JP2009245770A - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP2009245770A
JP2009245770A JP2008091414A JP2008091414A JP2009245770A JP 2009245770 A JP2009245770 A JP 2009245770A JP 2008091414 A JP2008091414 A JP 2008091414A JP 2008091414 A JP2008091414 A JP 2008091414A JP 2009245770 A JP2009245770 A JP 2009245770A
Authority
JP
Japan
Prior art keywords
layer
substrate
organic
high thermal
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091414A
Other languages
English (en)
Inventor
Shuichi Sasa
修一 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008091414A priority Critical patent/JP2009245770A/ja
Priority to EP09728951A priority patent/EP2282607A4/en
Priority to PCT/JP2009/055263 priority patent/WO2009122909A1/ja
Priority to CN2009801108720A priority patent/CN101982012A/zh
Priority to US12/935,247 priority patent/US20110018416A1/en
Priority to KR1020107021697A priority patent/KR20110004374A/ko
Priority to TW098109733A priority patent/TW200942070A/zh
Publication of JP2009245770A publication Critical patent/JP2009245770A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL素子の放熱性をさらに向上させることを課題とする。
【解決手段】支持基板と、封止基板と、一対の電極と当該電極間に挟まれた有機発光層とを含む積層体とを備え、積層体が支持基板上に搭載され、支持基板および前記封止基板に囲繞されて外界から遮断されており、支持基板の少なくとも一方の表面、または、封止基板の少なくとも一方の表面に高熱放射性を有する層を設けられており、高熱放射性を有する層の熱放射率が0.7以上の有機エレクトロルミネッセンス素子とする。
【選択図】 図1

Description

本発明は、有機エレクトロルミネッセンス素子(以下、本明細書において「有機EL素子」ということがある)に関し、詳しくは、基板上に陽極と陰極と有機化合物を含む発光層とを備える有機エレクトロルミネッセンス素子に関する。
有機EL素子およびこれを搭載した有機EL装置は、より高い性能の装置を開発するべく、様々な検討がなされている。有機EL素子は、一般に、陽極、陰極およびこれらに挟まれた発光層を有する。発光層は電圧が印加されて発光する有機化合物で形成される。有機EL素子は様々な特性を有するが、薄膜を積層して形成できるため、極めて薄型の装置とすることができる点が一つの大きな特徴となっている。
前記有機EL素子は電圧が印加されて発光するが、現状ではその際に一部熱エネルギーに変換され、有機EL素子がジュール熱などによる発熱してしまうことがある。有機EL素子の発熱は、輝度などの発光特性の低下や、有機EL素子自体の劣化を招く場合があるとされている。この有機EL素子の温度が高くなるほど、有機EL素子の劣化を引き起こしやすい傾向がある。また、実用化が望まれている有機EL装置を用いる照明装置などの場合、高輝度を発するように駆動させる必要があり、装置からいかに熱を逃がすかという点は重要な課題となっている。そのため、有機EL素子が発する熱を素子外に放熱する方策が種々検討されている。
放熱性を改善する手法として、一部の部材に熱伝導性の高い材料を採用することが提案されている(例えば、特許文献1など)。また、有機EL素子の内部構造中の一部に放熱膜を設けることが提案されている(例えば、特許文献2など)。
特開2004−186045号公報 特開2006−244847号公報
しかしながら、有機EL素子の内部構造の一部、例えば発光層の側面または各素子を区画する隔壁部などに熱放射層を設けても、発光層を含む積層体部との接触面積が小さく、これだけでは熱の伝達効果が十分ではない。
以上のような状況の下、本発明は、放熱性をさらに向上させた有機EL素子を提供することを課題とする。
ところで、有機EL素子を構成する一対の電極(すなわち陽極と陰極)およびこれらの間に設けられる発光層などで構成される積層体は、基板上に各層を積層させて形成される。基板としてはガラスが汎用されているが、一般にガラスの熱伝導率は、1W/m・Kと低いために、発生した熱はガラスの内側から外側まで伝導しにくい。また、ガラスは熱が均一に拡散しにくいため、ガラス基板内で熱分布の偏りを生じ、有機EL素子やこれを実装する装置において、輝度バラツキ、寿命の経時変化などの特性に差が生じてしまう場合がある。そこで、ガラス表面の温度分布の均一化(均熱化)を目的として、ガラス表面に熱伝導率の高い板を張り付けるなどして熱対策をとることを本発明者らは考えた。
熱伝導性の高いシートを張り付けることにより、ガラス基板が保有する熱を拡散させ、ガラス基板の表面温度分布を均熱化し、一部のみが著しく高い温度となってその部分の劣化が早まることを防止することは可能であったが、素子自体から熱を外界に逃がすという点に関しては、さらに改善することが求められた。
本発明では、基板に、熱伝導性のみならず、放熱性にも優れた被膜またはシートなどによる層を設けることにより、基板から外界への熱放射を大幅に向上させ、有機EL素子の温度上昇を抑制することに成功した。すなわち、本発明により、下記構成を有する有機EL素子およびこれを実装する装置が提供される。
〔1〕支持基板と、封止基板と、一対の電極と当該電極間に挟まれた有機発光層とを含む積層体とを備え、前記積層体は、前記支持基板上に搭載され、前記支持基板および前記封止基板に囲繞されて外界から遮断されており、前記支持基板の少なくとも一方の表面、または、前記封止基板の少なくとも一方の表面に、高熱放射性を有する層が設けられており、前記高熱放射性を有する層の熱放射率が0.70以上である、有機エレクトロルミネッセンス素子。
〔2〕前記熱放射率が0.85以上である、上記〔1〕に記載の有機エレクトロルミネッセンス素子。
〔3〕前記高熱放射性を有する層の熱伝導率が1W/mK以上である、上記〔1〕または〔2〕に記載の有機エレクトロルミネッセンス素子。
〔4〕前記熱伝導率が200W/mK以上である、上記〔3〕に記載のエレクトロルミネッセンス素子。
〔5〕前記高熱放射性を有する層が、黒色系材料を含む、上記〔1〕から〔4〕のいずれか一項に記載の有機エレクトロルミネッセンス素子。
〔6〕前記高熱放射性を有する層が、高熱伝導性層と黒色系材料層を含む2層以上の積層である、上記〔1〕から〔5〕のいずれか一項に記載の有機エレクトロルミネッセンス素子。
〔7〕前記高熱伝導性層が、アルミニウム、銅、銀、セラミックス材料、およびこれらから選ばれる2種以上の合金からなる群より選ばれる材料または高熱伝導性の樹脂で形成されてなる、上記〔6〕に記載の有機エレクトロルミネッセンス素子。
〔8〕前記支持基板がガラス基板であり、当該ガラス基板の少なくとも一方の表面に、前記高熱放射性を有する層が設けられる、上記〔1〕から〔7〕のいずれか一項に記載の有機エレクトロルミネッセンス素子。
〔9〕前記ガラス基板の前記積層体とは反対側の表面に、前記高熱放射性を有する層が設けられる、上記〔8〕に記載の有機エレクトロルミネッセンス素子。
〔10〕前記ガラス基板の両表面に、前記高熱放射性を有する層が設けられる、上記〔8〕に記載の有機エレクトロルミネッセンス素子。
〔11〕前記ガラス基板の外側の表面に前記高熱放射性を有する層が設けられ、かつ、前記ガラス基板の前記積層体側の表面に高熱伝導性を有する層が設けられる、上記〔8〕に記載の有機エレクトロルミネッセンス素子。
〔12〕前記封止基板がガラス基板であり、当該ガラス基板の少なくとも一方の表面に、前記高熱放射性を有する層が設けられる、上記〔1〕から〔7〕のいずれか一項に記載の有機エレクトロルミネッセンス素子。
〔13〕上記〔1〕から〔12〕のいずれか一項に記載の有機エレクトルミネッセンス素子が実装された表示装置。
〔14〕上記〔1〕から〔12〕のいずれか一項に記載の有機エレクトルミネッセンス素子が実装された照明装置。
本発明により、簡便な構造で、放熱性に優れた有機EL素子および装置とすることができる。
以下、本発明の実施形態について、図面を参照しつつ説明する。なお、理解の容易のため、図面における各部材の縮尺は実際とは異なる場合がある。また、本発明は以下の記述によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。さらに、有機EL装置においては電極のリード線等の部材も存在するが、本発明の説明にあっては直接的に要しないため記載を省略している。
1.有機EL素子
<第1の実施形態>
本発明の第1の実施形態について図1を参照しつつ説明する。図1に、第1の実施形態の有機EL素子1(以下、「第1の実施形態の素子」という)の断面図を示す。第1の実施形態の素子は、支持基板10上に、有機発光層を含む積層体20が形成されている。積層体20は、封止基板30によって全体が覆われ、封止基板30と支持基板10とが接着部40にて密封されいる。このようにして積層体20は、外界から遮断されている。支持基板10の外側の表面、すなわち、積層体20が形成される側とは反対の表面に、高熱放射性を有する層60が設けられている。
有機EL素子1は、素子で発生した熱を基板内で拡散させて均熱化を促進すると共に、熱放射機構も設けて、熱を支持基板10から外界へと熱をより積極的に逃がしている。そのため、単に熱伝導性の高い材料で層を形成するよりもより積極的に熱を外界へ逃がしており、素子の温度上昇を抑制する効果が大きい。また、支持基板に付属して設ける構成を採用しており、有機EL素子の内部構造、例えば、有機発光層を含む積層体や積層体を区画する隔壁(バンク)などの構造設計を複雑化する必要がなく、簡素な構造の素子とすることができる。
<基板>
有機EL素子1を構成する基板として、支持基板10と封止基板30がある。支持基板10は、その一方の面に積層体20が搭載される。封止基板30は支持基板10上の積層体20を覆い、素子を封止する。各基板を構成する材料としては、電極等を形成し、有機物の層を形成する際に変性しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン基板、金属板、これらを積層したものなどが用い得る。さらに、プラスチック、高分子フィルムなどに低透水化処理を施したものを用いることもできる。また、基板は、市販のものが入手可能であり、あるいは、公知の方法によって製造することもできる。支持基板10の形状は、積層体20を搭載できる領域がある平面状の形状であることが好適である。また、封止基板30の形状は、支持基板10と貼り合わせて、積層体20を封止できるものであればよく、図1のように箱形でもよいし、あるいは、平板状であってもよい(不図示)。
有機EL素子1において基板となり得るものとしては、上記のような材料が挙げられるが、取り扱いの容易さなどの観点からは、ガラス基板が好適である。その反面、ガラス基板は、熱放射性が低い材料である。本発明は放熱性の向上が図れるため、ガラス基板などの熱放射性が低い材料を基板として用いる場合に好適に適用され得る。
<高熱伝導性および高熱放射性を有する層>
高熱放射性を有する層は、熱に対する2種の特性、すなわち、熱伝導性と熱放射性が双方共に高い材料で形成される層であることが好ましい(以下、高熱伝導・高熱放射性層という場合がある)。本明細書において、熱伝導とは、物質の移動や放射によるエネルギー輸送なしに熱が物体の高温部から低温部に移る現象をいう(岩波理化学辞典、岩波書店、1998年、第5版)。また、熱放射とは、物体から熱エネルギーが電磁波として放出される現象、あるいはその電磁波のことをいう(岩波理化学辞典、同上)。
熱放射性の高い材料の好ましい熱放射率としては、例えば、0.70以上、より好ましくは0.85以上が挙げられる。熱を逃がすという観点から、熱放射率の上限は特に規定するに及ばない。熱放射率とは、ある温度の物質の表面から放射されるエネルギー量と、同温度の黒体(放射で与えられたエネルギーを100%吸収する仮想物質)から放射されるエネルギー量の比率のことをいう。熱放射率は、フーリエ変換赤外線分光法(FT−IR)に従って測定することができる。熱放射性の高い材料としては、黒色系材料が挙げられ、黒色塗料の顔料成分などを好適に用い得る。黒色系材料としては、例えば、カーボンプラスチック、TiO、Feなどが例示される。
熱伝導性の高い材料の好ましい熱伝導率としては、例えば1W/mK以上、より好ましくは10W/mK以上、さらに好ましくは200W/mKが挙げられる。熱を逃がすという観点から、熱伝導率の上限は特に規定するに及ばない。熱伝導率は、物体内部の等温面の単位面積を通って単位時間に垂直に流れる熱量のことをいう(岩波理化学事典、同上)。熱伝導率は、例えば、ASTM D5470(American Society For Testing and D5470)の方法により測定することができる。熱伝導性の高い材料としては、例えば、アルミニウム、銅、銀、セラミック材料、および高熱伝導性の樹脂などが挙げられる。高熱伝導性樹脂としては、エポキシ樹脂、メラミン樹脂、アクリル樹脂などが挙げられる。
高熱伝導・高熱放射性層は、単層で形成されてもよいし、2つ以上の複数の層を有する層であってもよい。単層とする場合には、例えば、樹脂材料中に高熱伝導性の微粒子を分散させると共に、黒色系の顔料を混合し、この樹脂材料を基板に塗布して層を形成するなどの形態が挙げられる。
また、複数の層を含む高熱伝導・高熱放射性層としては、例えば、高熱伝導性のシート状材料の一面または両面に、黒色系の顔料を含む塗料を塗布し、高熱伝導性シート上に高熱放射性材料の被膜を形成させた複合シートを作成し、これを基板に貼り合わせて形成することができる。また、他の形態として、高熱伝導性のシート状材料と、高熱放射性のシート状材料とを貼り合わせた複合シートを用いてもよい。高熱伝導性層および高熱放射性層は、それぞれ複数重ねて用いてもよい。
シート状の高熱伝導・熱放射層を、基板に設ける場合、接着剤を用いて貼り付け加工してもよい。接着剤を用いる場合、アクリル系接着剤やエポキシ系接着剤などの熱伝導性の高いものを好適に用いる。また、ガラス基板の場合、ガラスとの接着性にも優れる点で、アクリル系接着剤などの接着剤を好適に用い得る。
有機発光層を含む積層体20としては、一般に有機EL素子として構成され得る様々な形態を採用し得る。以下に、有機発光層を含む積層体20として用い得る積層体の層構造およびその形成方法等の実施形態について説明する。
有機EL素子に搭載される積層体は、陽極、発光層及び陰極を必須に有するのに加えて、前記陽極と前記発光層との間、及び/又は前記発光層と前記陰極との間にさらに他の層を有することができる。
陰極と発光層の間に設け得る層としては、電子注入層、電子輸送層、正孔ブロック層等が挙げられる。電子注入層及び電子輸送層の両方が設けられる場合、陰極に近い層が電子注入層となり、発光層に近い層が電子輸送層となる。
電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、電子輸送層は、陰極、電子注入層又は陰極により近い電子輸送層からの電子注入を改善する機能を有する層である。また、電子注入層、若しくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。
陽極と発光層の間に設けるものとしては、正孔注入層、正孔輸送層、電子ブロック層等があげられる。正孔注入層及び正孔輸送層の両方が設けられる場合、陽極に近い層が正孔注入層となり、発光層に近い層が正孔輸送層となる。
正孔注入層は、陽極からの正孔注入効率を改善する機能を有する層であり、正孔輸送層とは、陽極、正孔注入層又は陽極により近い正孔輸送層からの正孔注入を改善する機能を有する層である。また、正孔注入層、又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。
なお、電子注入層及び正孔注入層を総称して電荷注入層と呼ぶことがあり、電子輸送層及び正孔輸送層を総称して電荷輸送層と呼ぶことがあり、電子ブロック層及び正孔ブロック層を総称して電荷ブロック層と呼ぶことがある。
さらに具体的には、有機EL素子は、下記の層構成のいずれかを有することができる:
a) 陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
b) 陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
c) 陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
d) 陽極/正孔注入層/正孔輸送層/発光層/陰極
e) 陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f) 陽極/正孔注入層/発光層/電子輸送層/陰極
g) 陽極/正孔注入層/発光層/電子注入層/陰極
h) 陽極/正孔注入層/発光層/陰極
i) 陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j) 陽極/正孔輸送層/発光層/電子輸送層/陰極
k) 陽極/正孔輸送層/発光層/電子注入層/陰極
l) 陽極/正孔輸送層/発光層/陰極
m) 陽極/発光層/電子輸送層/電子注入層/陰極
n) 陽極/発光層/電子輸送層/陰極
o) 陽極/発光層/電子注入層/陰極
p) 陽極/発光層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
上記層構成の各例において、発光層と陽極との間において、電子ブロック層を挿入することができる。また、発光層と陰極との間において、正孔ブロック層を挿入することもできる。
有機EL素子において、発光層は通常1層設けられるが、これに限らず2層以上の発光層を設けてもよい。その場合、2層以上の発光層は、直接接して積層することもでき、かかる層の間に発光層以外の層を設けることができる。
2層の発光層を有する有機EL素子としては、例えば、次のような層構成を有するものなどが挙げられる。
q)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
また3層以上の発光層を有する有機EL素子としては、具体的には、電極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層を一つの繰返し単位(以下において「繰返し単位A」という)として、
r)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/繰返し単位A/繰返し単位A・・・/陰極
と、2層以上の繰返し単位Aを含む層構成を有するものが挙げられる。
上記層構成q及びrにおいて、陽極、陰極、発光層以外の各層は必要に応じて省略することができる。
ここで電極とは、電界を印加することにより、正孔と電子を発生する層である。当該電極を構成する材料としては、例えば、酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどが挙げられる。
有機EL素子は、発光層からの光を放出するために、通常、発光層のいずれか一方側の層を全て光が透過可能なものとする。具体的には例えば、陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極/封止部材という構成を有する有機EL素子の場合、陽極、電荷注入層及び正孔輸送層の全てを光が透過可能なものとし、所謂ボトムエミッション型の素子とするか、又は電子輸送層、電荷注入層、陰極及び封止部材の全てを光が透過可能なものとし、所謂トップエミッション型の素子とすることができる。また、陰極/電子注入層/電子輸送層/発光層/正孔輸送層/正孔注入層/陽極/封止部材という構成を有する有機EL素子の場合、陰極、電子注入層及び電子輸送層の全てを光が透過可能なものとし、所謂ボトムエミッション型の素子とするか、又は正孔輸送層、正孔注入層、陽極及び封止部材の全てを光が透過可能なものとし、所謂トップエミッション型の素子とすることができる。ここで光が透過可能なものとしては、発光層から光を放出する層までの可視光透過率が30%以上のものが好ましい。紫外領域又は赤外領域の発光が求められる素子の場合は、当該領域において30%以上の透過率を有するものが好ましい。
有機EL素子は、さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷注入層、電荷輸送層、および発光層のうちの少なくとも一層の直上に薄いバッファー層を挿入してもよい。
積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
次に、有機EL素子を構成する各層の材料及び形成方法について、より具体的に説明する。
<陽極>
有機EL素子の陽極としては、光を透過可能な透明電極を用いることが、陽極を通して発光する素子を構成し得るため好ましい。かかる透明電極としては、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜であって、透過率の高いものが好適に利用でき、用いる有機層により適宜、選択して用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)から成る薄膜や、金、白金、銀、銅、アルミニウム、またはこれらの金属を少なくとも1種類以上含む合金等が用いられる。光透過率の高さ、パターニングの容易さから、陽極としては、ITO、IZO、酸化スズからなる薄膜が好適に用いられる。陽極の作製方法としては、真空蒸着法(前述した実施形態の電子ビーム蒸着法を含む)、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。また、前記有機の透明導電膜に用いられる材料、金属酸化物、金属硫化物、金属、およびカーボンナノチューブなどの炭素材料から成る群から選ばれる少なくとも1種類以上を含む混合物から成る薄膜を陽極に用いても良い。
陽極には、光を反射させる材料を用いてもよく、該材料としては、仕事関数3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば5nm〜10μmであり、好ましくは10nm〜1μmであり、さらに好ましくは20nm〜500nmである。
<正孔注入層>
正孔注入層は、陽極と正孔輸送層との間、または陽極と発光層との間に設けることができる。正孔注入層を構成する正孔注入層材料としては、特に制限はなく、公知の材料を適宜用いることができる。正孔注入層材料としては、例えばフェニルアミン系、スターバースト型アミン系、フタロシアニン系、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。また、このような正孔注入層の厚みとしては、5〜300nm程度であることが好ましい。このような厚みが前記下限値未満では、製造が困難になる傾向にあり、他方、前記上限値を超えると駆動電圧、および正孔注入層に印加される電圧が大きくなる傾向にある。
<正孔輸送層>
正孔輸送層を構成する正孔輸送層材料としては特に制限はないが、例えば、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)4,4’−ジアミノビフェニル(TPD)、NPB(4,4’−bis[N−(1−naphthyl)−N−phenylamino]biphenyl)等の芳香族アミン誘導体、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体などが挙げられる。
これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
正孔輸送層の成膜の方法には、特に制限はない。低分子正孔輸送材料を用いる場合には、例えば、高分子バインダーとの混合溶液からの成膜による方法などが挙げられる。また、高分子正孔輸送材料を用いる場合には、例えば、溶液からの成膜による方法などが挙げられる。
溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒としては、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒などが挙げられる。
溶液からの成膜方法としては、例えば、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法などのコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の印刷法等の塗布法を用いることができる。パターン形成が容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の印刷法が好ましい。
高分子バインダーを用いる場合、その高分子バインダーは電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとしては、例えば、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
正孔輸送層の厚みは特に制限されず、目的とする設計に応じて適宜変更することができ、1〜1000nm程度であることが好ましい。このような厚みが前記下限値未満では、製造が困難になる、または正孔輸送の効果が十分に得られないなどの傾向にあり、他方、前記上限値を超えると駆動電圧および正孔輸送層に印加される電圧が大きくなる傾向にある。正孔輸送層の厚みは、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
<発光層>
発光層は、発光材料含む層であり、有機発光層は、発光材料として有機化合物を含む層である。通常、有機発光層には、主として蛍光またはりん光を発光する有機物(低分子化合物および高分子化合物)が含まれる。なお、さらにドーパント材料を含んでいてもよい。本発明において用いることができる発光層を形成する材料としては、例えば、以下の色素系材料、金属錯体系材料、高分子系材料、およびドーパント材料などが挙げられる。
[色素系材料]
色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。
[金属錯体系材料]
金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体などを挙げることができる。さらに金属錯体系材料の他の例として、中心金属に、Al、Zn、BeなどまたはTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体などを挙げることができる。
[高分子系材料]
高分子系材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したものなどが挙げられる。
上記発光性材料のうち、青色に発光する材料としては、例えば、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
また、緑色に発光する材料としては、例えば、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
また、赤色に発光する材料としては、例えば、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることが出来る。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
[ドーパント材料]
発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加してもよい。このようなドーパントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約2nm〜2000nmである。
<発光層の成膜方法>
有機物を含む発光層の成膜方法としては、発光材料を含む溶液を基体の上又は上方に塗布する方法、真空蒸着法、転写法などを用いることができる。溶液からの成膜に用いる溶媒の具体例としては、前述の溶液から正孔輸送層を成膜する際に正孔輸送材料を溶解させる溶媒と同様の溶媒があげられる。
発光材料を含む溶液を基体の上又は上方に塗布する方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法などのコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の印刷法等の塗布法を用いることができる。パターン形成や多色の色分けが容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の印刷法が好ましい。また、昇華性の低分子化合物の場合は、真空蒸着法を用いることができる。さらには、レーザーまたは摩擦による転写や熱転写により、所望のところのみに発光層を形成する方法も用いることができる。
<電子輸送層>
電子輸送層を構成する電子輸送材料としては、公知のものが使用でき、例えば、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体等が挙げられる。
これらのうち、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜法としては特に制限はない。低分子電子輸送材料を用いる場合には、例えば、粉末からの真空蒸着法、又は溶液若しくは溶融状態からの成膜による方法が挙げられる。また、高分子電子輸送材料を用いる場合には、例えば、溶液又は溶融状態からの成膜による方法などが挙げられる。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、例えば、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法などがあげられる。
電子輸送層の厚みは特に制限されないが、目的とする設計に応じて適宜変更することができ、1〜1000nm程度であることが好ましい。このような厚みが前記下限値未満では、製造が困難になる、または正孔輸送の効果が十分に得られないなどの傾向にあり、他方、前記上限値を超えると駆動電圧および電子輸送層に印加される電圧が大きくなる傾向にある。電子輸送層の厚みは、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
<電子注入層>
電子注入層は、電子輸送層と陰極との間、または発光層と陰極との間に設けられる。電子注入層としては、発光層の種類に応じて、アルカリ金属やアルカリ土類金属、或いは前記金属を1種類以上含む合金、或いは前記金属の酸化物、ハロゲン化物及び炭酸化物、或いは前記物質の混合物などが挙げられる。アルカリ金属またはその酸化物、ハロゲン化物、炭酸化物としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。また、アルカリ土類金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウム等が挙げられる。さらに、金属、金属酸化物、金属塩をドーピングした有機金属化合物、および有機金属錯体化合物、またはこれらの混合物も電子注入層の材料として用い得る。電子注入層は、2層以上を積層したものであってもよい。具体的には、LiF/Caなどが挙げられる。電子注入層は、蒸着法、スパッタリング法、印刷法等により形成される。電子注入層の膜厚としては、1nm〜1μm程度が好ましい。
<陰極材料>
陰極の材料としては、仕事関数の小さく発光層への電子注入が容易な材料及び/又は電気伝導度が高い材料及び/又は可視光反射率の高い材料が好ましい。金属では、例えば、アルカリ金属やアルカリ土類金属、遷移金属やIII−B族金属などを用いることができる。より具体的な例を示すと、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫、またはこれら金属を少なくとも1種類以上含む合金、又はグラファイト若しくはグラファイト層間化合物等が挙げられる。合金の例としては、例えば、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。また、陰極として透明導電性電極を用いることができ、例えば導電性金属酸化物や導電性有機物などを用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、ITO、IZO、導電性有機物としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用い得る。なお、陰極を2層以上の積層構造としてもよい。なお、電子注入層が陰極として用いられる場合もある。
陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
陰極の作製方法としては、真空蒸着法(前述した実施形態の電子ビーム蒸着法を含む)、スパッタリング法、CVD法、イオンプレーティング法、レーザーアブレーション法、および金属薄膜を圧着するラミネート法等が用いられる。
<第2の実施形態>
本発明の第2の実施形態について図2を参照しつつ説明する。図2に、第2の実施形態の有機EL素子2(以下、「第2の実施形態の素子」という)の断面図を示す。図2中、第1の実施形態と同様である部材については図1と同じ符号を付し、以下、第1の実施形態と異なる点を主として説明する。
有機EL素子2では、封止基板31の外側の表面、すなわち積層体20とは反対側の表面に高熱放射性層61が設けられている。封止基板31はガラス基板または可塑性を有するシート状の材料が用いられており、封止基板31と支持基板10とは融着されている。すなわち、有機EL素子2に示すように、高熱伝導・高熱放射性層61を封止基板30側に設けてもよい。
<第3の実施形態>
本発明の第3の実施形態およびその変形例について図3−1から図3−5を参照しつつ説明する。図3−1に、第3の実施形態の有機EL素子3A(以下、「第3の実施形態の素子」という場合がある)の断面図を示す。図3−1中、第1の実施形態と同様である部材については図1と同じ符号を付し、以下、第1の実施形態と異なる点を主として説明する。
有機EL素子3Aでは、支持基板の外側の表面に、高熱伝導・高熱放射性層63が設けられている。高熱伝導・高熱放射性層63は、2つの層で構成されている。一方の層は、黒色塗装層63aであり、他方の層はアルミニウム層63bである。有機発光層の発熱により支持基板10には熱が伝わる。支持基板10としてガラス基板のような熱伝導性の低い材料が用いられている場合は特に、熱が支持基板10に停滞してしまいやすい。しかし、有機EL素子3Aにおいては、高熱伝導性を有するアルミニウム層63bが支持基板10に接触して設けられていることにより、支持基板10およびアルミニウム層63bでの熱分布の分散化を促し、また熱を支持基板10の外部へと逃がすことを助ける。さらに、アルミニウム層63bの外側表面は、黒色塗料を塗布して形成された黒色塗装層63aが設けられており、黒色塗装層63aに伝達された熱の外界への放射が促進される。有機EL素子3Aは、支持基板側に黒色塗装層63aが設けられているため、封止基板側から採光するトップエミッションタイプの素子である。
高熱伝導・高熱放射性層63を支持基板10に設ける方法には特に制限はなく、方法の一例としては、黒色塗料をアルミニウムシートの一方の表面に塗布して、黒色塗装層63aが形成されたシートを作製し、これを支持基板10に接着剤(不図示)など用いて接着する形態が挙げられる。。また、他の形態としては、支持基板10に予めアルミニウムを蒸着させておき、その上に黒色塗料を塗布して黒色塗装層を形成する形態が挙げられる。
図3−2に、第3の実施形態の素子の一変形例である有機EL素子3Bを示す。有機EL素子3Aでは支持基板10の一方の表面にのみ高熱伝導・高熱放射性層63が設けられていたが、有機EL素子3Bにおいては、支持基板10の両方の表面に高熱伝導・高熱放射性層63が設けられている。このように支持基板10の両面に高熱伝導・高熱放射性層63を設けることにより積層体20を熱源とする熱を、支持基板10全体へとより円滑に伝達させることができ、熱分散性をより向上させ得る。図3−2に示す例では、支持基板10と高熱伝導・高熱放射性層63は、積層体20から外側に向かって順に(図面上、積層体20から下方に向かって順に)次の順序で構成される。
(I)アルミニウム層63b/黒色塗装層63a/支持基板10/黒色塗装層63a/アルミニウム層63b
黒色塗装層63aとアルミニウム層63bの位置は、電極形成等の設計上の都合などにより変更し得る。例えば、図3−3に示す変形例のように、支持基板と高熱伝導・高熱放射性層は、積層体20(不図示)から順に次の順序で構成してもよい。なお、以下、図3−3から図3−5において積層体20等の上部構成は図3−2と同様なので省略している。
(II)黒色塗装層63a/アルミニウム層63b/支持基板10/アルミニウム層63b/黒色塗装層63a
さらに、下記(III)、(IV)および(V)の順に積層してもよい(不図示)。
(III)黒色塗装層63a/アルミニウム層63b/支持基板10/黒色塗装層63a/アルミニウム層63b
(IV)アルミニウム層63b/黒色塗装層63a/支持基板10/アルミニウム層63b/黒色塗装層63a
(V)アルミニウム層63b/黒色塗装層63a/支持基板10/黒色塗装層63a/アルミニウム層63b/黒色塗装層63a
放熱性の観点からは、(V)に示す順序に積層することが好ましい。
図3−4に、第3の実施形態の素子のさらに他の変形例を示す。有機EL素子3Bでは、黒色塗装層63aおよびアルミニウム層63bの2層を含む高熱伝導・高熱放射性層63が設けられたが、図3−4に示す変形例では、アルミニウム層63bの両面に黒色塗装層63aが設けられている。このように、黒色塗装層63aを両面に設ける形態は、より放熱性を高め得るという点において、好ましい一形態である。
図3−5に、第3の実施形態の素子のさらに別の変形例を示す。図3−5に示す変形例では、支持基板10の積層体側の表面(図3−5では、支持基板10の上面)には、アルミニウム層63bのみが設けれている。有機EL素子の内面側には、黒色塗装層を設けたくない場合などに採用し得る。
<第4の実施形態>
本発明の第4の実施形態について図4を参照しつつ説明する。図4に、第4の実施形態の有機EL素子4A(以下、「第4の実施形態の素子」という)の断面図を示す。図4中、第3の実施形態と同様である部材については図1と同じ符号を付し、以下、第1の実施形態と異なる点を主として説明する。
有機EL素子4Aでは、支持基板側には高熱伝導・高熱放射性層63は設けられず、封止基板30の上面に設けられている。このように、高熱伝導・高熱放射性層63は封止基板側に設けることもできる。有機EL素子4Aは支持基板10側から採光するボトムエミッションタイプの素子となる。
2.有機EL装置
本発明の有機EL装置は、上記有機EL素子を1または2つ以上搭載した装置である。有機EL装置は、例えば、面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライト、照明装置などとすることができる。本発明の有機EL装置は、素子の放熱性に優れている。そのため、輝度バラツキが少なく、経時的な耐久性に優れた装置とし得る。特に、照明装置は高輝度であることが要求されるため、高電力を印可する要請が強く、発熱量も多くなりがちである。そのため、本発明の有機EL装置は、照明装置として特に好適である。
有機EL素子を搭載した有機EL装置を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示装置が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置するパッシブマトリックス用基板、あるいは薄膜トランジスタを配置した画素単位で制御を行うアクティブマトリックス用基板を用いればよい。さらに、発光色の異なる発光材料を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。
さらに、前記面状の発光装置は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
以下、検証実験および実施例を示しつつ、本発明についてより詳細に説明するが、本発明は下記実施例等に限定されるものではない。
検証実験は、図5に示すような試験装置を用いて行った。本発明は、有機EL素子の積層体部分の構造には実質的に依存しないと考えられるため、熱源として自作のポイントヒーターを用い、ガラス、熱放射率の高い素材が被覆されたアルミニウムシートなどを用いて評価をおこなった。図5に示すように試験台80の上にホットプレート81を設け、その中央部には、円柱形状の熱伝導部83が設けれられている。熱伝導部83は真鍮製であり、また、熱伝導部83の側面外周部には断熱シート82が巻かれている。熱伝導部83の上端部には試験基板保持ガラス12が設けられている。そして、試験基板保持ガラス12上に、被試験体となる試験基板15が載置される。試験基板15上面部は、その頭上から温度センサー84によって温度が測定される。当該試験基板15の上面部から放射熱を測定する。
図6に、試験基板保持ガラス12上に載置された試験基板15の平面図を示す。試験基板15上に示すA〜Kの符号は、温度センサー84による頭上からの測定位置を示す。また、中央部の破線は、試験基板保持ガラス12の下にある熱伝導部83の上端面の通し図である。このように中央部に熱源を設け、試験基板15の一方の角部から中央部さらに対角にある他方の角部まで複数の位置を測定することにより、試験基板15の熱拡散性を測定することができる。
各試験基板の評価は次の要領にて行った。まず、放熱効果については、最大温度(試験基板の中心部)の低下レベルを指標とした。具体的には、比較試験例1(ガラス基板のみ)における試験基板の最大温度(中心部の温度)を最大温度の最高値とし、この最高値を他の試験基板の中心部の最大温度から引いた差として求めた。最大温度が低く、最大温度の差がマイナス側に大きくなるほど熱放射性が優れることを示す。また、均熱性(熱分散性)については、各試験基板内での測定位置ごとの温度により示される温度分布を指標とした。試験基板内での温度分布に偏りが少ないほど、均熱化に優れることを示す。
<実施試験例1>
実施試験例1として、図7−1に示す試験基板を用いた。実施試験例1の試験基板として、ガラス基板11(厚さ0.7mm)に、熱放射率が高い黒色塗装を施した高熱伝導性アルミニウムシートとガラス基板に接着させるための接着材からなるシート(神戸製鋼社製、商品名:コーべホーネツ・アルミ(KS750)、熱伝導率230W/mK、熱放射率0.86)を設けた基板を作製した。したがって、実施試験例1の試験基板は、試験基板保持ガラス12から順に、ガラス基板11/アルミニウム層63b/黒色塗装層63aが順次積層された積層体として構成されている。
ホットプレートの設定温度は、比較試験例1の試験ガラス基板が90℃になる温度を基準とし、その温度になるように設定して試験基板を加熱した。測定点の温度の揺らぎが±0.2℃の範囲に収まる状態で温度が安定したと判断し、図6に示すA〜Kの位置について温度センサー84を用いて、温度を測定した。
<実施試験例2>
試験基板として、図7−2に示すものを用いた点以外は、上記実施試験例1と同様にして、試験基板の熱放射性および均熱性について試験をした。実施試験例2の試験基板は、図7−2に示すように、ガラス基板の両面に高熱伝導性および高熱放射性を有する層が貼付されている。すなわち、実施試験例3の試験基板は、試験基板保持ガラス12側から順に、黒色塗装層63a/アルミニウム層63b/ガラス基板11/アルミニウム層63b/黒色塗装層63aが順次積層された積層体として構成されている。
<実施試験例3>
試験基板として、図7−3に示すものを用いた点以外は、上記実施試験例1と同様にして、試験基板の熱放射性および均熱性について試験をした。実施試験例3の試験基板は、図7−3に示すように、ガラス基板の外面側(積層体が形成される側とは反対側)表面に高熱伝導性および高熱放射性を有する層が貼付され、他方、内面側表面にはアルミニウムシートのみ貼付されている。したがって、実施試験例3の試験基板は、試験基板保持ガラス12側から順に、アルミニウム層63b/ガラス基板11/アルミニウム層63b/黒色塗装層63aが順次積層された積層体で構成されている。
<比較試験例1>
試験基板として、図7−4に示すものを用いた点以外は、上記実施試験例1と同様にして、試験基板の熱放射性および均熱性について試験をした。比較試験例3の試験基板としては、図7−4に示すように、ガラス基板11単体が用いられた。
<比較試験例2>
試験基板として、図7−5に示すものを用いた点以外は、上記実施試験例1と同様にして、試験基板の熱放射性および均熱性について試験をした。比較試験例2の試験基板は、図7−5に示すように、ガラス基板11の積層体が形成される側の表面にアルミニウムシートのみ貼付されている。したがって、比較試験例2における試験基板15は、試験基板保持ガラス12から順に、アルミニウム層63b/ガラス基板11が順次積層された積層体で構成されている。
<評価>
以上の実施試験例1から3、並びに比較試験例1および2についての上記検証試験結果を図8および表1に示す
Figure 2009245770
表1は最大温度および最大・最小温度差の一覧を示す。最大温度は、各試験基板について最も高い温度を示した値であり、各試験基板の中央部の温度を示す。また括弧内の数値は、各試験基板における最高温度から比較試験例1の最大温度(すなわち、90.0℃)を差し引いた値である。また、最大−最少温度の数値は、同一試験基板内での最大値および最小値の差であり、均熱性(熱分散性)の指標である。
表1に示されるとおり、実施試験例1〜3のいずれも、比較試験例1および2よりも最大温度が低く、最大温度を示す中央部において熱をより多く逃がしていることが明らかになった。また、比較試験例1および2の方が最大・最小温度差の値が大きく、同一基板内での温度差が大きいことが明らかになった。
図8に示されるように、比較例1および2においては、試験基板周辺部の測定位置A〜CおよびI〜Kが約40〜55℃程度であるのに対し、基板中央部の測定位置D〜Hにおいては、約80〜90℃程度と顕著な温度差が認められた。このように比較試験例1および2に供された試験基板は、均熱性(熱分散性)が低いことが明らかとなった。
これに対し、実施試験例1〜3については、測定位置A〜K間における温度分布が、およそ70〜80℃程度の間でなだらかに分布していることが明らかとなった。すなわち、実施試験例1〜3に供された試験基板は、均熱性(熱分散性)が高いことが明らかとなった。
<実施例1>ボトムエミッション型有機EL素子の作製
以下の方法で、ボトムエミッション型有機EL素子を作製した。まず、30x40mmサイズの有機EL素子用のITO透明導電膜パターンおよびCrパターンが複数個形成された200x200mmガラス基板を作製した。ITO透明導電膜はスパッタ法で膜厚約150nm成膜し、Crはスパッタ法で200nmをパターニングした。
次に、ITOおよびCrパターン付きガラス基板に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルク社製、Bytron P TP AI 4083)の懸濁液を用いて、スピンコート法により成膜し、オーブン上で200℃、20分間の乾燥をして60nmの厚さのホール注入層を形成した。その後で、有機EL素子周囲の不要部分の正孔注入層を水で浸したワイパーで拭き取り除去した。
次に、シクロヘキサノンとキシレンを1:1に混合した溶媒を用いて高分子有機発光材料(ルメーションGP1300、サメイション社製)の1.5重量%の溶液を作製し、この溶液を用いてスピンコート法により、正孔注入層を形成した基板上に塗布し発光層を形成した。その後で素子周辺部の不要部分の発光層を有機溶剤で拭き取った後、真空乾燥(圧力1×10-4Pa以下、温度約170℃、15分加熱)を行った。
その後、蒸着チャンバーに基板を移し、陰極マスクとアライメントしたあとで陰極を蒸着する。陰極は、抵抗加熱法にてBa金属を加熱し蒸着速度約2Å/sec、膜厚50Åにて蒸着、電子ビーム蒸着法を用いてAlを蒸着速度約10Å/sec、膜厚1000Åにて蒸着した。陰極形成後、蒸着室から大気には曝露せず、不活性雰囲気下のグローブボックスに移す。
ついで、黒色塗装が施された高熱伝導性材料からなる材料を貼り付けたガラス封止基板(厚さ0.7mm)を準備した。黒色塗装が施された高熱伝導性材料には、熱放射率が高い黒色塗装を施した高熱伝導性アルミニウムシートとガラス基板に接着させるための接着材からなるシート(神戸製鋼社製、商品名:コーベホーネツ・アルミ(KS750)、熱伝導率230W/mK、熱放射率:0.86)を用いた。黒色塗装が施された高熱伝導性材料のガラス封止基板への接着は、熱硬化性樹脂(Robnor resins社製、商品名:PX681C/NC)を使用し、接着エリアは周辺部とした。全面塗布後、ガラス封止基板を不活性雰囲気下のグローブボックスに入れて、陰極形成された基板と位置合せをしたあとで貼り合せ、さらに真空に保った後で大気圧に戻し、加熱により素子基板と封止基板を固定し高分子有機EL素子を作製した。なお用いた熱硬化性樹脂の硬化前の粘度は50mPa・sであった。
<実施例2>ボトムエミッション型有機EL素子の作製
実施例2では、上記実施例1における素子基板と封止基板の材料組み合わせが反対である。すなわち、支持基板に黒色塗装が施された高熱伝導性材料からなる材料を貼り付けた基板を用い、封止基板にはガラス基板を用い、全面封止を行なっている。これにより封止基板側から光を取り出すいわゆるトップエミッション型の素子において、実施例1と同様に表面温度分布が均一な素子を作製することができる。
以上のように、本発明は有機EL装置に関連する産業分野において有用である。
本発明の第1の実施形態の有機EL素子の断面図である。 本発明の第2の実施形態の有機EL素子の断面図である。 本発明の第3の実施形態を示す断面図である。 本発明の第3の実施形態の一変形例を示す断面図である。 本発明の第3の実施形態の一変形例を示す断面図である。 本発明の第3の実施形態の一変形例を示す断面図である。 本発明の第3の実施形態の一変形例を示す断面図である。 本発明の第3の実施形態の一変形例を示す断面図である。 本発明の第4の実施形態を示す断面図である。 検証実験装置の側面を示す図である。 検証実験装置上に載置される試験基板および測定位置を示す平面図である。 実施試験例1に供された試験基板の断面図を示す図である。 実施試験例2に供された試験基板の断面図を示す図である。 実施試験例3に供された試験基板の断面図を示す図である。 比較試験例1に供された試験基板の断面図を示す図である。 比較試験例2に供された試験基板の断面図を示す図である。 検証試験結果を示す図である。
符号の説明
1、2、3A、3B、4A 有機EL素子
10 支持基板
11 ガラス基板
12 試験基板保持ガラス
15 試験基板
20 有機発光層を含む積層体
30、31 封止基板
40 接着部
60、61 高熱放射性を有する層
63 2層で構成される、高熱伝導性および高熱放射性を有する層
63a 黒色塗装層
63b アルミニウム層
64 3層で構成される、高熱伝導性および高熱放射性を有する層
80 試験台
81 ホットプレート
82 断熱シート
83 熱伝導部(熱源、真鍮)
84 温度センサー
A〜K(図6において) 測定位置

Claims (14)

  1. 支持基板と、封止基板と、一対の電極と当該電極間に挟まれた有機発光層とを含む積層体とを備え、
    前記積層体は、前記支持基板上に搭載され、前記支持基板および前記封止基板に囲繞されて外界から遮断されており、
    前記支持基板の少なくとも一方の表面、または、前記封止基板の少なくとも一方の表面に、高熱放射性を有する層が設けられており、
    前記高熱放射性を有する層の熱放射率が0.70以上である、
    有機エレクトロルミネッセンス素子。
  2. 前記熱放射率が0.85以上である、請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記高熱放射性を有する層の熱伝導率が1W/mK以上である、請求項1または2に記載の有機エレクトロルミネッセンス素子。
  4. 前記熱伝導率が200W/mK以上である請求項3に記載のエレクトロルミネッセンス素子。
  5. 前記高熱放射性を有する層が、黒色系材料を含む、請求項1から4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6. 前記高熱放射性を有する層が、高熱伝導性層と黒色系材料層を含む2層以上の積層である、請求項1から5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7. 前記高熱伝導性層が、アルミニウム、銅、銀、セラミックス材料、およびこれらから選ばれる2種以上の合金からなる群より選ばれる材料または高熱伝導性の樹脂で形成されてなる、請求項6に記載の有機エレクトロルミネッセンス素子。
  8. 前記支持基板がガラス基板であり、当該ガラス基板の少なくとも一方の表面に、前記高熱放射性を有する層が設けられる、請求項1から7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9. 前記ガラス基板の前記積層体とは反対側の表面に、前記高熱放射性を有する層が設けられる、請求項8に記載の有機エレクトロルミネッセンス素子。
  10. 前記ガラス基板の両表面に、前記高熱放射性を有する層が設けられる、請求項8に記載の有機エレクトロルミネッセンス素子。
  11. 前記ガラス基板の前記積層体とは反対側の表面に前記高熱放射性を有する層が設けられ、かつ、前記ガラス基板の前記積層体側の表面に高熱伝導性を有する層が設けられる、請求項8に記載の有機エレクトロルミネッセンス素子。
  12. 前記封止基板がガラス基板であり、当該ガラス基板の少なくとも一方の表面に、前記高熱放射性を有する層が設けられる、請求項1から7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  13. 請求項1から12のいずれか一項に記載の有機エレクトルミネッセンス素子が実装された表示装置。
  14. 請求項1から12のいずれか一項に記載の有機エレクトルミネッセンス素子が実装された照明装置。
JP2008091414A 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子 Pending JP2009245770A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008091414A JP2009245770A (ja) 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子
EP09728951A EP2282607A4 (en) 2008-03-31 2009-03-18 ORGANIC ELECTROLUMINESCENCE DEVICE
PCT/JP2009/055263 WO2009122909A1 (ja) 2008-03-31 2009-03-18 有機エレクトロルミネッセンス素子
CN2009801108720A CN101982012A (zh) 2008-03-31 2009-03-18 有机电致发光元件
US12/935,247 US20110018416A1 (en) 2008-03-31 2009-03-18 Organic electroluminescence element
KR1020107021697A KR20110004374A (ko) 2008-03-31 2009-03-18 유기 전계발광 소자
TW098109733A TW200942070A (en) 2008-03-31 2009-03-25 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091414A JP2009245770A (ja) 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
JP2009245770A true JP2009245770A (ja) 2009-10-22

Family

ID=41135295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091414A Pending JP2009245770A (ja) 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20110018416A1 (ja)
EP (1) EP2282607A4 (ja)
JP (1) JP2009245770A (ja)
KR (1) KR20110004374A (ja)
CN (1) CN101982012A (ja)
TW (1) TW200942070A (ja)
WO (1) WO2009122909A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165445A (ja) * 2010-02-08 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
JP2011171288A (ja) * 2010-01-20 2011-09-01 Semiconductor Energy Lab Co Ltd フレキシブル発光装置、電子機器、照明装置、及びフレキシブル発光装置の作製方法
JP2012212555A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 発光装置
US8829500B2 (en) 2009-09-30 2014-09-09 Sumitomo Chemical Company, Limited Light emitting device
US9136505B2 (en) 2011-11-15 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and lighting device
JP2021110772A (ja) * 2020-01-07 2021-08-02 株式会社デンソー 車載用表示装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394936B1 (ko) * 2009-11-06 2014-05-14 엘지디스플레이 주식회사 광차단층을 갖는 평판 표시 장치
TWI399337B (zh) * 2009-12-21 2013-06-21 Univ Nat Cheng Kung 奈米感測器之製造方法
JP5731830B2 (ja) * 2010-01-19 2015-06-10 パナソニック株式会社 面状発光装置
US9000442B2 (en) * 2010-01-20 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, flexible light-emitting device, electronic device, and method for manufacturing light-emitting device and flexible-light emitting device
CN103120021B (zh) * 2010-07-21 2016-02-17 住友化学株式会社 有机发光装置的制造方法及有机发光装置
DE102010043747A1 (de) * 2010-11-11 2012-05-16 Osram Ag Halbleiteranordnung und mit dieser aufgebaute Funktionseinheit sowie Verfahren zur Herstellung einer Halbleiteranordnung
CN102738400B (zh) * 2011-03-31 2015-11-25 海洋王照明科技股份有限公司 一种白光电致发光器件
KR20120126962A (ko) * 2011-05-13 2012-11-21 주식회사 엘 앤 에프 방열 구조를 갖는 백라이트 유닛 및 그 제조 방법
JP5970295B2 (ja) * 2011-09-05 2016-08-17 株式会社ミツトヨ 測定器
US8957577B2 (en) * 2011-09-30 2015-02-17 Apple Inc. Integrated thermal spreading
DE102012200485A1 (de) 2012-01-13 2013-07-18 Osram Opto Semiconductors Gmbh Organische lichtemittierende Vorrichtung und Verfahren zum Prozessieren einer organischen lichtemittierenden Vorrichtung
CN103378310A (zh) * 2012-04-28 2013-10-30 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
TWI556484B (zh) * 2012-08-15 2016-11-01 友達光電股份有限公司 有機發光二極體模組
US9565793B2 (en) 2012-10-31 2017-02-07 Industrial Technology Research Institute Environmental sensitive electronic device package
TWI569437B (zh) * 2012-10-31 2017-02-01 財團法人工業技術研究院 環境敏感電子元件封裝體
DE112014001264T5 (de) * 2013-03-13 2016-01-21 Dic Corporation Laminat, Leiterbild sowie Verfahren zur Herstellung eines Laminats
KR102408938B1 (ko) * 2015-07-17 2022-06-14 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102435399B1 (ko) * 2015-12-24 2022-08-25 삼성디스플레이 주식회사 유기발광 표시장치
CN105655494B (zh) * 2016-03-18 2018-08-24 深圳市华星光电技术有限公司 有机发光二极管的基底及其制作方法、有机发光二极管
US10429908B2 (en) 2016-03-28 2019-10-01 Microsoft Technology Licensing, Llc Black body radiation in a computing device
US10637005B2 (en) * 2016-08-26 2020-04-28 Osram Oled Gmbh Method of producing a component module and component module
CN106784374A (zh) * 2016-12-27 2017-05-31 固安翌光科技有限公司 一种耐高温的微腔oled屏体及其生产工艺
KR102505255B1 (ko) * 2017-12-26 2023-02-28 엘지디스플레이 주식회사 디스플레이 장치
CN110031103A (zh) * 2018-01-11 2019-07-19 清华大学 面源黑体以及面源黑体的制备方法
KR20200082504A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 조명 장치
KR102500214B1 (ko) * 2021-08-23 2023-02-17 삼성디스플레이 주식회사 열 확산 시트를 포함한 표시 장치

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208478A (ja) * 2000-12-23 2002-07-26 Lg Philips Lcd Co Ltd 電界発光素子
JP2003007450A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd 発光素子、表示装置及び照明装置
JP2003059644A (ja) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd 電界発光素子
US20040085019A1 (en) * 2002-10-25 2004-05-06 Ling-Ta Su Organic light-emitting diode
JP2005317346A (ja) * 2004-04-28 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 表示装置
WO2006008863A1 (ja) * 2004-07-15 2006-01-26 Fujifilm Corporation 無機分散型エレクトロルミネッセンス素子
JP2006120555A (ja) * 2004-10-25 2006-05-11 Fuji Photo Film Co Ltd 分散型エレクトロルミネッセンス素子
JP2006128023A (ja) * 2004-11-01 2006-05-18 Seiko Epson Corp 薄膜発光素子、及びこれを備えた電気光学装置、並びに電子機器
JP2006261057A (ja) * 2005-03-18 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
KR100643890B1 (ko) * 2005-05-04 2006-11-10 주식회사 대우일렉트로닉스 유기 발광 소자 패널
JP2006331695A (ja) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd 有機発光素子用封止部材及び有機発光素子
JP2007525713A (ja) * 2004-02-24 2007-09-06 イーストマン コダック カンパニー 熱伝導性背面プレートを備えるoledディスプレイ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821692A (en) * 1996-11-26 1998-10-13 Motorola, Inc. Organic electroluminescent device hermetic encapsulation package
US6777870B2 (en) * 2001-06-29 2004-08-17 Intel Corporation Array of thermally conductive elements in an oled display
JP2004186045A (ja) 2002-12-04 2004-07-02 Sanyo Electric Co Ltd 有機elパネル
JP2006244847A (ja) 2005-03-03 2006-09-14 Seiko Epson Corp 発光装置、及びこれを備えた電子機器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208478A (ja) * 2000-12-23 2002-07-26 Lg Philips Lcd Co Ltd 電界発光素子
JP2003007450A (ja) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd 発光素子、表示装置及び照明装置
JP2003059644A (ja) * 2001-08-09 2003-02-28 Matsushita Electric Ind Co Ltd 電界発光素子
US20040085019A1 (en) * 2002-10-25 2004-05-06 Ling-Ta Su Organic light-emitting diode
JP2007525713A (ja) * 2004-02-24 2007-09-06 イーストマン コダック カンパニー 熱伝導性背面プレートを備えるoledディスプレイ
JP2005317346A (ja) * 2004-04-28 2005-11-10 Toshiba Matsushita Display Technology Co Ltd 表示装置
WO2006008863A1 (ja) * 2004-07-15 2006-01-26 Fujifilm Corporation 無機分散型エレクトロルミネッセンス素子
JP2006120555A (ja) * 2004-10-25 2006-05-11 Fuji Photo Film Co Ltd 分散型エレクトロルミネッセンス素子
JP2006128023A (ja) * 2004-11-01 2006-05-18 Seiko Epson Corp 薄膜発光素子、及びこれを備えた電気光学装置、並びに電子機器
JP2006261057A (ja) * 2005-03-18 2006-09-28 Fuji Photo Film Co Ltd 有機電界発光素子
KR100643890B1 (ko) * 2005-05-04 2006-11-10 주식회사 대우일렉트로닉스 유기 발광 소자 패널
JP2006331695A (ja) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd 有機発光素子用封止部材及び有機発光素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829500B2 (en) 2009-09-30 2014-09-09 Sumitomo Chemical Company, Limited Light emitting device
JP2011171288A (ja) * 2010-01-20 2011-09-01 Semiconductor Energy Lab Co Ltd フレキシブル発光装置、電子機器、照明装置、及びフレキシブル発光装置の作製方法
US9000443B2 (en) 2010-01-20 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, flexible light-emitting device, electronic device, lighting apparatus, and method of manufacturing light-emitting device and flexible-light emitting device
JP2011165445A (ja) * 2010-02-08 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
JP2012212555A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 発光装置
US9136505B2 (en) 2011-11-15 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and lighting device
JP2021110772A (ja) * 2020-01-07 2021-08-02 株式会社デンソー 車載用表示装置

Also Published As

Publication number Publication date
EP2282607A1 (en) 2011-02-09
CN101982012A (zh) 2011-02-23
EP2282607A4 (en) 2011-04-27
US20110018416A1 (en) 2011-01-27
TW200942070A (en) 2009-10-01
WO2009122909A1 (ja) 2009-10-08
KR20110004374A (ko) 2011-01-13

Similar Documents

Publication Publication Date Title
WO2009122909A1 (ja) 有機エレクトロルミネッセンス素子
JP5314409B2 (ja) 有機エレクトロルミネッセンス素子
US20110043103A1 (en) Organic electroluminescence element and manufacturing method of the same
JP2009129681A (ja) 有機エレクトロルミネッセンス装置およびその製造方法
US20100295446A1 (en) Transparent plate with transparent conductive film and organic electroluminescence element
WO2011013618A1 (ja) 有機エレクトロルミネッセンス素子
JP2010080307A (ja) 有機エレクトロルミネッセンス素子
KR20100052475A (ko) 유기 전계발광 소자, 제조 방법 및 도포액
WO2009122871A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置
JP5038274B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
WO2010013641A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、発光装置および表示装置
WO2009119558A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
US9879176B2 (en) Organic electroluminescent element, production method for the same, planar light source, lighting device, and display device
JP2010146894A (ja) 有機エレクトロルミネッセンス素子
JP5249075B2 (ja) 有機エレクトロルミネッセンス素子
JP2013211102A (ja) 有機エレクトロルミネセンスディスプレイパネルおよびその製造方法
JP2010146893A (ja) 有機エレクトロルミネッセンス素子、及びその製造方法
US9923164B2 (en) Method for manufacturing transparent electrode, transparent electrode, and organic electroluminescence device provided with the same
JP5156612B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5155085B2 (ja) 有機エレクトロルミネッセンス素子、およびその製造方法
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP5314395B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP6387602B2 (ja) 透明電極、透明電極の製造方法、透明電極を備えた有機エレクトロルミネッセンス素子
JP5184938B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304