JP2011119594A - 近接露光装置及び近接露光方法 - Google Patents

近接露光装置及び近接露光方法 Download PDF

Info

Publication number
JP2011119594A
JP2011119594A JP2009277719A JP2009277719A JP2011119594A JP 2011119594 A JP2011119594 A JP 2011119594A JP 2009277719 A JP2009277719 A JP 2009277719A JP 2009277719 A JP2009277719 A JP 2009277719A JP 2011119594 A JP2011119594 A JP 2011119594A
Authority
JP
Japan
Prior art keywords
mask
workpiece
light
exposure
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009277719A
Other languages
English (en)
Other versions
JP5464991B2 (ja
Inventor
Shusaku Karuishi
修作 軽石
Shinichiro Nagai
新一郎 永井
Shinichiro Hayashi
慎一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009277719A priority Critical patent/JP5464991B2/ja
Priority to US12/710,396 priority patent/US20110027542A1/en
Priority to CN2010101413605A priority patent/CN101986207B/zh
Priority to KR1020100029139A priority patent/KR101772225B1/ko
Publication of JP2011119594A publication Critical patent/JP2011119594A/ja
Application granted granted Critical
Publication of JP5464991B2 publication Critical patent/JP5464991B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ワークとマスクとのギャップを均一化するようにチルト補正して、露光精度を向上する近接露光装置及び近接露光方法。
【解決手段】ワークWのマークとマスクのアマークとを検出する少なくとも2つのアライメント検出系152と、露光領域Pに位置するワークWとマスクとのギャップをそれぞれ検出する少なくとも3つのギャップセンサ153と、マスク保持部をXY方向、およびθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構200とを有し、マスク駆動機構200は、アライメント検出系153で検出された両マークのずれ量に基づいて、マスク保持部を水平面上で駆動することでワークWとマスクとのアライメントを調整するとともに、マスク駆動機構200は、ギャップセンサ153によって検出されたギャップに基づいて、マスク保持部をチルト駆動することで、ワークWとマスクとの相対的な傾きを補正する。
【選択図】図1

Description

本発明は、近接露光装置及び近接露光方法に関する。
近接露光装置は、感光剤が塗布されたワークをマスクに対して数10μm〜数100μmのギャップで近接させ、マスクを介してワークに露光光を照射して露光することにより、ワーク上にマスクのマスクパターンを転写する(例えば、特許文献1及び2参照。)。
特許文献1に記載の近接露光装置では、フープ状等のワークを巻出し装置と巻取り装置を用いて露光領域へ送り、ワークの基準位置にマスクの位置が一致するようにマスクを位置調整しながら、ワークの搬送方向に沿った露光領域を連続して露光する倣い露光が行われている。また、特許文献2に記載の近接露光装置では、ワークステージに載置されたワークに対してマスクを近接配置し、マスクとワークとのギャップを計測し、ワークステージに搭載された上下微動装置を用いてワークをチルト補正し、ギャップ調整を図りながら露光が行われる。
また、露光装置の照明光学系としては、鏡自体のひずみ曲収差の補正や、マスクの伸縮やワークのうねりに対応するため、コリメーションミラー(凹面鏡)や平面鏡のような反射鏡の曲率を手動(送りねじ等)又は自動(圧電素子等)で局部的に変化させる機構が種々考案されている(例えば、特許文献3〜7参照。)。例えば、特許文献3に記載のコリメーションミラーでは、ミラー裏面の中央部分を固定支持すると共に、各辺部分をブラケットにより移動自在に支持する。そして、アライメント用カメラを用いてアライメントマークを観測し、該ブラケットをモータによって雄ねじを介して変位させることで、コリメーションミラーを変位させ、デクリネーション角を露光のたびに変化させている。
特開2006−292919号公報 特開2002−365810号公報 特開2005−129785号公報 特開平07−201711号公報 特開平09−304940号公報 特開2001−042281号公報 特開2003−077823号公報
ところで、フープ状やシート状のワークを使用し、ワークを搬送しながら露光する近接露光としては、特許文献1に記載のような倣い露光の他に、ワークの被露光部位を露光領域において静止した状態で露光する方法がある。このような露光方法においても、ワークとマスクとのギャップを均一とした状態で露光することが望まれるが、フープ状のワークやワークステージより大きな大型のシート状のワークに対して、ワークステージに設けられた上下微動機構を用いてチルト補正することは非常に困難であった。
また、特許文献1に記載のような近接露光装置では、フープ状のワークは露光領域において平板状とされるが、露光の際にワークがひずんで被露光部位が矩形とならず、平行四辺形となる場合がある。この場合、ワークとマスクのアライメント調整を行っても、マスクのパターンとワークの被露光部位との間にずれが生じ、露光精度が低下するという課題があった。
また、特許文献3〜7に記載の従来のコリメーションミラーや平面鏡の曲率を変化させる機構は、ワークのひずみによる被露光部位の形状に対応するよう考慮されていない。また、これら機構は、いずれも100μmオーダーの量での変位のため、上記ワークの形状に十分に対応できるものでなかった。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、ワークを露光領域へ搬送すると共に、露光領域において静止した状態で露光する際、ワークとマスクとのギャップを均一化するようにチルト補正してから露光することができ、露光精度を向上することができる近接露光装置及び近接露光方法を提供することにある。
本発明の上記目的は、下記の構成により達成される。
(1) マスクを保持するマスク保持部と、
前記マスクと対向する露光領域へワークを搬送する搬送機構と、
前記露光領域に位置する前記ワークに対して露光光を前記マスクを介して照射する照明光学系と、
を備え、
前記露光領域に搬送された前記ワークの被露光部位を静止させ、前記ワークと前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの露光光の光束を前記マスクを介して前記ワークに照射し、前記マスクのパターンを前記ワークに転写する近接露光装置であって、
前記ワークのアライメントマークと前記マスクのアライメントマークとをそれぞれ検出する少なくとも2つのアライメント検出系と、
前記露光領域に位置するワークと前記マスクとのギャップをそれぞれ検出する少なくとも3つのギャップ検出系と、
該マスク保持部を水平面上の互いに直交するX方向及びY方向、該水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構と、
をさらに有し、
前記マスク駆動機構は、前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整するとともに、
前記マスク駆動機構は、前記ギャップ検出系によって検出された前記ギャップに基づいて、前記マスク保持部をチルト駆動することで、前記ワークとマスクとの相対的な傾きを補正することを特徴とする近接露光装置。
(2) 前記ギャップ検出系と前記アライメント検出系とは、同一の検出系駆動機構によって移動することを特徴とする(1)に記載の近接露光装置。
(3) 前記照明光学系は、光源及び該光源からの露光光の光束を反射する反射鏡と、該反射鏡の周縁部と裏面のいずれかを支持する支持機構と、該支持機構を移動可能な支持機構駆動手段と、を備え、
前記マスク駆動機構は、前記アライメント検出系で検出された前記両アライメントマークのずれ量から算出された前記マスクと前記ワークの位置ずれ量に基づいて、前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整するとともに、
前記反射鏡は、前記アライメント検出系で検出された前記両アライメントマークのずれ量から算出された前記ワークのひずみ量に基づいて、前記支持機構駆動手段によって前記支持機構を移動させることで、その曲率を補正することを特徴とする(1)または(2)に記載の近接露光装置。
(4) 前記露光光の光束の光路において前記反射鏡より露光面側から前記反射鏡に向けて指向性を有する光を照射する検出用光源と、前記照明光学系のインテグレータ近傍に、前記露光光の光束の光路から退避可能に配置された反射板と、前記反射鏡を介して、前記反射板に映りこんだ前記指向性を有する光を撮像する撮像手段と、前記反射鏡の曲率を補正した際に撮像される前記指向性を有する光の変位量を検出する制御部と、を有する曲率補正量検出系をさらに備え、
前記反射鏡は、前記反射鏡の曲率を補正した際に前記曲率補正量検出系で検出された前記指向性を有する光の変位量が、前記算出されたワークのひずみ量と対応するように、前記支持機構駆動手段によって前記支持機構を移動させることで、その曲率を補正することを特徴とする(3)に記載の近接露光装置。
(5) 前記マスクの下面には、前記露光光を透過可能で、且つ、露光時に前記ワークと密着可能な透過媒体が取り付けられ、前記ワークと前記マスクは、前記透過媒体によって所定のギャップに保たれることを特徴とする(1)〜(4)のいずれかに記載の近接露光装置。
(6) 前記マスク駆動機構は、
該マスク保持部を前記X方向及び鉛直方向であるZ方向に駆動可能な第1駆動部と、該マスク保持部を前記Y方向に案内可能な第1の案内部と、を有する一対の第1駆動機構と、
前記マスク保持部を前記Y方向及びZ方向に駆動可能な第2駆動部と、該マスク保持部を前記X方向に案内可能な第2の案内部と、を有する第2駆動機構と、
を有し、
前記第1駆動部によって前記マスク保持部をX方向又はθ方向に駆動した時、前記第2
の案内部によって前記マスク保持部の移動量を吸収し、
前記第2駆動部によって前記マスク保持部をY方向に駆動した時、前記第1の案内部によって前記マスク保持部の移動量を吸収し、
前記第1及び第2駆動部の少なくとも一つによって前記マスク保持部をチルト駆動した時、前記第1及び第2の案内部の少なくとも一つによって前記マスク保持部のチルトによる前記第1及び第2駆動機構間の上面視におけるスパン変化量を吸収することを特徴とする(1)〜(5)のいずれかに記載の近接露光装置。
(7) 前記照明光学系は、前記光源と該光源から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部を備えることを特徴とする(1)〜(6)のいずれかに記載の近接露光装置。
(8) マスクを保持するマスク保持部と、前記マスクと対向する露光領域へワークを搬送する搬送機構と、前記露光領域に位置するワークに対して露光光を前記マスクを介して照射する照明光学系と、前記ワークのアライメントマークと前記マスクのアライメントマークとをそれぞれ検出する少なくとも2つのアライメント検出系と、前記露光領域に位置するワークと前記マスクとのギャップをそれぞれ検出する少なくとも3つのギャップ検出系と、該マスク保持部を水平面上の互いに直交するX方向及びY方向、該水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構と、を有し、前記搬送された前記ワークの被露光部位を前記露光領域に静止させると共に、前記ワークと前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの露光光の光束を前記マスクを介して前記ワークに照射し、前記マスクのパターンを前記ワークに転写する近接露光装置を用いた近接露光方法であって、
前記アライメント検出系を用いて、前記ワークのアライメントマークと前記マスクのアライメントマークとを検出する工程と、
前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスク駆動機構によって前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整する工程と、
前記ギャップ検出系によって検出された前記ギャップに基づいて、前記マスク駆動機構によって前記マスク保持部をチルト駆動することで、前記ワークとマスクとの相対的な傾きを補正する工程と、
を有することを特徴とする近接露光方法。
(9) 前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスクと前記ワークの位置ずれ量と前記ワークのひずみ量とを算出する工程と、
前記アライメント調整工程と同時又は別々のタイミングにおいて、前記算出されたひずみ量に基づいて、前記照明光学系の光源からの露光光の光束を反射する反射鏡の曲率を補正する工程と、
をさらに備え、
前記アライメント調整工程は、前記算出された位置ずれ量に基づいて、前記ワークと前記マスクとのアライメントを調整することを特徴とする(8)に記載の近接露光方法。
(10) 前記反射鏡の曲率補正工程は、
前記露光光の光束の光路において前記反射鏡より露光面側から前記反射鏡に向けて指向性を有する光を照射する工程と、
前記反射鏡を介して、インテグレータ近傍に配置された反射板に映りこんだ該指向性を有する光を撮像手段によって撮像する工程と、
前記反射鏡の曲率を補正した際に撮像される前記指向性を有する光の変位量を検出する工程と、
を備え、該変位量が算出されたひずみ量と対応するように前記曲率補正することを特徴とする(9)に記載の近接露光方法。
本発明の近接露光装置によれば、露光領域に搬送されたワークの被露光部位を静止させ、ワークとマスクとを所定のギャップに近接させた状態で、照明光学系からの露光光の光束をマスクを介してワークに照射し、マスクのパターンを前記ワークに転写する。ここで、近接露光装置は、ワークのアライメントマークとマスクのアライメントマークとをそれぞれ検出する少なくとも2つのアライメント検出系と、露光領域に位置するワークとマスクとのギャップをそれぞれ検出する少なくとも3つのギャップ検出系と、マスク保持部を水平面上の互いに直交するX方向及びY方向、水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構と、を有し、マスク駆動機構は、アライメント検出系で検出された両アライメントマークのずれ量に基づいて、マスク保持部を水平面上で駆動することでワークとマスクとのアライメントを調整するとともに、マスク駆動機構は、ギャップ検出系によって検出されたギャップに基づいて、マスク保持部をチルト駆動することで、ワークとマスクとの相対的な傾きを補正する。従って、ワークを搬送すると共に、露光領域において静止した状態で露光する際、アライメント調整と共に、ワークとマスクとのギャップを均一化するようにチルト補正してから露光することができ、マスクのパターンを精度良く露光転写することができる。
また、本発明の近接露光方法によれば、搬送されたワークの被露光部位を露光領域に静止させると共に、ワークとマスクとを所定のギャップに近接させた状態で、照明光学系からの露光光の光束をマスクを介してワークに照射し、マスクのパターンをワークに転写する。ここで、近接露光方法は、アライメント検出系を用いて、ワークのアライメントマークとマスクのアライメントマークとを検出する工程と、アライメント検出系で検出された両アライメントマークのずれ量に基づいて、マスク駆動機構によってマスク保持部を水平面上で駆動することでワークとマスクとのアライメントを調整する工程と、ギャップ検出系によって検出されたギャップに基づいて、マスク駆動機構によってマスク保持部をチルト駆動することで、ワークとマスクとの相対的な傾きを補正する工程と、を備える。従って、ワークを搬送すると共に、露光領域において静止した状態で露光する際、アライメント調整と共に、ワークとマスクとのギャップを均一化するようにチルト補正してから露光することができ、マスクのパターンを精度良く露光転写することができる。
本発明の第1実施形態に係る近接露光装置を説明するための概略図である。 図1におけるマスク保持機構の斜視図である。 図1におけるマスク保持機構の平面図である。 図3におけるIV‐IV断面図である。 図4における第1駆動機構の拡大図である。 図3におけるVI‐VI断面図である。 変形例のマスク保持機構の縦断面図である。 (a)は、アライメント検出系及びギャップセンサが取り付けられたセンサキャリアを示す正面図であり、(b)は、その側面図である。 センサキャリアの変形例を示す図である。 図1の照明光学系及び曲率補正量検出系を示す図である。 (a)は、カセットを示す正面図であり、(b)は(a)のXI方向から見た断面図であり、(c)は、(a)のXI´方向から見たカセットの断面図をインテグレータレンズとともに示す図である。 カセットに取り付けられた光源部近傍の拡大断面図である。 各光源部の制御構成を示すための図である。 ランプ押さえ機構の変形例を示すカセットの断面図である。 (a)は、照明光学系の反射鏡支持構造を示す正面図であり、(b)は(a)のXV−XV線に沿った断面図であり、(c)は、(a)のXV´−XV´線に沿った断面図である。 図15の反射鏡支持構造の支持機構を作動した状態を示す図である。 照明光学系の反射鏡支持構造の変形例を示す図である。 本実施形態の露光方法のフローチャートを示す図である。 アライメント調整後のマスクとワークの位置関係を示す図である。 (a)は、反射鏡の曲率を補正する前の状態を示す図であり、(b)は、(a)の左のカメラの撮像図であり、(c)は、(a)の右のカメラの撮像図である。 (a)は、反射鏡の曲率を補正した後の状態を示す図であり、(b)は、(a)の左のカメラの撮像図であり、(c)は、(a)の右のカメラの撮像図である。 反射板に投影されるレーザー光の変位量を示す図である。 本発明の第2実施形態に係るマスク保持機構の斜視図である。 (a)は、本発明の第2実施形態に係る露光装置において、反射鏡の曲率を補正する前の状態を示す図であり、(b)は、(a)の左のカメラの撮像図であり、(c)は、(a)の右のカメラの撮像図である。 (a)は、図24の露光装置において、反射鏡の曲率を補正した後の状態を示す図であり、(b)は、(a)の左のカメラの撮像図であり、(c)は、(a)の右のカメラの撮像図である。
以下、本発明の各実施形態に係る近接露光装置及び近接露光方法について図面を参照して詳細に説明する。なお、本実施形態においては、ワークの搬送方向を水平面状の一方向であるX方向とし、X方向と直交する水平面上の方向をY方向、X方向及びY方向と直交する鉛直方向をZ方向、X方向及びY方向に直交する軸回り方向をθ方向と定義する。
(第1実施形態)
まず、図1を参照して、第1実施形態の近接露光装置を説明すると、図において符号1はフープ材等のワークWを水平方向にタクト送りで巻き出すための巻出し装置、2は露光領域Pの下流側に配置されて露光後のワークWを巻き取るための巻取り装置である。
巻出し装置1と巻取り装置2との間には、ワークWの搬送方向に沿って延びる架台3が複数の起立フレームF間に掛け渡されて設置されている。該架台3上には、ワークWを吸着するワークチャック4を備えたワークテーブル5が設置されており、ワークチャック4の位置で露光領域Pが形成される。また、巻出し装置1と露光領域Pとの間、及び巻取り装置2と露光領域Pとの間には、それぞれテンションロール6a,6b、一対のガイドロール7a,7b、及び一対のインデックスロール8a,8bが配置されている。
テンションロール6a,6bは、Z方向に駆動可能に取り付けられており、ワークWのたるみを防止する。一対のガイドロール7a,7bは、X方向に駆動可能に取り付けられており、ワークWを挟持して露光領域Pに位置するワークWにテンションを付与する。一対のインデックスロール8a,8bは、Y方向及びθ方向に駆動可能に取り付けられており、ワークWを移動させて、ワークWとマスクMとの位置を調整する。なお、本実施形態では、巻出し装置1、巻取り装置2、テンションロール6a,6b、一対のガイドロール7a,7b、及び一対のインデックスロール8a,8bが本発明の搬送装置を構成している。
図2〜図6に示すように、マスク保持機構10は、マスクMを保持する略矩形状のマスク保持部16と、本発明のマスク駆動機構200をなす、一対の第1駆動機構11A、11B及び第2駆動機構12と、を備える。一対の第1駆動機構11A、11B、及び第2駆動機構12は、近接露光装置の起立フレームFに固定された略矩形枠状のフレーム13に配設されている。一対の第1駆動機構11A、11Bは、フレーム13のY方向に沿う一辺13aに、Y方向に離間して固定されており、マスク保持部16のY方向に延びる一辺16aを、該一辺16aの中間位置から等間隔離れた位置でそれぞれ支持している。第2駆動機構12は、フレーム13のY方向に沿う他の一辺13bに固定されており、一対の第1駆動機構11A、11Bが支持するマスク保持部16の一辺16aと対向する一辺16bの中間位置を支持している。
第1及び第2駆動機構11A、11B、12は、下面にマスクMが保持されるマスク保持部16をフレーム13の枠内でX、Y、Z、θ方向に移動自在に保持する。尚、一対の第1駆動機構11A、11Bは、後述するX軸モータ22の取り付け方向が異なる以外は、同一構造を有するので、以下の説明においては、主に第1駆動機構11Aについて説明する。
図5も参照して、第1駆動機構11Aは、マスク保持部16をZ方向に駆動可能な第1のZ軸モータ21及びX方向に駆動可能なX軸モータ22を有する第1駆動部20と、マスク保持部16をY方向に案内する第1の案内部である一対のY方向のリニアガイド23とを備える。第1のZ軸モータ21は、フレーム13の一辺13aに固定されたハウジング24に、回転軸25をZ方向下方に向けて固定されている。回転軸25には、ハウジング24に回転自在に支持されたねじ軸28が連結されており、ねじ軸28に螺合するナット27と共にボールねじ機構を構成する。
ナット27には、Z軸方向のリニアガイド29に案内されてZ方向に移動可能とされた第1のZ軸可動台31が固定されている。これにより、第1のZ軸モータ21が回転すると、第1のZ軸可動台31がZ方向に移動する。
第1のZ軸可動台31の上部からフレーム13の内側(X方向)に向かって張り出して形成された張り出し部31aには、第1の自在継手としての十字継手34の一方のコの字部材32aが固定されている。十字継手34は、両端に設けられた軸支持部が、互いに直交する方向に組み合わされて配置された一対のコの字部材32a、32bと、各軸支持部に回動自在に嵌合する十字軸33とから構成される。これにより、他方のコの字部材32bは、一方のコの字部材32aに対して、XZ面、及びYZ面内で回動自在に連結される。なお、図4では、十字継手34、及び後述する十字継手64等を省略して図示している。
十字継手34の他方のコの字部材32bは、X軸モータ基台35に固定されている。X軸モータ基台35には、X軸モータ22が、第1の傾斜方向、即ち水平面内(XY面)においてX方向に対して所定の角度αだけ傾けられて固定されている(図4参照)。X軸モータ22の回転軸に固定されたねじ軸36にはナット37が螺合し、このナット37は第1の案内板38に固定されている。尚、一対の第1駆動機構11A、11Bの各X軸モータ22は、その軸芯の取付け角度αが一対の第1駆動機構11A,11B間のX方向中心線X(本実施形態では、マスク保持部16の重心Gを通過するX方向中心線)に対して線対称に配置されている。
第1の案内板38の上面と、X軸モータ基台35の下面との間には、ガイドレール39a及びスライダ39bからなる第3の案内部としての一対のリニアガイド39が、ねじ軸36の軸芯と平行に配設されており、第1の案内板38を第1の傾斜方向に案内する。
また、第1の案内板38の下面には、Y方向に延びるガイドレール23a及びスライダ23bからなる第1の案内部としての一対のリニアガイド23が設けられており、一対のスライダ23bに固定された回転台41をY方向に案内する。回転台41には、回転軸41aが取り付けられ、その回転軸41aの周囲に転がり軸受40を配置して、マスク保持部16を水平面内で回動自在に支持する回転支持機構42を構成する。
第2駆動機構12は、マスク保持部16をZ方向に駆動可能な第2のZ軸モータ51及びY方向に駆動可能なY軸モータ52を有する第2駆動部50と、マスク保持部16をX方向に案内する第2の案内部であるX方向のリニアガイド53とを備える。
第2のZ軸モータ51は、フレーム13の一辺13bに固定されたハウジング54に、回転軸55をZ方向下方に向けて固定されている。回転軸55には、ハウジング54に回転自在に支持されたねじ軸58が連結されており、ねじ軸58に螺合するナット57と共にボールねじ機構を構成する。
ナット57には、Z軸方向のリニアガイド59に案内されてZ方向に移動可能とされた第2のZ軸可動台61が固定されている。これにより、第2のZ軸モータ51が回転すると、第2のZ軸可動台61がZ方向に移動する。
第2のZ軸可動台61の上部からフレーム13の内側(X方向)に向かって張り出して形成された張り出し部61aには、第2の自在継手である十字継手64の一方のコの字部材62aが固定されている。十字継手64は、両端に設けられた軸支持部が、互いに直交する方向に組み合わされて配置された一対のコの字部材62a、62bと、各軸支持部に回動自在に嵌合する十字軸63とから構成される。これにより、他方のコの字部材62bは、一方のコの字部材62aに対して、XZ面、及びYZ面内で回動自在に連結される。
十字継手64の他方のコの字部材62bは、Y軸モータ基台65に固定されている。Y軸モータ基台65には、Y軸モータ52が、第2の傾斜方向、即ち水平面内(XY面)においてY方向に対して所定の角度βだけ傾けられて固定されている(図3参照)。Y軸モータ52の回転軸に固定されたねじ軸66にはナット67が螺合し、このナット67は第2の案内板68に固定されている。
第2の案内板68の上面と、Y軸モータ基台65の下面との間には、ガイドレール69a及びスライダ69bからなる第4の案内部としての一対のリニアガイド69が、ねじ軸66の軸芯と平行に配設されており、第2の案内板68を第2の傾斜方向に案内する。
また、第2の案内板68の下面には、X方向に延びるガイドレール53a´及びスライダ53b´からなる第2の案内部としての一対のリニアガイド53が設けられており、一対のスライダ53b´に固定された回転台71をX方向に案内する。回転台71には、回転軸71aが取り付けられ、その回転軸71aの周囲に転がり軸受70を配置して、マスク保持部16を水平面内で回動自在に支持する回転支持機構72を構成する。
上記したように、マスク保持部16は、3つの十字継手34、34、64を介してZ軸可動台31、31、61に支持されているので、一対の第1駆動機構11A、11Bの第1のZ軸モータ21、21、及び第2駆動機構12の第2のZ軸モータ51のいずれかが作動したときに生じるZ軸可動台31、31、61(フレーム13)とマスク保持部16との相対的な傾きが、3つの十字継手34、34、64の回動によって吸収される。
また、マスク保持部16は、一対の第1駆動機構11A、11Bの転がり軸受40、40、及び第2駆動機構12の転がり軸受70を介してZ軸可動台31、31、61に支持されているので、一対の第1駆動機構11A、11BのX軸モータ22、22、及び第2駆動機構12のY軸モータ52のいずれかが作動したときに生じるフレーム13とマスク保持部16との相対的な回転(Z軸周りの回転)θは、3つの転がり軸受40、40、70によって吸収される。
以下、本実施形態のマスク保持機構10の各動作について説明する。
(X方向移動)
マスク保持部16のX方向移動は、一対の第1駆動機構11A、11BのX軸モータ22、22を互いに逆方向に同期回転させることにより行われる。図2及び図3に示すように、2つのX軸モータ22、22を回転させ、ねじ軸36に螺合するナット37を介して第1の案内板38をX軸モータ基台35の一対のリニアガイド39でガイドしながら第1の傾斜方向(矢印A方向)に移動させる。
一対のリニアガイド39がX軸に対して角度α傾斜しているので、第1の案内板38の第1の傾斜方向への移動量のY方向成分(第1の案内板38の第1の傾斜方向移動量×sinα)は、第1の案内部23のガイドレール23aとスライダ23bとの相対移動によって吸収される。従って、回転台41、即ちマスク保持部16がY方向に移動することはない。
一方、第1の案内板38の第1の傾斜方向への移動量のX方向成分(第1の案内板38の第1の傾斜方向移動量×cosα)は、第1の案内部23の案内方向(Y方向)と直交しているので、移動量のX方向成分は回転台41を介してマスク保持部16に伝達され、マスク保持部16をX方向に移動させる。このとき、第2駆動機構12の第2の案内部53は、ガイドレール53a´とスライダ53b´とが相対移動してマスク保持部16のX方向移動を許容する。
上記したように、一対の第1駆動機構11A、11BのX軸モータ22、22を、2つの第1の案内板38、38の第1の傾斜方向への移動量のX方向成分が同じ長さとなるように同期回転させることにより、マスク保持部16が回転(θ方向)することなくX方向に水平移動する。
また、一対のリニアガイド39がX軸に対して角度α傾斜しているので、第1の案内板38の第1の傾斜方向への移動量のcosαがマスク保持部16のX方向移動量となり、これは第1の案内板38の第1の傾斜方向移動量より小さい。即ち、第1の傾斜方向への第1の案内板38の大きな移動量は、マスク保持部16の小さなX方向移動量に変換される。従って、第1の案内板38をX軸に対して角度αだけ傾けた方向に駆動することにより、第1の案内部23が変位縮小機構として作用する。これにより、マスク保持部16のX方向移動を高精度で制御することが可能となる。
(θ方向回転)
マスク保持部16のθ方向回転は、一対の第1駆動機構11A、11BのX軸モータ22、22を異なる回転数で回転させることにより行われる。図3及び図4に示すように、例えば、第1駆動機構11AのX軸モータ22の回転数が、第1駆動機構11BのX軸モータ22の回転数より多く回転すると、第1駆動機構11Aの回転台41のX方向移動量(X1)は、第1駆動機構11Bの回転台41のX方向移動量(X2)より大きくなり、マスク保持部16は反時計方向に回動する。また、第1駆動機構11AのX軸モータ22の回転数が、第1駆動機構11BのX軸モータ22の回転数より少ないと、マスク保持部16は時計方向に回動する。
このとき、フレーム13に固定されている一対の第1駆動機構11A、11B及び第2駆動機構12と、マスク保持部16との相対回転(θ)は、回転台41、41、71とマスク保持部16との接合部に配置されている回転支持機構42,42,72によって吸収される。また、マスク保持部16のθ方向回転によって、マスク保持部16がフレーム13に対してXY方向に相対移動する場合があるが(マスク保持部16がθ方向回転しつつ、XY方向に移動)、このXY方向移動は、第1の案内部23及び第2の案内部53によって吸収される。
(Y方向移動)
マスク保持部16のY方向移動は、第2駆動機構12のY軸モータ52を回転させることにより行われる。図3及び図4に示すように、Y軸モータ52を回転させて、ねじ軸66に螺合するナット67を介して第2の案内板68をY軸モータ基台65の第4の案内部69でガイドしながら第2の傾斜方向(矢印B方向)に移動させる。
第4の案内部69は、Y軸に対して角度β傾斜しているので、第2の案内板68の第2
の傾斜方向への移動量のX方向成分(第2の案内板68の第2の傾斜方向移動量×sinβ)は、リニアガイド53のガイドレール53a´とスライダ53b´との相対移動によって吸収される。従って、回転台71、即ちマスク保持部16がX方向に移動することはない。
一方、第2の案内板68の第2の傾斜方向への移動量のY方向成分(第2の案内板68の第2の傾斜方向移動量×cosβ)は、第2の案内部53の案内方向(X方向)と直交しているので、回転台71を介してマスク保持部16に伝達され、マスク保持部16をY方向に移動させる。このとき、一対の第1駆動機構11A、11Bの一対のリニアガイド23は、ガイドレール23aとスライダ23bとが相対移動してマスク保持部16のY方向移動を許容する。
また、第4の案内部69がY軸に対して角度β傾斜しているので、第2の案内板68の第2の傾斜方向への移動量のcosβがマスク保持部16のY方向移動量となり、これは第2の案内板68の第2の傾斜方向移動量より小さい。即ち、第2の案内板68の第2の傾斜方向への大きな移動量が、マスク保持部16の小さなY方向移動量に変換される。従って、第2の案内板68をY軸に対して角度βだけ傾けた方向に駆動することにより、第2の案内部53が変位縮小機構として作用する。これにより、マスク保持部16のY方向移動を高精度で制御することが可能となる。
(Z方向移動)
マスク保持部16のZ方向移動は、一対の第1駆動機構11A、11Bの第1のZ軸モータ21、21、及び第2駆動機構12の第2のZ軸モータ51を回転させることにより行われる。図5に示すように、第1のZ軸モータ21、21、及び第2のZ軸モータ51を回転させて、ねじ軸28、28、58に螺合するナット27、27、57を介して第1のZ方向可動台31、31、及び第2のZ方向可動台61をZ方向に移動させる。このZ方向移動は、十字継手34、34、64、第1の案内部としての一対のリニアガイド23、23、及び第2の案内部としての一対のリニアガイド53、回転支持機構42、72を介してマスク保持部16に伝達されてマスク保持部16がZ方向に移動する。
(マスクの作動位置と退避位置間の移動)
第1のZ軸モータ21、21、及び第2のZ軸モータ51の回転数を多く回転させることによって、マスク保持部16はZ方向に大きく移動し、ワークWに近接した作動位置と、ワークWから離間した退避位置との間で移動が可能となる。このとき、第1のZ軸モータ21、21、及び第2のZ軸モータ51を同期回転させることによって、マスク保持部16を水平状態に維持した状態でZ方向に大きく移動させることができ、マスクMの交換などのメンテナンス作業が容易となる。
(マスクとワークのギャップ調整)
マスクMとワークWのギャップ調整は、第1のZ軸モータ21、21、及び第2のZ軸モータ51を微小回転させることにより行われる。即ち、ワークWとマスクMが既に平行状態にあるときには、第1のZ軸モータ21、21、及び第2のZ軸モータ51を同期させながら僅かに回転させることによって、マスク保持部16を水平状態に維持した状態でワークWに接近、または離間させて所定のギャップとなるようにギャップ調整を行う。尚、マスクMとワークW間のギャップは、後述のギャップセンサ153によって測定され、この測定値に基づいて第1のZ軸モータ21、21、及び第2のZ軸モータ51の回転が制御される。
ワークWとマスクMが平行でない場合、第1のZ軸モータ21、21と第2のZ軸モータ51の内、任意のモータを他のモータより多く、または少なく回転させることにより、マスク保持部16の傾きをワークWと平行となるように調整する(チルト補正)。このとき、XZ及びYZ面内におけるマスク保持部16のフレーム13に対する傾きは、3つの十字継手34、34、64の自由な回動によって許容される。
また、フレーム13に対するマスク保持部16の傾き(XZ及びYZ面内)が変わると、第1及び第2駆動機構11A,11B,12間の上面視におけるスパン変化量が変化する。例えば、第1のZ軸モータ21、21によるZ方向移動量に対して、第2のZ軸モータ51によるZ方向移動量(図5において上方移動)が多い場合、図5に示すように、マスク保持部16は、XZ平面内で一対の第1駆動機構11A、11B側(厳密には十字継手34の十字軸33の軸芯)を中心として回動し、角度γだけ傾斜する。このときの第1駆動機構11A,11Bと第2駆動機構12との間の上面視におけるスパンは、第1駆動機構11A,11Bと第2駆動機構12との間の長さをCとすると、C×cosγと短くなる。マスク保持部16が傾斜する前後での第1駆動機構11A,11Bと第2駆動機構12との間のスパン変化量(C(1−cosγ))は、第2の案内部としてのリニアガイド53のガイドレール53a´とスライダ53b´がX方向に相対移動することにより吸収される。
同様に、マスク保持部16がYZ平面内で水平状態から角度γ傾斜したとき(図6参照
)、例えば、第1駆動機構11A,11B間の上面視におけるスパンは、第1駆動機構11A,11B間の長さをDとすると、D×cosγと短くなる。このチルトによるマスク保持部16の第1駆動機構11A,11B間のスパン変化量(D(1−cosγ))は、各第1の案内部としてのリニアガイド23のガイドレール23aとスライダ23bがY方向に相対移動することにより吸収される。
上記したように、本実施形態のマスク保持機構10によれば、X、Y、Z、およびθ方向駆動が統合された機構である一対の第1駆動機構11A、11B、及び第2駆動機構12を用いることによって、マスク保持部16をX、Y及びθ駆動した際のマスク保持部16の移動量、並びにチルト駆動した際の各駆動機構11A,11B,12間の上面視におけるスパン変化量を第1及び第2案内部としてのリニアガイド23,53によって吸収することができる。これにより、マスク保持部16の駆動機構11A,11B,12を小型化すると共に、軽量化して、応答性を向上させることができる。
なお、図7は、変形例のマスク保持機構の図4相当の断面図である。この変形例では、各張り出し部31a,61aは、Z軸可動台31、61の下部からフレーム13の内側(X方向)に向かって張り出して形成されている。そして、張り出し部31a、61a上には、下方から順に十字継手34、64、X軸モータ基台35及びY軸モータ基台65、第3及び第4の案内部としてのリニアガイド39、69、第1及び第2の案内板38、68、第1及び第2の案内部としてのリニアガイド23、53、回転台41、71が配置され、マスク保持部16を上方から支持している。これにより、図5に示す配置例と比較して、マスク保持機構10の高さ方向寸法を小さくしてコンパクトにすることができる。
また、図2及び図8に示すように、フレーム13の対向する二辺13c,13dの上方には、一対のキャリア用フレーム81が取り付けられており、一対のキャリア用フレーム81には、アライメント検出系152及びギャップセンサ(ギャップ検出系)153をそれぞれ備えた複数(本実施形態では、4つ)のセンサキャリア82が検出系駆動機構83によって駆動可能に配置されている。なお、図2では、1つのセンサキャリア82に設けられたアライメント検出系152及びギャップセンサ153のみを示し、残りのセンサキャリア82に取り付けられたアライメント検出系152及びギャップセンサ153を図示省略している。
検出系駆動機構83は、センサキャリア82をY方向に駆動可能なキャリア駆動モータ84と、モータ84によって回転するねじ軸85及びねじ軸85に螺合するナット86を備えたボールねじ機構87と、ボールねじ機構87の両側で、センサキャリア82をY方向に案内する一対のリニアガイド88とを備える。
アライメント検出系152は、CCDカメラ155(図20参照)の他、図示しない対物レンズ、ミラー、照射手段等を備えて構成されており、CCDカメラ155にて、マスク側のアライメントマークMaとワーク側のアライメントマークWbとを撮像する。また、ギャップセンサ153は、図示しないレーザー発光部とレーザー受光部とを備え、マスクMの下面及びワークWの上面で反射したレーザー光をレーザー受光部が構成するラインセンサで検出する。
従って、アライメント検出系152及びギャップセンサ153は、センサキャリア82によって矩形状のマスクの四隅近傍にて、アライメント検出系152がマスク側のアライメントマークが視認できる位置に、及び、ギャップセンサ153がマスクMの下面を検出できる位置にそれぞれ進退可能となる。これにより、アライメント検出系152によって、マスクMに形成された対応するアライメントマークMaと、ワークWのアライメントマークWbを撮像して検出しながら、マスク駆動機構200によってマスクMのアライメント調整が行われる。
なお、図9に示すように、センサキャリア82を二つの部材82a,82bに分割して、これら部材82a,82b間にモータ89a、ボールねじ機構89b、及び図示しないリニアガイドを備えるZ方向駆動機構89を設け、アライメント検出系152及びギャップセンサ153をZ方向に駆動してもよい。
照明光学系160は、図10に示すように、紫外線照射用の光源である例えば高圧水銀ランプ271、及びこの高圧水銀ランプ271から照射された光を集光し指向性をもたせて射出するする反射光学系としてのリフレクタ272をそれぞれ含む複数の光源部273を備えたマルチランプユニット161と、光路ELの向きを変えるための平面ミラー162と、光路ELを開閉制御する露光制御用シャッターユニット164と、露光制御用シャッターユニット164の下流側に配置され、リフレクタ272で集光された光を照射領域においてできるだけ均一な照度分布となるようにして出射するオプティカルインテグレータ165と、インテグレータ165から出射された光路ELの向きを変えるための平面ミラー163と、高圧水銀ランプ271からの光を平行光として照射するコリメーションミラー167と、該平行光をマスクMに向けて照射する平面ミラー166と、を備える。なお、オプティカルインテグレータ165と露光面との間には、DUVカットフィルタ、偏光フィルタ、バンドパスフィルタが配置されてもよい。なお、照明光学系160は、マルチランプユニット161の代わりに、単一の高圧水銀ランプを使用しても良い。また、光源としては、超高圧水銀ランプ271の代わりに、LEDが適用されてもよい。
図11〜図13に示すように、マルチランプユニット161では、複数の光源部273がカセット281に取り付けられている。カセット281は、光源部273の配置をα、β方向に異なる数とした長方形形状に形成されている。また、本実施形態の光源部273では、リフレクタ272の開口部272bが略正方形形状に形成されており、四辺がα、β方向に沿うように配置されている。
カセット281は、所定数の光源部273を支持する光源支持部283と、光源支持部283に支持された光源部273を押さえて、該光源支持部283に取り付けられる凹状のランプ押さえカバー(カバー部材)284と、を備えた略直方体形状に形成されている。
光源支持部283には、光源部273の数に対応して設けられ、光源部273からの光を発光する複数の窓部283aと、該窓部283aのカバー側に設けられ、リフレクタ272の開口部272a(又は、リフレクタ272が取り付けられる反射鏡取り付け部の開口部)を囲うランプ用凹部283bと、が形成される。また、該窓部283aの反カバー側には、複数のカバーガラス285がそれぞれ取り付けられている。なお、カバーガラス285の取り付けは任意であり、設けられなくてもよい。
各ランプ用凹部283bの底面は、光源部273の光を照射する照射面(ここでは、リフレクタ272の開口面272b)と、光源部273の光軸Lとの交点pが、各α、β方向において単一の曲面、例えば、球面r上に位置するように、平面又は曲面(本実施形態では、平面)に形成される。
ランプ押さえカバー284の底面には、光源部273の後部に当接する当接部286が設けられており、各当接部286には、モータやシリンダのようなアクチュエータ、ばね押さえ、ねじ止め等によって構成されるランプ押さえ機構287が設けられている。これにより、各光源部273は、リフレクタ272の開口部272aを光源支持部283のランプ用凹部283bに嵌合させ、ランプ押さえカバー284を光源支持部283に取り付け、ランプ押さえ機構287によって光源部273の後部を押さえつけることで、カセット281に位置決めされる。従って、図10(c)に示すように、カセット281に位置決めされた所定数の光源部273の光が照射する各照射面から、所定数の光源部273の光が入射されるインテグレータレンズ274の入射面までの各光軸Lの距離が略一定となる。
図12に示すように、各光源部273のランプ271とリフレクタ272が取り付けられるベース部275には、隙間sを持った冷却路275aが形成されており、カセット281の各カバーガラス285には、一つ又は複数の貫通孔285aが形成されている。また、光源支持部283とランプ押さえカバー284との間の収納空間内では、隣接する光源部273のリフレクタ272の背面272cは直接対向しており、光源部273、ランプ押さえ機構287等以外には該収納空間内の空気の流れを遮るものがなく、良好な空気の流動性が与えられる。これらの構成によって、各ランプ271の良好な冷却性能が与えられる。なお、カセット押さえカバー284は、複数のフレームにより構成される骨組構造として、連通孔や連通溝を設けて空気の流動性を与えるようにしてもよく、或いは、メッシュ形状としてもよい。
また、ランプ押さえ機構287は、当接部286毎に設けられてもよいが、図14に示すように、ランプ押さえカバー284の側壁に形成されてもよい。この場合にも、当接部286は、各光源部273に個々に設けられてもよいが、2つ以上の光源部273の後部に当接するようにしてもよい。
図13に示すように、カセット281の光源部273には、ランプ271に電力を供給する点灯電源295及び制御回路296が個々に接続されており、各光源部273から後方に延びる各配線297は、カセット281に設けられたコネクタ298に接続されてまとめられている。そして、カセット281のコネクタ298と、フレーム282の外側に設けられた光学制御部276との間は、他の配線299によってそれぞれ接続される。これにより、光学制御部276は、各ランプ271の制御回路296に制御信号を送信し、各ランプ271に対して点灯と消灯を含め、電圧を調整する電圧制御を行う。
なお、各光源部273の点灯電源295及び制御回路296は、カセット281に集約して設けられてもよいし、カセットの外部に設けられてもよい。また、ランプ押さえカバー284の当接部286は、各光源部273からの各配線297と干渉しないように形成されている。
さらに、ランプ271毎にヒューズ294aを含む寿命時間検出手段294を設けて、タイマ296aによって点灯時間をカウントし、定格の寿命時間が来た段階でヒューズ294aに電流を流してヒューズ294aを切断する。従って、ヒューズ294aの切断の有無を確認することで、ランプ271を定格の寿命時間使用しているかどうかを検出することができる。なお、寿命時間検出手段294は、ヒューズ294aを含むものに限定されるものでなく、ランプ交換のメンテナンス時にランプ271の定格の寿命時間が一目でわかるようなものであればよい。例えば、ランプ271毎にICタグを配置して、ICタグによってランプ271を定格の寿命時間使用したかどうか確認できるもの、或いは、ランプ271の使用時間が確認できるようにしてもよい。
そして、露光時にその露光制御用シャッターユニット164が開制御されると、マルチランプユニット161から照射された光が、平面ミラー162、オプティカルインテグレータ165、平面ミラー163、コリメーションミラー167、平面ミラー166を介して、マスク保持部16に保持されるマスクM、ひいてはワークWの表面にパターン露光用の光として照射され、マスクMの露光パターンがワークW上に露光転写される。
図15に示すように、平面ミラー166は、正面視矩形状に形成されたガラス素材からなる。平面ミラー166の裏面の中央付近3箇所、及び周縁部16箇所には、反射鏡支持構造として、支持機構保持枠170に固定された複数の支持機構171が設けられている。中央付近に設けられた支持機構171では、その支持部172が平面ミラー166の裏面に接着剤で固定され、周縁部に設けられた支持機構171では、その支持部172,172aが平面ミラー166の表裏面を挟むようにして接着剤で固定されている。また、各支持機構171の支持部172,172a寄りの位置には、±0・5deg以上の屈曲を許容する屈曲機構としてのボールジョイント174が設けられており、支持機構保持枠170に対して反支持部側の端部には、支持機構駆動手段であるモータ175が取り付けられている。
なお、平面ミラー166の中央の支持機構171は、支持機構保持枠170に固定される構造であってもよい。
また、矩形状の支持機構保持枠170には、互いに直交する2辺の位置に案内部材176,177が取り付けられており、これら案内部材176,177に対向する支持部172aの側面には、転動部材178が取り付けられている。また、転動部材178を案内する案内部材176,177の案内面176a,177aには、テフロン(登録商標)等の低摩擦機構179が塗布されている。
さらに、マスク側のアライメントマークMaの位置に露光光を反射する平面ミラー166の各位置の裏面には、複数の接触式センサ181が取り付けられている。
これにより、平面ミラー166は、接触式センサ181によって平面ミラー166の変位量をセンシングしながら、支持機構保持枠170に設けられた各支持機構171のモータ175を駆動することにより、各支持機構171がその長さを変えて支持部172を直線的に移動させる。そして、各支持機構171の長さの違いによって、平面ミラー166は支持部172に設けられた転動部材178を介して2つの案内部材176,177によって案内されながら、その曲率を局部的に補正し、平面ミラー166のデクリネーション角を補正することができる。その際、図16に示すように、各支持機構171は、ボールジョイント174が設けられているので、支持部側の部分を三次元的に回動可能とすることができ、各支持部172を平面ミラー166の表面に沿って傾斜させることができる。このため、移動量の異なる各支持部172間の平面ミラー166における各支持部172近傍位置での応力が大きくなることが抑えられる。従って、平均破壊応力値が小さいガラス素材からなる場合であっても、平面ミラー166の曲率を局部的に補正する際、ガラスに発生させる応力を従来よりも小さくすることができ、平面ミラー166を破損することなく、10mmオーダーで平面ミラー166を曲げることができ、曲率を大きく変更することができる。
なお、図17に示すように、各支持機構171は複数(図7では、2つ)のボールジョイント174を有するものであってもよく、この場合、平面ミラー166の曲げ量は、各ホールジョイント174による回動量の合計とすることができ、平面ミラー166をより大きく曲げることができる。
また、図10に示すように、平面ミラー166の曲率を補正した際に、ワークWのひずみ量に対応する平面ミラー166の曲率補正が行われたかどうかを判断するための曲率補正量検出系190が設けられている。曲率補正量検出系190は、各アライメント検出系152の近傍にそれぞれ配置されて、露光光の光束の光路ELにおいて平面ミラー166より露光面側(本実施形態では、マスク近傍)から平面ミラー166に向けて指向性を有する光としてレーザー光Lを照射するレーザー光源としての複数(本実施形態では、4つ)のレーザーポインタ191と、インテグレータ165の近傍に、露光光の光束の光路ELから退避可能に配置された反射板192と、平面ミラー166を介して、反射板192に映りこんだレーザー光Lを撮像する撮像手段としてのカメラ193と、カメラ193と平面ミラー166の支持機構171のモータ175との間に設けられ、平面ミラー166の曲率を補正した際に撮像されるレーザー光Lの変位量S1,S2を検出し、該変位量S1,S2が、算出されたひずみ量と対応するように支持機構171のモータ175を制御する制御部194と、を有する。
レーザーポインタ191は、アライメント検出系152、例えばCCDカメラ155の上部に取り付けられ、アライメント検出系152がマスク側のアライメントマークが視認できる位置へ進退するのと同期して移動する。なお、レーザーポインタ191は、アライメント検出系152と独立したセンサキャリア82によってマスク上方へ進退するようにしてもよい。
反射板192は、コリメーションミラー167によって反射されることで最も集光された光となるインテグレータ近傍に配置されているので、平面ミラー166、コリメーションミラー167、平面ミラー163で反射された4つのレーザーポインタ191からのレーザー光Lを比較的小さな面積の反射板192によって捉えることができる。また、反射板192は、通常の露光時、光源からの露光光の光束をマスクMに照射する際に、検出系駆動機構83によって、センサキャリア82を介して該光束の光路ELから退避可能に配置される。さらに、反射板192は、低反射率の反射面とすることで、カメラ193でのレーザー光Lの視認性を上げることができる。
カメラ193は、露光光の光束に影響を与えないように、光源からの該光束の光路EL上から離れた位置に配置されている。
また、制御部194は、カメラ193によって撮像されたレーザー光Lの位置を、曲率補正前と曲率補正後の変位量S1,S2として検出し、該変位量S1,S2がワークWのひずみ量α、βに対応しているかどうかを確認して、平面ミラー166の支持機構171のモータ175に制御信号を与える。
次に、本実施形態の露光方法について、図18〜図22を参照して説明する。ここで、搬送されたフープ状のワークWの被露光部位が露光領域Pにて平板状とされる際、ワークWがひずんで被露光部位が矩形とならず、平行四辺形となる場合がある(図19参照。)。以下では、このようなワークWに露光する場合について説明するが、図20及び図21では、ワークの対角位置にあるCCDカメラ155を示すものとする。
まず、マスクMが位置する露光領域PにワークWが搬送され(ステップS1)、被露光部位Aがワークチャック4に吸着された後、ワークWのアライメントマークWbとマスクMのアライメントマークMaが4箇所のCCDカメラ155で検出される(ステップS2)。そして、図示しない制御部にて、各CCDカメラ155が検出した両アライメントマークWb、Maのずれ量に基づいて、マスクMの中心とワークWの中心の位置ずれ量と、ワークWのひずみ量が別々に計算される。次に、マスクMの中心とワークWの中心の位置ずれ量と、ワークWのひずみ量が、それぞれ許容値以下であるかどうか判断する。(ステップS3)。
マスクMの中心とワークWの中心の位置ずれ量が許容値を越えている場合には、マスク駆動機構200による補正量を指令値として算出し、ワークWのひずみ量が許容値を越えている場合には、平面ミラー166の補正量、具体的には、各支持機構171の移動量を指令値として算出する。
そして、ステップS4にて、マスクMをアライメントするマスク駆動機構200をX、Y、θ方向に駆動制御することにより、ワークW及びマスクMのアライメント(ずれ補正)が行われる。これにより、例えば、図19に示すように、各アライメント検出系152の中心、即ち、マスクMの各アライメントマークMaと、ワークWの各アライメントマークWbの位置ずれ量の合計が最小となり、マスクMのアライメントマークMaとワークWのアライメントマークWbのずれは主に、ワークWのひずみに起因するものとなる。
次に、ステップS5にて、ワークWの被露光部位の形状に対応するため、平面ミラー166の曲率を補正して、露光光のデクリネーション角を補正する。具体的には、図20に示すようなワークWのひずみ量α、βに基づいて、各支持機構171の移動量に関する指令値を各モータ175へ送り、接触式センサ181によって平面ミラー166の変位量を確認しながら、各モータ175が駆動制御される。
また、この曲率補正の際、反射板192を露光光の光束の光路上に進出させると共に、検出系駆動機構83によってマスクMの上方に進出したアライメント検出系152のレーザーポインタ191が平面ミラー166に向けてレーザー光Lを照射する。これによって、カメラ193は、図22に示すような、反射板192に映りこんだ曲率補正前のレーザー光L(図中、黒丸)と、曲率補正後のレーザー光L´(図中、白丸)とを撮像している。
そして、マスク駆動機構200による補正、及び平面ミラー166による補正が行われた後、再度ステップS2にて、ワークWのアライメントマークWbとマスクMのアライメントマークMaを4箇所のCCDカメラ155で検出する。ここで、図21(b)及び(c)から明らかなように、CCDカメラ155は、マスクMの光路側に位置するので、平面ミラー166を介した光を受けることができない。このため、CCDカメラ155は、平面ミラー166の曲げ補正によって矯正される両アライメントマークの位置については検出することができず、図20(b)及び(c)と同様、マスク駆動機構200による補正後のワークWのアライメントマークWbとマスクMのアライメントマークMaを検出する。従って、補正後のステップS3にて、マスクMの中心とワークWの中心の位置ずれ量に基づくマスク駆動機構200による補正量が許容値以下であるかどうかを判断する。
また、ステップS3では、制御部194が、カメラ193によって撮像されたレーザー光L、L´の位置を、曲率補正前と曲率補正後の変位量S1,S2として検出し、該変位量S1,S2がワークWのひずみ量α、βに対応しているかどうか、具体的には、レーザー光L、L´の変位量S1,S2がワークWのひずみ量α、βに対応する値に対して許容範囲内であるかを確認する。そして、該変位量S1,S2がワークWのひずみ量α、βに対応する値の許容範囲内となるまで、平面ミラー166の支持機構171のモータ175に制御信号を与えて、平面ミラー166による曲率補正が行われる。
その後、ステップS3にて計算された位置ずれ量及びひずみ量が許容値以下である場合には、ステップS6へ移行する。そして、4つのギャップセンサ153によってマスクMとワークW間のギャップを測定しながら、マスク駆動機構200によってマスク保持部16を作動位置へZ方向に駆動してマスクMとワークWとのギャップが所定のギャップとなるようにギャップ調整を行う。また、このギャップ調整では、4つの隅部近傍における各ギャップが所定のギャップとなるように行われ、マスクMの下面がワークWの上面と平行となるようにマスクMをチルト補正する。そして、照明光学系160からの露光光の光束ELをマスクMを介してワークWに照射して、マスクMのパターンをワークWに転写する。
そして、マスクMの上方に配置された照明光学系160からマスクMに向けて露光光を照射し、該露光光がワークWの被露光部位A(例えば、下地パターン)に照射される。これにより、マスクMのパターンがワークWの被露光部位Aの形状と一致した状態で、ワークWの表面に露光転写される。なお、露光時は、ワークWの被露光部位Aが露光領域Pにおいて静止している状態であればよく、巻出し装置1による巻き出しや、巻取り装置2による巻き出しが同時に行われていても良い。
なお、上記実施形態では、ワークWとマスクMとのアライメントを調整した後に、平面ミラー166の曲率補正が行われているが、アライメント調整と平面ミラー166の曲率補正を同時に行って、タクトタイムの短縮を図ってもよい。また、アライメント調整を複数回行って、位置ずれ量が許容値以下となった後に、平面ミラー166の曲率補正を、透明フィルム80とワークWとを密着させてから行ってもよい。
以上説明したように、本実施形態の近接露光装置によれば、露光領域Pに搬送されたワークWの被露光部位Aを静止させ、ワークWとマスクMとを所定のギャップに近接させた状態で、照明光学系160からの露光光の光束をマスクMを介してワークWに照射し、マスクMのパターンをワークWに転写する。ここで、近接露光装置は、ワークWのアライメントマークWbとマスクMのアライメントマークMaとをそれぞれ検出する少なくとも2つのアライメント検出系152と、露光領域Pに位置するワークWとマスクMとのギャップをそれぞれ検出する少なくとも3つのギャップセンサ153と、マスク保持部16を水平面上の互いに直交するX方向及びY方向、水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構200と、を有し、マスク駆動機構200は、アライメント検出系152で検出された両アライメントマークWb,Maのずれ量に基づいて、マスク保持部16を水平面上で駆動することでワークWとマスクMとのアライメントを調整するとともに、マスク駆動機構200は、ギャップセンサ153によって検出されたギャップに基づいて、マスク保持部16をチルト駆動することで、ワークWとマスクMとの相対的な傾きを補正する。従って、ワークWを搬送すると共に、露光領域Pにおいて静止した状態で露光する際、アライメント調整と共に、ワークWとマスクMとのギャップを均一化するようにチルト補正してから露光することができ、マスクMのパターンを精度良く露光転写することができる。
また、アライメント検出系152とギャップセンサ153は、同一の検出系駆動機構83によって移動するようにしたので、駆動機構を別々に設ける必要がなくなりコンパクトな構成とすることができる。
さらに、照明光学系160は、光源161及び該光源161からの露光光の光束を反射する平面ミラー166と、該平面ミラー166の周縁部と裏面のいずれかを支持する支持機構171と、該支持機構171を移動可能なモータ175と、を備え、マスク駆動機構200は、アライメント検出系152で検出された両アライメントマークのずれ量から算出されたマスクMとワークWの位置ずれ量に基づいて、マスク保持部16を水平面上で駆動することでワークWとマスクMとのアライメントを調整するとともに、平面ミラー166は、アライメント検出系152で検出された両アライメントマークのずれ量から算出されたワークWのひずみ量に基づいて、モータ175によって支持機構171を移動させることで、その曲率を局部的に補正する。これにより、ワークWがひずんでいる場合でもワークWの被露光部位の形状に応じてマスクMのパターンを精度良く露光転写することができる。
さらに、近接露光装置は、露光光の光束の光路ELにおいて平面ミラー166より露光面側から平面ミラー166に向けてレーザー光Lを照射するレーザーポインタ191と、照明光学系160のインテグレータ165近傍に、露光光の光束の光路ELから退避可能に配置された反射板192と、平面ミラー166を介して、反射板192に映りこんだレーザー光Lを撮像するカメラ193と、平面ミラー166の曲率を補正した際に撮像されるレーザー光L、L´の変位量S1,S2を検出する制御部194と、を有する曲率補正量検出系190をさらに備え、平面ミラー166は、その曲率を補正した際に曲率補正量検出系190で検出されたレーザー光L、L´の変位量S1,S2が、算出されたワーク12のひずみ量α、βと対応するように、モータ175によって支持機構171を移動させることで、その曲率を局部的に補正する。これにより、曲率補正量検出系190によって検出しながら平面ミラー166の曲率を補正することができるので、ワークWがひずんでいる場合でもワークWの被露光部位の形状に応じてマスクMのパターンをより精度良く露光転写することができる。
また、マスク駆動機構200は、第1駆動部20及び第1の案内部23をそれぞれ有する一対の第1駆動機構11A,11Bと、第2駆動部50及び第2の案内部53を有する第2駆動機構とを備え、第1駆動部20によってマスク保持部16をX方向又はθ方向に駆動した時、第2の案内部53によってマスク保持部16の移動量を吸収し、第2駆動部50によってY方向に駆動した時、第1の案内部23によってマスク保持部16の移動量を吸収し、更に、マスク保持部16をチルト駆動した時、第1及び第2の案内部23,53の少なくとも一つによってマスク保持部16のチルトによる第1及び第2駆動機構11A,11B,12間の上面視におけるスパン変化量を吸収するようにしたので、マスク保持部16のX、Y、Z、θ方向駆動、及びチルト駆動を統合した機構で行うことができる。これにより、マスク保持部16の駆動機構を小型化すると共に、軽量化して、応答性を向上させることができる。
また、マスク保持部16は、第1及び第2駆動部20,50のZ方向駆動によって、ワークWに近接した作動位置と、ワークWから離間した退避位置との間で移動可能としたので、マスク交換などのメンテナンス作業が容易となり、作業効率が高まる。
更に、第1駆動部20が、X軸モータ22、X軸モータ22が取り付けられるX軸モータ基台35、X軸モータ22の駆動によってX軸モータ基台35に対して、X方向に対して所定の角度で傾斜する第1の傾斜方向に駆動される第1の案内板38、及びX軸モータ基台35に対して第1の案内板38を第1の傾斜方向に案内する第3の案内部39を備える。また、第2駆動部50が、Y軸モータ52、Y軸モータ52が取り付けられるY軸モータ基台65と、Y軸モータ52の駆動によってY軸モータ基台65に対して、Y方向に対して所定の角度で傾斜する第2の傾斜方向に駆動される第2の案内板68、及びY軸モータ基台65に対して第2の案内板68を第2の傾斜方向に案内する第4の案内部69を備える。そして、X軸モータ22によって第1の案内板38が第1の傾斜方向に駆動されると、第1の案内部23の作用によってマスク保持部16がX方向に移動し、Y軸モータ52によって第2の案内板68が第2の傾斜方向に駆動されると、第2の案内部53の作用によってマスク保持部16がY方向に移動するようにしたので、第1及び第2の案内板38,68の第1及び第2の傾斜方向への移動量を、それぞれX及びY方向へのマスク保持部16の小さな移動量に変換して移動させることができ、これによってマスク保持部16のX及びY方向への移動を精度よく制御することができる。
また、一対の第1駆動機構11A,11Bのそれぞれに配設されたX軸モータ22の駆動方向が、一対の第1駆動機構11A,11B間のX方向中心線に対して線対称であるので、各X軸モータ22を同期回転させることにより、マスク保持部16をX方向に移動させることができる。
さらに、第1駆動部20は、第1のZ軸モータ21と、第1のZ軸モータ21によってZ方向に移動可能な第1のZ軸可動台31と、第1のZ軸可動台31に対してX軸モータ基台35を回動自在に支持する第1の自在継手34と、をさらに備える。第2駆動部50は、第2のZ軸モータ51と、第2のZ軸モータによってZ方向に移動可能な第2のZ軸可動台61と、第2のZ軸可動台61に対してY軸モータ基台65を回動自在に支持する第2の自在継手64と、をさらに備える。そして、第1及び第2のZ軸モータ21,51の少なくとも一つによって第1及び第2のZ軸可動台31,61がチルト駆動されると、第1及び第2の自在継手34,64の少なくとも一つを作動させながらマスク保持部16の傾きを許容するとともに、第1及び第2の案内部23,53の少なくとも一つによってマスク保持部16のチルトによる第1及び第2駆動機構11A,11B,12間の上面視におけるスパン変化量を吸収するようにしたので、統合した機構におけるチルト駆動を円滑に行うことができる。
また、照明光学系160は、高圧水銀ランプ271と高圧水銀ランプ271から発生された光に指向性をもたせて射出するリフレクタ272をそれぞれ含む複数の光源部273を備えたマルチランプユニット161を有するので、照明光学系160の任意なユニット形状に対応して配置することができる。
また、本実施形態の近接露光方法によれば、搬送されたワークWの被露光部位Aを露光領域Pに静止させると共に、ワークWとマスクMとを所定のギャップに近接させた状態で、照明光学系160からの露光光の光束をマスクMを介してワークWに照射し、マスクMのパターンをワークWに転写する。ここで、近接露光方法は、アライメント検出系152を用いて、ワークWのアライメントマークWbとマスクMのアライメントマークMaとを検出する工程と、アライメント検出系152で検出された両アライメントマークWb,Maのずれ量に基づいて、マスク駆動機構200によってマスク保持部16を水平面上で駆動することでワークWとマスクMとのアライメントを調整する工程と、ギャップセンサ153によって検出されたギャップに基づいて、マスク駆動機構200によってマスク保持部16をチルト駆動することで、ワークWとマスクMとの相対的な傾きを補正する工程と、を備える。従って、ワークWを搬送すると共に、露光領域Pにおいて静止した状態で露光する際、アライメント調整と共に、ワークWとマスクMとのギャップを均一化するように補正してから露光することができ、マスクMのパターンを精度良く露光転写することができる。
また、アライメント検出系152で検出された両アライメントマークWb,Maのずれ量に基づいて、ワークWとマスクMとの位置ずれ量とワークWのひずみ量α、βとを算出する工程と、アライメント調整工程と同時又は別々のタイミングにおいて、算出されたひずみ量α、βに基づいて、光源からの露光光の光束を反射する平面ミラー166の曲率を補正する工程と、を備え、アライメント調整工程は、算出された位置ずれ量に基づいて、ワークWとマスクMとのアライメントを調整するので、ワークWがひずんでいる場合でもワークWの被露光部位Aの形状に応じてマスクMのパターンを精度良く露光転写することができる。
また、平面ミラー166の曲率補正工程は、露光光の光束の光路ELにおいて平面ミラー166より露光面側から平面ミラー166に向けてレーザー光Lを照射する工程、平面ミラー166を介して、インテグレータ165近傍に配置された反射板192に映りこんだレーザー光Lをカメラ193によって撮像する工程と、平面ミラー166の曲率を補正した際に撮像されるレーザー光L、L´の変位量S1,S2を検出する工程と、を備え、該変位量S1,S2が、算出されたひずみ量α、βと対応するように曲率補正するので、レーザー光L、L´の変位量S1、S2を撮像しながらワークWのひずみ量α、βに対応する平面ミラー166の曲率補正を確実に行うことができる。
また、反射板192はマルチランプユニット161からの露光光の光束をマスクMに照射する際に、該光束の光路から退避するので、実際の露光動作中、露光光の光束に影響を与えることがない。
さらに、カメラ193も、マルチランプユニット161からの露光光の光束の光路上から離れた位置に配置されているので、実際の露光動作中、露光光の光束に影響を与えることがない。
また、アライメント検出系は、矩形状のマスクMの四隅近傍にそれぞれ配置された4つのアライメント検出系152を備え、各アライメント検出系152の近傍には、レーザー光Lを照射するレーザーポインタ191がアライメント検出系152の数と同数又はそれ以上配置されている。即ち、レーザーポインタ191は、ワークWのひずみ量α、βを把握しやすい矩形状のマスクMの四隅近傍に配置されているので、ひずみ量α、βに対応する平面ミラー166の曲率補正が行われたかどうかをより効率的に確認することができる。
また、少なくともアライメント調整工程後に、ワークWのアライメントマークWbとマスクMのアライメントマークMaとをアライメント検出系で再検出する工程と、算出工程で、再検出された両アライメントマークWb,Maのずれ量に基づいて算出されたマスクMとワークWの位置ずれ量が許容値以下であるかどうかを判別する工程と、を備え、判別工程において、マスクMとワークWの位置ずれ量が許容値を越える場合にアライメント調整工程を実行するので、より精度良く露光転写することができる。
また、マスクMに描画された転写パターンとワークWとの間に所定のギャップが設けられているので、マスクMに入射される光が平面ミラー166の曲げによるデクリネーション角によって所定のギャップ分曲げられるので、マスクのパターンがワークのひずみに対応して投影される。これにより、ワークWがひずんでいる場合でもワークWの被露光部位Aの形状に応じてマスクMのパターンを精度良く露光転写することができる。
また、アライメント検出系152で検出された両アライメントマークWb,Maのずれ量に基づいて、マスクMの中心とワークWの中心のずれ量と、ワークWのひずみ量が算出され、平面ミラー166は、算出されたワークWのひずみ量に基づいて、平面ミラー166の周縁部と裏面のいずれかを支持する複数の支持機構171をモータ175によって駆動することで、その曲率を局部的に補正するので、各支持機構171のモータ175を駆動制御することによって、平面ミラー166の曲率補正を容易に行うことができる。
なお、マスクの下面には、露光光を透過可能で、且つ、露光時にワークWと密着可能な透過媒体が取り付けられ、ワークWとマスクMは、透過媒体によって所定のギャップに保たれるようにしてもよい。これにより、密着露光方式と同じような解像度の高い露光転写を実現することができる。なお、透過媒体としては、フォトマスクフィルム(透明フィルム)やガラス等、露光光を透過可能なものであればよい。
(第2実施形態)
図23は、本発明の第2実施形態に係るマスク保持機構を示す斜視図である。なお、本実施形態では、第2駆動機構が第1実施形態のものと異なるのみであるため、それ以外の部分については、第1実施形態のものと同一または相当符号を付して説明を省略する。
本実施形態におけるマスク保持機構10Aの第2駆動機構12は、第2駆動部としての、マスク保持部16をZ方向に駆動可能なZ軸駆動機構101とマスク保持部16をY方向に駆動可能なY軸駆動機構102とが分離して構成されている。Z軸駆動機構101は、フレーム13の一辺13bに固定され、第1駆動機構11A,11Bが支持するマスク保持部16の一辺16aと対向する一辺16b(Y方向に延びる一辺)の中間位置を支持する。また、Y軸駆動機構102は、フレーム13の一辺13bと直交する一辺13cに固定され、第1駆動機構11A,11Bが支持するマスク保持部の一辺16aと直交する一辺16c(X方向に延びる一辺)の中間位置を支持する。このため、第2の案内部は、Z軸駆動機構101に設けられたZ軸側案内部としてのリニアガイド53aと、Y軸駆動機構102に設けられたY軸側案内部としてのリニアガイド53bと、を有する。
Z軸駆動機構101は、第2のZ軸モータ51が、フレーム13の一辺15に設けられたハウジング54に固定されている。第2のZ軸モータ51は、第1実施形態のマスク保持機構10と同様のボールねじ機構(図示せず)を備え、該ボールねじ機構のナットが、Z軸可動台61に連結される。第2のZ軸可動台61は、第2の自在継手である十字継手64を介してリニアガイド53aのスライダ53a1が取り付けられたX軸基台103に連結されており、X軸基台103は、第2のZ軸可動台61に対して回動自在に支持される。
回転台71の上面には、リニアガイド53aのガイドレール53a2が取り付けられ、X軸基台103と回転台71との間に、回転台71をX方向に案内するリニアガイド53aが構成されている。また、回転台71と、マスク保持部16から水平方向に延設されたL型ブランク106の上面との間には、マスク保持部16の回転を許容するように転がり軸受(図示せず)が配置され、第1実施形態と同様の回転支持機構(図示せず)を構成する。これにより、第2のZ軸モータ51が回転すると、マスク保持部16はZ方向に移動する。また、マスク保持部16のX方向移動はリニアガイド53aによって吸収されると共に、マスク保持部16の回転は回転支持機構によって吸収され、マスク保持部16のチルトは十字継手64によって許容される。
一方、Y軸駆動機構102では、フレーム13の一辺13cからフレーム13の内側に向けて延設されたL型ブランク108には、Y軸モータ基台65が取り付けられ、Y軸モータ基台65には、Y軸に対して角度β傾斜してY軸モータ52が固定されている。Y軸
モータ52によって回転駆動されるボールねじ機構のねじ軸66には、第2の案内板68に固定されたナット67が螺合する。第2の案内板68には、X方向に案内するリニアガイド53bを介して相手部材としてのY軸可動台109が配置されている。Y軸可動台109の側面に設けられたY軸側自在継手としての十字継手110は、Z方向に延びる案内装置としてのリニアガイド111を介してマスク保持部16の一辺16cに連結するZ軸基台112に固定されている。
本実施形態のマスク保持機構10Aは、第2駆動機構が、Z軸駆動機構101及びY軸駆動機構102に分割されており、図2に示す第1実施形態のマスク保持機構10では、マスク保持部16のY方向に延びる一辺16bをY方向に駆動しているのに対して、本実施形態のマスク保持機構10Aは、マスク保持部16のX方向に延びる一辺16cをY方向に駆動する。これにより、マスク保持部16のX方向中心近傍、換言すれば、マスク保持部16の重心Gの延長線上で駆動することができる。
従って、大型、且つ重量の大きなマスク保持部16の場合、マスク保持部16の重心Gから離れ、Y方向に延びる一辺をY方向駆動すると(図3参照)、マスク保持部16が歪
む(平行四辺形に変形)可能性があるのに対して、本実施形態のマスク保持機構10Aによれば、マスク保持部16に歪を生じさせることなくY方向に駆動することができる。また、第1実施形態と同様、一対の第1駆動機構11A,11Bは、マスク保持部のX、Y、Z、θ方向駆動、及びチルト駆動を統合した機構で行うことができるので、マスク保持
部の駆動機構を小型化すると共に、軽量化して、応答性を向上させることができる。
この場合、Y軸駆動機構102は、Y軸モータ52と、Y軸モータ52が取り付けられるY軸モータ基台65と、Y軸モータ52の駆動によってY軸モータ基台65に対して、Y方向に対して所定の角度で傾斜する第2の傾斜方向に駆動される第2の案内板68と、Y軸モータ基台65に対して第2の案内板68を第2の傾斜方向に案内するY軸側案内部53bと、を備える。そして、Y軸側案内部53bの固定部と可動部の一方は、第2の案内板68に取り付けられ、該固定部と可動部の他方はY軸可動台109に設けられ、Y軸可動台109とマスク保持部16との間には、Y軸側自在継手110及びZ方向に延びる案内装置111が配置されている。
また、Z軸駆動機構101は、第2のZ軸モータ51と、第2のZ軸モータ51によってZ方向に移動可能な第2のZ軸可動台61と、第2のZ軸可動台61に対してZ軸側案内部53aの固定部と可動部の一方が取り付けられるX軸基台103を回動自在に支持する第2の自在継手64と、Z軸側案内部53aの固定部と可動部の他方が取り付けられる回転台71をマスク保持部16に対して回転可能に支持する回転支持機構と、を有する。
その他の構成及び作用は、第1実施形態のマスク保持機構10と同様である。
(第3実施形態)
次に、第3実施形態に係るワークの片面を露光する近接露光装置について、図24及び図25を参照して説明する。本実施形態では、曲率補正量検出系190を設けずに、平面ミラー166の曲率補正を行うものである。なお、第1実施形態と同等部分については、同一符号を付して説明を省略或いは簡略化する。
本実施形態の近接露光装置においても、搬送されたワークWがワークテーブル5のワークチャック4に吸着された状態で露光される。また、照明光学系160aには、レジストが感光しない波長域を透過するバンドパスフィルタ195が光路上へ進退可能に設けられている。
さらに、本実施形態のアライメント検出系152は、ワークチャック8の下方に固定されており、CCDカメラ155は、マスク側のアライメントマークMaの下方に形成されたワークチャック4の貫通孔4aの下方で撮像する。なお、ワークチャック4がガラスである場合には、貫通孔4aを形成せずに、CCDカメラ155でアライメントマークMaを撮像することができる。
また、本実施形態のマスク側のアライメントマークMaは、円環状に形成されている。
このように構成された近接露光装置では、第1実施形態の図18に示すフローチャートと、ステップS5におけるレーザー光撮像以外は同様な工程で露光が行われる。
CCDカメラ155は、バンドパスフィルタ195を光路内に移動させた後に、シャッターユニット164を開くことで、レジストが感光しない波長域での、平面ミラー166で反射された光を受けることができる。このため、CCDカメラ155は、マスク駆動機構200による補正後には、図24に示すように、ワークWのアライメントマークWbと各マスクMのアライメントマークMaを撮像すると共に、平面ミラー166の曲げ補正後には、図25に示すように、ワークW上で投影されるマスク側のアライメントマークMaの影Ma1を撮像する。ここで、マスク側のアライメントマークMaは、円環状に形成されているので、影Ma1がアライメントマークMaで隠れてしまうのを防ぐことができる。
それゆえ、本実施形態において、補正後のステップS3では、マスクMの中心とワークWの中心の位置ずれ量と、再検出されたワークWのアライメントマークWaと、マスク側のアライメントマークMaの影Ma1とのオフセット量を算出し、マスクMの中心とワークWの中心の位置ずれ量が許容値以下であるかどうか、また、オフレット量が許容値以下であるかどうかが判断される。
そして、マスクMとワークWの位置ずれ量が許容値を越える場合にアライメント調整工程を実行し(ステップS4)、オフセット量が許容値を越える場合にオフセット量に基づいて平面ミラー166の曲率補正工程を実行する(ステップS5)。
このようにして、マスクMの中心とワークWの中心の位置ずれ量と、オフセット量がそれぞれ許容値以下となるまで、図18のステップS2〜S5を繰り返し行い、いずれも許容値以下となった際に、露光工程(ステップS6)に移行する。
従って、本実施形態においても、ワークWがひずんでいる場合でもワークWの被露光部位Aの形状に応じてマスクMのパターンを精度良く露光転写することができる。加えて、再検出工程は、曲率補正した平面ミラー166からの光束によって投影されたマスク側のアライメントマークMaのワークW上での影Ma1をさらに検出し、算出工程は、再検出されたワークWのアライメントマークWbと、マスク側のアライメントマークMaの影Ma1とのオフセット量を算出し、判別工程は、オフセット量が許容値以下であるかどうかを判別し、判別工程において、オフセット量が許容値を越える場合に、オフセット量に基づいて平面ミラー166の曲率補正工程を実行するので、より精度良く露光転写することができる。
尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
本実施形態では、ワークWをフープ状としたが、シート状(平板状)であってもよい。
本発明の曲率を補正する反射鏡としては、上記実施形態の平面ミラー166に限定されるものでなく、他の平面ミラー163やコリメーションミラー167に設けられても良く、任意の反射鏡に適用することができ、また、これらミラー163,66,67の複数のミラーの曲率を補正するようにしてもよい。さらに、複数のミラーを曲率補正する場合には、縮尺補正をコリメーションミラー167によって行い、ひずみ補正を平面ミラー166によって行うように、補正の役割をミラー毎に分担することができる。
また、反射板192は、シャッターユニット164と別体に設けられているが、シャッターユニット164が露光光の光路上におけるインテグレータ165の下流側にある場合には、シャッターユニット164によって構成されてもよい。
また、曲率補正量検出系190として、反射板に照射する光は、レーザー光に限らず、指向性を有する露光光の光束より小さい光束の光を射出するものであればよい。
加えて、本発明の指向性を有する光を照射する検出用光源は、マスク近傍に配置されることが好ましいが、反射鏡に対して露光面側に配置されればよく、マスクよりワークチャック側に配置されてもよい。
本発明のマスク保持部16が移動するX方向は、本実施形態ではワークの搬送方向に沿っているが、これに限定されず、例えば、ワークの搬送方向と直交する方向であってもよい。
10,10A マスク保持機構
11A,11B 第1駆動機構
12 第2駆動機構
16 マスク保持部
20 第1駆動部
21 第1のZ軸モータ
22 X軸モータ
23 リニアガイド(第1の案内部)
31 第1のZ軸可動台
34 十字継手(第1の自在継手)
35 X軸モータ基台
38 第1の案内板
39 リニアガイド(第3の案内部)
50 第2駆動部
51 第2のZ軸モータ
52 Y軸モータ
53,53a,53b リニアガイド(第2の案内部)
61 第2のZ軸可動台
64 十字継手(第2の自在継手)
65 Y軸モータ基台
68 第2の案内板
69 リニアガイド(第4の案内部)
152 アライメント検出系
153 ギャップセンサ(ギャップ検出系)
160 照明光学系
161 マルチランプユニット(光源)
163,166 平面ミラー(反射鏡)
167 コリメーションミラー(反射鏡)
171 支持機構
175 モータ(支持機構駆動手段)
190 曲率補正量検出系
191 レーザーポインタ(レーザー光源、検出用光源)
192 反射板
193 カメラ
194 制御部
271 ランプ
272 リフレクタ(反射鏡)
273 光源部
281 カセット
M マスク
Ma マスク側アライメントマーク
W ワーク
Wb ワーク側アライメントマーク
α X方向に対する所定の角度(第1の傾斜方向)
β Y方向に対する所定の角度(第2の傾斜方向)

Claims (10)

  1. マスクを保持するマスク保持部と、
    前記マスクと対向する露光領域へワークを搬送する搬送機構と、
    前記露光領域に位置する前記ワークに対して露光光を前記マスクを介して照射する照明光学系と、
    を備え、
    前記露光領域に搬送された前記ワークの被露光部位を静止させ、前記ワークと前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの露光光の光束を前記マスクを介して前記ワークに照射し、前記マスクのパターンを前記ワークに転写する近接露光装置であって、
    前記ワークのアライメントマークと前記マスクのアライメントマークとをそれぞれ検出する少なくとも2つのアライメント検出系と、
    前記露光領域に位置するワークと前記マスクとのギャップをそれぞれ検出する少なくとも3つのギャップ検出系と、
    該マスク保持部を水平面上の互いに直交するX方向及びY方向、該水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構と、
    をさらに有し、
    前記マスク駆動機構は、前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整するとともに、
    前記マスク駆動機構は、前記ギャップ検出系によって検出された前記ギャップに基づいて、前記マスク保持部をチルト駆動することで、前記ワークとマスクとの相対的な傾きを補正することを特徴とする近接露光装置。
  2. 前記ギャップ検出系と前記アライメント検出系とは、同一の検出系駆動機構によって移動することを特徴とする請求項1に記載の近接露光装置。
  3. 前記照明光学系は、光源及び該光源からの露光光の光束を反射する反射鏡と、該反射鏡の周縁部と裏面のいずれかを支持する支持機構と、該支持機構を移動可能な支持機構駆動手段と、を備え、
    前記マスク駆動機構は、前記アライメント検出系で検出された前記両アライメントマークのずれ量から算出された前記マスクと前記ワークの位置ずれ量に基づいて、前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整するとともに、
    前記反射鏡は、前記アライメント検出系で検出された前記両アライメントマークのずれ量から算出された前記ワークのひずみ量に基づいて、前記支持機構駆動手段によって前記支持機構を移動させることで、その曲率を補正することを特徴とする請求項1または2に記載の近接露光装置。
  4. 前記露光光の光束の光路において前記反射鏡より露光面側から前記反射鏡に向けて指向性を有する光を照射する検出用光源と、前記照明光学系のインテグレータ近傍に、前記露光光の光束の光路から退避可能に配置された反射板と、前記反射鏡を介して、前記反射板に映りこんだ前記指向性を有する光を撮像する撮像手段と、前記反射鏡の曲率を補正した際に撮像される前記指向性を有する光の変位量を検出する制御部と、を有する曲率補正量検出系をさらに備え、
    前記反射鏡は、前記反射鏡の曲率を補正した際に前記曲率補正量検出系で検出された前記指向性を有する光の変位量が、前記算出されたワークのひずみ量と対応するように、前記支持機構駆動手段によって前記支持機構を移動させることで、その曲率を補正することを特徴とする請求項3に記載の近接露光装置。
  5. 前記マスクの下面には、前記露光光を透過可能で、且つ、露光時に前記ワークと密着可能な透過媒体が取り付けられ、前記ワークと前記マスクは、前記透過媒体によって所定のギャップに保たれることを特徴とする請求項1〜4のいずれかに記載の近接露光装置。
  6. 前記マスク駆動機構は、
    該マスク保持部を前記X方向及び鉛直方向であるZ方向に駆動可能な第1駆動部と、該マスク保持部を前記Y方向に案内可能な第1の案内部と、を有する一対の第1駆動機構と、
    前記マスク保持部を前記Y方向及びZ方向に駆動可能な第2駆動部と、該マスク保持部を前記X方向に案内可能な第2の案内部と、を有する第2駆動機構と、
    を有し、
    前記第1駆動部によって前記マスク保持部をX方向又はθ方向に駆動した時、前記第2
    の案内部によって前記マスク保持部の移動量を吸収し、
    前記第2駆動部によって前記マスク保持部をY方向に駆動した時、前記第1の案内部によって前記マスク保持部の移動量を吸収し、
    前記第1及び第2駆動部の少なくとも一つによって前記マスク保持部をチルト駆動した時、前記第1及び第2の案内部の少なくとも一つによって前記マスク保持部のチルトによる前記第1及び第2駆動機構間の上面視におけるスパン変化量を吸収することを特徴とする請求項1〜5のいずれかに記載の近接露光装置。
  7. 前記照明光学系は、前記光源と該光源から発生された光に指向性をもたせて射出する反射光学系をそれぞれ含む複数の光源部を備えることを特徴とする請求項1〜6のいずれかに記載の近接露光装置。
  8. マスクを保持するマスク保持部と、前記マスクと対向する露光領域へワークを搬送する搬送機構と、前記露光領域に位置するワークに対して露光光を前記マスクを介して照射する照明光学系と、前記ワークのアライメントマークと前記マスクのアライメントマークとをそれぞれ検出する少なくとも2つのアライメント検出系と、前記露光領域に位置するワークと前記マスクとのギャップをそれぞれ検出する少なくとも3つのギャップ検出系と、該マスク保持部を水平面上の互いに直交するX方向及びY方向、該水平面に直交する軸回りのθ方向に駆動可能、且つチルト駆動可能なマスク駆動機構と、を有し、前記搬送された前記ワークの被露光部位を前記露光領域に静止させると共に、前記ワークと前記マスクとを所定のギャップに近接させた状態で、前記照明光学系からの露光光の光束を前記マスクを介して前記ワークに照射し、前記マスクのパターンを前記ワークに転写する近接露光装置を用いた近接露光方法であって、
    前記アライメント検出系を用いて、前記ワークのアライメントマークと前記マスクのアライメントマークとを検出する工程と、
    前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスク駆動機構によって前記マスク保持部を前記水平面上で駆動することで前記ワークと前記マスクとのアライメントを調整する工程と、
    前記ギャップ検出系によって検出された前記ギャップに基づいて、前記マスク駆動機構によって前記マスク保持部をチルト駆動することで、前記ワークとマスクとの相対的な傾きを補正する工程と、
    を有することを特徴とする近接露光方法。
  9. 前記アライメント検出系で検出された前記両アライメントマークのずれ量に基づいて、前記マスクと前記ワークの位置ずれ量と前記ワークのひずみ量とを算出する工程と、
    前記アライメント調整工程と同時又は別々のタイミングにおいて、前記算出されたひずみ量に基づいて、前記照明光学系の光源からの露光光の光束を反射する反射鏡の曲率を補正する工程と、
    をさらに備え、
    前記アライメント調整工程は、前記算出された位置ずれ量に基づいて、前記ワークと前記マスクとのアライメントを調整することを特徴とする請求項8に記載の近接露光方法。
  10. 前記反射鏡の曲率補正工程は、
    前記露光光の光束の光路において前記反射鏡より露光面側から前記反射鏡に向けて指向性を有する光を照射する工程と、
    前記反射鏡を介して、インテグレータ近傍に配置された反射板に映りこんだ該指向性を有する光を撮像手段によって撮像する工程と、
    前記反射鏡の曲率を補正した際に撮像される前記指向性を有する光の変位量を検出する工程と、
    を備え、該変位量が算出されたひずみ量と対応するように前記曲率補正することを特徴とする請求項9に記載の近接露光方法。
JP2009277719A 2009-07-28 2009-12-07 近接露光装置及び近接露光方法 Active JP5464991B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009277719A JP5464991B2 (ja) 2009-12-07 2009-12-07 近接露光装置及び近接露光方法
US12/710,396 US20110027542A1 (en) 2009-07-28 2010-02-23 Exposure apparatus and exposure method
CN2010101413605A CN101986207B (zh) 2009-07-28 2010-03-31 曝光装置以及曝光方法
KR1020100029139A KR101772225B1 (ko) 2009-07-28 2010-03-31 노광 장치 및 노광 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277719A JP5464991B2 (ja) 2009-12-07 2009-12-07 近接露光装置及び近接露光方法

Publications (2)

Publication Number Publication Date
JP2011119594A true JP2011119594A (ja) 2011-06-16
JP5464991B2 JP5464991B2 (ja) 2014-04-09

Family

ID=44284553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277719A Active JP5464991B2 (ja) 2009-07-28 2009-12-07 近接露光装置及び近接露光方法

Country Status (1)

Country Link
JP (1) JP5464991B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123461A (ja) * 2009-11-16 2011-06-23 Nsk Ltd 露光装置及び露光方法
JP2013011715A (ja) * 2011-06-29 2013-01-17 Hitachi High-Technologies Corp 露光方法及びその装置
JP2013200506A (ja) * 2012-03-26 2013-10-03 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2015034846A (ja) * 2013-08-07 2015-02-19 株式会社清和光学製作所 縦型フィルム露光装置
JP2015146417A (ja) * 2013-12-09 2015-08-13 株式会社Vnシステムズ 露光装置、露光方法及びミラー曲げ機構付き反射鏡
JP2015222417A (ja) * 2014-04-28 2015-12-10 株式会社ブイ・テクノロジー 露光装置及び露光方法
WO2019021651A1 (ja) * 2017-07-26 2019-01-31 ウシオ電機株式会社 露光装置
CN111331622A (zh) * 2018-12-18 2020-06-26 佳能特机株式会社 基板载置方法、成膜方法、成膜装置以及有机el面板的制造系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128065A (ja) * 1987-11-13 1989-05-19 Canon Inc 非固体状感光性樹脂へのパターン露光方法
JPH04150012A (ja) * 1990-10-15 1992-05-22 Fujitsu Ltd 露光方法及び装置
JP2002107939A (ja) * 2000-09-27 2002-04-10 Nippon Mektron Ltd 回路基板の露光方法
JP2002365810A (ja) * 2001-06-12 2002-12-18 Nsk Ltd 分割逐次近接露光装置
JP2003124093A (ja) * 2001-10-10 2003-04-25 Sumitomo Heavy Ind Ltd ギャップ調節装置及び調節方法
JP2006011051A (ja) * 2004-06-25 2006-01-12 Dainippon Kaken:Kk 非球面コリメートミラーおよび非球面コリメートミラーの調整方法
JP2006324435A (ja) * 2005-05-18 2006-11-30 Ushio Inc 光照射装置
JP2007298656A (ja) * 2006-04-28 2007-11-15 Nsk Ltd 近接露光装置
WO2007145038A1 (ja) * 2006-06-14 2007-12-21 Nsk Ltd. 近接露光装置及び近接露光方法
JP2009014864A (ja) * 2007-07-02 2009-01-22 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128065A (ja) * 1987-11-13 1989-05-19 Canon Inc 非固体状感光性樹脂へのパターン露光方法
JPH04150012A (ja) * 1990-10-15 1992-05-22 Fujitsu Ltd 露光方法及び装置
JP2002107939A (ja) * 2000-09-27 2002-04-10 Nippon Mektron Ltd 回路基板の露光方法
JP2002365810A (ja) * 2001-06-12 2002-12-18 Nsk Ltd 分割逐次近接露光装置
JP2003124093A (ja) * 2001-10-10 2003-04-25 Sumitomo Heavy Ind Ltd ギャップ調節装置及び調節方法
JP2006011051A (ja) * 2004-06-25 2006-01-12 Dainippon Kaken:Kk 非球面コリメートミラーおよび非球面コリメートミラーの調整方法
JP2006324435A (ja) * 2005-05-18 2006-11-30 Ushio Inc 光照射装置
JP2007298656A (ja) * 2006-04-28 2007-11-15 Nsk Ltd 近接露光装置
WO2007145038A1 (ja) * 2006-06-14 2007-12-21 Nsk Ltd. 近接露光装置及び近接露光方法
JP2009014864A (ja) * 2007-07-02 2009-01-22 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123461A (ja) * 2009-11-16 2011-06-23 Nsk Ltd 露光装置及び露光方法
JP2013011715A (ja) * 2011-06-29 2013-01-17 Hitachi High-Technologies Corp 露光方法及びその装置
JP2013200506A (ja) * 2012-03-26 2013-10-03 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2015034846A (ja) * 2013-08-07 2015-02-19 株式会社清和光学製作所 縦型フィルム露光装置
JP2015146417A (ja) * 2013-12-09 2015-08-13 株式会社Vnシステムズ 露光装置、露光方法及びミラー曲げ機構付き反射鏡
JP2015222417A (ja) * 2014-04-28 2015-12-10 株式会社ブイ・テクノロジー 露光装置及び露光方法
WO2019021651A1 (ja) * 2017-07-26 2019-01-31 ウシオ電機株式会社 露光装置
JP2019028144A (ja) * 2017-07-26 2019-02-21 ウシオ電機株式会社 露光装置
CN111331622A (zh) * 2018-12-18 2020-06-26 佳能特机株式会社 基板载置方法、成膜方法、成膜装置以及有机el面板的制造系统
CN111331622B (zh) * 2018-12-18 2023-04-18 佳能特机株式会社 基板载置方法、成膜方法、成膜装置以及有机el面板的制造系统

Also Published As

Publication number Publication date
JP5464991B2 (ja) 2014-04-09

Similar Documents

Publication Publication Date Title
KR101772225B1 (ko) 노광 장치 및 노광 방법
JP5464991B2 (ja) 近接露光装置及び近接露光方法
US6577382B2 (en) Substrate transport apparatus and method
JP6765607B2 (ja) 露光装置、露光方法
JP6347849B2 (ja) センサシステム、基板ハンドリングシステムおよびリソグラフィ装置
JP6535197B2 (ja) 露光装置及び露光方法
WO2019155886A1 (ja) 近接露光装置、近接露光方法、及び近接露光装置用光照射装置
JP5645126B2 (ja) 露光装置及び露光方法
JP2011169924A (ja) 露光装置及び露光方法
JP6663914B2 (ja) 露光用照明装置、露光装置及び露光方法
JP5499399B2 (ja) 露光装置及び露光方法
JP5465024B2 (ja) 露光装置及び露光方法
KR100824022B1 (ko) 투영 노광장치 및 투영 노광방법
JP2021193429A (ja) 露光用の光源装置、照明装置、露光装置、及び露光方法
JP5089238B2 (ja) 露光装置用基板アダプタ及び露光装置
JP2004087593A (ja) ステージ装置および露光装置
JP2008209632A (ja) マスク装着方法及び露光装置ユニット
WO2019059315A1 (ja) 露光用照明装置、露光装置及び露光方法
JP6500282B2 (ja) 露光装置及び照明装置
JP7088552B2 (ja) 近接露光装置及び近接露光方法
KR20160144385A (ko) 노광 장치용 반사경 유닛 및 노광 장치
JPH0444211A (ja) 露光装置
JP2019109445A (ja) 近接露光装置及び近接露光方法
KR101578385B1 (ko) 근접 노광 장치, 근접 노광 방법 및 조명 광학계

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140603

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250