JP2010130707A - モータ制御装置および電動パワーステアリング装置 - Google Patents

モータ制御装置および電動パワーステアリング装置 Download PDF

Info

Publication number
JP2010130707A
JP2010130707A JP2008299003A JP2008299003A JP2010130707A JP 2010130707 A JP2010130707 A JP 2010130707A JP 2008299003 A JP2008299003 A JP 2008299003A JP 2008299003 A JP2008299003 A JP 2008299003A JP 2010130707 A JP2010130707 A JP 2010130707A
Authority
JP
Japan
Prior art keywords
phase
motor
current
command
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008299003A
Other languages
English (en)
Other versions
JP5444697B2 (ja
Inventor
Takeshi Ueda
武史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008299003A priority Critical patent/JP5444697B2/ja
Publication of JP2010130707A publication Critical patent/JP2010130707A/ja
Application granted granted Critical
Publication of JP5444697B2 publication Critical patent/JP5444697B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】製造時のバラツキなどにより各相毎の電機子巻線抵抗が異なる場合でも、モータのトルクリップルを低減する。
【解決手段】3相電圧補正部26は、dq軸上の指令電流id * ,iq * と電流センサ14で検出された電流値ia とに基づき、3相の電機子巻線抵抗Ru ,Rv ,Rw または巻線抵抗の比率Gu ,Gv ,Gw を算出し、算出された抵抗値または比率に基づき3相の巻線抵抗値のバラツキ(違い)による設定値からのずれを補償するための補正を、dq軸/3相変換部23で求めた各相の指令電圧Vu ,Vv ,Vw に対して行う。このことにより、製造時における抵抗バラツキや周囲温度による抵抗変化などにより各相毎の巻線抵抗値が異なる場合であっても、その違いによる指令電圧のずれ(誤差)が補正されるので、トルクリップルを低減できる。
【選択図】図2

Description

本発明は、モータ制御装置、および、モータ制御装置を備えた電動パワーステアリング装置に関する。
従来から、運転者がハンドル(ステアリングホイール)に加える操舵トルクに応じて電動モータを駆動することにより車両のステアリング機構に操舵補助力を与える電動パワーステアリング装置が用いられている。電動パワーステアリング装置の電動モータには従来からブラシモータが広く使用されているが、信頼性および耐久性の向上や慣性の低減などの観点から、近年ではブラシレスモータも使用されている。
一般にモータ制御装置は、モータで発生するトルクを制御するために、モータに流れる電流を検出し、モータに供給すべき電流と検出した電流との差に基づきPI制御(比例積分制御)を行う。3相ブラシレスモータを駆動するモータ制御装置には、2相以上の電流を検出するために、2個または3個の電流センサが設けられる。また、電流センサをすべて除去し、モータの回路方程式に従いオープンループ制御(フィードフォワード制御)を行うモータ制御装置もある。
なお、本願発明に関連して、特許文献1には、モータの回路方程式を用いてd軸指令電圧とq軸指令電圧を求めることが開示されている。また、特許文献2には、モータの温度に応じてd軸指令電流を補正することが開示されている。
特開2001−187578号公報 特開2000−184773号公報
ここで、3相ブラシレスモータを駆動するモータ制御装置のうち、モータの回路方程式に従いオープンループ制御を行うモータ制御装置は、モータの回路方程式に含まれるパラメータ、特に製造時における抵抗のバラツキや温度変化などにより電機子巻線抵抗が各相毎に異なるとトルクリップルを生じる。
したがって、各相の電機子巻線抵抗は全て同一であることが好ましいが、製造時における抵抗バラツキを完全になくすことは難しく、また温度変化による影響を均一化することができないこともある。
そこで本発明は、製造時における電機子の抵抗バラツキや周囲温度による抵抗変化などにより各相毎の電機子巻線抵抗が異なる場合であっても、モータのトルクリップルを低減することができるモータ制御装置、およびこれを備えた電動パワーステアリング装置を提供することを目的とする。
第1の発明は、n相(nは3以上の自然数)のモータを駆動するモータ制御装置であって、
前記モータの駆動に用いられる指令電圧のレベルを求める制御手段と、
前記制御手段で求めたレベルの電圧を用いて前記モータを駆動するモータ駆動手段と、
前記モータに流れる電流を検出する電流検出手段と
を備え、
前記制御手段は、前記電流検出手段により検出される各相の検出電流と設計上検出されるべき各相の電流とのずれに基づき、前記モータの各相における抵抗値または各相における抵抗値の前記ずれに対応する比率を算出し、前記モータの各相における抵抗値の違いによる前記ずれが解消されるよう、算出された前記抵抗値または前記比率に基づき前記指令電圧のレベルを補正することを特徴とする。
第2の発明は、第1の発明において、
前記制御手段は、前記モータに供給すべき電流の量を示す指令電流値と前記モータのロータの角速度とに基づき、モータの回路方程式に従い前記指令電圧のレベルを求めるオープンループ制御手段を含むことを特徴とする。
第3の発明は、第1または第2の発明において、
前記制御手段は、予め定められまたは前回の補正時に算出された各相における抵抗値に対して、前記モータに供給すべき電流の量を示す指令電流値または前記モータに流れていると推定される電流の量を示す推定電流値のいずれかを乗算し、乗算して得られる値を前記検出電流値で除算することにより前記モータの各相における抵抗値を算出することを特徴とする。
第4の発明は、第1または第2の発明において、
前記制御手段は、前記モータに供給すべき電流の量を示す指令電流値または前記モータに流れていると推定される電流の量を示す推定電流値のいずれかを前記検出電流値で除算することにより前記比率を算出することを特徴とする。
第5の発明は、第1から第4までのいずれか1つの発明に係るモータ制御装置を備えた電動パワーステアリング装置である。
上記第1の発明によれば、各相の検出電流と設計上検出されるべき各相の電流とのずれに基づき、モータの各相における抵抗値または各相における抵抗値の前記ずれに対応する比率を算出し、この各相における抵抗値の違いによるずれが解消されるよう、算出された抵抗値または比率に基づき指令電圧のレベルを補正するので、製造時における抵抗バラツキや周囲温度による抵抗変化などにより各相毎の電機子巻線抵抗が異なる場合であっても、その違いによる指令電圧のレベルのずれ(誤差)が補正され、モータのトルクリップルを低減することができる。
上記第2の発明によれば、モータの回路方程式に従いオープンループ制御を行う場合において検出電流のフィードバックがない場合であっても高い精度でモータが駆動され、各相の電機子巻線抵抗の違いによるモータのトルクリップルを低減することができる。
上記第3の発明によれば、予め定められまたは前回の補正時に算出された各相における抵抗値に対して、指令電流値または推定電流値のいずれかを乗算し、乗算して得られる値を検出電流値で除算することによりモータの各相における抵抗値を算出するので、予め定められまたは前回の補正時に算出された各相における抵抗値と実際の抵抗値との差を正確に算出することができる。
上記第4の発明によれば、指令電流値または推定電流値のいずれかを検出電流値で除算することにより各相における抵抗値の前記ずれに対応する比率を算出するので、前記ずれに対応する抵抗値の比率を正確に算出することができる。
上記第5の発明によれば、高い精度でモータを駆動し、所望のモータ出力を得ることができるので、スムーズな操舵補助が可能となる。
以下、本発明の一実施形態について添付図面を参照しつつ説明する。
<1. 電動パワーステアリング装置の全体的な構成>
図1は、本発明の一実施形態に係る電動パワーステアリング装置の構成を、それに関連する車両の構成と共に示す概略図である。図1に示す電動パワーステアリング装置は、ブラシレスモータ1、減速機2、トルクセンサ3、車速センサ4、位置検出センサ5、および電子制御ユニット(Electronic Control Unit :以下、ECUという)10を備えたコラムアシスト型の電動パワーステアリング装置である。
図1に示すように、ステアリングシャフト102の一端にはハンドル(ステアリングホイール)101が固着されており、ステアリングシャフト102の他端はラックピニオン機構103を介してラック軸104に連結されている。ラック軸104の両端は、タイロッドおよびナックルアームからなる連結部材105を介して車輪106に連結されている。運転者がハンドル101を回転させると、ステアリングシャフト102は回転し、これに伴いラック軸104は往復運動を行う。ラック軸104の往復運動に伴い、車輪106の向きが変わる。
電動パワーステアリング装置は、運転者の負荷を軽減するために、以下に示す操舵補助を行う。トルクセンサ3は、ハンドル101の操作によってステアリングシャフト102に加えられる操舵トルクTを検出する。車速センサ4は、車速Sを検出する。位置検出センサ5は、ブラシレスモータ1のロータの回転位置Pを検出する。位置検出センサ5は、例えばレゾルバで構成される。
ECU10は、車載バッテリ100から電力の供給を受け、操舵トルクT、車速Sおよび回転位置Pに基づきブラシレスモータ1を駆動する。ブラシレスモータ1は、ECU10によって駆動されると、操舵補助力を発生させる。減速機2は、ブラシレスモータ1とステアリングシャフト102との間に設けられる。ブラシレスモータ1で発生した操舵補助力は、減速機2を介して、ステアリングシャフト102を回転させるように作用する。
この結果、ステアリングシャフト102は、ハンドル101に加えられる操舵トルクと、ブラシレスモータ1で発生した操舵補助力の両方によって回転する。このように電動パワーステアリング装置は、ブラシレスモータ1で発生した操舵補助力を車両のステアリング機構に与えることにより操舵補助を行う。
<2. モータ制御装置の全体的な構成>
本発明の一実施形態に係る電動パワーステアリング装置は、ブラシレスモータ1を駆動する制御装置(モータ制御装置)に特徴がある。そこで以下では、この電動パワーステアリング装置に含まれるモータ制御装置について説明する。
図2は、本発明の一実施形態に係るモータ制御装置の構成を示すブロック図である。図2に示すモータ制御装置は、ECU10を用いて構成されており、u相、v相およびw相の3相巻線(図示せず)を有するブラシレスモータ1を駆動する。ECU10は、位相補償器11、マイクロコンピュータ(以下、マイコンと略称する)20、3相/PWM(Pulse Width Modulation)変調器12、モータ駆動回路13、および電流センサ14を備えている。
ECU10には、トルクセンサ3から出力された操舵トルクT、車速センサ4から出力された車速S、および、位置検出センサ5から出力された回転位置Pが入力される。位相補償器11は、操舵トルクTに対して位相補償を施す。マイコン20は、ブラシレスモータ1の駆動に用いられる指令電圧のレベルを求める制御手段として機能する。マイコン20の機能の詳細については、後述する。
3相/PWM変調器12とモータ駆動回路13とは、ハードウェア(回路)で構成されており、マイコン20で求めたレベルの電圧を用いてブラシレスモータ1を駆動するモータ駆動手段として機能する。3相/PWM変調器12は、モータを駆動制御するための信号として、マイコン20で求めた3相の電圧のレベルに応じたデューティ比を有する3種類のPWM信号(図2に示すU、V、W)を生成する。モータ駆動回路13は、スイッチング素子として6個のMOS−FET(Metal Oxide Semiconductor Field Effect Transistor )を含むPWM電圧形インバータ回路である。6個のMOS−FETは、3種類のPWM信号とその否定信号によって制御される。PWM信号を用いてMOS−FETの導通状態を制御することにより、ブラシレスモータ1に対して3相の駆動電流(u相電流、v相電流およびw相電流)が供給される。このようにモータ駆動回路13は、複数のスイッチング素子を有し、ブラシレスモータ1に電流を供給するスイッチング回路として機能する。
電流センサ14は、ブラシレスモータ1に流れる電流を検出する電流検出手段として機能する。電流センサ14は、シャント抵抗17を含み、モータ駆動回路13と電源の間に1個だけ設けられる。図2に示す例では、電流センサ14はモータ駆動回路13と電源のマイナス側(接地)との間に設けられているが、電流センサ14をモータ駆動回路13と電源のプラス側との間に設けてもよい。
ブラシレスモータ1が回転している間、電流センサ14で検出される電流値は、PWM信号に応じて変化する。PWM信号の1周期(以下「PWM周期」という)内では、電流センサ14によって1相の駆動電流が検知されるときと、2相の駆動電流の和が検知されるときとがある。3相の駆動電流の和はゼロになるので、2相の駆動電流の和に基づき、残り1相の駆動電流を求めることができる。したがって、ブラシレスモータ1が回転している間、1個の電流センサ14を用いて3相の駆動電流を検出することができる。電流センサ14で検出された電流値ia は、マイコン20に入力される。
マイコン20は、ECU10に内蔵されたメモリ(図示せず)に格納されたプログラムを実行することにより、指令電流算出部21、オープンループ制御部22、dq軸/3相変換部23、角度算出部24、角速度算出部25、および3相電圧補正部26として機能する。マイコン20は、以下に示すように、ブラシレスモータ1に供給すべき電流の量を示す指令電流値とブラシレスモータ1のロータの角速度とに基づき、モータの回路方程式に従い、モータ駆動回路13に与えるべき電圧(以下、指令電圧という)のレベルを求める。
角度算出部24は、位置検出センサ5で検出した回転位置Pに基づき、ブラシレスモータ1のロータの回転角(以下、角度θという)を求める。角速度算出部25は、角度θに基づき、ブラシレスモータ1のロータの角速度ωe を求める。なお、図3に示すようにブラシレスモータ1に対してu軸、v軸およびw軸を設定し、ブラシレスモータ1のロータ6に対してd軸およびq軸を設定したとき、u軸とd軸のなす角が角度θとなる。
指令電流算出部21は、位相補償後の操舵トルクT(位相補償器11の出力信号)と車速Sに基づき、ブラシレスモータ1に供給すべきd軸電流とq軸電流を求める(以下、前者をd軸指令電流id *、後者をq軸指令電流iq *という)。より詳細には、指令電流算出部21は、車速Sをパラメータとして、操舵トルクTと指令電流との対応づけを記憶したテーブル(以下、アシストマップという)を内蔵しており、アシストマップを参照して指令電流を求める。アシストマップを用いることにより、ある大きさの操舵トルクが与えられたときに、その大きさに応じた適切な大きさの操舵補助力を発生させるためにブラシレスモータ1に供給すべきd軸指令電流id *とq軸指令電流iq *を求めることができる。
なお、指令電流算出部21で求めるq軸指令電流iq *は符号付きの電流値であり、その符号は操舵補助の方向を示す。例えば、符号がプラスのときには右方向へ曲がるための操舵補助が行われ、符号がマイナスのときには左方向へ曲がるための操舵補助が行われる。また、d軸指令電流id *は、典型的にはゼロに設定される。
オープンループ制御部22は、d軸指令電流id * 、q軸指令電流iq * および角速度ωe に基づき、ブラシレスモータ1に供給すべきd軸電圧とq軸電圧を求める(以下、前者をd軸指令電圧vd 、後者をq軸指令電圧vq という)。d軸指令電圧vd とq軸指令電圧vq は、次式(1)と(2)に示すモータの回路方程式を用いて算出される。
d=(R+PLd)id *−ωeqq * …(1)
q=(R+PLq)iq *+ωedd *+ωeΦ …(2)
ただし、式(1)と(2)において、vd はd軸指令電圧、vq はq軸指令電圧、id *はd軸指令電流、iq *はq軸指令電流、ωe はロータの角速度、Rは電機子巻線抵抗を含む回路抵抗、Ld はd軸の自己インダクタンス、Lq はq軸の自己インダクタンス、Φはu、v、w相電機子巻線鎖交磁束数の最大値の√(3/2)倍、Pは微分演算子である。このうちR、Ld 、Lq およびΦは、既知のパラメータとして扱われる。なお、上記回路抵抗には、ブラシレスモータ1とECU10との間の配線抵抗やECU10内でのモータ駆動回路13の抵抗および配線抵抗などが含まれる。
dq軸/3相変換部23は、オープンループ制御部22で求めたd軸指令電圧vd とq軸指令電圧vq を3相交流座標軸上の指令電圧に変換する。より詳細には、dq軸/3相変換部23は、d軸指令電圧vd とq軸指令電圧vq に基づき、次式(3)〜(5)を用いてu相指令電圧Vu 、v相指令電圧Vv およびw相指令電圧Vw を求める。
u=√(2/3)×{vd×cosθ−vq×sinθ} …(3)
v=√(2/3)×{vd×cos(θ−2π/3)
−vq×sin(θ−2π/3)} …(4)
w=−Vu−Vv …(5)
なお、式(3)と(4)に含まれる角度θは、角度算出部24で求めたものである。
3相電圧補正部26は、dq軸/3相変換部23で求めたu相指令電圧Vu 、v相指令電圧Vv およびw相指令電圧Vw に対して、d軸指令電流id * およびq軸指令電流iq * と電流センサ14で検出された電流値ia とに基づき3相の電機子巻線抵抗値または(3相毎の)設定抵抗値(詳しくは後述する初期値または前回補正時における抵抗値)に対する比率を算出し、算出された抵抗値または比率に基づき3相の電機子巻線抵抗値の違いによる設定抵抗値からのずれを補償するための補正を行い、補正された新たなu相指令電圧Vu’ 、v相指令電圧Vv’ およびw相指令電圧Vw’ を生成し出力する。上記補正の詳しい内容は改めて後述する。
このようにマイコン20は、dq座標軸上の指令電流id * ,iq * を求める処理と、モータの回路方程式に従いdq座標軸上の指令電圧vd ,vq を求める処理と、求められた指令電圧vd ,vq を3相の指令電圧Vu ,Vv ,Vw に変換し補正する処理とを行う。3相/PWM変調器12は、マイコン20で求めた3相の指令電圧Vu ,Vv ,Vw を補正した後述する補正指令電圧Vu’ ,Vv’ ,Vw’ に基づき、3種類のPWM信号を出力する。これにより、ブラシレスモータ1の3相巻線には、各相の指令電圧に応じた正弦波状の電流が流れ、ブラシレスモータ1のロータは回転する。これに伴い、ブラシレスモータ1の回転軸には、ブラシレスモータ1を流れる電流に応じたトルクが発生する。発生したトルクは、操舵補助に用いられる。
以上に示すように、本実施形態に係るモータ制御装置は、指令電流値とロータの角速度とに基づき、モータの回路方程式に従いオープンループ制御の指令電圧を求める。次に、3相電圧補正部26におけるu相指令電圧Vu 、v相指令電圧Vv 、およびw相指令電圧Vw に対する補正動作について詳述する。
<3. 3相電圧補正部の動作>
上記実施形態において、d軸指令電圧vd とq軸指令電圧vq を算出するためのモータの回路方程式における電機子巻線抵抗Rは、設計上(理想的には)3相とも同一であるものとして、1つの値のみが予め与えられている。しかし、実際には前述したように製造バラツキなどにより各相の電機子巻線抵抗値は異なっていることが多いため、実際に各相の電機子巻線に流れる電流は設計上流れると想定される推定電流から所定のずれ(誤差)を生じることになる。そこで、3相電圧補正部26は、この誤差を、設計上想定されている各相の電機子巻線抵抗と実際の電機子巻線抵抗との誤差に対応づけて実際の電機子巻線抵抗または(3相同一の)設計上の抵抗値に対する比率を算出し、算出された実際の電機子巻線抵抗値または比率に基づき、これらの抵抗値の違いによる設計値からのずれが補償されるよう各相指令電圧を補正する。また、このような補正後も温度変化などにより各相の電機子巻線抵抗値が変化するため、上記補正を行った後であっても実際に各相の電機子巻線に流れる電流は設計上流れると想定される推定電流から所定のずれ(誤差)を生じることがある。そこで、3相電圧補正部26は、この誤差を、前回補正時における各相の電機子巻線抵抗と(現時点での)実際の電機子巻線抵抗との誤差に対応づけて実際の電機子巻線抵抗、または前回補正時の抵抗値に対する比率を算出し、算出された実際の電機子巻線抵抗値または比率に基づき、これらの抵抗値の違いによる前回の補正値からのずれが補償されるよう各相指令電圧を補正する。
具体的には、上述したモータの回路方程式における電機子巻線抵抗Rに対応する各相における前回補正時の各相における電機子巻線抵抗Rup,Rvp,Rwp(なお最初の補正時におけるこれらの初期値の電機子巻線抵抗Rup0,Rvp0,Rwp0は設計値または実測値として予め定められている)に対して、u相推定電流iue、v相推定電流ive、およびw相推定電流iweをそれぞれ乗算して得られる各相の電圧値は、各相における(現時点での)実際の電機子巻線抵抗Ru ,Rv ,Rw に対して、電流センサ14により検出された対応するu相電流iu、v相電流iv、およびw相電流iwを乗算して得られる電圧値に等しくなる。したがって、3相電圧補正部26は、実際の電機子巻線抵抗Ru ,Rv ,Rw を次式(6)〜(8)を用いて求める。
u =Rup ×iue/iu …(6)
v =Rvp ×ive/iv …(7)
w =Rwp ×iwe/iw …(8)
また、3相電圧補正部26は、上記電機子巻線抵抗Ru ,Rv ,Rw を用いることなく、次式(6)’〜(8)’を用いて(これらの抵抗値の)初期値(の電機子巻線抵抗)Rup0,Rvp0,Rwp0に対する比率Gu ,Gv ,Gw を求めてもよい。
u =iue/iu …(6)’
v =ive/iv …(7)’
w =iwe/iw …(8)’
ただし上式(6)’〜(8)’において、前回の補正時の上記比率はGup(=Rup /Rup0),Gvp(=Rup /Rup0) ,Gwp(=Rup /Rup0)である。
なお、3相電圧補正部26は、上記u相推定電流iue、v相推定電流ive、およびw相推定電流iweを、指令電流算出部21から与えられるd軸指令電流id * およびq軸指令電流iq * に対して電流応答に相当するフィルタをかけ、これにより得られるdq軸推定電流値を3相変換することにより求める。したがって、これらの推定電流値を使用することにより上記電機子巻線抵抗値または上記比率が(電流応答が考慮され)正確に算出することができる。ただし、電流応答を考慮しない場合には、電流指令値をそのまま使用することもできる。
また、3相電圧補正部26は、各相の指令電圧が一回算出される毎に、実際の電機子巻線抵抗Ru ,Rv ,Rw または上記比率Gu ,Gv ,Gw を算出するようここでは記載したが、数回に一度だけ算出してもよいし、所定の時間間隔(例えば数ミリ秒ないし数秒の間隔)を空けて算出してもよいし、装置の起動時に一度だけ算出してもよい。さらに算出された数回分の抵抗値または上記比率の平均値や代表値などが使用されてもよい。
ここで、上記電機子巻線抵抗値または上記比率を正確に算出するためには、モータの回転速度が小さい領域であることが好ましく、また電流値を正確に検出できることから電流値が大きい領域であることが好ましい。よって3相電圧補正部26は、上記領域内において電機子巻線抵抗値または上記比率を算出することが好ましい。さらに、角度算出部24により算出されたロータの回転角θに基づき、適宜のタイミング(典型的には各相の電流値のピーク付近となる角度にロータの回転角θが合致するタイミング)で各相毎に抵抗値または上記比率を算出する構成も好適である。
以上のように算出された実際の電機子巻線抵抗Ru ,Rv ,Rw と、前回補正時の各相における電機子巻線抵抗Rup,Rvp,Rwpとの差(または上記比率Gu ,Gv ,Gw )に対応する(電圧)値を使用して各相毎に補正を行えば、温度変化や製造バラツキなどにより生じる実際の電機子巻線抵抗のバラツキの影響、すなわちこれにより生じるトルクリップルを抑制または解消することができる。
そこで、3相電圧補正部26は、以上のように算出された実際の電機子巻線抵抗から前回補正時の各相における電機子巻線抵抗Rup,Rvp,Rwpの差を差し引いた値に対して、対応する各相の指令電流を乗算し、この乗算することにより得られる補正用電圧値vcu ,vcv ,vcw を3相指令電圧Vu ,Vv ,Vw に加えた値を3相補正指令電圧Vu’ ,Vv’ ,Vw’ として出力する。なお、各相の指令電流は、指令電流算出部21から与えられるd軸指令電流id * およびq軸指令電流iq * を3相変換することにより求める。
具体的には、d軸指令電圧vd とq軸指令電圧vq は、上式(1)と(2)に示すモータの回路方程式を用いて算出されるので、前回補正時の3相指令電圧Vu ,Vv ,Vw は抵抗値のずれが補償される結果、前回補正時の各相における電機子巻線抵抗Rup,Rvp,Rwpを用いれば次式(9)〜(11)のように表すことができる。
u=(Rup+PL)iu *+eu …(9)
v=(Rvp+PL)iv *+ev …(10)
w=(Rwp+PL)iw *+ew …(11)
なお、上式(9)〜(11)に含まれるeu ,ev ,ew は、各相毎の逆起電力である。
同様に、3相補正指令電圧Vu’ ,Vv’ ,Vw’ は、各相における実際の電機子巻線抵抗Ru ,Rv ,Rw を使用したモータの回路方程式を用いると次式(12)〜(14)のように表すことができる。
u’=(Ru+PL)iu *+eu …(12)
v’=(Rv+PL)iv *+ev …(13)
w’=(Rw+PL)iw *+ew …(14)
したがって、3相電圧補正部26は、補正用電圧値vcu ,vcv ,vcw を次式(15)〜(17)を用いて求めることができる。
vcu=Vu’−Vu=(Ru−Rup)iu * …(15)
vcv=Vv’−Vv=(Rv−Rvp)iv * …(16)
vcw=Vw’−Vw=(Rw−Rwp)iw * …(17)
また、3相電圧補正部26は、実際の電機子巻線抵抗を算出することなく上記比率Gu ,Gv ,Gw に基づき、下記のようにして算出された補正用電圧値vcu ,vcv ,vcw を3相指令電圧Vu ,Vv ,Vw に加えた値を3相補正指令電圧Vu’ ,Vv’ ,Vw’ として出力してもよい。
具体的には、上式(12)〜(14)と同様に、3相補正指令電圧Vu’ ,Vv’ ,Vw’ は、各相における実際の電機子巻線抵抗Ru ,Rv ,Rw を使用することなく上記比率Gu ,Gv ,Gw を使用したモータの回路方程式を用いると次式(12)’〜(14)’のように表すことができる。
u’=(Rup0×Gu +PL)×iu *+eu …(12)’
v’=(Rvp0×Gv +PL)×iv *+ev …(13)’
w’=(Rwp0×Gw +PL)×iw *+ew …(14)’
したがって、3相電圧補正部26は、上式(15)〜(17)と同様に、補正用電圧値vcu ,vcv ,vcw を次式(15)’〜(17)’を用いて求めることができる。
vcu=Vu’−Vu=Rup0×(Gu −1)×iu * …(15)’
vcv=Vv’−Vv=Rvp0×(Gv −1)×iv * …(16)’
vcw=Vw’−Vw=Rwp0×(Gw −1)×iw * …(17)’
3相電圧補正部26は、以上のように算出された補正用電圧値vcu ,vcv ,vcw を3相指令電圧Vu ,Vv ,Vw に加えた値を3相補正指令電圧Vu’ ,Vv’ ,Vw’ として出力する。
<4. 効果>
以上のように本実施形態における3相電圧補正部26は、指令電流算出部21から与えられるd軸指令電流id * およびq軸指令電流iq * と電流センサ14で検出された電流値ia とに基づき、上式(6)〜(8)を用いて3相の電機子巻線抵抗Ru ,Rv ,Rw を算出しまたは上式(6)’〜(8)’を用いて上記比率Gu ,Gv ,Gw を算出する。そして、算出された抵抗値に基づき上式(15)〜(17)を用いてまたは算出された上記比率に基づき上式(15)’〜(17)’を用いて、3相の電機子巻線抵抗値のバラツキ(違い)によるずれを補償するための補正を、dq軸/3相変換部23で求めたu相指令電圧Vu 、v相指令電圧Vv およびw相指令電圧Vw に対して行う。このことにより、製造時における電機子の抵抗バラツキや周囲温度による抵抗変化などにより各相毎の電機子巻線抵抗値が異なる場合であっても、その違いによる指令電圧のずれ(誤差)が補正されるので、モータのトルクリップルを低減することができる。
<5. 変形例>
上記実施形態では、補正用電圧値vcu ,vcv ,vcw を算出するため、実際の電機子巻線抵抗Ru ,Rv ,Rw または上記比率Gu ,Gv ,Gw を繰り返し求める構成であるが、動作中に生じる温度変化等による抵抗値の変化を考慮しない場合には、(典型的には装置起動時に)一度だけ上記計算を行うことにより補正用電圧値vcu ,vcv ,vcw を算出する構成であってもよい。
上記実施形態では、電機子巻線抵抗Rup,Rvp,Rwpの初期値は、(一律の)設計値または(装置毎の)実測値として予め定められるものとしたが、この初期値は製造時において恒久的に定められた値に限られず、例えば装置の動作終了時点や動作中の適宜の時点において算出された電機子巻線抵抗Rup,Rvp,Rwpを一時的に記憶し、次の動作開始時点で記憶されたこれらの値を読み出して動作開始時に予め与えられる初期値とする構成であってもよい。
上記実施形態では、u相推定電流iue、v相推定電流ive、およびw相推定電流iweが使用されるが、これらはどのような周知の手法により算出されてもよく、例えば駆動回路(インバータ)に入力される電圧に基づき出力電流の推定を行う適応オブザーバを用いる周知の手法などにより算出してもよい。なお、推定電流に代えて、d軸指令電流id * およびq軸指令電流iq * を3相交流座標軸上の指令電流に変換したu相指令電流iu * およびv相指令電流iv * に基づき補正を行ってもよいことは前述した。
上記実施形態では、オープンループ制御部22により算出されたd軸指令電圧vd およびq軸指令電圧vq をdq軸/3相変換部23により3相変換したu相指令電圧Vu 、v相指令電圧Vv およびw相指令電圧Vw に対して、補正用電圧値vcu ,vcv ,vcw を3相指令電圧Vu ,Vv ,Vw に加えることにより補正するものであるが、結果的に各相毎の電機子巻線抵抗の違いによる設定値からのずれが補償される構成であれば、補正態様に限定はない。例えば、3相電圧補正部26が省略されて、オープンループ制御部22により3相の電機子巻線抵抗Ru ,Rv ,Rw を算出し、これに基づき補正用電圧値vcu ,vcv ,vcw に対応するdq軸上の補正用電圧vcd,vcqを算出して、この値に基づきd軸指令電圧vd およびq軸指令電圧vq に対して上記補正を行ってもよい。
上記実施形態では、オープンループ制御部22によるオープンループ制御が行われるが、モータに流れる電流の検出値に基づくフィードバック制御が行われてもよい。もっともフィードバック制御では、一般的なオープンループ制御の場合とは異なり、各相の電機子巻線抵抗等により生じる各相の指令電流値と検出電流値とのずれが解消される方向に制御されることになるが、この場合であっても、電機子巻線抵抗のバラツキ等によるトルクリップルや制御精度の低下を上記構成により予め解消または抑制することができるので、結果的に遅れなく高い精度でトルクリップルを抑制しモータを駆動できる。なお、上記実施形態では、3相モータを例に説明したが、n相(nは3以上の自然数)のモータであっても本発明を同様に適用することが可能である。
本発明の一実施形態に係る電動パワーステアリング装置の構成を示す概略図である。 上記実施形態に係るモータ制御装置の構成を示すブロック図である。 上記実施形態の3相ブラシレスモータにおける3相交流座標とdq座標を示す図である。
符号の説明
13…モータ駆動回路、14…電流センサ、17…シャント抵抗、20…マイコン

Claims (5)

  1. n相(nは3以上の自然数)のモータを駆動するモータ制御装置であって、
    前記モータの駆動に用いられる指令電圧のレベルを求める制御手段と、
    前記制御手段で求めたレベルの電圧を用いて前記モータを駆動するモータ駆動手段と、
    前記モータに流れる電流を検出する電流検出手段と
    を備え、
    前記制御手段は、前記電流検出手段により検出される各相の検出電流と設計上検出されるべき各相の電流とのずれに基づき、前記モータの各相における抵抗値または各相における抵抗値の前記ずれに対応する比率を算出し、前記モータの各相における抵抗値の違いによる前記ずれが解消されるよう、算出された前記抵抗値または前記比率に基づき前記指令電圧のレベルを補正することを特徴とする、モータ制御装置。
  2. 前記制御手段は、前記モータに供給すべき電流の量を示す指令電流値と前記モータのロータの角速度とに基づき、モータの回路方程式に従い前記指令電圧のレベルを求めるオープンループ制御手段を含むことを特徴とする、請求項1に記載のモータ制御装置。
  3. 前記制御手段は、予め定められまたは前回の補正時に算出された各相における抵抗値に対して、前記モータに供給すべき電流の量を示す指令電流値または前記モータに流れていると推定される電流の量を示す推定電流値のいずれかを乗算し、乗算して得られる値を前記検出電流値で除算することにより前記モータの各相における抵抗値を算出することを特徴とする、請求項1または請求項2に記載のモータ制御装置。
  4. 前記制御手段は、前記モータに供給すべき電流の量を示す指令電流値または前記モータに流れていると推定される電流の量を示す推定電流値のいずれかを前記検出電流値で除算することにより前記比率を算出することを特徴とする、請求項1または請求項2に記載のモータ制御装置。
  5. 請求項1から請求項4までのいずれか1項に記載のモータ制御装置を備えた、電動パワーステアリング装置。
JP2008299003A 2008-11-25 2008-11-25 モータ制御装置および電動パワーステアリング装置 Expired - Fee Related JP5444697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299003A JP5444697B2 (ja) 2008-11-25 2008-11-25 モータ制御装置および電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299003A JP5444697B2 (ja) 2008-11-25 2008-11-25 モータ制御装置および電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2010130707A true JP2010130707A (ja) 2010-06-10
JP5444697B2 JP5444697B2 (ja) 2014-03-19

Family

ID=42330680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299003A Expired - Fee Related JP5444697B2 (ja) 2008-11-25 2008-11-25 モータ制御装置および電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5444697B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108079A1 (ja) 2011-02-07 2012-08-16 日本精工株式会社 電動パワーステアリング装置の制御装置
CN110620540A (zh) * 2018-06-20 2019-12-27 操纵技术Ip控股公司 永磁同步马达驱动器的参数学习

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261384A (ja) * 1991-02-09 1992-09-17 Daikin Ind Ltd トルク制御インバータ制御方法およびその装置
JPH05328733A (ja) * 1992-05-18 1993-12-10 Hitachi Ltd 空気調和機
JPH0833194A (ja) * 1993-09-17 1996-02-02 Fuji Electric Co Ltd 交流電動機の制御方法と異常検出方法
JP2000184773A (ja) * 1998-12-15 2000-06-30 Toyoda Mach Works Ltd モータ制御装置
JP2001187578A (ja) * 1999-12-28 2001-07-10 Koyo Seiko Co Ltd 電動パワーステアリング装置のためのモータ制御装置
JP2003033070A (ja) * 2001-06-29 2003-01-31 Lg Electronics Inc モータの運転を制御する装置及びその方法
JP2007228767A (ja) * 2006-02-27 2007-09-06 Hitachi Ltd 永久磁石同期モータの制御装置,制御方法、及びモジュール
JP2008220155A (ja) * 2007-02-08 2008-09-18 Jtekt Corp モータ制御装置および電動パワーステアリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261384A (ja) * 1991-02-09 1992-09-17 Daikin Ind Ltd トルク制御インバータ制御方法およびその装置
JPH05328733A (ja) * 1992-05-18 1993-12-10 Hitachi Ltd 空気調和機
JPH0833194A (ja) * 1993-09-17 1996-02-02 Fuji Electric Co Ltd 交流電動機の制御方法と異常検出方法
JP2000184773A (ja) * 1998-12-15 2000-06-30 Toyoda Mach Works Ltd モータ制御装置
JP2001187578A (ja) * 1999-12-28 2001-07-10 Koyo Seiko Co Ltd 電動パワーステアリング装置のためのモータ制御装置
JP2003033070A (ja) * 2001-06-29 2003-01-31 Lg Electronics Inc モータの運転を制御する装置及びその方法
JP2007228767A (ja) * 2006-02-27 2007-09-06 Hitachi Ltd 永久磁石同期モータの制御装置,制御方法、及びモジュール
JP2008220155A (ja) * 2007-02-08 2008-09-18 Jtekt Corp モータ制御装置および電動パワーステアリング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108079A1 (ja) 2011-02-07 2012-08-16 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2012165565A (ja) * 2011-02-07 2012-08-30 Nsk Ltd 電動パワーステアリング装置の制御装置
CN103329425A (zh) * 2011-02-07 2013-09-25 日本精工株式会社 电动助力转向装置的控制装置
CN103329425B (zh) * 2011-02-07 2015-09-02 日本精工株式会社 电动助力转向装置的控制装置
US9143064B2 (en) 2011-02-07 2015-09-22 Nsk Ltd. Control apparatus for electric power steering apparatus
CN110620540A (zh) * 2018-06-20 2019-12-27 操纵技术Ip控股公司 永磁同步马达驱动器的参数学习

Also Published As

Publication number Publication date
JP5444697B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5228578B2 (ja) モータ制御装置および電動パワーステアリング装置
US8364349B2 (en) Motor controller and electric power steering apparatus with temperature detector of the motor
JP5428325B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5453729B2 (ja) モータ制御装置および電動パワーステアリング装置
WO2009123113A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5263090B2 (ja) 電動パワーステアリング装置
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5453714B2 (ja) モータ制御装置および電動パワーステアリング装置
WO2009091015A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5315709B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5719177B2 (ja) 電動パワーステアリング装置
JP5412825B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5136839B2 (ja) モータ制御装置
JP2010029027A (ja) モータ制御装置
JP5444697B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5446411B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5470968B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5434216B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5412824B2 (ja) モータ制御装置および電動パワーステアリング装置
JP2008155683A (ja) 電気式動力舵取装置
JP2011230531A (ja) モータ制御装置
JP2010284030A (ja) モータ制御装置および電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees