JP2010100807A - バイオコークス製造方法及び製造装置 - Google Patents

バイオコークス製造方法及び製造装置 Download PDF

Info

Publication number
JP2010100807A
JP2010100807A JP2009083887A JP2009083887A JP2010100807A JP 2010100807 A JP2010100807 A JP 2010100807A JP 2009083887 A JP2009083887 A JP 2009083887A JP 2009083887 A JP2009083887 A JP 2009083887A JP 2010100807 A JP2010100807 A JP 2010100807A
Authority
JP
Japan
Prior art keywords
pressure
fine particles
filling
reaction vessel
biomass fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083887A
Other languages
English (en)
Other versions
JP5078938B2 (ja
Inventor
Tamio Ida
民男 井田
Yoshimasa Kawami
佳正 川見
Atsushi Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to AU2010231882A priority Critical patent/AU2010231882A1/en
Priority to PCT/JP2010/054821 priority patent/WO2010113679A1/ja
Priority to MYPI2011004715A priority patent/MY149440A/en
Priority to EP10758453A priority patent/EP2415852A4/en
Priority to SG2011071339A priority patent/SG174994A1/en
Publication of JP2010100807A publication Critical patent/JP2010100807A/ja
Priority to US13/250,444 priority patent/US20120168296A1/en
Application granted granted Critical
Publication of JP5078938B2 publication Critical patent/JP5078938B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/12Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in which the charge is subjected to mechanical pressures during coking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coke Industry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

【課題】バイオコークスを短時間で且つ効率的に製造することを可能としたバイオコークス製造方法及び装置を提案する。
【解決手段】反応容器にバイオマス細粒体を充填し、略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後冷却してバイオコークスを製造する方法において、反応容器にバイオマス細粒体を投入した後、該反応容器の上部から加圧体を下降させ前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段によりバイオマス細粒体を前記温度範囲に加熱して所定時間保持した後加熱手段から冷却手段に切り替えて成形体を冷却する反応工程と、加圧体の圧力を低下させた後反応容器の底部を開放し、冷却された成形体を排出する排出工程とを備える。
【選択図】 図2

Description

本発明は、バイオマスを原料としたバイオコークスの製造技術に関し、特に石炭コークスの代替燃料として効果的に利用可能であるバイオコークスを製造するためのバイオコークス製造方法及び製造装置に関する。
近年、地球温暖化の観点からCO排出の削減が推進されている。特に、製鉄業界に於いて鋳造炉(キュウポラ炉)や高炉などでは、主たる燃料や還元剤に化石燃料である石炭コークスが用いられている。また、ボイラ発電等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多い。この化石燃料は、CO排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギー資源の開発、実用化が求められている。
そこで、化石燃料の代替として、大気中のCO量に影響を与えないバイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、農作物に基づく厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギー源又は工業原料として有効に利用し地球環境保全に貢献することができる。
バイオマスを燃料化する方法としては、バイオマスを乾燥させて燃料化する方法、加圧して燃料ペレット化する方法、炭化、乾留させて固体及び液体の燃料化する方法等が知られている。しかし、バイオマスを乾燥させるのみでは、空隙率が大きくみかけ比重が低くなるため、輸送や貯留が困難であり、長距離輸送や貯留して使用する燃料としては有効とはいえない。
一方、バイオマスを燃料ペレット化する方法は、特許文献1(特公昭61−27435号公報)に開示されている。この方法は、細断された有機繊維材料の含水量を16〜28%に調節し、これをダイス内で圧縮して乾燥し燃料ペレットを製造するようにしている。
また、バイオマスを乾留して燃料化する方法は、特許文献2(特開2003−206490号公報)等に開示されている。この方法は、酸素欠乏雰囲気中において、バイオマスを200〜500℃、好適には250〜400℃で加熱して、バイオマス半炭化圧密燃料前駆体を製造する方法となっている。
しかしながら、特許文献1に記載される方法では、圧縮成形を行うことによりバイオマスを燃料化しているが、生成した燃料ペレットは水分量が多いため発熱量が低く、燃料としては適していない。
また、特許文献2等に記載されるように乾留によりバイオマスを燃料化する方法では、加工処理を施さないバイオマスに比べると燃料として価値が高いものとなっているが、やはり石炭コークスに比べてみかけ比重が低く、発熱量が低い。さらに、石炭コークスに比べて硬度が低いため、石炭コークスの代替として利用するには不十分である。
そこで、近年石炭コークスの代替として、特許文献3(特許第4088933号公報)に基づくバイオコークスが研究されている。
バイオコークスは、バイオマス原料を加圧、加熱した状態で一定時間保持した後に、加圧を維持した状態で冷却することにより製造される。加圧、加熱条件は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲に設定する。これにより以下の反応機構が成立し、高硬度で高圧密されたバイオコークスが製造できる。
その反応機構は、上記した条件で反応を行うことにより、バイオマス細粒体の繊維成分であるヘミセルロースが熱分解し接着効果を発現させ、バイオマス細粒体に含まれる自由水がこの加圧、加熱条件下での作用によりリグニンがその骨格を維持したまま低温で反応し、圧密効果と相乗的に作用することによって、高硬度で高圧密されたバイオコークスが製造できるものである。熱硬化反応は、リグニン等に含まれるフェノール性の高分子間で反応活性点が誘発することにより進行する。
図8に、バイオコークスの物性値を他の燃料と比較した表を示す。尚、この表は実験的に得られた数値を記載しているのみであり、本発明はこの数値に限定されるものではない。
この表に示されるように、バイオコークスは、みかけ比重1.2〜1.52に高圧密され、最高圧縮強度20〜200MPa、発熱量18〜23MJ/kgの物性値を示す硬度、燃焼性ともに優れた性能を有しており、未加工の木質バイオマスが、みかけ比重約0.4〜0.6、発熱量約17MJ/kg、最高圧縮強度約30MPaであるのと比べると、発熱量及び硬度の点において格段に優れていることが判る。また、石炭コークスの物性値である、みかけ比重約1.85、最高圧縮強度約15MPa、発熱量約29MJ/kgに比しても、バイオコークスは燃焼性、硬度とも遜色ない性能を有する。従って、バイオコークスは石炭コークスの代替として有効な燃料であるとともに、マテリアル素材としての利用価値も高い。
特公昭61−27435号公報 特開2003−206490号公報 特許第4088933号公報
しかしながら、バイオコークスは未だ研究段階であり、特許文献3には加圧手段や加熱、冷却手段等の具体的な装置構成やその制御については開示されておらず、バイオコークスを短時間で且つ効率的に製造する技術については言及されていなかった。
そこで本発明は、バイオコークスを短時間で且つ効率的に製造することを可能としたバイオコークス製造方法及び装置を提案する。
上記の課題を解決するために、本発明は、有底筒状の反応容器にバイオマス細粒体を充填し、該バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後、冷却してバイオコークスを製造するバイオコークス製造方法において、
前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、
前記加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段により前記バイオマス細粒体を前記温度範囲に加熱して所定時間保持した後、前記加熱手段から冷却手段に切り替えて前記反応容器内に生成された成形体を冷却する反応工程と、
前記加圧体の圧力を低下させた後前記反応容器の底部を開放し、前記冷却された成形体を排出する排出工程と、を備えることを特徴とする。
本発明では、充填工程にて先ず加圧体を低圧で作動させバイオマス細粒体の充填時加圧を行い、次いで反応工程で加圧体の圧力を上昇させるとともにこれに連動させて加熱手段を作動させ、略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧してバイオマス細粒体を反応させ、所定時間保持した後に加圧手段は保持したまま加熱手段から冷却手段に切り替えて冷却を行い、バイオコークス成形体を製造するようにしている。このように、加圧体と加熱手段及び冷却手段を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。また、バイオマスは細粒体状で反応容器に投入されるため嵩密度が低く、そのままの状態だと反応容器の容積を大きくしなければならないが、充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
さらに、前記充填工程では、充填時加圧時に前記加圧体の圧力値と前記反応容器内のバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことを特徴とする。
これにより、反応容器にバイオマス細粒体を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となり、延いては製品としての価値を向上させることができる。
また、前記充填工程では、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出するか、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定することによりバイオマス細粒体の充填量を検出することを特徴とする。
これにより、簡単にバイオマス細粒体の充填量を検出することが可能となる。特に、位置センサを用いる場合は精度の高い検出が可能となり、下降時間を用いる場合は装置を安価にできる。
また、前記充填工程にて前記加圧体の下降回数をカウンタにてカウントし、該充填工程の終了時に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断することを特徴とする。
これは、加圧体の下降回数が正常動作状態で予測される下降回数よりも少ない場合には、例えば加圧体が反応容器の側部に引っかかるなどの不具合が生じ、適切に下降しなかっと考えられる。従って、加圧体の下降回数をカウントすることにより充填時加圧の異常を簡単に把握することが可能となる。
さらに、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であり、
前記反応工程では、先に熱媒を循環させて所定時間保持した後、冷媒に切り替えることを特徴とする。
このように、前記加熱手段と前記冷却手段として冷熱媒循環手段を用いることにより、バイオマス細粒体の加熱又は冷却を迅速に行え、また加熱から冷却への切替が円滑に行える。
さらにまた、前記排出工程では、前記加圧体を低圧下降して前記反応容器の開放した底面から成形体を押出し排出することを特徴とする。
このように、加圧体を用いて成形体を押出し排出することにより、反応容器内に圧密して形成された成形体を容易に排出可能となる。
また、バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
前記加圧体の圧力制御、及び前記加熱手段と前記冷却手段の切り替え制御を行う制御装置を備え、
前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、所定時間経過後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とする。
さらに、前記加圧体の圧力値を検出する圧力検出手段と、
前記反応容器内のバイオマス細粒体の充填量を検出する充填量検出手段と、を備え、
前記制御装置は、前記加圧体の第1の圧力段階にて、前記圧力検出手段の検出値と前記充填量検出手段の検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うように制御することを特徴とする。
また、前記充填量検出手段は、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出する手段か、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定する手段の何れかであることを特徴とする。
さらに、前記制御装置が前記加圧体の下降回数をカウントするカウンタを備え、該制御手段は、前記加圧体の圧力段階を切り替える際に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断して前記加圧体を停止することを特徴とする。
さらにまた、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする。
また、前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする。
本発明は、充填工程にて先ず加圧体を低圧で作動させバイオマス細粒体の充填時加圧を行い、次いで反応工程で加圧体の圧力を上昇させるとともにこれに連動させて加熱手段を作動させ、略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧してバイオマス細粒体を反応させ、所定時間保持した後に加圧手段は保持したまま加熱手段から冷却手段に切り替えて冷却を行い、バイオコークス成形体を製造するようにしている。このように、加圧体と加熱手段及び冷却手段を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。また、バイオマスは細粒体状で反応容器に投入されるため嵩密度が低く、そのままの状態だと反応容器の容積を大きくしなければならないが、充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
また、充填時加圧時に加圧手段の圧力値とバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことにより、反応容器にバイオマス細粒体を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となり、延いては製品としての価値を向上させることができる。
また、バイオマス細粒体の充填量を検出する際に、バイオマス細粒体の上端位置を位置センサで検出するか、或いは加圧体の下降時間を検出して充填量を推定することにより、簡単にバイオマス細粒体の充填量を検出することが可能となる。
さらに、前記加熱手段と前記冷却手段として冷熱媒循環手段を用いることにより、バイオマス細粒体の加熱又は冷却を迅速に行え、また加熱から冷却への切替が円滑に行える。
さらにまた、前記排出工程にて、加圧体を低圧下降して反応容器の開放した底面から成形体を押出し排出することにより、反応容器内に圧密して形成された成形体を容易に排出可能となる。
本発明の実施形態に係るバイオコークス製造装置の構成を示す断面図である。 本発明の実施形態に係るバイオコークス製造方法を示すフローチャートである。 本発明の実施形態に係るバイオコークス製造装置の充填工程における動作を説明する図である。 本発明の実施形態に係るバイオコークス製造装置の反応工程における動作を説明する図である。 本発明の実施形態に係るバイオコークス製造装置の排出工程における動作を説明する図である。 本発明の実施形態に係る加圧用油圧機構の油圧回路図である。 本発明の実施形態に係る冷熱媒回路を備えたバイオコークス製造装置のシステム構成図である。 バイオコークスの物性値を比較する表である。
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の種類、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
本実施形態において、バイオコークスの原料となるバイオマスは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスであり、例えば、廃木材、間伐材、剪定枝、植物、農業廃棄物、コーヒー滓や茶滓等の厨芥廃棄物等が挙げられる。
本実施形態では、必要に応じて所定の含水率になるように水分調整されたバイオマス細粒体を原料としている。バイオマス細粒体は、茶滓やコーヒー滓等のように小粒径のバイオマスをそのまま用いてもよいし、廃木材等の大粒径のバイオマスを予め所定粒径以下まで粉砕したものであってもよい。
本実施形態のバイオコークス装置は、バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して一定時間保持した後に、加圧を維持した状態で冷却することによりバイオコークスを製造する。上記した温度範囲、圧力範囲は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲とする。即ち、前記バイオマス細粒体中のヘミセルロースが熱分解されるとともにリグニンが熱硬化反応を誘起する温度範囲及び圧力範囲である。
まず、図1を参照して、本実施形態のバイオコークス製造装置の基本構成を説明する。
図1に示すように、バイオコークス製造装置1はバイオマス細粒体11が投入される円筒形の反応容器2を有している。該反応容器2の上部にはバイオマス細粒体11を受け入れるホッパ部3が設けられ、下端には成型されたバイオコークスを排出する排出部5が設けられている。また、該反応容器2は、内容物を所定温度まで加熱する加熱手段と、加熱後に冷却する冷却手段とを備える。この加熱手段及び冷却手段は、同一の温度調整手段としてもよい。本実施形態では、温度調整手段として、反応容器2にジャケットを設けた二重管構造とし、内筒と外筒の間に冷熱媒通路4を設けた構成としている。冷熱媒通路4には、熱媒若しくは冷媒(以後、冷熱媒と称する)が通流し、該冷熱媒による伝熱によりシリンダ内筒に充填されたバイオマス細粒体11に熱エネルギの授受を行うようになっている。冷熱媒通路4の下方側には冷熱媒入口4aが設けられ、上方側には冷熱媒出口4bが設けられている。これらの冷熱媒入口4a及び冷熱媒出口4bは、後述する冷熱媒回路に接続されている(図7参照)。冷熱媒通路4、冷熱媒入口4a、冷熱媒出口4b、冷熱媒回路を含み、冷熱媒の切り替えにより反応容器2の温度制御を行う機構を冷熱媒循環機構と称する。
排出部5は反応容器2の径と同一径の開口からなり、その下方には該排出部5を開閉する排出装置が設けられている。該排出装置は、排出部5を封止する底面蓋部9と、該底面蓋部9を水平方向にスライドさせて排出部5の封止、開放を制御する排出用油圧機構10とから構成される。この排出装置は、反応容器2内にて反応工程が終了した後に、油圧機構10を駆動させ底面蓋部9をスライドさせて排出部5を開放し、シリンダ2内のバイオコークスを落下させて排出するようになっている。さらに、反応容器2の上方には、該シリンダ2内のバイオマス細粒体11を所定圧力まで加圧する加圧手段を備える。この加圧手段は、加圧シリンダ7により駆動されて反応容器2内を往復動する加圧ピストン(加圧体)6と、該加圧シリンダ7内の油圧を制御する加圧用油圧機構8とからなる(図6参照)。加圧ピストン6及び加圧シリンダ7は、反応容器2と同軸上に配置される。加圧ピストン6は、反応容器2の底面付近まで下降する。該加圧ピストン6は、所定時間だけこの加圧状態を保持できる構成となっている。さらにまた、加圧ピストン6の上下方向の位置を加圧ピストン6の伸び量で検出する位置センサ20を設けていてもよい。
加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構は、制御装置100により制御される。該制御装置100は、中央処理装置
(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。さらに、制御装置100は、加圧用油圧機構8の加圧ピストン6の充填回数等をカウントするカウンタ101、所定の制御における継続時間を計測するタイマ102を備えている。
図6に、加圧用油圧機構の油圧回路図の一例を示す。加圧シリンダ7に供給される作動油は、ポンプ77によりタンク76から汲み上げられ、電磁弁78により供給量を制御されて加圧シリンダ7に供給される。電磁弁78と加圧シリンダ7の間の油圧通路には逆止弁71、72が設けられており、この部分の作動油圧力が圧力検知センサ75によって背圧として検知され、この値が加圧ピストン6の圧力値として制御装置100に入力される。そして、制御装置100により、圧力検知センサ75にて検知された圧力値に基づいて電磁弁78を制御することにより加圧ピストン6の圧力が調整される。
加圧ピストン6の圧力段階は、バイオマス細粒体11を反応させて半炭化或いは半炭化前固形物を得る圧力範囲より低圧で、バイオマス細粒体11を充填時加圧する第1の圧力段階と、充填時加圧したバイオマス細粒体11を前記圧力範囲で加圧する第2の圧力段階と、の少なくとも2段階を有する。
図7を参照して、冷熱媒循環機構が備える冷熱媒回路30の一例につき説明する。この冷熱媒回路30を用いることにより、熱効率が高く且つ安全性の高い温度調整手段とすることが可能であるが、もちろん他の構成の冷熱媒回路を用いてもよい。この冷熱媒回路30では、冷媒及び熱媒にシリコンオイルを用いることが好ましい。
反応容器2の冷熱媒入口4aと出口4bは、同図に示される冷熱媒回路30に夫々接続されている。該冷熱媒回路30は、冷媒回路と熱媒回路とが組み合わされた構成となっている。冷熱媒出口4bは、冷熱媒排出ライン41に接続され、該排出ライン41上の三方バルブ45を介して熱媒戻りライン42と、冷媒戻りライン43に分岐している。
熱媒戻りライン42は熱媒タンク31に接続されている。該熱媒タンク31は、加熱器31aと、撹拌機31bを具備しており、冷却された熱媒を昇温するようになっている。必要に応じてNボンベからNガスが供給されるようにし、タンク内を不活性雰囲気に保持して安全性を確保することが好ましい。熱媒タンク31の出口側は、三方バルブ46を介して冷熱媒供給ライン40に接続されている。
このような構成を用いて、反応容器2の加熱時には、三方バルブ45、46を制御することにより熱媒タンク31側に熱媒が循環するようにし、熱媒タンク31、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、熱媒戻りライン42からなる熱媒回路を形成する。
冷媒戻りライン43は、冷媒熱交換器36に接続されている。該冷媒熱交換器36は、上水等の冷却水と冷媒とを熱交換し、冷媒を冷却する構成となっている。
さらに、好適には冷媒戻りライン43の冷媒熱交換器36より上流側に、冷媒タンク35を設ける。この冷媒タンク35は、少なくとも冷媒温度を水の沸点以下、好適には80℃以下まで冷却する能力を有するものとする。さらに、冷媒タンク35は、撹拌機35aを具備することが好ましく、これにより冷媒タンク35出口の冷媒温度変化を軽減し冷却能力を向上させる。
このような構成を用いて、反応容器2の冷却時には、三方バルブ45、46を制御することにより冷媒タンク35側に切り替えて、該冷媒タンク35側に冷媒が循環するようにし、冷媒タンク35、冷媒熱交換器36、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、冷媒戻りライン43からなる冷媒回路を形成する。
このように、反応容器2内のバイオマス細粒体11の加熱手段、冷却手段として、冷熱媒回路30を備えた冷熱媒循環機構を用いることにより、バイオマス細粒体11の加熱又は冷却が迅速に行え、また加熱から冷却への切替を円滑に行うことが可能となる。
次に、図2を参照して、本実施形態に係るバイオコークス製造方法のフローを説明する。
まず、充填工程において、制御装置100により充填操作を起動させる(S1)。これは、加圧用油圧機構8や排出用油圧機構10を含む各油圧機構、及び冷熱媒循環機構を起動させ(S2)、カウンタ101の充填回数をリセットする(S3)。即ち、充填回数をX(回)とすると、X=0に設定する。このとき、図3(i)に示すように、加圧ピストン6は反応容器2上部の初期位置Hに設定しておく。
そして、原料であるバイオマス細粒体11をホッパ部3より反応容器2内に投入する(S4)。バイオマス細粒体11を投入後、図3(ii)に示すように、加圧用油圧機構8により加圧シリンダ7を低圧で下降側に駆動して加圧ピストン6を下降させる(S5)。低圧下降時の圧力は、後述する反応工程の圧力より低い第1の圧力段階Pとする。この時、カウンタ101の充填回数を+1増加させて、X=X+1とする(S6)。低圧下降時に制御装置100では、加圧シリンダ7の油圧Pが予め設定された所定圧力Pより大きいか否かを監視する(S7)。加圧シリンダ7の油圧Pが所定圧力P以下の状態にて、タイマ102にて計測される加圧時間が予め設定された所定時間以上経過した場合は、S5に戻り再度加圧シリンダ7を下降側に駆動する。好適には、充填時加圧を行う第1段階の圧力Pは14MPaとし、所定時間は10秒とする。
一方、加圧シリンダ7の油圧Pが所定圧力Pより大きい状態で所定時間以上経過した場合は、次いで反応容器2内のバイオマス細粒体11の充填量を検出する。これは、バイオコークスを目的とする大きさに成型するために行われる。
バイオマス細粒体11の充填量検出は以下のように行う。
位置センサ20により反応容器2内のバイオマス細粒体上端位置Hを検出する。そして、検出された上端位置Hが、予め設定された充填量設定値H以上であるか否か(H≧H)を判断する。
また、バイオマス細粒体11の充填量検出の別の方法として、加圧ピストン6が初期位置Hからバイオマス細粒体上端Hまで下降する下降時間Tをタイマ102により検出して充填量を推定するようにしてもよい。この場合、予め初期位置Hから充填量設定値Hまでの加圧ピストン6の下降時間を取得しておき、これを指定時間Tとする。そして検出された下降時間Tが指定時間T以下であるか否か(T≦T)を判断する(S8)。
このように、位置センサ20又は加圧ピストン6の下降時間Tを用いることにより、簡単にバイオマス細粒体11の充填量を検出することが可能となる。特に、位置センサ20を用いる場合は精度の高い検出が可能となり、下降時間Tを用いる場合は装置を安価にできる。
図3(ii)に示すように、反応容器2内の充填位置Hが充填目的位置Hに到達していない場合(H<H)、若しくは加圧シリンダ7の下降時間Tが指定時間Tより長い場合(T>T)は、充填量が不足していると判断し、加圧シリンダ7を上昇側に駆動し(S11)、加圧シリンダ7の油圧Pが所定圧力Pより大きいか否かを判断し(S12)、大きい場合にはS11に戻りさらに加圧シリンダ7を上昇側に駆動し、小さい場合には図3(iii)に示すように再度バイオマス細粒体11を投入して(S4)、S4以降の加圧シリンダ7の充填工程を繰り返し行う。この操作は、図3(iv)に示すように、加圧シリンダ7の油圧Pが所定圧力Pより大きく、且つバイオマス細粒体11の充填量が予め設定された充填量設定値H以上となったら終了する。
上記したように充填工程を行うことにより、反応容器2にバイオマス細粒体11を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となる。また、バイオマスは細粒体状で反応容器2に投入されるため嵩密度が低く、そのままの状態だと反応容器2の容積を大きくしなければならないが、充填工程にて加圧ピストン6により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体11を投入することが可能となり、反応容器2の小型化が可能となる。
S8にて反応容器2内のバイオマス細粒体11が目的とする充填量に達していると検出された場合には、カウンタ101にてカウントされる充填回数Xが所定の充填回数Xa未満であるか否かを判断し(S9)、充填回数Xが所定の充填回数Xa未満である場合には、加圧ピストン6が反応容器2の入口付近に引っかかるなどの異常が発生した事により加圧ピストン6が適切に下降しなかったものと推測し、装置を停止する(S10)。充填回数Xが所定の充填回数Xa以上である場合には、反応工程に移行する。このように、カウンタ101にて充填回数Xをカウントすることにより、充填時加圧における異常を簡単に且つリアルタイムで把握することが可能となる。
反応工程では、図4に示すように、加圧シリンダ7を高圧にて下降側に駆動して加圧ピストン6を下降させ(S13)、バイオマス細粒体11を反応させるために必要とされる所定の圧力範囲P(第2の圧力段階)で該バイオマス細粒体11を加圧する。また、熱媒を反応容器2の冷熱媒通路4に循環させ所定の温度範囲でバイオマス細粒体11を加熱する(S14)。所定の圧力範囲Pは、上記したようにバイオマス細粒体中のヘミセルロース、リグニンの熱分解又は熱硬化反応を誘起する圧力範囲及び温度範囲とする。好適には、圧力範囲Pを8〜25MPa、温度範囲を115〜230℃とする。反応容器2内のバイオマス細粒体11は、上記した加圧、加熱状態を一定時間保持する。例えば、シリンダ径が50mmの場合、保持時間は10〜20分間で、150mmの場合は30〜60分間とする。タイマ102にて熱媒循環時間が終了したか否かを判断し(S15)、終了したら冷熱媒循環機構を熱媒から冷媒に切り替えて、冷熱媒通路4への冷媒循環を開始する(S16)。同様にタイマ102にて冷媒循環時間が終了したか否かを判断し(S17)、終了したら冷媒循環を停止し、排出工程に移行する。
排出工程では、図5(i)に示すように、加圧シリンダ7の高圧を抜き(S18)排出用油圧機構10を駆動して底面蓋部9をスライドして排出部5を開放する(S19)。次いで、図5(ii)に示すように加圧シリンダ7を低圧で下降側に駆動させ、反応容器2内に製造されたバイオコークス19を加圧ピストン6により押出し排出する(S20)。これにより、反応容器2内に圧密して形成されたバイオコークス19を容易に排出可能となる。
このとき、位置センサ20により検出される加圧ピストン6の位置が下降端位置まで到達したか否かを判断し(S21)、到達した場合には加圧シリンダ7を低圧で上昇側に駆動させ加圧ピストン6を上昇させる(S22)とともに底面蓋部9を閉鎖し(S23)、加圧ピストン6を上昇端まで移動させる(S24)。そして、制御装置100に通常運転停止命令が入力された場合には(S25)、運転を終了する(S26)。停止命令が入力されていない場合には(S25)、S3まで戻り、充填回数をリセットした後、原料投入(S4)移行のステップを繰り返し行う。
上記したように本実施形態では、充填工程にて、先ず加圧ピストン6を低圧の第1の圧力段階で作動させてバイオマス細粒体11の充填時加圧を行い、次いで反応工程で加圧ピストン6の圧力を上昇させるとともにこれに連動させて冷熱媒通路4に熱媒を通流させ、反応容器2内でバイオマス細粒体11を略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲(第2の圧力段階)で加圧しながら加熱し、所定時間保持した後に、加圧状態は保持したまま冷熱媒通路4を熱媒から冷媒に切り替えて冷却を行い、バイオコークス成形体19を製造するようにしている。このように、制御装置100により加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。
本実施形態に係るバイオコークス製造装置を用いることにより、石炭コークスの代替として利用可能な高硬度で高密度のバイオコークスを効率的に製造することが可能となる。また、本実施形態にて製造されたバイオコークスは、鋳物製造或いは製鉄において、キュポラ炉、高炉等における熱源・還元剤等として利用可能であり、また発電用ボイラー燃料、消石灰等の焼成燃料等の燃料需要にも利用可能であり、更に高い圧縮強度等の特性を活かして、マテリアル素材としての使用も可能である。
1 バイオコークス製造装置
2 反応容器
4 冷熱媒通路
6 加圧ピストン(加圧体)
8、10 油圧機構
9 底面蓋部
11 バイオマス細粒体
30 冷熱媒回路
100 制御装置
101 カウンタ
102 タイマ

Claims (11)

  1. 有底筒状の反応容器にバイオマス細粒体を充填し、該バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形した後、冷却してバイオコークスを製造するバイオコークス製造方法において、
    前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧する充填工程と、
    前記加圧体の圧力を上昇させ前記圧力範囲にてバイオマス細粒体を加圧するとともに、加熱手段により前記バイオマス細粒体を前記温度範囲に加熱して所定時間保持した後、前記加熱手段から冷却手段に切り替えて前記反応容器内に生成された成形体を冷却する反応工程と、
    前記加圧体の圧力を低下させた後前記反応容器の底部を開放し、前記冷却された成形体を排出する排出工程と、を備えることを特徴とするバイオコークス製造方法。
  2. 前記充填工程では、充填時加圧時に前記加圧体の圧力値と前記反応容器内のバイオマス細粒体の充填量とを検出し、これらの検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うことを特徴とする請求項1記載のバイオコークス製造方法。
  3. 前記充填工程では、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出するか、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定することによりバイオマス細粒体の充填量を検出することを特徴とする請求項2記載のバイオコークス製造方法。
  4. 前記充填工程にて前記加圧体の下降回数をカウンタにてカウントし、該充填工程の終了時に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断することを特徴とする請求項1若しくは2記載のバイオコークス製造方法。
  5. 前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であり、
    前記反応工程では、先に熱媒を循環させて所定時間保持した後、冷媒に切り替えることを特徴とする請求項1記載のバイオコークス製造方法。
  6. 前記排出工程では、前記加圧体を低圧下降して前記反応容器の開放した底面から成形体を押出し排出することを特徴とする請求項1記載のバイオコークス製造方法。
  7. バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
    前記加圧体の圧力制御、及び前記加熱手段と前記冷却手段の切り替え制御を行う制御装置を備え、
    前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
    前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、所定時間経過後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とするバイオコークス製造装置。
  8. 前記加圧体の圧力値を検出する圧力検出手段と、
    前記反応容器内のバイオマス細粒体の充填量を検出する充填量検出手段と、を備え、
    前記制御装置は、前記加圧体の第1の圧力段階にて、前記圧力検出手段の検出値と前記充填量検出手段の検出値がともに予め設定された充填時加圧設定範囲、充填量設定範囲になるまで前記バイオマス細粒体の投入と前記充填時加圧を繰り返し行うように制御することを特徴とする請求項7記載のバイオコークス製造装置。
  9. 前記充填量検出手段は、前記反応容器に投入されたバイオマス細粒体の上端位置を位置センサで検出する手段か、或いは前記加圧体が初期位置からバイオマス細粒体上端まで下降する下降時間を検出して充填量を推定する手段の何れかであることを特徴とする請求項8記載のバイオコークス製造装置。
  10. 前記制御装置が前記加圧体の下降回数をカウントするカウンタを備え、該制御手段は、前記加圧体の圧力段階を切り替える際に、正常動作状態で予測される下降回数よりも前記カウントされた下降回数が少ない場合は充填時加圧にて異常が発生したと判断して前記加圧体を停止することを特徴とする請求項7若しくは8記載のバイオコークス製造装置。
  11. 前記加熱手段と前記冷却手段が、前記反応容器の外周に熱媒又は冷媒を通流させてバイオマス細粒体を加熱又は冷却する冷熱媒循環手段であることを特徴とする請求項7記載のバイオコークス製造装置。
JP2009083887A 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置 Expired - Fee Related JP5078938B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2010231882A AU2010231882A1 (en) 2009-03-31 2010-03-19 Biocoke manufacturing method and manufacturing device
PCT/JP2010/054821 WO2010113679A1 (ja) 2009-03-31 2010-03-19 バイオコークス製造方法及び製造装置
MYPI2011004715A MY149440A (en) 2009-03-31 2010-03-19 Biocokes producing method and apparatus
EP10758453A EP2415852A4 (en) 2009-03-31 2010-03-19 BIOCOKE MANUFACTURING METHODS AND MANUFACTURING DEVICE
SG2011071339A SG174994A1 (en) 2009-03-31 2010-03-19 Biocokes producing method and apparatus
US13/250,444 US20120168296A1 (en) 2008-10-27 2011-09-30 Biocokes producing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10867208P 2008-10-27 2008-10-27
US61/108,672 2008-10-27

Publications (2)

Publication Number Publication Date
JP2010100807A true JP2010100807A (ja) 2010-05-06
JP5078938B2 JP5078938B2 (ja) 2012-11-21

Family

ID=42291721

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2009083892A Active JP5469896B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083893A Pending JP2010100813A (ja) 2008-10-27 2009-03-31 バイオコークス製造装置
JP2009083894A Pending JP2010100814A (ja) 2008-10-27 2009-03-31 バイオコークスの破断装置
JP2009083887A Expired - Fee Related JP5078938B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083890A Pending JP2010100810A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083895A Active JP5547420B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083888A Active JP5547419B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造装置及び製造方法
JP2009083891A Pending JP2010100811A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083889A Pending JP2010100809A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2009083892A Active JP5469896B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083893A Pending JP2010100813A (ja) 2008-10-27 2009-03-31 バイオコークス製造装置
JP2009083894A Pending JP2010100814A (ja) 2008-10-27 2009-03-31 バイオコークスの破断装置

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2009083890A Pending JP2010100810A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083895A Active JP5547420B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083888A Active JP5547419B2 (ja) 2008-10-27 2009-03-31 バイオコークス製造装置及び製造方法
JP2009083891A Pending JP2010100811A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置
JP2009083889A Pending JP2010100809A (ja) 2008-10-27 2009-03-31 バイオコークス製造方法及び製造装置

Country Status (2)

Country Link
US (1) US20120168296A1 (ja)
JP (9) JP5469896B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079356A (ko) * 2011-07-05 2014-06-26 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP2021176933A (ja) * 2020-05-08 2021-11-11 石光商事株式会社 コーヒー液抽出システム、コーヒー液抽出方法、焙煎したコーヒー豆の製造方法、焙煎したコーヒー豆
JP7555067B2 (ja) 2019-09-27 2024-09-24 学校法人近畿大学 固体バイオ燃料の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005432A (ja) * 2012-06-25 2014-01-16 Kinki Univ バイオ白炭
JP5586801B1 (ja) * 2014-01-24 2014-09-10 中外炉工業株式会社 成形装置及び成形物の製造方法
CN104142261B (zh) * 2014-07-14 2016-09-07 中国矿业大学 一种超声波除泡快速制作粉煤光片的方法及装置
JP7185108B2 (ja) * 2016-05-21 2022-12-07 望 青木 コーヒーブロック形成方法
CN111548807B (zh) * 2020-04-30 2021-04-27 鞍钢股份有限公司 一种利用煤热膨胀性压实炼焦装置及方法
JP2023080635A (ja) * 2021-11-30 2023-06-09 国立研究開発法人産業技術総合研究所 二段階半炭化工程による固体バイオ燃料およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129097A (ja) * 1997-10-31 1999-05-18 Daiki Sato 被処理物の圧密処理装置
JP2003165508A (ja) * 2001-11-30 2003-06-10 Tokyu Car Corp カーシュレッダーダスト減容梱包装置
JP2008274114A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び製造方法
JP2008274111A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークスの製造方法及びその製造物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201128A (en) * 1977-09-02 1980-05-06 Gardner Thomas H Apparatus for the compacting and treatment of materials such as shredded paper
JPH11320193A (ja) * 1998-05-21 1999-11-24 Ryowa Kogyo Kk 圧縮成形装置
JP2003181690A (ja) * 2001-12-17 2003-07-02 Ntn Corp スラッジの固形化物製造装置
JP4672286B2 (ja) * 2004-05-20 2011-04-20 有限会社近藤鉄工 燃料ペレットの製造方法
WO2006077652A1 (ja) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization 木質バイオマス固形燃料及びその製法
JP2008194723A (ja) * 2007-02-13 2008-08-28 Koike Sanso Kogyo Co Ltd 粉粒体の固形化装置
JP5158751B2 (ja) * 2007-04-27 2013-03-06 株式会社ナニワ炉機研究所 バイオコークス製造装置及び製造方法
JP2008274108A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129097A (ja) * 1997-10-31 1999-05-18 Daiki Sato 被処理物の圧密処理装置
JP2003165508A (ja) * 2001-11-30 2003-06-10 Tokyu Car Corp カーシュレッダーダスト減容梱包装置
JP2008274114A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークス製造装置及び製造方法
JP2008274111A (ja) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd バイオコークスの製造方法及びその製造物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079356A (ko) * 2011-07-05 2014-06-26 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP2014520740A (ja) * 2011-07-05 2014-08-25 ビーエーエスエフ ソシエタス・ヨーロピア 水素及び炭素含有生成物を並列的に製造方法
KR101955740B1 (ko) 2011-07-05 2019-03-07 린데 악티엔게젤샤프트 수소 및 탄소-함유 생성물의 병행 생산 방법
JP7555067B2 (ja) 2019-09-27 2024-09-24 学校法人近畿大学 固体バイオ燃料の製造方法
JP2021176933A (ja) * 2020-05-08 2021-11-11 石光商事株式会社 コーヒー液抽出システム、コーヒー液抽出方法、焙煎したコーヒー豆の製造方法、焙煎したコーヒー豆
JP7138884B2 (ja) 2020-05-08 2022-09-20 石光商事株式会社 コーヒー液抽出システム、コーヒー液抽出方法、焙煎したコーヒー豆の製造方法、焙煎したコーヒー豆

Also Published As

Publication number Publication date
JP2010100814A (ja) 2010-05-06
JP5469896B2 (ja) 2014-04-16
JP5547420B2 (ja) 2014-07-16
JP2010100810A (ja) 2010-05-06
JP2010100809A (ja) 2010-05-06
JP2010100811A (ja) 2010-05-06
JP2010100813A (ja) 2010-05-06
US20120168296A1 (en) 2012-07-05
JP2010100815A (ja) 2010-05-06
JP5078938B2 (ja) 2012-11-21
JP2010100808A (ja) 2010-05-06
JP5547419B2 (ja) 2014-07-16
JP2010100812A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5078938B2 (ja) バイオコークス製造方法及び製造装置
US8460515B2 (en) Biocoke producing apparatus and process therefor
JP5158751B2 (ja) バイオコークス製造装置及び製造方法
JP5216963B2 (ja) バイオコークス製造装置及びその制御方法、並びに製造方法
EP2668249B1 (en) Method and device for treating biomass
TW201410422A (zh) 物質緻密化之方法及設備
CA2890687C (en) Method and process for producing a water-resistant, mechanically stable form of torrefied biomass
JP2009185183A (ja) バイオコークス製造装置
US20140346702A1 (en) Method and apparatus for material densification
WO2010113679A1 (ja) バイオコークス製造方法及び製造装置
Wokon et al. Investigations on thermochemical energy storage based on manganese-iron oxide in a lab-scale reactor
WO2008136477A1 (ja) バイオコークス製造装置及び製造方法
JP2008274112A (ja) バイオコークス製造装置及び方法
JP2008274109A (ja) バイオコークス製造装置
JP2009185180A (ja) バイオコークス製造装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees