処理に係る表面を十分に平坦化することにより、後の工程において、良好な電極、配線、絶縁層、半導体層などを形成することが可能となる。
次に、ゲート電極110a、層間絶縁層125、層間絶縁層126、層間絶縁層128上に導電層を形成し、該導電層を選択的にエッチングして、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを形成する(図5(A)参照)。ここで、ソース電極またはドレイン電極142aは、ゲート電極110aと直接接続されるように形成する。
ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを形成するための導電層は、実施の形態3で示した材料と同様の材料を用いて形成することができる。また、導電層のエッチングについても、実施の形態3で示した方法と同様の方法を用いて行うことができる。詳細については、実施の形態3の記載を参酌することができる。
次に、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを覆うように絶縁層を形成し、該絶縁層を選択的にエッチングして、ソース電極またはドレイン電極142a上に絶縁層143aを、ソース電極またはドレイン電極142b上に絶縁層143bを、それぞれ形成する(図5(B)参照)。
当該絶縁層143a、絶縁層143bを設けることにより、後に形成されるゲート電極と、ソース電極またはドレイン電極142aとの間の、および、後に形成されるゲート電極と、ソース電極またはドレイン電極142bとの間の寄生容量を低減することが可能である。
次に、ソース電極またはドレイン電極142a、ソース電極またはドレイン電極142bを覆うように酸化物半導体層144を形成し、酸化物半導体層144上にゲート絶縁層146を形成する(図5(C)参照)。
酸化物半導体層144は、実施の形態3で示した材料、方法により形成することができる。また、酸化物半導体層144に対しては、熱処理(第1の熱処理)を行うことが望ましい。詳細については、実施の形態3の記載を参酌することができる。
ゲート絶縁層146は、実施の形態3で示した材料、方法により形成することができる。また、ゲート絶縁層146の形成後には、不活性ガス雰囲気下、または酸素雰囲気下で熱処理(第2の熱処理)を行うのが望ましい。詳細については、実施の形態3の記載を参酌することができる。
次に、ゲート絶縁層146上において、トランジスタ162のチャネル形成領域となる領域と重畳する領域にゲート電極148aを形成し、ソース電極またはドレイン電極142aと重畳する領域に電極148bを形成する(図5(D)参照)。
ゲート電極148aおよび電極148bは、ゲート絶縁層146上に導電層を形成した後に、当該導電層を選択的にエッチングすることによって形成することができる。ゲート電極148aおよび電極148bとなる導電層は、スパッタ法をはじめとするPVD法や、プラズマCVD法などのCVD法を用いて形成することができる。詳細は、ソース電極またはドレイン電極142aなどの場合と同様であり、これらの記載を参酌できる。
次に、ゲート絶縁層146、ゲート電極148a、および電極148b上に、層間絶縁層150および層間絶縁層152を形成する(図6(A)参照)。層間絶縁層150および層間絶縁層152は、実施の形態3で示した材料、方法により形成することができる。詳細については、実施の形態3の記載を参酌することができる。
なお、上記層間絶縁層152は、その表面が平坦になるように形成することが望ましい。表面が平坦になるように層間絶縁層152を形成することで、半導体装置を微細化した場合などにおいても、層間絶縁層152上に、電極や配線などを好適に形成することができるためである。なお、層間絶縁層152の平坦化は、CMP(化学的機械的研磨)などの方法を用いて行うことができる。
次に、層間絶縁層125、層間絶縁層126、層間絶縁層128、酸化物半導体層144、ゲート絶縁層146、層間絶縁層150、層間絶縁層152を選択的にエッチングして、トランジスタ160の金属化合物領域124にまで達する開口を形成する(図6(B)参照)。エッチングとしては、ドライエッチング、ウェットエッチングのいずれを用いても良いが、微細化の観点からは、ドライエッチングを用いるのが望ましい。
そして、上記開口に埋め込むように、ソース電極またはドレイン電極154を形成する。そして、ソース電極またはドレイン電極154と接続する配線156を形成する(図6(C)参照)。
ソース電極またはドレイン電極154は、例えば、開口を含む領域にPVD法やCVD法などを用いて導電層を形成した後、エッチング処理やCMPといった方法を用いて、上記導電層の一部を除去することにより形成することができる。より具体的には、例えば、開口を含む領域にPVD法によりチタン膜を薄く形成し、CVD法により窒化チタン膜を薄く形成した後に、開口に埋め込むようにタングステン膜を形成する方法を適用することができる。ここで、PVD法により形成されるチタン膜は、被形成面の酸化膜(自然酸化膜など)を還元し、下部電極など(ここでは金属化合物領域124)との接触抵抗を低減させる機能を有する。また、その後に形成される窒化チタン膜は、導電性材料の拡散を抑制するバリア機能を備える。また、チタンや窒化チタンなどによるバリア膜を形成した後に、メッキ法により銅膜を形成してもよい。
配線156は、ソース電極またはドレイン電極154に接する導電層を形成した後に、当該導電層を選択的にエッチングすることによって形成することができる。当該導電層は、スパッタ法をはじめとするPVD法や、プラズマCVD法などのCVD法を用いて形成することができる。詳細は、ソース電極またはドレイン電極142aなどの場合と同様である。
以上により、トランジスタ160、トランジスタ162および容量素子164を有する半導体装置が完成する。
本実施の形態で示す半導体装置は、トランジスタ162および容量素子164が、トランジスタ160と重畳する構成を備えていること、トランジスタ160がサイドウォール絶縁層を有しないこと、ゲート電極110a上にソース電極またはドレイン電極142aが直接形成さていること、などにより高集積化が可能になっている。また、作製工程が簡略化されている。
また、本実施の形態で示す半導体装置は、層間絶縁層125として、水素を含む絶縁層を適用し、層間絶縁層126として、水素が十分に低減された絶縁層を適用することで、トランジスタ160およびトランジスタ162の特性が高められている。また、絶縁層143aおよび絶縁層143bを有することで、いわゆるゲート容量が低減され、トランジスタ162の動作速度が向上している。
本実施の形態に示す上述の特徴により、きわめて優れた特性の半導体装置を提供することが可能である。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、上述の実施の形態で説明した半導体装置を電子機器に適用する場合について、図12を用いて説明する。本実施の形態では、コンピュータ、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯情報端末(携帯型ゲーム機、音響再生装置なども含む)、デジタルカメラ、デジタルビデオカメラ、電子ペーパー、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)などの電子機器に、上述の半導体装置を適用する場合について説明する。
図12(A)は、ノート型のパーソナルコンピュータであり、筐体701、筐体702、表示部703、キーボード704などによって構成されている。筐体701と筐体702内には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減されたノート型のパーソナルコンピュータが実現される。
図12(B)は、携帯情報端末(PDA)であり、本体711には、表示部713と、外部インターフェイス715と、操作ボタン714等が設けられている。また、携帯情報端末を操作するスタイラス712などを備えている。本体711内には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減された携帯情報端末が実現される。
図12(C)は、電子ペーパーを実装した電子書籍720であり、筐体721と筐体723の2つの筐体で構成されている。筐体721および筐体723には、それぞれ表示部725および表示部727が設けられている。筐体721と筐体723は、軸部737により接続されており、該軸部737を軸として開閉動作を行うことができる。また、筐体721は、電源731、操作キー733、スピーカー735などを備えている。筐体721、筐体723の少なくとも一には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減された電子書籍が実現される。
図12(D)は、携帯電話機であり、筐体740と筐体741の2つの筐体で構成されている。さらに、筐体740と筐体741は、スライドし、図12(D)のように展開している状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。また、筐体741は、表示パネル742、スピーカー743、マイクロフォン744、ポインティングデバイス746、カメラ用レンズ747、外部接続端子748などを備えている。また、筐体740は、携帯電話機の充電を行う太陽電池セル749、外部メモリスロット750などを備えている。また、アンテナは、筐体741に内蔵されている。筐体740と筐体741の少なくとも一には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減された携帯電話機が実現される。
図12(E)は、デジタルカメラであり、本体761、表示部767、接眼部763、操作スイッチ764、表示部765、バッテリー766などによって構成されている。本体761内には、先の実施の形態に示す半導体装置が設けられている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減されたデジタルカメラが実現される。
図12(F)は、テレビジョン装置770であり、筐体771、表示部773、スタンド775などで構成されている。テレビジョン装置770の操作は、筐体771が備えるスイッチや、リモコン操作機780により行うことができる。筐体771およびリモコン操作機780には、先の実施の形態に示す半導体装置が搭載されている。そのため、情報の書き込みおよび読み出しが高速で、長期間の記憶保持が可能で、且つ消費電力が十分に低減されたテレビジョン装置が実現される。
以上のように、本実施の形態に示す電子機器には、先の実施の形態に係る半導体装置が搭載されている。このため、消費電力を低減した電子機器が実現される。
開示する発明の一態様に係るメモリセルの書き換え可能回数につき調査した。本実施例では、当該調査結果につき、図13を参照して説明する。
調査に用いた半導体装置は、図1(A−1)に示す回路構成の半導体装置である。ここで、トランジスタ162に相当するトランジスタには酸化物半導体を用いた。容量素子164に相当する容量素子としては、0.33pFの容量値のものを用いた。
メモリセルへの情報の保持および情報の書き込みは、図1(A−1)における第3の配線に相当する配線に0V、または5Vのいずれかを与え、第4の配線に相当する配線に、0V、または5Vのいずれかを与えることにより行った。第4の配線に相当する配線の電位が0Vの場合には、トランジスタ162に相当するトランジスタ(書き込み用トランジスタ)はオフ状態であるから、ノードFGに与えられた電位が保持される。第4の配線に相当する配線の電位が5Vの場合には、トランジスタ162に相当するトランジスタはオン状態であるから、第3の配線に相当する配線の電位がノードFGに与えられる。
図13(A)に、書き込みを1×10回行う前後での、第5の配線に相当する配線の電位Vcgと、トランジスタ160に相当するトランジスタ(読み出し用トランジスタ)のドレイン電流Idとの関係を示す曲線(Vcg−Id曲線)をそれぞれ示す。図13において、L書込みとは、ノードFGに0Vが供給された状態を示し、H書込みとは、ノードFGに5Vが供給された状態を示す。なお、図13(A)において、横軸はVcg(V)を示し、縦軸はId(A)を示す。
図13(A)に示すように、1×10回もの書き込みを行う前後において、H書込みのVcg−Id曲線、L書込みのVcg−Id曲線には、ほとんど変化が見られない。また、H書込みのVcg−Id曲線とL書込みのVcg−Id曲線とのシフト量(ΔVcg)についても、1×10回の書き込みの前後でほとんど変化が見られない。
図13(B)に、H書込みまたはL書込みにおいてトランジスタ160をオン状態にするために必要な第5の配線に相当する配線の電位と、書き込み回数の関係を示す。図13(B)において、横軸は書き換え回数を示し、縦軸は第5の配線に相当する配線の電位、すなわちトランジスタ160の見かけのしきい値Vth(V)を示す。
なお、しきい値Vthは、一般に接線法により算出することができる。具体的には、図19に示すように、横軸をゲート電圧Vgとし、縦軸をドレイン電流Idの平方根の値とした曲線に対し、その曲線の傾きが最大となる点における接線を求める。その接線と、横軸(ゲート電圧Vgの値)との切片をしきい値Vthとする。図13(B)においても接線法により見かけのしきい値Vthを算出した。
表1に、図13(B)より算出されるメモリウィンドウ幅を示す。なお、メモリウィンドウ幅は、H書込みにおけるトランジスタ160の見かけのしきい値Vth_Hと、L書込みにおけるトランジスタ160の見かけのしきい値Vth_Lとの差分を算出して求めた。
表1より、本実施例のメモリセルは、書き込みを1×10回行う前後において、メモリウィンドウ幅の変化量が2%以内、具体的には1.68%であることが示された。1×10回の書き込み前後においてメモリウィンドウ幅の変化量が2%以内であるということは、少なくともこの間は、半導体装置が劣化しないことを示すものである。
以上示したように、開示する発明の一態様に係るメモリセルは、保持および書き込みを10回もの多数回繰り返しても特性が変化せず、書き換え耐性が極めて高い。つまり、開示する発明の一態様によって、極めて信頼性の高いメモリセル、及びそれを搭載した極めて信頼性の高い半導体装置が実現されるといえる。
本実施例では、高純度化された酸化物半導体を用いたトランジスタのオフ電流を求めた結果について説明する。
本実施例では、実施の形態3に従って、高純度化された酸化物半導体を用いてトランジスタを作製した。まず、高純度化された酸化物半導体を用いたトランジスタのオフ電流が十分に小さいことを考慮して、チャネル幅Wが1mと十分に大きいトランジスタを用意してオフ電流の測定を行った。チャネル幅Wが1mのトランジスタのオフ電流を測定した結果を図14に示す。図14において、横軸はゲート電圧VG、縦軸はドレイン電流IDである。ドレイン電圧VDが+1Vまたは+10Vの場合、ゲート電圧VGが−5Vから−20Vの範囲では、トランジスタのオフ電流は、検出限界である1×10−13A以下であることがわかった。また、トランジスタのオフ電流(ここでは、単位チャネル幅(1μm)あたりの値)は1aA/μm(1×10−18A/μm)以下となることがわかった。
次に、高純度化された酸化物半導体を用いたトランジスタのオフ電流をさらに正確に求めた結果について説明する。上述したように、高純度化された酸化物半導体を用いたトランジスタのオフ電流は、測定器の検出限界である1×10−13A以下であることがわかった。そこで、特性評価用素子を作製し、より正確なオフ電流の値(上記測定における測定器の検出限界以下の値)を求めた結果について説明する。
はじめに、電流測定方法に用いた特性評価用素子について、図15を参照して説明する。
図15に示す特性評価用素子は、測定系800が3つ並列に接続されている。測定系800は、容量素子802、トランジスタ804、トランジスタ805、トランジスタ806、トランジスタ808を有する。トランジスタ804、トランジスタ805、トランジスタ806には、実施の形態3に従って作製したトランジスタを使用した。
測定系800において、トランジスタ804のソース端子およびドレイン端子の一方と、容量素子802の端子の一方と、トランジスタ805のソース端子およびドレイン端子の一方は、電源(V2を与える電源)に接続されている。また、トランジスタ804のソース端子およびドレイン端子の他方と、トランジスタ808のソース端子およびドレイン端子の一方と、容量素子802の端子の他方と、トランジスタ805のゲート端子とは、接続されている。また、トランジスタ808のソース端子およびドレイン端子の他方と、トランジスタ806のソース端子およびドレイン端子の一方と、トランジスタ806のゲート端子は、電源(V1を与える電源)に接続されている。また、トランジスタ805のソース端子およびドレイン端子の他方と、トランジスタ806のソース端子およびドレイン端子の他方とは、接続され、出力端子Voutとなっている。
なお、トランジスタ804のゲート端子には、トランジスタ804のオン状態と、オフ状態を制御する電位Vext_b2が供給され、トランジスタ808のゲート端子には、トランジスタ808のオン状態と、オフ状態を制御する電位Vext_b1が供給される。また、出力端子からは電位Voutが出力される。
次に、上記の測定系を用いた電流測定方法について説明する。
まず、オフ電流を測定するために電位差を付与する初期化期間の概略について説明する。初期化期間においては、トランジスタ808のゲート端子に、トランジスタ808をオン状態とする電位Vext_b1を入力して、トランジスタ804のソース端子またはドレイン端子の他方と接続されるノード(つまり、トランジスタ808のソース端子およびドレイン端子の一方、容量素子802の端子の他方、およびトランジスタ805のゲート端子に接続されるノード)であるノードAに電位V1を与える。ここで、電位V1は、例えば高電位とする。また、トランジスタ804はオフ状態としておく。
その後、トランジスタ808のゲート端子に、トランジスタ808をオフ状態とする電位Vext_b1を入力して、トランジスタ808をオフ状態とする。トランジスタ808をオフ状態とした後に、電位V1を低電位とする。ここでも、トランジスタ804はオフ状態としておく。また、電位V2は電位V1と同じ電位とする。以上により、初期化期間が終了する。初期化期間が終了した状態では、ノードAとトランジスタ804のソース電極及びドレイン電極の一方との間に電位差が生じ、また、ノードAとトランジスタ808のソース電極及びドレイン電極の他方との間に電位差が生じることになるため、トランジスタ804およびトランジスタ808には僅かに電荷が流れる。つまり、オフ電流が発生する。
次に、オフ電流の測定期間の概略について説明する。測定期間においては、トランジスタ804のソース端子またはドレイン端子の一方の端子の電位(つまりV2)、および、トランジスタ808のソース端子またはドレイン端子の他方の端子の電位(つまりV1)は低電位に固定しておく。一方で、測定期間中は、上記ノードAの電位は固定しない(フローティング状態とする)。これにより、トランジスタ804に電荷が流れ、時間の経過と共にノードAに保持される電荷量が変動する。そして、ノードAに保持される電荷量の変動に伴って、ノードAの電位が変動する。つまり、出力端子の出力電位Voutも変動する。
上記電位差を付与する初期化期間、および、その後の測定期間における各電位の関係の詳細(タイミングチャート)を図16に示す。
初期化期間において、まず、電位Vext_b2を、トランジスタ804がオン状態となるような電位(高電位)とする。これによって、ノードAの電位はV2すなわち低電位(VSS)となる。その後、電位Vext_b2を、トランジスタ804がオフ状態となるような電位(低電位)として、トランジスタ804をオフ状態とする。そして、次に、電位Vext_b1を、トランジスタ808がオン状態となるような電位(高電位)とする。これによって、ノードAの電位はV1、すなわち高電位(VDD)となる。その後、電位Vext_b1を、トランジスタ808がオフ状態となるような電位とする。これによって、ノードAがフローティング状態となり、初期化期間が終了する。
その後の測定期間においては、電位V1および電位V2を、ノードAに電荷が流れ込み、またはノードAから電荷が流れ出すような電位とする。ここでは、電位V1および電位V2を低電位(VSS)とする。ただし、出力電位Voutを測定するタイミングにおいては、出力回路を動作させる必要が生じるため、一時的にV1を高電位(VDD)とすることがある。なお、V1を高電位(VDD)とする期間は、測定に影響を与えない程度の短期間とする。
上述のようにして電位差を与え、測定期間が開始されると、時間の経過と共にノードAに保持される電荷量が変動し、これに従ってノードAの電位が変動する。これは、トランジスタ805のゲート端子の電位が変動することを意味するから、時間の経過と共に、出力端子の出力電位Voutの電位も変化することとなる。
得られた出力電位Voutから、オフ電流を算出する方法について、以下に説明する。
オフ電流の算出に先だって、ノードAの電位VAと、出力電位Voutとの関係を求めておく。これにより、出力電位VoutからノードAの電位VAを求めることができる。上述の関係から、ノードAの電位VAは、出力電位Voutの関数として次式のように表すことができる。
また、ノードAの電荷QAは、ノードAの電位VA、ノードAに接続される容量CA、定数(const)を用いて、次式のように表される。ここで、ノードAに接続される容量CAは、容量素子802の容量と他の容量の和である。
ノードAの電流IAは、ノードAに流れ込む電荷(またはノードAから流れ出る電荷)の時間微分であるから、ノードAの電流IAは次式のように表される。
このように、ノードAに接続される容量CAと、出力端子の出力電位Voutから、ノードAの電流IAを求めることができる。
以上に示す方法により、オフ状態においてトランジスタのソースとドレイン間を流れるリーク電流(オフ電流)を測定することができる。
本実施例では、チャネル長L=10μm、チャネル幅W=50μmの、高純度化した酸化物半導体を用いてトランジスタ804、トランジスタ805、トランジスタ806、トランジスタ808を作製した。また、並列された各測定系800において、容量素子802a、802b、802cの容量値をそれぞれ、容量素子802aを100fF、容量素子802bを1pF、容量素子802cを3pFとした。
なお、本実施例に係る測定では、VDD=5V、VSS=0Vとした。また、測定期間においては、電位V1を原則としてVSSとし、10〜300secごとに、100msecの期間だけVDDとしてVoutを測定した。また、素子に流れる電流Iの算出に用いられるΔtは、約30000secとした。
図17に、上記電流測定に係る経過時間Timeと、出力電位Voutとの関係を示す。図17より、時間の経過にしたがって、電位が変化している様子が確認できる。
図18には、上記電流測定によって算出されたオフ電流を示す。なお、図18は、ソース−ドレイン電圧Vと、オフ電流Iとの関係を表すものである。図18から、ソース−ドレイン電圧が4Vの条件において、オフ電流は室温で約40zA/μmであることが分かった。また、ソース−ドレイン電圧が3.1Vの条件において、オフ電流は室温で10zA/μm以下であることが分かった。なお、1zAは10−21Aを表す。
以上、本実施例により、高純度化された酸化物半導体を用いたトランジスタでは、オフ電流が十分に小さくなることが確認された。
100 基板
102 保護層
104 半導体領域
106 素子分離絶縁層
108a ゲート絶縁層
110a ゲート電極
112 絶縁層
114 不純物領域
116 チャネル形成領域
118 サイドウォール絶縁層
120 高濃度不純物領域
122 金属層
124 金属化合物領域
125 層間絶縁層
126 層間絶縁層
128 層間絶縁層
130a ソース電極またはドレイン電極
130b ソース電極またはドレイン電極
130c 電極
142a ソース電極またはドレイン電極
142b ソース電極またはドレイン電極
143a 絶縁層
143b 絶縁層
144 酸化物半導体層
146 ゲート絶縁層
148a ゲート電極
148b 電極
150 層間絶縁層
152 層間絶縁層
154 ソース電極またはドレイン電極
160 トランジスタ
162 トランジスタ
164 容量素子
701 筐体
702 筐体
703 表示部
704 キーボード
711 本体
712 スタイラス
713 表示部
714 操作ボタン
715 外部インターフェイス
720 電子書籍
721 筐体
723 筐体
725 表示部
727 表示部
731 電源
733 操作キー
735 スピーカー
737 軸部
740 筐体
741 筐体
742 表示パネル
743 スピーカー
744 マイクロフォン
746 ポインティングデバイス
747 カメラ用レンズ
748 外部接続端子
749 太陽電池セル
750 外部メモリスロット
761 本体
763 接眼部
764 操作スイッチ
765 表示部
766 バッテリー
767 表示部
770 テレビジョン装置
771 筐体
773 表示部
775 スタンド
780 リモコン操作機
802 容量素子
802a 容量素子
802b 容量素子
802c 容量素子
804 トランジスタ
805 トランジスタ
806 トランジスタ
808 トランジスタ

Claims (5)

  1. 第1のトランジスタと、第2のトランジスタと、容量素子と、を含む不揮発性のメモリセルを有し、
    前記第1のトランジスタと、前記第2のトランジスタとは、異なる半導体材料を含んで構成され、
    前記第2のトランジスタは、酸化物半導体を含んで構成され、
    前記メモリセルへの情報の書き込みは、前記第2のトランジスタをオン状態とすることにより、前記第2のトランジスタのソース電極またはドレイン電極の一方と、前記第1のトランジスタのゲート電極と、前記容量素子の電極の一方と、が電気的に接続されたノードに電位を供給した後、前記第2のトランジスタをオフ状態として前記ノードに電荷を保持させることにより行い、
    前記メモリセルからの情報の読み出しは、前記容量素子の電極の他方に与える電位を制御して、前記第1のトランジスタのオン状態またはオフ状態を読み出すことにより行い、
    前記書き込みを1×10回行う前後において、前記メモリセルのメモリウィンドウ幅の変化量が2%以内である半導体装置。
  2. 第1のトランジスタと、第2のトランジスタと、容量素子と、を含む不揮発性のメモリセルを有し、
    前記第1のトランジスタと、前記第2のトランジスタとは、異なる半導体材料を含んで構成され、
    前記第2のトランジスタは、酸化物半導体を含んで構成され、オフ電流密度が100zA/μm以下であり、
    前記メモリセルへの情報の書き込みは、前記第2のトランジスタをオン状態とすることにより、前記第2のトランジスタのソース電極またはドレイン電極の一方と、前記第1のトランジスタのゲート電極と、前記容量素子の電極の一方と、が電気的に接続されたノードに電位を供給した後、前記第2のトランジスタをオフ状態として前記ノードに電荷を保持させることにより行い、
    前記メモリセルからの情報の読み出しは、前記容量素子の電極の他方に与える電位を制御して、前記第1のトランジスタのオン状態またはオフ状態を読み出すことにより行い、
    前記書き込みを1×10回行う前後において、前記メモリセルのメモリウィンドウ幅の変化量が2%以内である半導体装置。
  3. 前記第2のトランジスタのオフ電流は、前記第1のトランジスタのオフ電流よりも低い請求項1または請求項2に記載の半導体装置。
  4. 前記第1のトランジスタのスイッチング速度は、前記第2のトランジスタのスイッチング速度よりも大きい請求項1乃至請求項3のいずれか一に記載の半導体装置。
  5. 前記第2のトランジスタは、エネルギーギャップが3eVより大きい材料を含んで構成される請求項1乃至請求項4のいずれか一に記載の半導体装置。
JP2011005537A 2010-01-15 2011-01-14 半導体装置 Expired - Fee Related JP5651487B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005537A JP5651487B2 (ja) 2010-01-15 2011-01-14 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010007494 2010-01-15
JP2010007494 2010-01-15
JP2011005537A JP5651487B2 (ja) 2010-01-15 2011-01-14 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014232403A Division JP5889997B2 (ja) 2010-01-15 2014-11-17 半導体装置

Publications (3)

Publication Number Publication Date
JP2011166133A true JP2011166133A (ja) 2011-08-25
JP2011166133A5 JP2011166133A5 (ja) 2014-02-13
JP5651487B2 JP5651487B2 (ja) 2015-01-14

Family

ID=44276920

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011005537A Expired - Fee Related JP5651487B2 (ja) 2010-01-15 2011-01-14 半導体装置
JP2014232403A Active JP5889997B2 (ja) 2010-01-15 2014-11-17 半導体装置
JP2016027587A Active JP6200008B2 (ja) 2010-01-15 2016-02-17 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014232403A Active JP5889997B2 (ja) 2010-01-15 2014-11-17 半導体装置
JP2016027587A Active JP6200008B2 (ja) 2010-01-15 2016-02-17 半導体装置

Country Status (5)

Country Link
US (1) US8698219B2 (ja)
JP (3) JP5651487B2 (ja)
KR (1) KR101791279B1 (ja)
TW (1) TWI528502B (ja)
WO (1) WO2011086871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256417A (ja) * 2010-02-19 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013048220A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 半導体装置
JP2016129237A (ja) * 2010-01-15 2016-07-14 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652356B (zh) 2009-12-18 2016-02-17 株式会社半导体能源研究所 半导体装置
CN105140245B (zh) 2009-12-18 2018-07-17 株式会社半导体能源研究所 液晶显示设备和电子设备
KR101926336B1 (ko) 2010-02-05 2019-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011096277A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
WO2011096270A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011096264A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US8416622B2 (en) 2010-05-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US8779433B2 (en) 2010-06-04 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8422272B2 (en) 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TWI524347B (zh) 2010-08-06 2016-03-01 半導體能源研究所股份有限公司 半導體裝置及其驅動方法
JP5727892B2 (ja) 2010-08-26 2015-06-03 株式会社半導体エネルギー研究所 半導体装置
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6013682B2 (ja) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 半導体装置の駆動方法
JP6169376B2 (ja) * 2012-03-28 2017-07-26 株式会社半導体エネルギー研究所 電池管理ユニット、保護回路、蓄電装置
JP6250955B2 (ja) 2012-05-25 2017-12-20 株式会社半導体エネルギー研究所 半導体装置の駆動方法
JP2014195243A (ja) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd 半導体装置
US9612795B2 (en) 2013-03-14 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Data processing device, data processing method, and computer program
TWI638519B (zh) * 2013-05-17 2018-10-11 半導體能源研究所股份有限公司 可程式邏輯裝置及半導體裝置
KR102320576B1 (ko) * 2013-12-27 2021-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP6689062B2 (ja) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 半導体装置
CN106409919A (zh) 2015-07-30 2017-02-15 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
US10008502B2 (en) 2016-05-04 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
CN111769133A (zh) * 2020-07-06 2020-10-13 中国科学院微电子研究所 一种提升选通管器件性能的方法、系统、设备和介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021689A (ja) * 1996-07-01 1998-01-23 Hitachi Ltd 強誘電体メモリ
JP2002368226A (ja) * 2001-06-11 2002-12-20 Sharp Corp 半導体装置、半導体記憶装置及びその製造方法、並びに携帯情報機器
JP2007103918A (ja) * 2005-09-06 2007-04-19 Canon Inc アモルファス酸化物膜をチャネル層に用いた電界効果型トランジスタ、アモルファス酸化物膜をチャネル層に用いた電界効果型トランジスタの製造方法及びアモルファス酸化物膜の製造方法
JP2008004791A (ja) * 2006-06-23 2008-01-10 Sony Corp 負性抵抗素子およびその製造方法ならびに単電子トンネル素子およびその製造方法ならびに光センサおよびその製造方法ならびに機能素子およびその製造方法
JP2009152633A (ja) * 2005-11-15 2009-07-09 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び液晶表示装置の作製方法
JP2009182194A (ja) * 2008-01-31 2009-08-13 Sony Corp 光センサー素子、撮像装置、電子機器、およびメモリー素子
JP2009224595A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 有機電界発光表示装置及びその製造方法
JP2009535819A (ja) * 2006-08-31 2009-10-01 マイクロン テクノロジー, インク. 高性能画像センサのための透明チャネル薄膜トランジスタベースのピクセル
JP2009277702A (ja) * 2008-05-12 2009-11-26 Canon Inc 半導体素子の閾値電圧の制御方法
JP2010522424A (ja) * 2006-11-08 2010-07-01 シメトリックス・コーポレーション 相関電子メモリ

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053878B1 (en) 1980-12-08 1985-08-14 Kabushiki Kaisha Toshiba Semiconductor memory device
JPS62230043A (ja) * 1986-03-31 1987-10-08 Seiko Epson Corp 半導体装置
JPS62274773A (ja) * 1986-05-23 1987-11-28 Hitachi Ltd 半導体記憶装置
US5219779A (en) * 1989-05-11 1993-06-15 Sharp Kabushiki Kaisha Memory cell for dynamic random access memory
JPH02297962A (ja) * 1989-05-11 1990-12-10 Sharp Corp ダイナミックランダムアクセスメモリ
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4103968B2 (ja) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
JP2001053167A (ja) * 1999-08-04 2001-02-23 Sony Corp 半導体記憶装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
JP2002093924A (ja) * 2000-09-20 2002-03-29 Sony Corp 半導体記憶装置
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP2002319682A (ja) * 2002-01-04 2002-10-31 Japan Science & Technology Corp トランジスタ及び半導体装置
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
JP2003338509A (ja) * 2002-03-11 2003-11-28 Sanyo Electric Co Ltd トップゲート型薄膜トランジスタ
TW200304227A (en) * 2002-03-11 2003-09-16 Sanyo Electric Co Top gate type thin film transistor
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
US7078298B2 (en) * 2003-05-20 2006-07-18 Sharp Laboratories Of America, Inc. Silicon-on-nothing fabrication process
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
KR101078483B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Lcd 또는 유기 el 디스플레이의 스위칭 소자
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
EP2455975B1 (en) 2004-11-10 2015-10-28 Canon Kabushiki Kaisha Field effect transistor with amorphous oxide
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI445178B (zh) 2005-01-28 2014-07-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP2007201437A (ja) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd 半導体装置
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5105842B2 (ja) * 2006-12-05 2012-12-26 キヤノン株式会社 酸化物半導体を用いた表示装置及びその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US7982250B2 (en) * 2007-09-21 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5510767B2 (ja) * 2008-06-19 2014-06-04 出光興産株式会社 薄膜トランジスタおよびその製造方法
JP2010003910A (ja) * 2008-06-20 2010-01-07 Toshiba Mobile Display Co Ltd 表示素子
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5781720B2 (ja) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
KR101893332B1 (ko) * 2009-11-13 2018-08-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 구동 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021689A (ja) * 1996-07-01 1998-01-23 Hitachi Ltd 強誘電体メモリ
JP2002368226A (ja) * 2001-06-11 2002-12-20 Sharp Corp 半導体装置、半導体記憶装置及びその製造方法、並びに携帯情報機器
JP2007103918A (ja) * 2005-09-06 2007-04-19 Canon Inc アモルファス酸化物膜をチャネル層に用いた電界効果型トランジスタ、アモルファス酸化物膜をチャネル層に用いた電界効果型トランジスタの製造方法及びアモルファス酸化物膜の製造方法
JP2009152633A (ja) * 2005-11-15 2009-07-09 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び液晶表示装置の作製方法
JP2008004791A (ja) * 2006-06-23 2008-01-10 Sony Corp 負性抵抗素子およびその製造方法ならびに単電子トンネル素子およびその製造方法ならびに光センサおよびその製造方法ならびに機能素子およびその製造方法
JP2009535819A (ja) * 2006-08-31 2009-10-01 マイクロン テクノロジー, インク. 高性能画像センサのための透明チャネル薄膜トランジスタベースのピクセル
JP2010522424A (ja) * 2006-11-08 2010-07-01 シメトリックス・コーポレーション 相関電子メモリ
JP2009182194A (ja) * 2008-01-31 2009-08-13 Sony Corp 光センサー素子、撮像装置、電子機器、およびメモリー素子
JP2009224595A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 有機電界発光表示装置及びその製造方法
JP2009277702A (ja) * 2008-05-12 2009-11-26 Canon Inc 半導体素子の閾値電圧の制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129237A (ja) * 2010-01-15 2016-07-14 株式会社半導体エネルギー研究所 半導体装置
JP2012256417A (ja) * 2010-02-19 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
US8451651B2 (en) 2010-02-19 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013048220A (ja) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd 半導体装置
US9666723B2 (en) 2011-07-22 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10157939B2 (en) 2011-07-22 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory cell which includes transistor and capacitor

Also Published As

Publication number Publication date
WO2011086871A1 (en) 2011-07-21
KR101791279B1 (ko) 2017-10-27
TW201203464A (en) 2012-01-16
JP2016149557A (ja) 2016-08-18
KR20120111744A (ko) 2012-10-10
JP5889997B2 (ja) 2016-03-22
JP6200008B2 (ja) 2017-09-20
US20110175083A1 (en) 2011-07-21
JP5651487B2 (ja) 2015-01-14
JP2015092573A (ja) 2015-05-14
US8698219B2 (en) 2014-04-15
TWI528502B (zh) 2016-04-01

Similar Documents

Publication Publication Date Title
JP6577629B2 (ja) 半導体装置
JP6200008B2 (ja) 半導体装置
JP6298911B2 (ja) 半導体装置の作製方法
JP5604290B2 (ja) 半導体装置
JP5695912B2 (ja) 半導体装置
JP5604291B2 (ja) 半導体装置
JP5631753B2 (ja) 半導体装置
JP5938492B2 (ja) 半導体装置
JP5697820B2 (ja) 半導体装置
JP5695934B2 (ja) 半導体装置
JP5736196B2 (ja) 半導体装置
JP5694045B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5651487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees