JP2009533764A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2009533764A
JP2009533764A JP2009505435A JP2009505435A JP2009533764A JP 2009533764 A JP2009533764 A JP 2009533764A JP 2009505435 A JP2009505435 A JP 2009505435A JP 2009505435 A JP2009505435 A JP 2009505435A JP 2009533764 A JP2009533764 A JP 2009533764A
Authority
JP
Japan
Prior art keywords
fluid
heat
cooling device
cooling
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009505435A
Other languages
English (en)
Inventor
ブレワー、リチャード、グラント
チョウ、ノーマン
ホーム、ジェイムズ
Original Assignee
クーリギー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クーリギー インコーポレイテッド filed Critical クーリギー インコーポレイテッド
Publication of JP2009533764A publication Critical patent/JP2009533764A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

冷却装置は、パーソナルコンピュータ内で発熱素子を冷却するために使用される。冷却装置は、第1の流体ループ及び1つ以上の第2の流体ループの拡張可能なアレーを備える。第2の流体ループのそれぞれでは、発熱素子は、ループ内の対応する熱交換器に流れる流体に熱を伝導する。熱は、各第2の流体ループ内の流体から、サーマルインターフェースを介して、第1の流体ループの熱バスに伝導される。第2の流体ループは、ポンプ圧送流体ループであってもよく、又はヒートパイプを備えていてもよい。第1の流体ループ内では、流体は、熱バスから流体−空気熱交換装置に継続的にポンプで圧送され、熱バスに戻る。第1の流体ループから熱バスに伝導された熱は、熱バスを通過する第2の流体ループ内の流体に伝導される。加熱された流体は、流体−空気熱交換装置を介してポンプで圧送され、熱は、流体から周囲に伝導される。熱バスは、流体ラインを外すことなく、冷却能力を拡張できるモジュール性の拡張可能な冷却装置を提供する。

Description

関連出願
本出願は、同じ発明者等によって2006年4月11日に出願された米国仮特許出願番号60/791,242、発明の名称「METHODOLOGY OF COOLING MULTIPLE HEAT SOURCES IN A PERSONAL COMPUTER THROUGH THE USE OF MULTIPLE FLUID-BASED HEAT EXCHANGING LOOPS COUPLED VIA MODULAR BUS-TYPE HEAT EXCHANGERS」の優先権を主張する。米国仮特許出願番号60/791,242の全体は、引用によって本出願に援用される。
本発明は、発熱素子を冷却するための冷却装置に関し、詳しくは、パーソナルコンピュータ内で流体ベースの冷却装置を用いて発熱素子を冷却する冷却装置に関する。
電子部品の冷却の分野において、大きな放熱によって高性能集積回路を冷却することが重要な課題となっている。ヒートパイプ及びファンが取り付けられたヒートシンクによる従来の冷却法は、100Wを超える、次第に消費電力要求が大きくなっているチップの冷却には適さない。
例えば、ブレードサーバ及びラックサーバ等の電子サーバは、1単位体積あたり、より高いプロセッサ性能が実現されるため、使用されることが多くなっている。しかしながら、これらの電子サーバは、集積回路の集積度が高いために、熱密度も高く、従来の空冷法の冷却能力では不十分である。
パーソナルコンピュータ内で集積回路を冷却する特定の問題は、より多くの強力な集積回路が同じサイズ又はより小さいパーソナルコンピュータシャーシ内に配設されるという点である。より多くの強力な集積回路が開発されており、熱を発生するトランジスタの密度も高くなっており、個々の集積回路が発生する熱も高くなり続けている。更に、例えば、グラフィックプロセッサ、マイクロプロセッサマルチチップセット等のより多くの集積回路がパーソナルコンピュータに追加されている。更に、より強力でより多くの集積回路が、同じサイズ又はより小さいパーソナルコンピュータシャーシに追加され、これらの素子が発生する単位面積あたりの熱も高くなっている。このような従来のパーソナルコンピュータシャーシの構成では、適切な冷却構造を設けることができる空間が限られている。従来より、パーソナルコンピュータ内の集積回路は、ヒートシンク及びヒートシンクに空気を吹きつける大きなファンを用いることによって、又は単に集積回路を備える回路基板に空気を直接吹きつけることによって冷却されている。しかしながら、パーソナルコンピュータシャーシ内の空間は限られているので、集積回路を冷却するために使用できる空気の量及び例えば、ヒートシンク及びファン等の従来の冷却装置のために使用できる空間は、限定的である。
従来の冷却法の代替となる手法として、循環液体冷却がある。循環冷却法は、空冷法より効率的に周囲に熱を放出することができる。
そこで、本発明の目的は、パーソナルコンピュータ内で集積回路を冷却するためのより効率的な冷却法を提供することである。また、本発明の目的は、パーソナルコンピュータシャーシ内に搭載された複数の回路基板上の集積回路を冷却するためのより効率的な冷却方法を提供することである。
本発明の冷却装置は、1つ以上の発熱素子、例えば、中央処理装置(central processing unit:CPU)、チップセット、グラフィック処理装置(graphics processing unit:GPU)、物理演算処理装置(physics processing unit:PPU)又は他の集積回路が発生する熱を、パーソナルコンピュータシャーシ内の1つ以上の電子回路基板から、周囲に伝導する冷却ソリューションを提供する。幾つかの実施の形態では、ポンプ圧送流体ベースの冷却装置を用いる。冷却装置は、2つの種類の流体ループから構成されている。第1の流体ループは、1つ以上の回収ループの拡張可能なアレーであり、ここでは、1つ以上の発熱素子は、対応する1つ以上の熱交換器に熱を伝導する。熱は、1つ以上の発熱素子から、1つ以上の熱交換器を介して、回収ループを流れる流体に伝導される。流体は、フレキシブルな又は非フレキシブルな一連の配管を介して、伝熱冷却板に継続的にポンプで圧送される。
冷却装置の第2の流体ループは、除熱ループである。熱は、回収ループの流体から、サーマルインターフェースを介して、除熱ループの熱バスに伝導され、この結果、回収ループから熱が取り除かれる。回収ループの流体は、熱交換器に戻され、回収ループ内で循環し続ける。他の実施の形態では、ポンプ圧送流体ベースの回収ループの代わりに、ヒートパイプ又は伝熱板を用いる。除熱ループ内において、流体は、ポンプによって、熱バスから、例えば、ファン及び流体ラジエータ等の流体−空気熱交換装置に継続的に圧送され、熱バスに戻る。回収ループから熱バスに伝導された熱は、熱バスを流れる流体に伝導される。加熱された流体は、流体−空気熱交換装置を介してポンプで圧送され、ここで、熱は、流体から周囲に伝導される。アプリケーションの要求毎に冷却装置の熱性能を向上させるために、回収ループ又は除熱ループ内にTECベースのラジエータを設けてもよい。システム性能を最大化するためには、TECユニットは、除熱ループ内の流体−空気熱交換装置から下流側に配置することが望ましいが、これ以外の構成を用いてもよい。
冷却装置のハブは、熱バスであり、これにより、回収ループから除熱ループに熱が伝導される。熱バスは、流体ラインを外すことなく、冷却能力を拡張できるモジュール性の拡張可能な冷却装置を提供する。回収ループは、CPU、GPU、チップセット及び/又はPPUに予め取り付けてもよく、熱バスレベルでの簡単なインストールのために後に取り付けてもよい。
本発明の一側面として、本発明は、パーソナルコンピュータ内の1つ以上の発熱素子を冷却する冷却装置を提供する。冷却装置は、パーソナルコンピュータシャーシと、1つ以上の発熱素子を有し、パーソナルコンピュータシャーシ内に搭載された1つ以上の回路基板と、1つ以上の第1の熱交換器に熱接触する熱バス及び熱バスを流れる第1の流体を有する第1の熱交換器と、熱バスに熱的に接続される少なくとも1つの第1の熱交換器と、対応する1つ以上の回路基板に熱的に接続される少なくとも1つの第2の熱交換器と、対応する1つ以上の回路基板の各発熱素子から、第2の熱交換器を介して熱が伝導される第2の流体とを有する1つ以上の流体ベースの冷却装置と、熱バス及び各流体ベースの冷却装置の第1の熱交換器に接続され、第1の流体と第2の流体との間で熱を伝導するサーマルインターフェースとを備える。
本発明の他の側面として、本発明は、パーソナルコンピュータ内の1つ以上の発熱素子を冷却する他の冷却装置を提供する。冷却装置は、パーソナルコンピュータシャーシと、熱バス及び熱バスを流れる第1の流体を有し、最大熱容量を伝導する主熱交換装置と、パーソナルコンピュータシャーシ内に着脱自在に搭載され、熱を発生する1つ以上の発熱素子を有し、主熱交換装置に接続される最大数が、主熱交換装置の最大熱容量に基づいて決定される拡張可能な複数の回路基板と、熱バスに着脱自在に接続される少なくとも1つの第1の熱交換器及び少なくとも1つの第2の熱交換器を有し、第2の熱交換器が対応する1つ以上の回路基板上の発熱素子の1つに着脱自在に接続されるように、対応する1つ以上の回路基板に着脱自在に接続され、第2の流体が流される拡張可能な複数の流体ベースの冷却装置とを備える。
上述した各冷却装置について、以下の特徴を適用してもよい。幾つかの実施の形態では、各流体ベースの冷却装置は、ポンプ圧送流体ループである。他の実施の形態では、各流体ベースの冷却装置は、ヒートパイプを有する。更に他の実施の形態では、流体ベースの冷却装置の1つ以上は、ポンプ圧送流体ループであり、冷却ループの1つ以上は、ヒートパイプを有する。少なくとも1つの回路基板は、マザーボードであってもよい。少なくとも1つの回路基板は、パーソナルコンピュータシャーシ内に着脱自在に搭載してもよい。着脱自在な回路基板は、1つ以上の発熱素子を有するグラフィクスカード、物理演算処理カード又は他のアクセサリーカードであってもよい。主熱交換装置は、第1の流体ループを形成してもよい。主熱交換装置は、第1のポンプを有し、第1のポンプは、第1の流体ループに含まれていてもよい。主熱交換装置は、流体−空気熱交換装置からなり、流体−空気熱交換装置は、第1の流体ループに含まれていてもよい。各流体ベースの冷却装置は、第2の流体ループを形成する。幾つかの実施の形態では、各流体ベースの冷却装置は、第2のポンプを有し、第2のポンプは、第2の流体ループに含まれている。幾つかの実施の形態では、第2のポンプは、第1の熱交換器と一体に形成されている。第1の流体は、第2の流体から物理的に分離されている。熱バスは、第1の流体が流れる流体チャネルが形成されている。幾つかの実施の形態では、流体チャネルは、互いに平行なパスとして形成されている。他の実施の形態では、流体チャネルは、蛇行パスとして形成されている。幾つかの実施の形態では、各第2の熱交換器は、マイクロチャネルが形成されている。サーマルインターフェースは、各第1の熱交換器を熱バスに接続するサーマルインターフェースマテリアルを備える。各第1の熱交換器は、サーマルインターフェースに接触するサーマルインターフェース形状を有し、各第1の熱交換器のサーマルインターフェース形状は、他の第1の熱交換器のサーマルインターフェース形状から独立している。各特定の第1の熱交換器のサーマルインターフェース形状は、特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、設定されている。各特定の第1の熱交換器のサーマルインターフェース形状は、特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、拡張可能である。幾つかの実施の形態では、主熱交換装置は、パーソナルコンピュータシャーシ内の定位置に設置されている。各流体ベースの冷却装置の第1の熱交換器は、熱バスに取り付けられ、流体ベースの冷却装置の残りの部分は、パーソナルコンピュータシャーシ内で柔軟に配置される。各流体ベースの冷却装置の各第1の熱交換器は、対応する発熱素子に取り付けられ、流体ベースの冷却装置の残りの部分は、1つ以上の回路基板から独立している。幾つかの実施の形態では、熱バスは、分割されており、各部分は、流体ラインを介して連結されており、各部分は、パーソナルコンピュータシャーシ内で分散されている。幾つかの実施の形態では、主熱交換装置の最大熱容量を超えて1つ以上の発熱素子が発生する熱を除去する副熱交換装置を更に備える。
本発明の他の特徴及び利点は、以下に詳しく説明する実施の形態の詳細な記述によって明らかになる。
以下では、幾つかの図面を参照して本発明を説明する。同じ要素が複数の図面に示されている場合にのみ、適切であれば、これらの同じ要素に同じ参照符号を付している。
本発明の実施の形態は、パーソナルコンピュータ内の1つ以上の発熱素子から発生した熱を取り除く拡張可能なモジュール式の冷却装置を提供する。発熱素子には、以下に限定されるものではないが、マザーボード、ドータカード及び/又はPC拡張カードに取り付けられた1つ以上の中央演算処理装置(central processing unit:CPU)、1つ以上のCPUの入出力を管理するために使用されるチップセット、1つ以上のグラフィック処理装置(graphics processing unit:GPU)及び/又は1つ以上の物理演算処理装置(physics processing unit:PPU)等が含まれる。また、冷却装置は、例えば、冷却が必要なMOSFET、スイッチ及び他の大電力電子部品等の電子部品を冷却するために用いることもできる。本明細書に開示する冷却装置は、包括的には、冷却する発熱素子を有する如何なる電子サブシステムにも適用できる。ここでは、説明を簡潔にするために、冷却する1つ以上の発熱素子を有し、パーソナルコンピュータ内にインストールされるあらゆるサブシステムをPCカードと呼ぶ。
冷却装置は、発熱素子を有する新たなPCカードをパーソナルコンピュータに追加し、冷却装置に接続できるように、拡張可能なモジュール式の構成を有する。更に、既にインストールされているPCカードを新たな又はアップグレードされたPCカードに差し替えることもできる。冷却装置は、様々な冷却の必要性を有するPCカードに対応するように構成されている。すなわち、1つのPCカードの熱除去の要求は、他のPCカードの熱除去の要求とは異なっていてもよく、冷却装置は、このような場合にも対応できる。
冷却装置は、2つの基礎的部品を備える。まず、冷却装置は、流体−空気熱交換装置を備える除熱ループ(rejection loop)と、ポンプと、流体が形成された熱バスとを備える。流体−空気熱交換装置は、例えば、1つ以上のラジエータ及び1つ以上のファン等の除熱器を備える。1つ以上のファンは、除熱器の表面上に気流を生成する。除熱器は、好ましくは、対向流(counter flow)ラジエータである。熱バスは、1つ以上の伝熱冷却板を受け入れることができる。各伝熱冷却板は、取付機構を用いて熱バスに接続されている。これらの部品は、フレキシブル又は非フレキシブルな配管によって、密封された循環構成において、除熱ループ内で連結されている。
次に、冷却装置は、1つ以上の回収ループ(collection loop)を備え、各回収ループは、密封された循環構成内に、流体チャネルが形成された1つ以上の伝熱冷却板と、ポンプと、流体チャネルが形成された1つ以上の熱交換器、例えばマイクロチャネル冷却板(MCP)とを備える。除熱ループ及び回収ループ内のポンプは、例えば、以下に限定されるわけではないが、電気浸透流ポンプ及び機械的ポンプを含む周知のポンプである。各回収ループ内の部品は、フレキシブルな配管によって連結されている。これに代えて、密封された環境内で流体を輸送するための如何なる構成を用いてもよい。幾つかの実施の形態では、回収ループで非フレキシブルな配管を用いる。回収ループは、除熱ループの熱バスに係合する回収ループの伝熱冷却板によって、除熱ループに接続されている。回収ループの各熱交換器は、発熱素子に熱的に接続されている。幾つかの実施の形態では、1つの熱交換器が1つの発熱素子に接続されている。他の実施の形態では、一対多の関係があり、例えば、1つの熱交換器が複数の発熱素子に接続されており、又は複数の熱交換器が1つの発熱素子に接続されている。ある実施の形態では、各回収ループは、1つの熱交換器を備える。他の実施の形態では、1つ以上の回収ループが2つ以上の熱交換器を備える。この場合、1つの回収ループを1つ以上のPCボードに接続することができる。熱交換器を発熱素子に接続するために、取付機構を用いてもよい。他の実施の形態では、回収ループの1つ、幾つか又は全ては、1つ以上の発熱素子及び伝熱冷却板に連結されている熱パイプを用いて構成される。
二重ループ構成によって、永久的な冷却ループである除熱ループをコンピュータシャーシにインストールでき、複数のCPU、GPU、チップセット及び/又はPPUの1つが発生した熱を、伝熱冷却板を介して除熱ループに伝導する1つ以上の回収ループを使用することによって冷却装置を拡張することができる。幾つかの実施の形態では、除熱ループは、パーソナルコンピュータシャーシに対して所定の位置で固定され、各回収ループの位置は柔軟性を有する。これにより、冷却装置に新たに追加する場合も、既存の回収ループを用いてPCカードを置換する場合も、PCシャーシ内で回収ループを容易に取り扱うことができ、インストールが容易になる。また、回収ループの位置の柔軟性によって、様々なサイズ及び構成を有するPCカードに対応することができる。
また、回収ループのモジュール性によって、冷却板及び/又は熱交換器を加えるために流体ループを途中で外すことなく、冷却装置の耐用年数に亘って、複数の発熱素子のための回収ループのインストールを、いつでも柔軟に行うことができる。また、このモジュール性によって、冷却装置の全体から流体を抜き、再充填する必要なく、欠陥がある回収ループ又は除熱ループを容易にメインテナンス又は置換することができる。
また、個別の冷却ループを設けることによって、耐食性、材料適合性、熱容量/熱伝達特性及び凍結保護の観点から各ループ内の流体を個別に最適化できる。
また、この設計自体は、大量生産に適している。モジュールの部品は、複数の冷却板と、ラジエータとを備える従来の密封された循環装置に比べて遙かに単純であり、コンピュータシャーシに適切に収容しなくてはならない液体冷却装置(liquid cooling system:LCS)を構成する際の幾つかの部品に対する直接的又は間接的な作業に比べて、ユニットのインストールを容易に、直接的な作業で行うことができる。
幾つかの実施の形態では、インライン型ペルチエ冷却モジュール、すなわち電子冷却モジュール(thermo-electric cooling module:TEC)を回収ループ、除熱ループ又はこれらの両方に追加する。TECは、TECの低温側に取り付けられた液体側ルーティングと、TECの高温側に取り付けられた放熱フィンとを備える。
幾つかの実施の形態では、冷却装置は、配電盤(electrical distribution board)を備える。配電盤は、入力コンセント(receptacle)と、一連の出力コンセントと、一連のセンサコンセントとを備える。入力コンセントは、パーソナルコンピュータ電源から標準の入力電力が供給される。一連の出力コンセントは、冷却装置において用いられるポンプ及びファンに電力及び制御信号を供給する。これにより、ホストマシンへの1つの電気的接続によって、冷却装置内の全てのポンプへの配電が行われる。一連のセンサコンセントは、補足的な入力信号が供給され、動作の間、冷却装置の動作(behavior)を変更するために用いられる。補足的な入力信号の具体例としては、これらに限定されるわけではないが、ポンプ回転速度計信号、エアムーバ回転速度計信号、流体温度、素子温度(CPU、GPU、チップセット及び/又はPPU)、周囲温度、及び冷却される発熱素子からの他の入力信号が含まれる。
図1は、本発明の第1の実施の形態に基づく例示的な冷却装置10の構成を示す図である。冷却装置10は、除熱ループ16及び回収ループ26、36、46、56を収容するパーソナルコンピュータシャーシ12を備える。図面を簡潔にするために、図1では、パーソナルコンピュータの他の標準的な部品、例えば、ハードディスクドライブ、電源、マザーボード及び他の従来の回路を示しておらず、これらの部品は当分野で周知であるので、ここでは説明しない。各回収ループ26、36、46、56は、PPU65、チップセット66、GPU68、CPU70等の発熱素子に接続されている。各発熱素子は、例えば、マザーボード、ドータカード又はPC拡張カード等のプリント基板(図示せず)に接続されている。ここでは、説明のために、各プリント基板は、単一の発熱素子を有し、各回収ループは、単一の発熱素子に接続されているとする。なお、各プリント基板は、2つ以上の発熱素子を有していてもよく、各回収ループは、2つ以上の熱交換器を備えていてもよい。図1では、4個の回収ループを示しているが、冷却装置10の回収ループは、4個より多くても少なくてもよい。一般化して言えば、最大N個の回収ループを除熱ループ16に接続でき、除熱ループ16によって効果的に冷却することができる。この最大数Nは、以下で更に詳細に説明するように、除熱ループ16の放熱能力及び回収ループに接続されている発熱素子が発生する熱量によって決まる。
除熱ループ16は、熱バス24と、流体−空気熱交換装置8と、ポンプ20とを備える。流体−空気熱交換装置8は、除熱器18と、ファン14とを備える。ポンプ20及び除熱器18は、熱バス24に連結されている。ポンプ20は、好ましくは、機械的ポンプである。これに代えて、ポンプ20は、電気浸透流ポンプであってもよい。なお、如何なる種類のポンプを用いてもよいことは、当業者にとって明らかである。除熱器18は、好ましくは、互いに近接して配設されたマイクロチャネル及びフィンを有するラジエータである。より好ましくは、除熱器18は、米国特許第6,988,535号に開示されている種類の対向流ラジエータであり、この特許文献は、引用によって本願に援用される。なお、如何なる種類の除熱器を用いてもよいことは当業者にとって明らかである。ファン14は、除熱器18に亘る及び/又は除熱器18を通る気流を生成する1つ以上の送風ファンを備える。
なお、除熱ループ16の流体フローの方向は、図1に示す方向とは逆であってもよい。また、除熱ループ16内の各部品の相対的位置は、例示的に示しているに過ぎない。例えば、ポンプ20は、熱バス24の出力とラジエータ18の入力との間に配設してもよい。
第1の回収ループ26、第2の回収ループ36、第3の回収ループ46及び第4の回収ループ56は、それぞれ、除熱ループ16の熱バス24に取り付けられ、熱的に接続されている。回収ループ26は、熱交換器32と、ポンプ30と、伝熱冷却板28とを備え、これらは、それぞれ流体ライン34によって連結されている。回収ループ36は、熱交換器42と、ポンプ40と、伝熱冷却板38とを備え、これらは、それぞれ流体ライン44によって連結されている。回収ループ46は、熱交換器52と、ポンプ50と、伝熱冷却板48とを備え、これらは、それぞれ流体ライン54によって連結されている。回収ループ56は、熱交換器62と、ポンプ60と、伝熱冷却板58とを備え、これらは、それぞれ流体ライン64によって連結されている。以下では、回収ループ26の構成及び動作のみを説明する。他の回収ループ36、46、56は、それぞれ、回収ループ26と同様に構成され、動作する。なお、各回収ループを独自に構成してもよく、例えば、発熱素子を冷却する包括的な機能を実質的に同じに維持したまま熱交換器の数が異なっていてもよい。
回収ループ26は、ポンプ圧送流体ループの冷却ループである。回収ループ26は、対応するPCカード上の各発熱素子65毎に1つの熱交換器32を備える。この具体例では、回収ループ26は、単一の発熱素子を冷却するように構成されている。
ポンプ30は、好ましくは、機械的ポンプである。これに代えて、ポンプ30は、電気浸透流ポンプであってもよい。なお、如何なる種類のポンプを用いてもよいことは、当業者にとって明らかである。各熱交換器32は、好ましくは、米国特許第7,000,684号に開示されている種類の流体ベースのマイクロチャネル熱交換器であり、この特許文献は、引用によって本願に援用される。なお、如何なる種類の流体ベースのマイクロチャネル熱交換器を用いてもよいことは当業者にとって明らかである。伝熱冷却板28には、流れる流体に晒される表面積を最大にするマイクロチャネルを形成することが好ましい。
図1に示すように、伝熱冷却板28は、ポンプ30に直接連結されている。この構成では、1つ以上の流体ライン34が伝熱冷却板28に流体を流し、流体は、伝熱冷却板28内で冷却され、伝熱冷却板28からポンプ30に流れ、ポンプ30から出て1つ以上の流体ライン34に流れる。これに代えて、流体は、ポンプ30に入り、伝熱冷却板28から出てもよい。このような例示的な構成については、2007年3月30日に出願された、本願と同じ譲受人に譲渡されている係属中の米国特許出願、代理人整理番号(Cool 06000)、発明の名称「INTEGRATED FLUID PUMP AND RADIATOR RESERVOIR」に説明されており、この特許文献は引用によって本願に援用される。他の実施の形態では、伝熱冷却板28とポンプ30を直接連結せず、1つ以上の流体ラインによって連結してもよい。他の実施の形態として、ポンプ30を熱交換器32に直接連結してもよい。一般化して言えば、アプリケーション毎に独自に構成できる完全な設計の柔軟性がある。
伝熱冷却板28の底面は、サーマルインターフェースマテリアル(図示せず)を介して熱バス24の上面に熱的に接続されている。サーマルインターフェースマテリアルは、好ましくは、例えば、熱グリース、熱パッド、半田又は何らかの種類の熱伝導性間隙充填材料等の適応性がある材料である。伝熱冷却板28を熱バス24に取り付けるために、取付機構(図示せず)を用いる。ここでは、周知の如何なる取付機構も用いてもよく、以下に限定されるわけではないが、1個以上のクランプ、1個以上のねじ、1個以上のスプリングクリップ、ジンバル機構、取付タブ及び他の何らかの従来の保持機構又はこれらの1つ以上の組合せを用いてもよい。このようにして、伝熱冷却板28は、熱バス24に熱的に接続されている。熱バス24には、流れる流体に晒される表面積を最大にするマイクロチャネルを形成することが好ましい。
回収ループ26は、図1では、単一の熱交換器32を備えているが、回収ループが2つ以上の熱交換器を備える様々な代替の構成を想到することができる。例えば、2つ以上の熱交換器を直列に連結してもよい。この場合、流体は、まず、第1の熱交換器に流れ、次に、第1の熱交換器を出た流体が第2の熱交換器に入る。これに代えて、2つ以上の熱交換器を並列に連結してもよく、この場合、何れの熱交換器に入る流体も、先に他の熱交換器を通らず、他の熱交換器によって加熱されることはない。このように、並列に連結された熱交換器に入る流体は、直列に連結された熱交換器の第1の熱交換を通過した後の流体よりも低い温度を保つことができる。このような代替の構成では、ポンプ30は、1つ以上の流体ラインによって第1の熱交換器に連結され、個別の流体ラインがポンプ30を第2の熱交換器等に連結する。更に他の変形例として、直列連結及び並列連結の任意の組合せを含む構成によって複数の熱交換器を構成してもよい。
伝熱冷却板28、ポンプ30、熱交換器32及び流体ライン34は、流体が流れる第1のループを形成する。回収ループ26の機能は、発熱素子65によって生成された熱を捕捉することである。熱交換器32は、発熱素子65に熱的に接続されている。流体が第1のループを介して熱交換器32に流れると、発熱素子65からの熱は、流体に伝導される。
熱交換器32の底面は、サーマルインターフェースマテリアル(図示せず)を介して、発熱素子65の上面に熱的に接続されている。サーマルインターフェースマテリアルは、好ましくは、例えば、熱グリース、熱パッド、半田又は何らかの種類の熱伝導性間隙充填材料等の適応性がある材料である。熱交換器32を発熱素子65に取り付けるために、取付機構(図示せず)を用いる。ここでは、周知の如何なる取付機構も用いてもよく、以下に限定されるわけではないが、1個以上のクランプ、1個以上のねじ、1個以上のスプリングクリップ、ジンバル機構、取付タブ及び他の何らかの従来の保持機構又はこれらの1つ以上の組合せを用いてもよい。
各回収ループ26、36、46、56及び除熱ループ16で用いられる流体の種類は、水をベースとするものである。これに代えて、流体は、以下に限定されるものではないが、プロピレングリコール、エタノール及びイソプロパノール(isopropanol:IPA)等、有機溶液の組合せをベースとしてもよい。更にこれに代えて、流体は、ポンプで圧送される冷媒であってもよい。また、使用される流体は、凍結温度が低く、防錆性を有することが望ましい。冷却装置及び発熱素子の動作特性に応じて、一実施の形態では、流体は、冷却ループ内を循環している間、単相流として存在する。他の実施の形態においては、流体は、二相流となる温度に加熱され、流体は、液体から、蒸気又は液体/蒸気混合体に相転移する。
加熱された流体は、熱交換器32から伝熱冷却板28内のマイクロチャネルに流れ込む。熱は、マイクロチャネル内の加熱された流体から伝熱冷却板28の材料に伝導される。サーマルインターフェースマテリアル(図示せず)は、伝熱冷却板28からの熱が熱バス24の材料に伝導されるように、伝熱冷却板28と熱バス24との間に効率的な熱伝達(heat transfer)を提供する。
熱バスの物理的な寸法及び各回収ループのための伝熱冷却板は、これらの2つの間の熱伝導を最大化するように設計されている。熱バスは、パーソナルコンピュータシャーシ内に固定されているので、熱バスの物理的な寸法もまた固定され、特に、伝熱冷却板に係合する上面の接触面の幅及び長さが固定されている。熱バスの長さに沿って複数の伝熱冷却板を揃えることができる。それぞれの伝熱冷却板の幅は、熱バスの幅と実質的に同じであり、伝熱冷却板間でも実質的に同じである。一方、各伝熱冷却板の長さは、伝熱冷却板毎に異なっていてもよい。各伝熱冷却板の特定の長さは、回収ループ及び回収ループが接続されている対応する1つ以上の発熱素子の放熱要求に基づいて設計することができる。
具体的には、1つ以上の発熱素子が発生する熱量が多い程、回収ループに伝導された熱も多くなる。したがって、回収ループに伝導される熱量が多い程、伝熱冷却板から熱バスに熱を伝導する必要性も高くなる。比較的多くの熱量を放熱するように構成された回収ループでは、伝熱冷却板の長さが長く設計され、この結果、伝熱冷却板と熱バスとの間でより大きいサーマルインターフェース形状を提供する。一方、比較的少ない熱量を消散するように構成された回収ループでは、伝熱冷却板の長さは短く設計される。通常、放熱率として測定される、熱バスに伝導される熱量は、各伝熱冷却板のサーマルインターフェース形状によって決まる。熱バスに接続されている全ての伝熱冷却板の総放熱率は、熱バスの最大放熱率を超えることはできない。幾つかの実施の形態では、熱バスの最大放熱率は、冷却装置の固定特性である。他の実施の形態では、除熱ループは、最大放熱率を増加させるように拡張可能であり、例えば、1つ以上のラジエータ及び/又はファンを加えることによって流体−空気熱交換装置の熱散逸能力を向上させることができる。
更に他の実施の形態として、PCシャーシ内に補助的な従来の冷却装置を設けてもよく、例えば、熱バス24の最大放熱率を超える熱負荷の一部又は全部を冷却する標準的な空気冷却装置を設けてもよい。また、このような補助的な冷却装置は、冷却装置10に接続されていない1つ以上の発熱素子を冷却するために使用してもよい。
図1に示すように、熱バス24、除熱器18、ポンプ20及び流体ライン22は、流体が流れる第2のループを形成する。第2のループの流体は、好ましくは、第1のループに関連して先に説明した流体と同種の流体である。第2のループの流体は、第1のループの流体から独立している。
第2のループ及び液体−空気熱交換装置8の機能は、熱バス24から周囲に熱を伝導することである。流体が熱バス24内の流体チャネルを介して流れると、熱バス24の材料からの熱は、流体に伝導される。
熱バス内の加熱された流体は、除熱器18に流れる。加熱された流体が除熱器18を流れると、熱は、流体から除熱器18の材料に伝導される。ファン14は、除熱器18の表面に空気を吹きつけ、これにより、熱は、除熱器18から周囲に伝導される。好ましくは、PCシャーシ12は、空気が冷却装置10を出入りするための吸気口及び排気口を備える。冷却された流体は、除熱器18を出て、熱バス24に戻る。
図2は、平行パス構成に基づく熱バス24の平面断面図である。平行パス構成の熱バス24の流体チャネルは、熱バス24内の入口点から出口点に延びる平行パスとして形成される。図3は、図2に示す線A−Aに沿った熱バス24の側面断面図である。図2及び図3では、5個の流体チャネルを示しているが、熱バスが備える流体チャネルの数は、5個より多くても少なくてもよい。図2に示すように、単一の流体ライン22は、複数の流体ラインに分岐した後、熱バス24に入り、複数の流体ラインは、熱バス24を出て、単一の流体ライン22を形成するように再び合流する。この構成では、熱バス24は、複数の入力流体ライン及び出力流体ラインが連結されている複数の流体チャネル流入ポートを備えている。代替の構成では、単一の流体ライン22が熱バス24に入り、及び熱バス24から出て、この単一の流体ラインは、熱バス24内で複数の流体チャネルに分岐する。他の構成では、複数の流体ライン22が熱バス24に入る。これらの流体ライン22は、何れも複数のチャネルに連結してもよく、又は単一の流体チャネルに連結してもよい。熱バス24に連結され、又は熱バス24内で複数の流体チャネルに分岐する複数の流体ラインの他の如何なる構成を用いてもよい。
図4は、蛇行パス構成(serpentine path configuration)に基づく熱バス24の平面断面図である。蛇行パス構成では、熱バス24の流体チャネルは、熱バス24内の入口点から出口点に延びる曲がった蛇行パスとして形成される。図4では、単一の入口点及び単一の出口点を示しているが、このような入口点及び出口点を複数個設けてもよい。更に、同様の効果を達成するために、並列ではない如何なる構成の流体チャネルを用いてもよい。具体的には、蛇行パス構成は、各伝熱冷却板が熱バスに接続されている相対的位置にかかわらず、熱バスに接続されている全ての伝熱冷却板に亘って、熱勾配を略等しく分布させる。これにより、伝熱冷却板を熱バス上に配置する順序の影響を排除できる。また、これに代わる流体チャネルパス構成を想到することもできる。
図5は、本発明の第2の実施の形態に基づく例示的な冷却装置100の構成を示す図である。冷却装置100は、冷却装置10の熱バス24が分散型の熱バス124によって置換され、熱バス124の各部分が1つ以上の流体ライン122によって連結され、回収ループ56が回収ループ156によって置換されている点を除いて、図1の冷却装置10と同じである。回収ループ156は、1つ以上の流体ライン164によって相互に連結された、伝熱冷却板158と、ポンプ160と、熱交換器162とを備える。伝熱冷却板158は、熱バスの部分124に熱的に接続されており、熱交換器162は、パーソナルコンピュータのCPU等の発熱素子170に接続されている。回収ループ156は、回収ループ56(図1)と同様に構成され、同様に動作する。冷却装置100の分散型の構成は、例えば、システムマザーボードの位置対PC拡張カードの位置等、パーソナルコンピュータシャーシ12内で分散されている発熱素子に冷却装置を接続するための代替的手法を示している。図1の冷却装置10は、様々に分散する発熱素子の位置に対応できる様々な回収ループの適応型の構成によって、設計の柔軟性を提供している。一方、図5の冷却装置100は、様々に分散する発熱素子に近接して部分が配置された熱バスの適応型の構成によって、設計の柔軟性を提供している。
本発明に基づく冷却装置は、図1〜図5に示す部品に限定されず、他の部品及び素子を備えていてもよいことは当業者にとって明らかである。例えば、図1には示していないが、冷却装置10は、回収ループ又は除熱ループの一方又は両方の1つ以上に連結された流体タンクを備えていてもよい。流体タンクは、時間の経過と共に、浸透のために失われた流体を補うために使用される。
更に、図1〜図5を用いて上述した実施の形態は、液体冷却装置に関するものであるが、例えば、ヒートパイプ、熱伝導材料等、他の冷却装置を用いてもよい。ヒートパイプは、図5の分割された熱バス実施の形態と共に用いることが特に効果的である。この場合、熱バスの部分は、発熱素子と比較的近接して配置され、ヒートパイプは、発熱素子及び熱バスの部分に接続される。また、1つ以上のポンプで圧送される回収ループ及び1つ以上の熱のパイプベースの回収ループを備える単一の冷却装置を構成してもよい。
幾つかの実施の形態では、冷却装置は、PCシャーシ内に含まれている各発熱素子を冷却するように構成される。他の実施の形態では、冷却装置は、選択された発熱素子のみ、又は単一の発熱素子のみを冷却するように構成され、他の発熱素子は、他の又は補助的な冷却機構によって冷却する。
幾つかの実施の形態では、冷却装置のモジュール性によって、回収ループをパーソナルコンピュータシャーシ内の空間に収容することができ、回収ループから、熱バスを介して、この空間の外部又はこの空間の他の区画内の除熱ループに熱を取り除くことができる。
本発明の構成及び動作原理を明瞭に説明するために、様々な詳細を含む特定の実施の形態を用いて本発明を説明した。このような特定の実施例の説明及びその詳細は、特許請求の範囲を制限するものではない。本発明の主旨及び範囲から逸脱することなく、例示的に選択された実施の形態を変更できることは、当業者にとって明らかである。
本発明の第1の実施の形態に基づく例示的な冷却装置の構成を示す図である。 平行パス構成に基づく熱バスの平面断面図である。 図2に示す熱バスの側面断面図である。 蛇行パス構成に基づく熱バスの平面断面図である。 本発明の第2の実施の形態に基づく例示的な冷却装置の構成を示す図である。

Claims (55)

  1. パーソナルコンピュータ内の1つ以上の発熱素子を冷却する冷却装置において、
    a.パーソナルコンピュータシャーシと、
    b.1つ以上の発熱素子を有し、上記パーソナルコンピュータシャーシ内に搭載された1つ以上の回路基板と、
    c.1つ以上の第1の熱交換器に熱接触する熱バス及び該熱バスを流れる第1の流体を有する主熱交換装置と、
    d.上記熱バスに熱的に接続される少なくとも1つの上記第1の熱交換器と、対応する1つ以上の回路基板に熱的に接続される少なくとも1つの第2の熱交換器と、該対応する1つ以上の回路基板の各発熱素子から、該第2の熱交換器を介して熱が伝導される第2の流体とを有する1つ以上の流体ベースの冷却装置と、
    e.上記熱バス及び上記各流体ベースの冷却装置の第1の熱交換器に接続され、上記第1の流体と上記第2の流体との間で熱を伝導するサーマルインターフェースとを備える冷却装置。
  2. 上記各流体ベースの冷却装置は、ポンプ圧送流体ループを有することを特徴とする請求項1記載の冷却装置。
  3. 上記各流体ベースの冷却装置は、ヒートパイプを有することを特徴とする請求項1記載の冷却装置。
  4. 上記流体ベースの冷却装置の1つ以上は、ポンプ圧送流体ループを有し、上記流体ベースの冷却装置の1つ以上は、ヒートパイプを有することを特徴とする請求項1記載の冷却装置。
  5. 上記少なくとも1つの回路基板は、マザーボードであることを特徴とする請求項1記載の冷却装置。
  6. 上記少なくとも1つの回路基板は、上記パーソナルコンピュータシャーシ内に着脱自在に搭載されることを特徴とする請求項1記載の冷却装置。
  7. 上記着脱自在な回路基板は、1つ以上の発熱素子を有するグラフィクスカード、物理演算処理カード又は他のアクセサリーカードであることを特徴とする請求項6記載の冷却装置。
  8. 上記主熱交換装置は、第1の流体ループを形成することを特徴とする請求項1記載の冷却装置。
  9. 上記主熱交換装置は、第1のポンプを有し、該第1のポンプは、上記第1の流体ループに含まれていることを特徴とする請求項8記載の冷却装置。
  10. 上記主熱交換装置は、流体−空気熱交換装置からなり、該流体−空気熱交換装置は、上記第1の流体ループに含まれていることを特徴とする請求項9記載の冷却装置。
  11. 上記各流体ベースの冷却装置は、第2の流体ループを形成することを特徴とする請求項1記載の冷却装置。
  12. 上記各流体ベースの冷却装置は、第2のポンプを有し、該第2のポンプは、上記第2の流体ループに含まれていることを特徴とする請求項11記載の冷却装置。
  13. 上記第2のポンプは、上記第1の熱交換器と一体に形成されていることを特徴とする請求項12記載の冷却装置。
  14. 上記第1の流体は、上記第2の流体から物理的に分離されていることを特徴とする請求項1記載の冷却装置。
  15. 上記熱バスは、上記第1の流体が流れる流体チャネルが形成されていることを特徴とする請求項1記載の冷却装置。
  16. 上記流体チャネルは、互いに平行なパスとして形成されていることを特徴とする請求項15記載の冷却装置。
  17. 上記流体チャネルは、蛇行パスとして形成されていることを特徴とする請求項15記載の冷却装置。
  18. 上記各第2の熱交換器は、マイクロチャネルが形成されていることを特徴とする請求項1記載の冷却装置。
  19. 上記サーマルインターフェースは、上記各第1の熱交換器を上記熱バスに接続するサーマルインターフェースマテリアルを備えることを特徴とする請求項18記載の冷却装置。
  20. 上記各第1の熱交換器は、上記サーマルインターフェースに接触するサーマルインターフェース形状を有し、該各第1の熱交換器のサーマルインターフェース形状は、他の第1の熱交換器のサーマルインターフェース形状から独立していることを特徴とする請求項1記載の冷却装置。
  21. 上記各特定の第1の熱交換器のサーマルインターフェース形状は、該特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、設定されていることを特徴とする請求項20記載の冷却装置。
  22. 上記各特定の第1の熱交換器は、上記サーマルインターフェースに接触するサーマルインターフェース形状を有し、該各第1の熱交換器のサーマルインターフェース形状は、該特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、拡大縮小可能であることを特徴とする請求項1記載の冷却装置。
  23. 上記主熱交換装置は、パーソナルコンピュータシャーシ内の定位置に設置されていることを特徴とする請求項1記載の冷却装置。
  24. 上記各流体ベースの冷却装置の第1の熱交換器は、上記熱バスに取り付けられ、該流体ベースの冷却装置の残りの部分は、上記パーソナルコンピュータシャーシ内で柔軟に配置されることを特徴とする請求項23記載の冷却装置。
  25. 上記各流体ベースの冷却装置の各第1の熱交換器は、対応する発熱素子に取り付けられ、該流体ベースの冷却装置の残りの部分は、上記1つ以上の回路基板から独立していることを特徴とする請求項1記載の冷却装置。
  26. 上記熱バスは、分割されており、各部分は、流体ラインを介して連結されており、該各部分は、パーソナルコンピュータシャーシ内で分散されていることを特徴とする請求項1記載の冷却装置。
  27. パーソナルコンピュータ内の1つ以上の発熱素子を冷却する冷却装置において、
    a.パーソナルコンピュータシャーシと、
    b.熱バス及び該熱バスを流れる第1の流体を有し、最大熱容量を伝導する主熱交換装置と、
    c.上記パーソナルコンピュータシャーシ内に着脱自在に搭載され、熱を発生する1つ以上の発熱素子を有し、上記主熱交換装置に接続される最大数が、該主熱交換装置の最大熱容量に基づいて決定される拡張可能な複数の回路基板と、
    d.上記熱バスに着脱自在に接続される少なくとも1つの第1の熱交換器及び少なくとも1つの第2の熱交換器を有し、該第2の熱交換器が対応する1つ以上の回路基板上の発熱素子の1つに着脱自在に接続されるように、該対応する1つ以上の回路基板に着脱自在に接続され、第2の流体が流される拡張可能な複数の流体ベースの冷却装置とを備える冷却装置。
  28. 上記着脱自在な回路基板上の各発熱素子は、上記第2の熱交換器の1つに熱的に接続されていることを特徴とする請求項27記載の冷却装置。
  29. 上記熱バスは、上記各第1の熱交換器に熱的に接続されていることを特徴とする請求項28記載の冷却装置。
  30. 上記各流体ベースの冷却装置の第2の流体は、対応する1つ以上の回路基板の各発熱素子から、上記第2の熱交換器を介して熱が伝導されることを特徴とする請求項29記載の冷却装置。
  31. 上記熱バス及び上記各流体ベースの冷却装置の第1の熱交換器に接続され、上記第1の流体と上記第2の流体との間で熱を伝導するサーマルインターフェースを更に備える請求項30記載の冷却装置。
  32. 上記各流体ベースの冷却装置は、ポンプ圧送流体ループを有することを特徴とする請求項27記載の冷却装置。
  33. 上記各流体ベースの冷却装置は、ヒートパイプを有することを特徴とする請求項27記載の冷却装置。
  34. 上記流体ベースの冷却装置の1つ以上は、ポンプ圧送流体ループを有し、上記流体ベースの冷却装置の1つ以上は、ヒートパイプを有することを特徴とする請求項27記載の冷却装置。
  35. 上記少なくとも1つの回路基板は、マザーボードであることを特徴とする請求項27記載の冷却装置。
  36. 上記パーソナルコンピュータシャーシ内に搭載され、上記流体ベースの冷却装置の1つに熱的に接続される固定された回路基板を更に備える請求項27記載の冷却装置。
  37. 上記回路基板は、1つ以上の発熱素子を有するグラフィクスカード、物理演算処理カード又は他のアクセサリーカードである1つ以上の着脱自在な回路基板であることを特徴とする請求項27記載の冷却装置。
  38. 上記主熱交換装置は、第1の流体ループを形成することを特徴とする請求項27記載の冷却装置。
  39. 上記主熱交換装置は、第1のポンプを有し、該第1のポンプは、上記第1の流体ループに含まれていることを特徴とする請求項38記載の冷却装置。
  40. 上記主熱交換装置は、流体−空気熱交換装置からなり、該流体−空気熱交換装置は、上記第1の流体ループに含まれていることを特徴とする請求項39記載の冷却装置。
  41. 上記各流体ベースの冷却装置は、第2の流体ループを形成することを特徴とする請求項27記載の冷却装置。
  42. 上記各流体ベースの冷却装置は、第2のポンプを有し、該第2のポンプは、上記第2の流体ループに含まれていることを特徴とする請求項41記載の冷却装置。
  43. 上記第2のポンプは、上記第1の熱交換器と一体に形成されていることを特徴とする請求項42記載の冷却装置。
  44. 上記第1の流体は、上記第2の流体から物理的に分離されていることを特徴とする請求項27記載の冷却装置。
  45. 上記熱バスは、上記第1の流体が流れる流体チャネルが形成されていることを特徴とする請求項27記載の冷却装置。
  46. 上記流体チャネルは、互いに平行なパスとして形成されていることを特徴とする請求項45記載の冷却装置。
  47. 上記流体チャネルは、蛇行パスとして形成されていることを特徴とする請求項45記載の冷却装置。
  48. 上記各第2の熱交換器は、マイクロチャネルが形成されていることを特徴とする請求項27記載の冷却装置。
  49. 上記各第1の熱交換器は、上記サーマルインターフェースに接触するサーマルインターフェース形状を有し、該各第1の熱交換器のサーマルインターフェース形状は、他の第1の熱交換器のサーマルインターフェース形状から独立していることを特徴とする請求項27記載の冷却装置。
  50. 上記各特定の第1の熱交換器のサーマルインターフェース形状は、該特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、設定されていることを特徴とする請求項49記載の冷却装置。
  51. 上記各特定の第1の熱交換器は、上記熱バスに接触するサーマルインターフェース形状を有し、該各第1の熱交換器のサーマルインターフェース形状は、該特定の第1の熱交換器に対応する流体ベースの冷却装置に熱的に接続されている1つ以上の発熱素子が発生する熱量に基づいて、拡張可能であることを特徴とする請求項27記載の冷却装置。
  52. 上記主熱交換装置は、パーソナルコンピュータシャーシ内の定位置に設置されていることを特徴とする請求項27記載の冷却装置。
  53. 上記各流体ベースの冷却装置の第1の熱交換器は、熱バスに取り付けられ、該流体ベースの冷却装置の残りの部分は、上記パーソナルコンピュータシャーシ内で柔軟に配置されることを特徴とする請求項52記載の冷却装置。
  54. 上記熱バスは、分割されており、各部分は、流体ラインを介して連結されており、該各部分は、パーソナルコンピュータシャーシ内で分散されていることを特徴とする請求項27記載の冷却装置。
  55. 上記主熱交換装置の最大熱容量を超えて1つ以上の発熱素子が発生する熱を除去する副熱交換装置を更に備える請求項27記載の冷却装置。
JP2009505435A 2006-04-11 2007-04-09 冷却装置 Withdrawn JP2009533764A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79124206P 2006-04-11 2006-04-11
US11/784,298 US7715194B2 (en) 2006-04-11 2007-04-06 Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
PCT/US2007/008840 WO2007120662A2 (en) 2006-04-11 2007-04-09 Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers

Publications (1)

Publication Number Publication Date
JP2009533764A true JP2009533764A (ja) 2009-09-17

Family

ID=38573911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009505435A Withdrawn JP2009533764A (ja) 2006-04-11 2007-04-09 冷却装置

Country Status (4)

Country Link
US (1) US7715194B2 (ja)
EP (1) EP2016357A2 (ja)
JP (1) JP2009533764A (ja)
WO (1) WO2007120662A2 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8464781B2 (en) * 2002-11-01 2013-06-18 Cooligy Inc. Cooling systems incorporating heat exchangers and thermoelectric layers
US7591302B1 (en) 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system
US8289710B2 (en) * 2006-02-16 2012-10-16 Liebert Corporation Liquid cooling systems for server applications
TW200810676A (en) 2006-03-30 2008-02-16 Cooligy Inc Multi device cooling
US8250877B2 (en) 2008-03-10 2012-08-28 Cooligy Inc. Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US20090272144A1 (en) * 2008-05-02 2009-11-05 Thermaltake Technology Co., Ltd. Computer cooling apparatus
CN102171897A (zh) 2008-08-05 2011-08-31 固利吉股份有限公司 用于激光二极管冷却的微型换热器
FR2941562B1 (fr) * 2009-01-29 2011-04-29 Philippe Rhul Systeme et procede de refroidissement d'un circuit integre, notamment d'un processeur
US8208258B2 (en) * 2009-09-09 2012-06-26 International Business Machines Corporation System and method for facilitating parallel cooling of liquid-cooled electronics racks
US8583290B2 (en) * 2009-09-09 2013-11-12 International Business Machines Corporation Cooling system and method minimizing power consumption in cooling liquid-cooled electronics racks
US20110056675A1 (en) 2009-09-09 2011-03-10 International Business Machines Corporation Apparatus and method for adjusting coolant flow resistance through liquid-cooled electronics rack(s)
US8322154B2 (en) * 2009-09-09 2012-12-04 International Business Machines Corporation Control of system coolant to facilitate two-phase heat transfer in a multi-evaporator cooling system
US20110058637A1 (en) 2009-09-09 2011-03-10 International Business Machines Corporation Pressure control unit and method facilitating single-phase heat transfer in a cooling system
JP2011198435A (ja) * 2010-03-23 2011-10-06 Toshiba Corp 不揮発性半導体記憶装置
US8279597B2 (en) 2010-05-27 2012-10-02 International Business Machines Corporation Heatsink allowing in-situ maintenance in a stackable module
US8174826B2 (en) 2010-05-27 2012-05-08 International Business Machines Corporation Liquid cooling system for stackable modules in energy-efficient computing systems
US8179674B2 (en) 2010-05-28 2012-05-15 International Business Machines Corporation Scalable space-optimized and energy-efficient computing system
US8358503B2 (en) 2010-05-28 2013-01-22 International Business Machines Corporation Stackable module for energy-efficient computing systems
US9629280B2 (en) * 2010-06-24 2017-04-18 Raytheon Company Multiple liquid loop cooling for electronics
US8797741B2 (en) 2010-10-21 2014-08-05 Raytheon Company Maintaining thermal uniformity in micro-channel cold plates with two-phase flows
US9151543B2 (en) 2011-07-15 2015-10-06 International Business Machines Corporation Data center coolant switch
EP2812769B1 (en) 2012-02-09 2018-11-07 Hewlett-Packard Enterprise Development LP Heat dissipating system
US10209003B2 (en) * 2012-02-21 2019-02-19 Thermal Corp. Electronics cabinet and rack cooling system and method
KR20140132333A (ko) 2012-03-12 2014-11-17 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 액체 온도 제어 냉각
US8925333B2 (en) 2012-09-13 2015-01-06 International Business Machines Corporation Thermoelectric-enhanced air and liquid cooling of an electronic system
JP6112640B2 (ja) 2012-09-28 2017-04-12 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP 冷却用組立体
CN104756618B (zh) 2012-10-31 2017-07-21 慧与发展有限责任合伙企业 模块式机架系统
WO2014120182A1 (en) 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Liquid cooling
US9277683B2 (en) * 2013-09-19 2016-03-01 Siemens Aktiengesellschaft Liquid cooled electronic modules and methods for replacing the same
US9953899B2 (en) 2015-09-30 2018-04-24 Microfabrica Inc. Micro heat transfer arrays, micro cold plates, and thermal management systems for cooling semiconductor devices, and methods for using and making such arrays, plates, and systems
US10162396B2 (en) * 2017-04-18 2018-12-25 Baidu Usa Llc Method and system for removing heat using heat removal liquid based on workload of server components of electronic racks
US10133322B1 (en) * 2017-09-21 2018-11-20 Calyos Sa Gaming computer with structural cooling arrangement
US11765864B2 (en) 2019-08-26 2023-09-19 Ovh Cooling arrangement for a rack hosting electronic equipment and at least one fan
US20210154501A1 (en) * 2019-11-22 2021-05-27 The Boeing Company Fire suppression for additively manufactured article
TWI738571B (zh) * 2020-02-27 2021-09-01 雙鴻科技股份有限公司 冷卻液分配裝置
US11284543B2 (en) * 2020-05-21 2022-03-22 Baidu Usa Llc Data center point of delivery layout and configurations
CN113775488B (zh) * 2020-06-09 2024-04-19 金风科技股份有限公司 冷却系统及风力发电机组

Family Cites Families (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273505A (en) 1942-02-17 Container
US596062A (en) 1897-12-28 Device for preventing bursting of freezing pipes
US2039593A (en) 1935-06-20 1936-05-05 Theodore N Hubbuch Heat transfer coil
US3361195A (en) 1966-09-23 1968-01-02 Westinghouse Electric Corp Heat sink member for a semiconductor device
US3524497A (en) 1968-04-04 1970-08-18 Ibm Heat transfer in a liquid cooling system
US3771219A (en) 1970-02-05 1973-11-13 Sharp Kk Method for manufacturing semiconductor device
US3654988A (en) 1970-02-24 1972-04-11 American Standard Inc Freeze protection for outdoor cooler
DE2102254B2 (de) 1971-01-19 1973-05-30 Robert Bosch Gmbh, 7000 Stuttgart Kuehlvorrichtung fuer leistungshalbleiterbauelemente
US3800510A (en) 1972-05-09 1974-04-02 Celanese Corp Separating assembly
FR2216537B1 (ja) 1973-02-06 1975-03-07 Gaz De France
US3852806A (en) 1973-05-02 1974-12-03 Gen Electric Nonwicked heat-pipe cooled power semiconductor device assembly having enhanced evaporated surface heat pipes
US3823572A (en) 1973-08-15 1974-07-16 American Air Filter Co Freeze protection device in heat pump system
US3929154A (en) 1974-07-29 1975-12-30 Frank E Goodwin Freeze protection apparatus
US3923426A (en) 1974-08-15 1975-12-02 Alza Corp Electroosmotic pump and fluid dispenser including same
US3946276A (en) 1974-10-09 1976-03-23 Burroughs Corporation Island assembly employing cooling means for high density integrated circuit packaging
US4072188A (en) 1975-07-02 1978-02-07 Honeywell Information Systems Inc. Fluid cooling systems for electronic systems
US3993123A (en) 1975-10-28 1976-11-23 International Business Machines Corporation Gas encapsulated cooling module
DE2658720C3 (de) 1976-12-24 1982-01-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Latentwärmespeicher zur Aufnahme eines wärmespeichernden Mediums
DE2741244C2 (de) 1977-09-14 1983-10-27 Klöckner-Humboldt-Deutz AG, 5000 Köln Kühlungsanordnung an einer luftgekühlten Brennkraftmaschine
US4312012A (en) 1977-11-25 1982-01-19 International Business Machines Corp. Nucleate boiling surface for increasing the heat transfer from a silicon device to a liquid coolant
US4203488A (en) 1978-03-01 1980-05-20 Aavid Engineering, Inc. Self-fastened heat sinks
US4194559A (en) 1978-11-01 1980-03-25 Thermacore, Inc. Freeze accommodating heat pipe
US4235285A (en) 1979-10-29 1980-11-25 Aavid Engineering, Inc. Self-fastened heat sinks
US4248295A (en) 1980-01-17 1981-02-03 Thermacore, Inc. Freezable heat pipe
US4345267A (en) 1980-03-31 1982-08-17 Amp Incorporated Active device substrate connector having a heat sink
US4573067A (en) 1981-03-02 1986-02-25 The Board Of Trustees Of The Leland Stanford Junior University Method and means for improved heat removal in compact semiconductor integrated circuits
US4450472A (en) 1981-03-02 1984-05-22 The Board Of Trustees Of The Leland Stanford Junior University Method and means for improved heat removal in compact semiconductor integrated circuits and similar devices utilizing coolant chambers and microscopic channels
US4574876A (en) 1981-05-11 1986-03-11 Extracorporeal Medical Specialties, Inc. Container with tapered walls for heating or cooling fluids
JPS582276A (ja) 1981-06-24 1983-01-07 株式会社日立製作所 金属−セラミツクス接合体及びその製造法
JPS58137285A (ja) 1982-02-10 1983-08-15 株式会社日立製作所 金属板付セラミック基板の製造法
US4485429A (en) 1982-06-09 1984-11-27 Sperry Corporation Apparatus for cooling integrated circuit chips
US4494171A (en) 1982-08-24 1985-01-15 Sundstrand Corporation Impingement cooling apparatus for heat liberating device
US4516632A (en) 1982-08-31 1985-05-14 The United States Of America As Represented By The United States Deparment Of Energy Microchannel crossflow fluid heat exchanger and method for its fabrication
US4467861A (en) 1982-10-04 1984-08-28 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademii Nauk Sssr Heat-transporting device
GB8323065D0 (en) 1983-08-26 1983-09-28 Rca Corp Flux free photo-detector soldering
US4567505A (en) 1983-10-27 1986-01-28 The Board Of Trustees Of The Leland Stanford Junior University Heat sink and method of attaching heat sink to a semiconductor integrated circuit and the like
JPH0673364B2 (ja) 1983-10-28 1994-09-14 株式会社日立製作所 集積回路チップ冷却装置
US4664181A (en) 1984-03-05 1987-05-12 Thermo Electron Corporation Protection of heat pipes from freeze damage
US4561040A (en) 1984-07-12 1985-12-24 Ibm Corporation Cooling system for VLSI circuit chips
US4568431A (en) 1984-11-13 1986-02-04 Olin Corporation Process for producing electroplated and/or treated metal foil
US4903761A (en) 1987-06-03 1990-02-27 Lockheed Missiles & Space Company, Inc. Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system
US5016138A (en) 1987-10-27 1991-05-14 Woodman John K Three dimensional integrated circuit package
US4894709A (en) 1988-03-09 1990-01-16 Massachusetts Institute Of Technology Forced-convection, liquid-cooled, microchannel heat sinks
US4896719A (en) 1988-05-11 1990-01-30 Mcdonnell Douglas Corporation Isothermal panel and plenum
US4908112A (en) 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5365400A (en) 1988-09-09 1994-11-15 Hitachi, Ltd. Heat sinks and semiconductor cooling device using the heat sinks
US4938280A (en) 1988-11-07 1990-07-03 Clark William E Liquid-cooled, flat plate heat exchanger
CA2002213C (en) 1988-11-10 1999-03-30 Iwona Turlik High performance integrated circuit chip package and method of making same
US5058627A (en) 1989-04-10 1991-10-22 Brannen Wiley W Freeze protection system for water pipes
US5145001A (en) 1989-07-24 1992-09-08 Creare Inc. High heat flux compact heat exchanger having a permeable heat transfer element
US5009760A (en) 1989-07-28 1991-04-23 Board Of Trustees Of The Leland Stanford Junior University System for measuring electrokinetic properties and for characterizing electrokinetic separations by monitoring current in electrophoresis
CH681168A5 (en) 1989-11-10 1993-01-29 Westonbridge Int Ltd Micro-pump for medicinal dosing
US4978638A (en) 1989-12-21 1990-12-18 International Business Machines Corporation Method for attaching heat sink to plastic packaged electronic component
US5083194A (en) 1990-01-16 1992-01-21 Cray Research, Inc. Air jet impingement on miniature pin-fin heat sinks for cooling electronic components
DE4006152A1 (de) 1990-02-27 1991-08-29 Fraunhofer Ges Forschung Mikrominiaturisierte pumpe
US5179500A (en) 1990-02-27 1993-01-12 Grumman Aerospace Corporation Vapor chamber cooled electronic circuit card
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US6054034A (en) 1990-02-28 2000-04-25 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5858188A (en) 1990-02-28 1999-01-12 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5070040A (en) 1990-03-09 1991-12-03 University Of Colorado Foundation, Inc. Method and apparatus for semiconductor circuit chip cooling
US5016090A (en) 1990-03-21 1991-05-14 International Business Machines Corporation Cross-hatch flow distribution and applications thereof
US5043797A (en) 1990-04-03 1991-08-27 General Electric Company Cooling header connection for a thyristor stack
JPH07114250B2 (ja) 1990-04-27 1995-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション 熱伝達システム
US5265670A (en) 1990-04-27 1993-11-30 International Business Machines Corporation Convection transfer system
US5088005A (en) 1990-05-08 1992-02-11 Sundstrand Corporation Cold plate for cooling electronics
US5161089A (en) 1990-06-04 1992-11-03 International Business Machines Corporation Enhanced multichip module cooling with thermally optimized pistons and closely coupled convective cooling channels, and methods of manufacturing the same
US5203401A (en) 1990-06-29 1993-04-20 Digital Equipment Corporation Wet micro-channel wafer chuck and cooling method
US5057908A (en) 1990-07-10 1991-10-15 Iowa State University Research Foundation, Inc. High power semiconductor device with integral heat sink
US5420067A (en) 1990-09-28 1995-05-30 The United States Of America As Represented By The Secretary Of The Navy Method of fabricatring sub-half-micron trenches and holes
US5099910A (en) 1991-01-15 1992-03-31 Massachusetts Institute Of Technology Microchannel heat sink with alternating flow directions
US5099311A (en) 1991-01-17 1992-03-24 The United States Of America As Represented By The United States Department Of Energy Microchannel heat sink assembly
JPH06342990A (ja) 1991-02-04 1994-12-13 Internatl Business Mach Corp <Ibm> 統合冷却システム
US5131233A (en) 1991-03-08 1992-07-21 Cray Computer Corporation Gas-liquid forced turbulence cooling
US5125451A (en) 1991-04-02 1992-06-30 Microunity Systems Engineering, Inc. Heat exchanger for solid-state electronic devices
US5232047A (en) 1991-04-02 1993-08-03 Microunity Systems Engineering, Inc. Heat exchanger for solid-state electronic devices
US5263251A (en) 1991-04-02 1993-11-23 Microunity Systems Engineering Method of fabricating a heat exchanger for solid-state electronic devices
US5199487A (en) 1991-05-31 1993-04-06 Hughes Aircraft Company Electroformed high efficiency heat exchanger and method for making
US5239200A (en) 1991-08-21 1993-08-24 International Business Machines Corporation Apparatus for cooling integrated circuit chips
US5228502A (en) 1991-09-04 1993-07-20 International Business Machines Corporation Cooling by use of multiple parallel convective surfaces
US5386143A (en) 1991-10-25 1995-01-31 Digital Equipment Corporation High performance substrate, electronic package and integrated circuit cooling process
JPH05217121A (ja) 1991-11-22 1993-08-27 Internatl Business Mach Corp <Ibm> 磁気変換器付きチップ等の感熱素子を結合する方法及び装置
US5218515A (en) 1992-03-13 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Microchannel cooling of face down bonded chips
US5230564A (en) 1992-03-20 1993-07-27 Cray Research, Inc. Temperature monitoring system for air-cooled electric components
US5239443A (en) 1992-04-23 1993-08-24 International Business Machines Corporation Blind hole cold plate cooling system
US5317805A (en) 1992-04-28 1994-06-07 Minnesota Mining And Manufacturing Company Method of making microchanneled heat exchangers utilizing sacrificial cores
US5247800A (en) 1992-06-03 1993-09-28 General Electric Company Thermal connector with an embossed contact for a cryogenic apparatus
US5275237A (en) 1992-06-12 1994-01-04 Micron Technology, Inc. Liquid filled hot plate for precise temperature control
US5308429A (en) 1992-09-29 1994-05-03 Digital Equipment Corporation System for bonding a heatsink to a semiconductor chip package
DE4240082C1 (de) 1992-11-28 1994-04-21 Erno Raumfahrttechnik Gmbh Wärmerohr
US5269372A (en) 1992-12-21 1993-12-14 International Business Machines Corporation Intersecting flow network for a cold plate cooling system
US5397919A (en) 1993-03-04 1995-03-14 Square Head, Inc. Heat sink assembly for solid state devices
JPH06266474A (ja) 1993-03-17 1994-09-22 Hitachi Ltd 電子機器装置及びラップトップ型電子機器装置
US5534328A (en) 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
JP3477781B2 (ja) 1993-03-23 2003-12-10 セイコーエプソン株式会社 Icカード
US5459352A (en) 1993-03-31 1995-10-17 Unisys Corporation Integrated circuit package having a liquid metal-aluminum/copper joint
US5436793A (en) 1993-03-31 1995-07-25 Ncr Corporation Apparatus for containing and cooling an integrated circuit device having a thermally insulative positioning member
US5427174A (en) 1993-04-30 1995-06-27 Heat Transfer Devices, Inc. Method and apparatus for a self contained heat exchanger
US5380956A (en) 1993-07-06 1995-01-10 Sun Microsystems, Inc. Multi-chip cooling module and method
US5727618A (en) 1993-08-23 1998-03-17 Sdl Inc Modular microchannel heat exchanger
US5704416A (en) 1993-09-10 1998-01-06 Aavid Laboratories, Inc. Two phase component cooler
US5514906A (en) 1993-11-10 1996-05-07 Fujitsu Limited Apparatus for cooling semiconductor chips in multichip modules
KR100353020B1 (ko) 1993-12-28 2003-01-10 쇼와 덴코 가부시키가이샤 적층형열교환기
CH689836A5 (fr) 1994-01-14 1999-12-15 Westonbridge Int Ltd Micropompe.
US5383340A (en) 1994-03-24 1995-01-24 Aavid Laboratories, Inc. Two-phase cooling system for laptop computers
US5544696A (en) 1994-07-01 1996-08-13 The United States Of America As Represented By The Secretary Of The Air Force Enhanced nucleate boiling heat transfer for electronic cooling and thermal energy transfer
US6126723A (en) 1994-07-29 2000-10-03 Battelle Memorial Institute Microcomponent assembly for efficient contacting of fluid
US6129973A (en) 1994-07-29 2000-10-10 Battelle Memorial Institute Microchannel laminated mass exchanger and method of making
US5539153A (en) 1994-08-08 1996-07-23 Hewlett-Packard Company Method of bumping substrates by contained paste deposition
US5641400A (en) 1994-10-19 1997-06-24 Hewlett-Packard Company Use of temperature control devices in miniaturized planar column devices and miniaturized total analysis systems
US5508234A (en) 1994-10-31 1996-04-16 International Business Machines Corporation Microcavity structures, fabrication processes, and applications thereof
JP3355824B2 (ja) 1994-11-04 2002-12-09 株式会社デンソー コルゲートフィン型熱交換器
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5876655A (en) 1995-02-21 1999-03-02 E. I. Du Pont De Nemours And Company Method for eliminating flow wrinkles in compression molded panels
US6227809B1 (en) 1995-03-09 2001-05-08 University Of Washington Method for making micropumps
DE19514548C1 (de) 1995-04-20 1996-10-02 Daimler Benz Ag Verfahren zur Herstellung einer Mikrokühleinrichtung
US5548605A (en) 1995-05-15 1996-08-20 The Regents Of The University Of California Monolithic microchannel heatsink
US5575929A (en) 1995-06-05 1996-11-19 The Regents Of The University Of California Method for making circular tubular channels with two silicon wafers
US6057149A (en) 1995-09-15 2000-05-02 The University Of Michigan Microscale devices and reactions in microscale devices
US5696405A (en) 1995-10-13 1997-12-09 Lucent Technologies Inc. Microelectronic package with device cooling
US5757070A (en) 1995-10-24 1998-05-26 Altera Corporation Integrated circuit package
JPH09129790A (ja) 1995-11-07 1997-05-16 Toshiba Corp ヒートシンク装置
US5705018A (en) 1995-12-13 1998-01-06 Hartley; Frank T. Micromachined peristaltic pump
JP3029792B2 (ja) 1995-12-28 2000-04-04 日本サーボ株式会社 多相永久磁石型回転電機
JP3090954B2 (ja) 1996-01-04 2000-09-25 ダイムラークライスラー アクチエンゲゼルシャフト ピンを備えた冷却部材
US5918469A (en) 1996-01-11 1999-07-06 Silicon Thermal, Inc. Cooling system and method of cooling electronic devices
US6010316A (en) 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US5579828A (en) 1996-01-16 1996-12-03 Hudson Products Corporation Flexible insert for heat pipe freeze protection
ATE192368T1 (de) 1996-02-13 2000-05-15 Abb Ab Vorrichtung zum giessen in eine form
US5768104A (en) 1996-02-22 1998-06-16 Cray Research, Inc. Cooling approach for high power integrated circuits mounted on printed circuit boards
US5675473A (en) 1996-02-23 1997-10-07 Motorola, Inc. Apparatus and method for shielding an electronic module from electromagnetic radiation
US5703536A (en) 1996-04-08 1997-12-30 Harris Corporation Liquid cooling system for high power solid state AM transmitter
US5885470A (en) 1997-04-14 1999-03-23 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
JP3329663B2 (ja) 1996-06-21 2002-09-30 株式会社日立製作所 電子装置用冷却装置
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US5740013A (en) 1996-07-03 1998-04-14 Hewlett-Packard Company Electronic device enclosure having electromagnetic energy containment and heat removal characteristics
US5763951A (en) 1996-07-22 1998-06-09 Northrop Grumman Corporation Non-mechanical magnetic pump for liquid cooling
US5801442A (en) 1996-07-22 1998-09-01 Northrop Grumman Corporation Microchannel cooling of high power semiconductor devices
US5692558A (en) 1996-07-22 1997-12-02 Northrop Grumman Corporation Microchannel cooling using aviation fuels for airborne electronics
US5835345A (en) 1996-10-02 1998-11-10 Sdl, Inc. Cooler for removing heat from a heated region
US5983997A (en) 1996-10-17 1999-11-16 Brazonics, Inc. Cold plate having uniform pressure drop and uniform flow rate
DE19643717A1 (de) 1996-10-23 1998-04-30 Asea Brown Boveri Flüssigkeits-Kühlvorrichtung für ein Hochleistungshalbleitermodul
JP3268734B2 (ja) 1996-11-15 2002-03-25 古河電気工業株式会社 ヒートパイプを用いた電子機器放熱ユニットの製造方法
US6167948B1 (en) 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
US5870823A (en) 1996-11-27 1999-02-16 International Business Machines Corporation Method of forming a multilayer electronic packaging substrate with integral cooling channels
US5964092A (en) 1996-12-13 1999-10-12 Nippon Sigmax, Co., Ltd. Electronic cooling apparatus
JPH10190071A (ja) 1996-12-20 1998-07-21 Aisin Seiki Co Ltd 多段電子冷却装置
US5896869A (en) 1997-01-13 1999-04-27 International Business Machines Corporation Semiconductor package having etched-back silver-copper braze
DE19710783C2 (de) 1997-03-17 2003-08-21 Curamik Electronics Gmbh Kühler zur Verwendung als Wärmesenke für elektrische Bauelemente oder Schaltkreise
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US5993750A (en) 1997-04-11 1999-11-30 Eastman Kodak Company Integrated ceramic micro-chemical plant
US5921087A (en) 1997-04-22 1999-07-13 Intel Corporation Method and apparatus for cooling integrated circuits using a thermoelectric module
AU727083B2 (en) 1997-04-25 2000-11-30 Caliper Life Sciences, Inc. Microfluidic devices incorporating improved channel geometries
US6159353A (en) 1997-04-30 2000-12-12 Orion Research, Inc. Capillary electrophoretic separation system
US5880524A (en) 1997-05-05 1999-03-09 Intel Corporation Heat pipe lid for electronic packages
EP0980446A4 (en) 1997-05-08 2000-08-23 Nanosystems Inc SILICON ETCHING PROCESS FOR THE PRODUCTION OF MICROCHANNEL PLATES
US5923086A (en) 1997-05-14 1999-07-13 Intel Corporation Apparatus for cooling a semiconductor die
US6090251A (en) 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US5869004A (en) 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US5901037A (en) 1997-06-18 1999-05-04 Northrop Grumman Corporation Closed loop liquid cooling for semiconductor RF amplifier modules
US5942093A (en) 1997-06-18 1999-08-24 Sandia Corporation Electro-osmotically driven liquid delivery method and apparatus
US6277257B1 (en) 1997-06-25 2001-08-21 Sandia Corporation Electrokinetic high pressure hydraulic system
US6013164A (en) 1997-06-25 2000-01-11 Sandia Corporation Electokinetic high pressure hydraulic system
US6019882A (en) 1997-06-25 2000-02-01 Sandia Corporation Electrokinetic high pressure hydraulic system
US6001231A (en) 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
US6034872A (en) 1997-07-16 2000-03-07 International Business Machines Corporation Cooling computer systems
US6907921B2 (en) 1998-06-18 2005-06-21 3M Innovative Properties Company Microchanneled active fluid heat exchanger
JP4048579B2 (ja) 1997-08-28 2008-02-20 住友電気工業株式会社 冷媒流路を含む熱消散体とその製造方法
US6400012B1 (en) 1997-09-17 2002-06-04 Advanced Energy Voorhees, Inc. Heat sink for use in cooling an integrated circuit
US6012902A (en) 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US5836750A (en) 1997-10-09 1998-11-17 Honeywell Inc. Electrostatically actuated mesopump having a plurality of elementary cells
US5945217A (en) 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
US6174675B1 (en) 1997-11-25 2001-01-16 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
US6140860A (en) 1997-12-31 2000-10-31 Intel Corporation Thermal sensing circuit
US6167910B1 (en) 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6100541A (en) 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
US6084178A (en) 1998-02-27 2000-07-04 Hewlett-Packard Company Perimeter clamp for mounting and aligning a semiconductor component as part of a field replaceable unit (FRU)
US6163073A (en) 1998-04-17 2000-12-19 International Business Machines Corporation Integrated heatsink and heatpipe
US6019165A (en) 1998-05-18 2000-02-01 Batchelder; John Samuel Heat exchange apparatus
US6227287B1 (en) 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
KR100266698B1 (ko) 1998-06-12 2000-09-15 김영환 반도체 칩 패키지 및 그 제조방법
US6196307B1 (en) 1998-06-17 2001-03-06 Intersil Americas Inc. High performance heat exchanger and method
US5940270A (en) 1998-07-08 1999-08-17 Puckett; John Christopher Two-phase constant-pressure closed-loop water cooling system for a heat producing device
US5965813A (en) 1998-07-23 1999-10-12 Industry Technology Research Institute Integrated flow sensor
US6129260A (en) 1998-08-19 2000-10-10 Fravillig Technologies Company Solderable structures
US6119729A (en) 1998-09-14 2000-09-19 Arise Technologies Corporation Freeze protection apparatus for fluid transport passages
US6146103A (en) 1998-10-09 2000-11-14 The Regents Of The University Of California Micromachined magnetohydrodynamic actuators and sensors
US6021045A (en) 1998-10-26 2000-02-01 Chip Coolers, Inc. Heat sink assembly with threaded collar and multiple pressure capability
US6032689A (en) 1998-10-30 2000-03-07 Industrial Technology Research Institute Integrated flow controller module
EP1003006A1 (en) 1998-11-19 2000-05-24 Franz Isella S.p.A. Hybrid system of passive cooling using heat pipes
US6313992B1 (en) 1998-12-22 2001-11-06 James J. Hildebrandt Method and apparatus for increasing the power density of integrated circuit boards and their components
US6365962B1 (en) 2000-03-29 2002-04-02 Intel Corporation Flip-chip on flex for high performance packaging applications
US6416642B1 (en) 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6553253B1 (en) 1999-03-12 2003-04-22 Biophoretic Therapeutic Systems, Llc Method and system for electrokinetic delivery of a substance
JP4493061B2 (ja) 1999-04-22 2010-06-30 油研工業株式会社 電動機内蔵油圧ポンプ
US6406605B1 (en) 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
US6287440B1 (en) 1999-06-18 2001-09-11 Sandia Corporation Method for eliminating gas blocking in electrokinetic pumping systems
US6495015B1 (en) 1999-06-18 2002-12-17 Sandia National Corporation Electrokinetically pumped high pressure sprays
US6096656A (en) 1999-06-24 2000-08-01 Sandia Corporation Formation of microchannels from low-temperature plasma-deposited silicon oxynitride
US6234240B1 (en) 1999-07-01 2001-05-22 Kioan Cheon Fanless cooling system for computer
US6131650A (en) 1999-07-20 2000-10-17 Thermal Corp. Fluid cooled single phase heat sink
US6396706B1 (en) 1999-07-30 2002-05-28 Credence Systems Corporation Self-heating circuit board
US6457515B1 (en) 1999-08-06 2002-10-01 The Ohio State University Two-layered micro channel heat sink, devices and systems incorporating same
US6216343B1 (en) 1999-09-02 2001-04-17 The United States Of America As Represented By The Secretary Of The Air Force Method of making micro channel heat pipe having corrugated fin elements
US6293333B1 (en) 1999-09-02 2001-09-25 The United States Of America As Represented By The Secretary Of The Air Force Micro channel heat pipe having wire cloth wick and method of fabrication
US6210986B1 (en) 1999-09-23 2001-04-03 Sandia Corporation Microfluidic channel fabrication method
JP2001110956A (ja) 1999-10-04 2001-04-20 Matsushita Electric Ind Co Ltd 電子部品用の冷却機器
US6544662B2 (en) 1999-10-25 2003-04-08 Alliedsignal Inc. Process for manufacturing of brazed multi-channeled structures
KR100338810B1 (ko) 1999-11-08 2002-05-31 윤종용 냉각장치
US6166907A (en) * 1999-11-26 2000-12-26 Chien; Chuan-Fu CPU cooling system
US6729383B1 (en) 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
US6154363A (en) 1999-12-29 2000-11-28 Chang; Neng Chao Electronic device cooling arrangement
US6272012B1 (en) 2000-02-03 2001-08-07 Crystal Group Inc. System and method for cooling compact PCI circuit cards in a computer
US6415860B1 (en) 2000-02-09 2002-07-09 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Crossflow micro heat exchanger
US6301109B1 (en) 2000-02-11 2001-10-09 International Business Machines Corporation Isothermal heat sink with cross-flow openings between channels
US6253835B1 (en) 2000-02-11 2001-07-03 International Business Machines Corporation Isothermal heat sink with converging, diverging channels
US6337794B1 (en) 2000-02-11 2002-01-08 International Business Machines Corporation Isothermal heat sink with tiered cooling channels
DE60032113T2 (de) 2000-02-11 2007-06-28 Stmicroelectronics S.R.L., Agrate Brianza Integrierte Vorrichtung zur mikrofluidischen Temperaturregelung und dessen Herstellungsverfahren
US6417060B2 (en) 2000-02-25 2002-07-09 Borealis Technical Limited Method for making a diode device
US6761211B2 (en) 2000-03-14 2004-07-13 Delphi Technologies, Inc. High-performance heat sink for electronics cooling
US6257320B1 (en) 2000-03-28 2001-07-10 Alec Wargo Heat sink device for power semiconductors
US6366467B1 (en) 2000-03-31 2002-04-02 Intel Corporation Dual-socket interposer and method of fabrication therefor
US6290909B1 (en) 2000-04-13 2001-09-18 Sandia Corporation Sample injector for high pressure liquid chromatography
DE60140837D1 (de) 2000-04-19 2010-02-04 Thermal Form & Function Inc Kühlplatte mit Kühlrippen mit einem verdampfenden Kühlmittel
JP2001326311A (ja) 2000-05-15 2001-11-22 Hitachi Ltd 電子機器の冷却装置
FR2809281B1 (fr) 2000-05-22 2002-07-12 Alstom Dispositif electronique de puissance
US6366462B1 (en) 2000-07-18 2002-04-02 International Business Machines Corporation Electronic module with integral refrigerant evaporator assembly and control system therefore
US6459582B1 (en) 2000-07-19 2002-10-01 Fujitsu Limited Heatsink apparatus for de-coupling clamping forces on an integrated circuit package
US6317326B1 (en) 2000-09-14 2001-11-13 Sun Microsystems, Inc. Integrated circuit device package and heat dissipation device
US6915648B2 (en) 2000-09-14 2005-07-12 Xdx Inc. Vapor compression systems, expansion devices, flow-regulating members, and vehicles, and methods for using vapor compression systems
US6388317B1 (en) 2000-09-25 2002-05-14 Lockheed Martin Corporation Solid-state chip cooling by use of microchannel coolant flow
US6324058B1 (en) 2000-10-25 2001-11-27 Chieh-Jen Hsiao Heat-dissipating apparatus for an integrated circuit device
US6537437B1 (en) 2000-11-13 2003-03-25 Sandia Corporation Surface-micromachined microfluidic devices
US6578626B1 (en) 2000-11-21 2003-06-17 Thermal Corp. Liquid cooled heat exchanger with enhanced flow
US6336497B1 (en) 2000-11-24 2002-01-08 Ching-Bin Lin Self-recirculated heat dissipating means for cooling central processing unit
US6437981B1 (en) 2000-11-30 2002-08-20 Harris Corporation Thermally enhanced microcircuit package and method of forming same
US6367543B1 (en) 2000-12-11 2002-04-09 Thermal Corp. Liquid-cooled heat sink with thermal jacket
JP3607608B2 (ja) 2000-12-19 2005-01-05 株式会社日立製作所 ノート型パソコンの液冷システム
US6459581B1 (en) 2000-12-19 2002-10-01 Harris Corporation Electronic device using evaporative micro-cooling and associated methods
JP2002188876A (ja) 2000-12-20 2002-07-05 Hitachi Ltd 液冷システムおよびこれを用いたパーソナルコンピュータ
CA2329408C (en) 2000-12-21 2007-12-04 Long Manufacturing Ltd. Finned plate heat exchanger
US6431260B1 (en) 2000-12-21 2002-08-13 International Business Machines Corporation Cavity plate and jet nozzle assemblies for use in cooling an electronic module, and methods of fabrication thereof
US6698924B2 (en) 2000-12-21 2004-03-02 Tank, Inc. Cooling system comprising a circular venturi
US6466442B2 (en) 2001-01-29 2002-10-15 Ching-Bin Lin Guidably-recirculated heat dissipating means for cooling central processing unit
US6424531B1 (en) 2001-03-13 2002-07-23 Delphi Technologies, Inc. High performance heat sink for electronics cooling
US20020134543A1 (en) 2001-03-20 2002-09-26 Motorola, Inc Connecting device with local heating element and method for using same
US6601643B2 (en) 2001-04-27 2003-08-05 Samsung Electronics Co., Ltd Flat evaporator
US6600220B2 (en) 2001-05-14 2003-07-29 Hewlett-Packard Company Power distribution in multi-chip modules
JP2003035470A (ja) 2001-05-15 2003-02-07 Samsung Electronics Co Ltd 微細ウィック構造を有するcpl冷却装置の蒸発器
US7177931B2 (en) 2001-05-31 2007-02-13 Yahoo! Inc. Centralized feed manager
US7462852B2 (en) 2001-12-17 2008-12-09 Tecomet, Inc. Devices, methods, and systems involving cast collimators
US6449162B1 (en) 2001-06-07 2002-09-10 International Business Machines Corporation Removable land grid array cooling solution
US6519151B2 (en) 2001-06-27 2003-02-11 International Business Machines Corporation Conic-sectioned plate and jet nozzle assembly for use in cooling an electronic module, and methods of fabrication thereof
US6438984B1 (en) 2001-08-29 2002-08-27 Sun Microsystems, Inc. Refrigerant-cooled system and method for cooling electronic components
US6587343B2 (en) 2001-08-29 2003-07-01 Sun Microsystems, Inc. Water-cooled system and method for cooling electronic components
US6533029B1 (en) 2001-09-04 2003-03-18 Thermal Corp. Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator
US6652939B2 (en) 2001-09-13 2003-11-25 Dayco Products, Llc Low permeation nylon tube with aluminum barrier layer
US6981543B2 (en) 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
TW516810U (en) 2001-09-27 2003-01-01 Hoya Tech Co Ltd Fastening device for heat sink
US6449157B1 (en) 2001-10-03 2002-09-10 Ho Kang Chu IC package assembly with retention mechanism
US20030205363A1 (en) 2001-11-09 2003-11-06 International Business Machines Corporation Enhanced air cooling of electronic devices using fluid phase change heat transfer
US6581388B2 (en) 2001-11-27 2003-06-24 Sun Microsystems, Inc. Active temperature gradient reducer
US6477045B1 (en) 2001-12-28 2002-11-05 Tien-Lai Wang Heat dissipater for a central processing unit
US6836407B2 (en) * 2002-01-04 2004-12-28 Intel Corporation Computer system having a plurality of server units transferring heat to a fluid flowing through a frame-level fluid-channeling structure
US6606251B1 (en) 2002-02-07 2003-08-12 Cooligy Inc. Power conditioning module
JP3961843B2 (ja) 2002-02-08 2007-08-22 株式会社日立製作所 液体冷却システムを有する小型電子計算機
AU2003217757A1 (en) 2002-02-26 2003-09-09 Mikros Manufacturing, Inc. Capillary evaporator
US6591625B1 (en) 2002-04-17 2003-07-15 Agilent Technologies, Inc. Cooling of substrate-supported heat-generating components
US6827128B2 (en) 2002-05-20 2004-12-07 The Board Of Trustees Of The University Of Illinois Flexible microchannel heat exchanger
US6988534B2 (en) 2002-11-01 2006-01-24 Cooligy, Inc. Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device
US6588498B1 (en) 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
JP3641258B2 (ja) 2002-08-26 2005-04-20 株式会社東芝 電子機器
US6894899B2 (en) 2002-09-13 2005-05-17 Hong Kong Cheung Tat Electrical Co. Ltd. Integrated fluid cooling system for electronic components
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
US6881039B2 (en) 2002-09-23 2005-04-19 Cooligy, Inc. Micro-fabricated electrokinetic pump
AU2003270882A1 (en) 2002-09-23 2004-05-04 Cooligy, Inc. Micro-fabricated electrokinetic pump with on-frit electrode
US6807056B2 (en) 2002-09-24 2004-10-19 Hitachi, Ltd. Electronic equipment
DE10246990A1 (de) 2002-10-02 2004-04-22 Atotech Deutschland Gmbh Mikrostrukturkühler und dessen Verwendung
JP2004139185A (ja) 2002-10-15 2004-05-13 Toshiba Corp 電子機器
US6994151B2 (en) 2002-10-22 2006-02-07 Cooligy, Inc. Vapor escape microchannel heat exchanger
JP2006522463A (ja) 2002-11-01 2006-09-28 クーリギー インコーポレイテッド 流体により冷却される超小型熱交換のための最適なスプレッダシステム、装置及び方法
US7156159B2 (en) 2003-03-17 2007-01-02 Cooligy, Inc. Multi-level microchannel heat exchangers
US7000684B2 (en) 2002-11-01 2006-02-21 Cooligy, Inc. Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US6986382B2 (en) 2002-11-01 2006-01-17 Cooligy Inc. Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
DE10393618T5 (de) 2002-11-01 2005-11-17 Cooligy, Inc., Mountain View Verfahren und Vorrichtung zum Erreichen von Temperaturgleichförmigkeit und zur Kühlung von Überhitzungspunkten in einer Wärmeerzeugungsvorrichtung
US6889515B2 (en) 2002-11-12 2005-05-10 Isothermal Systems Research, Inc. Spray cooling system
US7210227B2 (en) 2002-11-26 2007-05-01 Intel Corporation Decreasing thermal contact resistance at a material interface
US6809928B2 (en) 2002-12-27 2004-10-26 Intel Corporation Sealed and pressurized liquid cooling system for microprocessor
US7205675B2 (en) 2003-01-29 2007-04-17 Hewlett-Packard Development Company, L.P. Micro-fabricated device with thermoelectric device and method of making
US7044196B2 (en) 2003-01-31 2006-05-16 Cooligy,Inc Decoupled spring-loaded mounting apparatus and method of manufacturing thereof
US7090001B2 (en) 2003-01-31 2006-08-15 Cooligy, Inc. Optimized multiple heat pipe blocks for electronics cooling
US7293423B2 (en) 2004-06-04 2007-11-13 Cooligy Inc. Method and apparatus for controlling freezing nucleation and propagation
US7201012B2 (en) 2003-01-31 2007-04-10 Cooligy, Inc. Remedies to prevent cracking in a liquid system
US6798660B2 (en) 2003-02-13 2004-09-28 Dell Products L.P. Liquid cooling module
US7017654B2 (en) 2003-03-17 2006-03-28 Cooligy, Inc. Apparatus and method of forming channels in a heat-exchanging device
US6992891B2 (en) 2003-04-02 2006-01-31 Intel Corporation Metal ball attachment of heat dissipation devices
US6798663B1 (en) 2003-04-21 2004-09-28 Hewlett Packard Development Company, L.P. Heat sink hold-down with fan-module attach location
US7021369B2 (en) 2003-07-23 2006-04-04 Cooligy, Inc. Hermetic closed loop fluid system
JP2005064186A (ja) 2003-08-11 2005-03-10 Hitachi Ltd 冷却システムを備えた電子機器
TWM248227U (en) 2003-10-17 2004-10-21 Hon Hai Prec Ind Co Ltd Liquid cooling apparatus
JP2007529707A (ja) 2004-02-24 2007-10-25 スペグ カンパニー リミテッド 燃料電池用マイクロ熱交換器及び製作方法
US20050257532A1 (en) 2004-03-11 2005-11-24 Masami Ikeda Module for cooling semiconductor device
US7359197B2 (en) * 2004-04-12 2008-04-15 Nvidia Corporation System for efficiently cooling a processor
US7325588B2 (en) 2004-04-29 2008-02-05 Hewlett-Packard Development Company, L.P. High serviceability liquid cooling loop using flexible bellows
US7188662B2 (en) 2004-06-04 2007-03-13 Cooligy, Inc. Apparatus and method of efficient fluid delivery for cooling a heat producing device
US7301773B2 (en) 2004-06-04 2007-11-27 Cooligy Inc. Semi-compliant joining mechanism for semiconductor cooling applications
CN100371854C (zh) 2004-12-24 2008-02-27 富准精密工业(深圳)有限公司 液冷式散热装置
US7124811B2 (en) 2004-12-31 2006-10-24 Intel Corporation Systems for integrated pump and cold plate
US7143820B2 (en) 2004-12-31 2006-12-05 Intel Corporation Systems for improved heat exchanger
US7599761B2 (en) 2005-01-19 2009-10-06 Hewlett-Packard Development Company, L.P. Cooling assist module
US7385810B2 (en) 2005-04-18 2008-06-10 International Business Machines Corporation Apparatus and method for facilitating cooling of an electronics rack employing a heat exchange assembly mounted to an outlet door cover of the electronics rack
US7871578B2 (en) 2005-05-02 2011-01-18 United Technologies Corporation Micro heat exchanger with thermally conductive porous network
DE102005033150A1 (de) 2005-07-13 2007-01-25 Atotech Deutschland Gmbh Mikrostrukturierter Kühler und dessen Verwendung
US7228888B2 (en) 2005-10-13 2007-06-12 International Business Machines Corporation Rotatable liquid reservoir for computer cooling
US7626815B2 (en) 2005-11-14 2009-12-01 Nvidia Corporation Drive bay heat exchanger
JP5208769B2 (ja) * 2006-02-16 2013-06-12 クーリギー インコーポレイテッド 取付装置
US20070251938A1 (en) 2006-04-26 2007-11-01 Watlow Electric Manufacturing Company Ceramic heater and method of securing a thermocouple thereto
US20070297136A1 (en) * 2006-06-23 2007-12-27 Sun Micosystems, Inc. Modular liquid cooling of electronic components while preserving data center integrity
US8395896B2 (en) * 2007-02-24 2013-03-12 Hewlett-Packard Development Company, L.P. Redundant cooling systems and methods

Also Published As

Publication number Publication date
US7715194B2 (en) 2010-05-11
EP2016357A2 (en) 2009-01-21
US20070235167A1 (en) 2007-10-11
WO2007120662A3 (en) 2008-02-21
WO2007120662A2 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP2009533764A (ja) 冷却装置
JP5671731B2 (ja) 液冷冷却装置、電子機器ラック、およびその製作方法
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US7551440B2 (en) System and method for cooling an electronic component
US7599184B2 (en) Liquid cooling loops for server applications
US7961465B2 (en) Low cost liquid cooling
US8929080B2 (en) Immersion-cooling of selected electronic component(s) mounted to printed circuit board
JP2009527897A5 (ja)
US9560794B2 (en) Cooling device for cooling rack-type server, and data center provided with same
US8385069B2 (en) Liquid coolant conduit secured in an unused socket for memory module cooling
US8091614B2 (en) Air/fluid cooling system
US20130091868A1 (en) Thermoelectric-enhanced, vapor-condenser facilitating immersion-cooling of electronic component(s)
US20120026670A1 (en) Cooling memory modules using cold plate blades coupled to the memory modules via clips
JP2009535737A (ja) 冷却装置
US20100103619A1 (en) Interchangeable Heat Exchanger for a Circuit Board
US11497145B2 (en) Server rack and data center including a hybrid-cooled server
US10874034B1 (en) Pump driven liquid cooling module with tower fins
JP2009271643A (ja) 電子機器用筐体及び電子装置
JP2004319628A (ja) システムモジュール
US20080006396A1 (en) Multi-stage staggered radiator for high performance liquid cooling applications
TWI403883B (zh) 藉使用經模組匯流排型熱交換器連結之多流體熱交換迴路於個人電腦中冷卻多熱源之方法
JPH08213526A (ja) 回路パック
JP7176643B2 (ja) 電子機器の冷却装置、水冷型情報処理装置、及び電子機器の冷却方法
TW201102797A (en) Heat dissipating system
US20070256825A1 (en) Methodology for the liquid cooling of heat generating components mounted on a daughter card/expansion card in a personal computer through the use of a remote drive bay heat exchanger with a flexible fluid interconnect

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706