WO2009122871A1 - 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置 - Google Patents

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置 Download PDF

Info

Publication number
WO2009122871A1
WO2009122871A1 PCT/JP2009/054572 JP2009054572W WO2009122871A1 WO 2009122871 A1 WO2009122871 A1 WO 2009122871A1 JP 2009054572 W JP2009054572 W JP 2009054572W WO 2009122871 A1 WO2009122871 A1 WO 2009122871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting layer
organic
organic light
layer
Prior art date
Application number
PCT/JP2009/054572
Other languages
English (en)
French (fr)
Inventor
行一 六原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US12/935,367 priority Critical patent/US8277273B2/en
Priority to CN2009801114990A priority patent/CN101982016A/zh
Priority to EP09726524A priority patent/EP2278858A1/en
Publication of WO2009122871A1 publication Critical patent/WO2009122871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/003Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • B41N1/22Curved printing plates, especially cylinders made of other substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method for manufacturing an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), an organic EL element obtained by using the manufacturing method, and a lighting device including the organic EL element. is there. More specifically, the present invention prevents uneven coating when an organic light-emitting ink is applied to the formation region of the organic light-emitting layer having a large area by a relief printing method, and forms an organic light-emitting layer having a uniform thickness.
  • the present invention relates to a method for producing an organic EL element, an organic EL element obtained by using the production method, and a lighting device including the organic EL element.
  • an organic EL element has, as a basic structure, a first electrode (anode or cathode) and a second electrode (cathode or anode) and an organic light emitting layer provided between these electrodes. is doing.
  • the organic light emitting layer emits light by passing a current between electrodes facing each other across the organic light emitting layer.
  • ⁇ Applications of organic EL elements include display devices and lighting devices.
  • a display device a plurality of organic EL elements are arranged on a substrate, and each organic EL element functions as a pixel (see, for example, Patent Document 1).
  • the size of such organic EL elements for display devices is determined according to the required resolution, and the width and length of each organic light emitting layer are usually on the order of microns.
  • the lighting device it is not necessary to use a small organic EL element like an organic EL element for a display device, and one or a plurality of organic EL elements each having an organic light-emitting layer having a width and length of centimeter order are on a substrate. Is arranged.
  • the size of the light emitting layer forming region where the organic light emitting layer is formed is as small as 2 ⁇ m, so the concentration and the printing speed of the organic light emitting ink containing the organic light emitting material are appropriately set. By setting, the organic light-emitting ink can be uniformly applied in the pixels using the relief printing method.
  • the organic EL element for the lighting device has a light emitting layer forming region of about 1 cm ⁇ 1 cm or more, for example, 10,000 times in area.
  • the technology for forming organic EL elements for display devices is used as it is. Even if the organic light emitting ink is applied using a printing method, uneven coating may occur in the light emitting layer forming region, and the conventionally used relief printing method cannot be applied. The occurrence of such coating unevenness becomes significant when the size of the light emitting layer forming region exceeds 1 cm ⁇ 1 cm.
  • the film thickness of the organic light emitting layer is uneven due to coating unevenness, the light emission is also uneven, and in some cases, a light emission failure occurs, and the performance of the lighting device is significantly deteriorated.
  • the present invention has been made in view of the above-described conventional circumstances, and its problem is to prevent uneven coating when an organic light-emitting ink is applied to a formation region of an organic light-emitting layer having a large area by a relief printing method. It is providing the manufacturing method of the organic EL element which can form the organic light emitting layer of a sufficient film thickness, the organic EL element obtained using this manufacturing method, and the illuminating device containing the said organic EL element.
  • the present invention provides an organic electroluminescent element manufacturing method, an organic electroluminescent element, and a lighting device that employ the following configuration.
  • a method for producing an organic electroluminescent device comprising at least an anode, a cathode, and an organic light emitting layer provided between the anode and the cathode, corresponding to a light emitting layer forming region in which the organic light emitting layer is formed
  • An organic light-emitting ink containing an organic light-emitting material and a solvent is applied to the light-emitting layer forming region using a relief printing plate having a convex portion having a shape and a plurality of concave grooves formed on the surface of the convex portion.
  • the manufacturing method of an organic electroluminescent element including the organic light emitting layer formation process which forms an organic light emitting layer.
  • an organic EL element having excellent light emission characteristics without occurrence of light emission unevenness or light emission failure on the light emitting surface and a lighting device having the organic EL element.
  • FIG. 1 is a sectional configuration diagram of a convex portion showing a surface structure of a convex portion of a relief printing plate used for forming an organic light emitting layer in the manufacture of a conventional organic EL element.
  • FIG. 2 is a cross-sectional configuration diagram of the convex portion showing the surface structure of the convex portion of the relief printing plate used for forming the organic light emitting layer in the production of the organic EL element of the present invention.
  • FIG. 3 is an enlarged cross-sectional configuration diagram of the convex surface of the relief printing plate shown in FIG.
  • the structure of the organic EL element targeted by the method of the present invention will be described, and then the method for manufacturing the organic EL element according to the present invention will be described in more detail.
  • the obtained organic EL element is used for, for example, a lighting device. Note that the scale of each member in the drawings shown in the following description may differ from the actual scale.
  • the substrate used for the organic EL element may be any substrate that does not change when the electrode is formed and the organic layer is formed.
  • glass, plastic, polymer film, silicon substrate, or a laminate of these is used. It is done. Further, a plastic, a polymer film or the like that has been subjected to a low water permeability treatment can also be used.
  • a commercially available substrate can be used as the substrate, and it can also be produced by a known method.
  • the organic EL element is configured by laminating at least an anode, a cathode, and an organic light emitting layer positioned between the anode and the cathode. Further, at least one of the anode and the cathode is made of an electrode having optical transparency.
  • the organic light emitting layer a low molecular weight and / or high molecular weight organic light emitting material is used.
  • the organic light emitting layer is formed by relief printing, and a polymer light emitting material is suitable as the organic light emitting material for the organic light emitting layer.
  • a plurality of light emitting layers may be provided between the anode and the cathode, or layers other than the light emitting layer may be provided.
  • a layer provided between the cathode and the light-emitting layer may be referred to as a cathode-side interlayer
  • a layer provided between the anode and the light-emitting layer may be referred to as an anode-side interlayer.
  • Examples of the anode-side interlayer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the hole injection layer is a layer having a function of improving the efficiency of hole injection from the cathode
  • the hole transport layer is a positive hole from the hole injection layer or a layer closer to the anode (hole transport layer).
  • This layer has a function of improving hole injection.
  • these layers may be referred to as an electron block layer. Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
  • Examples of the cathode side interlayer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection from the electron injection layer or a layer closer to the cathode (electron transport layer). It is a layer having.
  • the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer. Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
  • the layered structure of each layer provided between the anode and the cathode as described above includes a hole transport layer provided between the anode and the light emitting layer, and an electron transport layer provided between the cathode and the light emitting layer. And a structure in which an electron transport layer is provided between the cathode and the light emitting layer and a hole transport layer is provided between the anode and the light emitting layer.
  • specific examples include the following laminated structures a) to d).
  • Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (Here, / indicates that each layer is laminated adjacently. The same applies hereinafter.)
  • the light emitting layer is a layer having a function of emitting light
  • the hole transporting layer is a layer having a function of transporting holes
  • the electron transporting layer is a function of transporting electrons. It is a layer which has.
  • the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers).
  • an electron injection layer Sometimes referred to as an electron injection layer).
  • the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode, and the adhesion at the interface is improved.
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer. What is necessary is just to set suitably about the order and number of the layers to laminate
  • an organic EL element provided with a charge injection layer (electron injection layer, hole injection layer)
  • an organic EL element provided with a charge injection layer adjacent to the cathode and a charge injection layer provided adjacent to the anode.
  • An organic EL element is mentioned.
  • the following structures e) to p) are specifically mentioned.
  • anode for the anode, for example, as a transparent electrode or a semitransparent electrode, a metal oxide, metal sulfide or metal thin film having high electrical conductivity can be used, and a high transmittance can be suitably used.
  • a metal oxide, metal sulfide or metal thin film having high electrical conductivity can be used, and a high transmittance can be suitably used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • gold platinum, silver, copper, and the like
  • a thin film is used, and among these, ITO, IZO, and tin oxide are preferable.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • a thin film made of a mixture containing at least one selected from the group consisting of materials used for the organic transparent conductive film, metal oxides, metal sulfides, metals, and carbon materials such as carbon nanotubes is used as an anode. It may be used.
  • a material that reflects light may be used for the anode, and such a material is preferably a metal, metal oxide, or metal sulfide having a work function of 3.0 eV or more.
  • Examples of methods for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 5 nm to 10 ⁇ m, preferably 10 nm to 1 ⁇ m, and more preferably 20 nm to 500 nm. .
  • anode-side interlayer such as a hole injection layer and a hole transport layer is laminated between the anode and the light emitting layer as necessary.
  • the hole injection layer may be provided between the anode and the hole transport layer or between the anode and the light emitting layer.
  • a known material may be appropriately used, and there is no particular limitation.
  • the thickness of such a hole injection layer is preferably about 5 to 300 nm. If the thickness is less than 5 nm, the production tends to be difficult. On the other hand, if the thickness exceeds 300 nm, the driving voltage and the voltage applied to the hole injection layer tend to increase.
  • the material constituting the hole transport layer is not particularly limited.
  • N, N′-diphenyl-N, N′-di (3-methylphenyl) 4,4′-diaminobiphenyl (TPD), 4 , 4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB), etc. polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, aromatic amines in the side chain or main chain Polysiloxane derivatives having pyrazole, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamine or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) Or its derivatives, or poly (2,5-thienylene vinylene) or a derivative thereof.
  • the hole transport material used for the hole transport layer polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof, Polymeric hole transport materials such as polythiophene or derivatives thereof, polyarylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and more preferred Is polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • the thickness of the hole transport layer is not particularly limited, but can be appropriately changed according to the intended design, and is preferably about 1 to 1000 nm. If the thickness is less than the lower limit value, production tends to be difficult or the effect of hole transport is not sufficiently obtained. On the other hand, if the thickness exceeds the upper limit value, the driving voltage and the hole transport layer are increased. There is a tendency that the voltage applied to is increased. Therefore, as described above, the thickness of the hole transport layer is preferably 1 to 1000 nm, more preferably 2 nm to 500 nm, and still more preferably 5 nm to 200 nm.
  • Organic light emitting layer usually contains organic substances (low molecular compounds and high molecular compounds) that mainly emit fluorescence or phosphorescence. Further, a dopant material may be further included. Examples of the material for forming the organic light emitting layer used in the present invention include the following dye-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
  • the dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, quinacridone derivatives, and coumarin derivatives.
  • metal complex materials include metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, Azomethylzinc complex, porphyrin zinc complex, europium complex, etc., which has Al, Zn, Be, etc. or rare earth metals such as Tb, Eu, Dy, etc. as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenyl as the ligand
  • metal complexes having benzimidazole, quinoline structure, and the like include metal complexes having benzimidazole, quinoline structure, and the like.
  • polymer material examples include a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyparaphenylene derivative, a polysilane derivative, a polyacetylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative, and the above-described dye bodies and metal complex light emitting materials. And the like.
  • Examples of materials that emit blue light among the organic light emitting layer forming materials include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. . Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of the material that emits green light among the organic light emitting layer forming materials include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • examples of the material that emits red light among the above light emitting layer forming materials include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • a dopant may be added to the organic light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of the organic light emitting layer is usually 2 nm to 200 nm.
  • a cathode-side interlayer such as an electron injection layer and an electron transport layer is laminated between the light emitting layer and a cathode described later, if necessary.
  • Electrode transport layer As the material for forming the electron transport layer, known materials can be used. For example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
  • oxadiazole derivatives benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • the electron injection layer is provided between the electron transport layer and the cathode, or between the light emitting layer and the cathode.
  • the electron injection layer depending on the type of the light emitting layer, for example, an alkali metal, an alkaline earth metal, an alloy containing one or more of the metals, an oxide, a halide and a carbonate of the metal, or the substance A mixture of these is used.
  • alkali metal or its oxide, halide, carbonate examples include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride. , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate and the like.
  • alkaline earth metal or oxides, halides and carbonates thereof include, for example, magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, calcium fluoride, and barium oxide.
  • a metal, a metal oxide, an organometallic compound doped with a metal salt, an organometallic complex compound, or a mixture thereof can also be used as a material for the electron injection layer.
  • This electron injection layer may have a stacked structure in which two or more layers are stacked. Specifically, Li / Ca etc. are mentioned.
  • This electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • cathode As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer and / or a material having a high electric conductivity and / or a material having a high visible light reflectance are preferable. Specific examples of such cathode materials include metals, metal oxides, alloys, graphite or graphite intercalation compounds, and inorganic semiconductors such as zinc oxide (ZnO).
  • alkali metal alkaline earth metal, transition metal, group 13 metal of the periodic table, or the like
  • metals include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, and aluminum.
  • the alloy examples include an alloy containing at least one of the above metals.
  • a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy examples thereof include a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • the cathode is a transparent electrode or a semi-transparent electrode as required.
  • the material include conductive oxides such as indium oxide, zinc oxide, tin oxide, ITO, and IZO; polyaniline or a derivative thereof; Examples thereof include conductive organic substances such as polythiophene or derivatives thereof.
  • the cathode may have a laminated structure of two or more layers. Moreover, an electron injection layer may be used as a cathode.
  • the thickness of the cathode may be appropriately selected in consideration of electric conductivity and durability, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • an upper sealing film for sealing the light emitting function part is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • This upper sealing film usually has at least one inorganic layer and at least one organic layer. The number of stacked layers is determined as necessary. Basically, inorganic layers and organic layers are alternately stacked.
  • the plastic substrate has higher gas and liquid permeability than the glass substrate, and light emitting substances such as the organic light emitting layer are easily oxidized.
  • the lower sealing film having a high barrier property against gas and liquid is laminated on the plastic substrate, and then the lower sealing film.
  • the light emitting function unit is stacked on the substrate.
  • the lower sealing film is usually formed with the same configuration and the same material as the upper sealing film.
  • a substrate made of any of the aforementioned substrate materials is prepared.
  • a plastic substrate having high gas and liquid permeability is used, a lower sealing film is formed on the substrate as necessary.
  • an anode is patterned on the prepared substrate using any of the anode materials described above.
  • a transparent electrode material such as ITO, IZO, tin oxide, zinc oxide, indium oxide, and zinc aluminum composite oxide is used.
  • the electrode pattern is formed as a uniform deposited film on the substrate by a sputtering method, and then patterned by photolithography.
  • an insulating film is formed on the substrate on which the anode is formed, and further patterned to form a partition wall that surrounds the light emitting layer forming region where the organic light emitting layer is formed when viewed from one side in the thickness direction of the substrate. .
  • the light emitting layer forming region corresponds to the light emitting region.
  • the organic EL element is used as a light source of an illumination device, the light emitting layer forming region (light emitting region) is usually formed in an area of 0.5 cm ⁇ 0.5 cm or more.
  • the role of the insulating film is to ensure electrical insulation between the organic EL elements and to define a light emitting region when a plurality of organic EL elements are formed on the substrate. Therefore, the thickness dimension is usually set to 0.1 to 0.2 ⁇ m.
  • the insulating film is usually formed by photolithography using a photosensitive material (photoresist composition).
  • the photosensitive material photoresist composition
  • the photosensitive material can be applied by a coating method using a spin coater, bar coater, roll coater, die coater, gravure coater, slit coater or the like.
  • the insulating photosensitive material forming the insulating film may be either a positive resist or a negative resist.
  • polyimide, acrylic resin, and novolac resin-based photosensitive compounds can be used as the photosensitive material exhibiting insulation properties.
  • This photosensitive material may contain a light-shielding material for the purpose of improving the display quality of the organic EL element.
  • an ink repellant substance may be added to the photosensitive material for forming the partition wall. Or after forming an insulating film, you may provide ink repellency to the partition surface by coating the surface with an ink repellency substance. This ink repellency is preferably repellant for both the interlayer ink described later and the organic light emitting layer ink.
  • an organic material layer such as the above-described hole transport layer is formed as necessary.
  • the film formation method of the anode side interlayer is not particularly limited, but for low molecular weight materials, for example, a method by film formation from a mixed solution with a polymer binder can be mentioned. In the case of a polymer material, for example, a method by film formation from a solution can be given.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-mentioned anode side interlayer material.
  • solvents include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and acetic acid.
  • ester solvents such as butyl and ethyl cellosolve acetate.
  • the film formation method from the above solution it is preferable to use a relief printing method.
  • the flexographic printing method is preferred.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • examples of such a polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the convex surface 2a of the convex portion 2 of the relief printing plate 1 has a shape and dimensions corresponding to the region where the organic light emitting layer is formed.
  • the organic light emitting ink 3 was adhered on the convex surface 2a, and the organic light emitting ink 3 was transferred to the formation region of the organic light emitting layer.
  • the organic light emitting layer forming step in the method for manufacturing an organic EL element according to the present invention is characterized by a convex portion 12 having a shape corresponding to the light emitting layer forming region where the organic light emitting layer is formed.
  • An organic light-emitting layer is formed by applying an organic light-emitting ink containing an organic light-emitting material and a solvent to the light-emitting layer forming region, and a plurality of the convex portions 12 are formed on the surface portion. Having a concave groove 12b.
  • the plurality of concave grooves 12 b are preferably arranged in stripes with a predetermined interval in the lateral direction, and further, the predetermined interval is a constant interval.
  • the short direction is a direction perpendicular to the depth direction of the groove and the direction (longitudinal direction) in which the groove extends.
  • positioned adjacently is called the protruding item
  • the shape corresponding to the light emitting layer forming region is a shape in which the contour of the surface of the convex portion 12 substantially matches the contour of the light emitting layer forming region.
  • the ridges 12a and the grooves 12b may be provided at regular intervals or may not be provided at regular intervals.
  • the plurality of concave grooves in the surface direction of the convex portions are respectively in the short direction. It is preferable that they are arranged in stripes with a certain interval.
  • at least one end in the longitudinal direction of the plurality of concave grooves 12 b is open to the side surface of the convex portion 12. That is, it is preferable that at least one end in the longitudinal direction of the plurality of concave grooves 12 b reaches the side surface of the convex portion 12.
  • the concave grooves 12 b are formed on both side surfaces of the convex portion 12. It is preferable that they are formed between. It is presumed that the negative pressure generated in the coating film during the transfer of the organic light-emitting ink can be relieved by opening at least one end of the concave groove 12b in the longitudinal direction.
  • the preferred range of the dimensions of the ridges 12a and the grooves 12b is not particularly limited, but is appropriately set according to the ink concentration, viscosity, solvent evaporation rate, and the like.
  • the height h of the ridge 12a (depth of the groove 12b) h is preferably 5 ⁇ m to 50 ⁇ m, and the width (line width) of the ridge 12a is 10 ⁇ m.
  • the width dimension of the concave groove 12b space width dimension, width of the concave groove in the short direction
  • the longitudinal direction of the concave groove 12b that is, the stripe forming direction is not particularly limited, but is preferably parallel to the printing direction of relief printing.
  • the organic light emitting ink is prepared by dissolving or stably dispersing an organic light emitting material in a solvent.
  • the solvent for dissolving or dispersing the organic light emitting material include toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or a mixed solvent thereof.
  • aromatic organic solvents such as toluene, xylene, and anisole are preferable because they have good solubility of the organic light emitting material.
  • organic luminescent ink may be added.
  • surfactant antioxidant, a viscosity modifier, a ultraviolet absorber, etc.
  • the area of the light emitting layer forming region is 1 cm ⁇ 1 cm or more. Even in such a large area, the organic light emitting ink can be uniformly applied, and thus an organic EL element having a wide light emitting area can be easily produced by a coating method.
  • a cathode-side interlayer such as an electron transport layer or an electron injection layer is formed as necessary.
  • the method for forming this cathode side interlayer is not particularly limited in the case of an electron transport layer, but for low molecular weight electron transport materials, a vacuum deposition method from powder or a method by film formation from a solution or a molten state is exemplified.
  • a vacuum deposition method from powder or a method by film formation from a solution or a molten state is exemplified.
  • a polymer electron transport material a method by film formation from a solution or a molten state is exemplified.
  • a polymer binder may be used in combination.
  • a method for forming an electron transport layer from a solution a film formation method similar to the method for forming a hole transport layer from a solution described above can be used.
  • an electron injection layer it is formed using a vapor deposition method, a sputtering method, a printing method, or the like.
  • the cathode is formed using any of the materials described above, for example, by vacuum deposition, sputtering, CVD, ion plating, laser ablation, or laminating a metal thin film.
  • an upper sealing film for sealing the light emitting function part is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • the upper sealing film is composed of at least one inorganic layer and at least one organic layer as necessary. The number of these layers is determined as necessary. Basically, the inorganic layers and the organic layers are alternately stacked.
  • Example 1 An organic luminescent ink was applied onto a glass substrate using a relief printing plate. A transparent glass plate of 200 mm (length) ⁇ 200 mm (width) ⁇ 0.7 mm (thickness) was used for the glass substrate. Further, as the ink, an organic light emitting ink was prepared by dissolving a polymer light emitting material (product name “GP1300”, manufactured by Sumation Corporation) in a mixed solvent in which anisole and cyclohexylbenzene were mixed at a weight ratio of 1: 1. The concentration of the polymer light emitting material in the organic light emitting ink was 1% by weight.
  • a polymer light emitting material product name “GP1300”, manufactured by Sumation Corporation
  • the printing machine used for printing was “Angstroma SDR-0023 (trade name), plate drum diameter: 80 mm” manufactured by Nissha Printing Co., Ltd.
  • the printing speed was 50 mm / second.
  • a flexographic printing plate made of polyester resin was used as the printing plate.
  • a plurality of concave grooves arranged at equal intervals are formed on the surface portion of the flexographic printing plate.
  • the height of the ridge was 15 ⁇ m.
  • Example 2 The organic light-emitting ink was applied onto the glass substrate in the same manner as in Example 1 except that only the flexographic printing plate was changed. A plurality of concave grooves arranged at equal intervals are formed on the surface portion of the used flexographic printing plate.
  • the height of the ridge was 15 ⁇ m.
  • Example 1 The organic light-emitting ink was applied onto the glass substrate in the same manner as in Example 1 except that only the flexographic printing plate was changed.
  • a plate having a flat surface solid plate
  • Comparative Examples 2 to 6 The organic light-emitting ink was applied onto the glass substrate in the same manner as in Example 1 except that only the flexographic printing plate was changed. In Comparative Examples 2 to 6, a halftone plate was used. In Comparative Examples 2, 3, 4, 5, and 6, halftone plates of 100 / inch, 200 / inch, 400 / inch, 600 / inch, and 900 / inch were used, respectively. The height of the halftone dot was 15 ⁇ m.
  • the organic light emitting ink can be applied with a uniform film thickness by forming a plurality of concave grooves on the convex surface of the relief printing plate.
  • an organic EL element having excellent light emission characteristics without occurrence of light emission unevenness or light emission failure on a light emitting surface and a lighting device having the organic EL element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Printing Methods (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

 本発明にかかる有機EL素子の製造方法は、少なくとも陽極と、陰極と、陽極および陰極の間に設けられる有機発光層とを積層することで有機エレクトロルミネッセンス素子を製造する方法であって、前記有機発光層の形成される発光層形成領域に対応する形状の凸部を有する凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを前記発光層形成領域に塗布して有機発光層を形成する有機発光層形成工程を有し、前記凸部が、表面部に複数本の凹溝を有することを特徴とする。本発明の製造方法により、面積の大きな有機発光層の形成領域へ凸版印刷法により有機発光インキを塗布する際の塗布ムラを防止し、均一な膜厚の有機発光層を形成することができる。

Description

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置
 本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す場合もある)素子の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む照明装置に関するものである。さらに詳しくは、本発明は、その面積の大きな有機発光層の形成領域へ凸版印刷法により有機発光インキを塗布する際の塗布ムラを防止し、均一な膜厚の有機発光層を形成することのできる有機EL素子の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む照明装置に関するものである。
 周知のように、有機EL素子は、基本的な構造として、第1の電極(陽極または陰極)および第2の電極(陰極または陽極)と、これらの電極間に設けられる有機発光層とを有している。かかる構造において、前記有機発光層を挟んで相対向する電極間に電流を流すことにより前記有機発光層が発光する。
 有機EL素子の用途としては、表示装置や照明装置がある。表示装置では、複数の有機EL素子が基板上に配置され、各有機EL素子がそれぞれ画素として機能する(例えば特許文献1参照)。このような表示装置用の有機EL素子は、求められる解像度に応じて大きさが決まり、通常、各有機発光層の幅および長さがミクロンオーダーである。他方、照明装置では、表示装置用の有機EL素子のように小さい有機EL素子を用いる必要がなく、幅および長さがセンチメータオーダーの有機発光層を備える1または複数の有機EL素子が基板上に配置されている。
特開2006-286243号公報
 上述の表示装置用の有機EL素子では、有機発光層の形成される発光層形成領域のサイズがμmオーダーの極小であるため、有機発光材料を含む有機発光インキの濃度や印刷速度等を適宜設定することで、凸版印刷法を用いて有機発光インキを画素内において均一に塗布することができる。
 しかしながら、例えば表示装置用の有機EL素子の発光層形成領域が100μm×100μm程度とすると、照明装置用の有機EL素子では、発光層形成領域が1cm×1cm以上程度となり、面積にして例えば10000倍以上の広範囲の領域に有機発光インキを塗布する必要が生じ、このような広範囲の領域に有機発光インキを塗布する場合に、表示装置用の有機EL素子を形成する技術をそのまま転用して、凸版印刷法を用いて有機発光インキを塗布したとしても、発光層形成領域内において塗布ムラが生じることがあり、従来から用いられてきた凸版印刷法を適用することができない。かかる塗布ムラの発生は、発光層形成領域のサイズが1cm×1cmを超えると顕著になる。
 塗布ムラに起因して有機発光層の膜厚にムラが生じると、ひいては発光にもムラが生じ、場合によっては、発光不良が生じることになり、照明装置の性能が著しく低下することになる。
 本発明は、上記従来の事情に鑑みてなされたもので、その課題は、面積の大きな有機発光層の形成領域に、凸版印刷法により有機発光インキを塗布する際の塗布ムラを防止し、均一な膜厚の有機発光層を形成することのできる有機EL素子の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む照明装置を提供することにある。
 上述した課題を解決するために、本発明は、下記の構成を採用した有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置を提供する。
[1] 少なくとも陽極と、陰極と、陽極および陰極の間に設けられる有機発光層とを備える有機エレクトロルミネッセンス素子の製造方法であって、前記有機発光層が形成される発光層形成領域に対応する形状の凸部を有するとともに該凸部の表面部に複数本の凹溝が形成されている凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを前記発光層形成領域に塗布して有機発光層を形成する有機発光層形成工程を含む、有機エレクトロルミネッセンス素子の製造方法。
[2] 前記複数本の凹溝の長手方向の少なくとも一端が、前記凸部の側面に開放している、上記[1]に記載の有機エレクトロルミネッセンス素子の製造方法。
[3] 前記発光層形成領域の面積が、1cm×1cm以上である、上記[1]または[2]に記載の有機エレクトロルミネッセンス素子の製造方法。
[4] 上記[1]~[3]のいずれか一つに記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。
[5] 上記[4]に記載の有機エレクトロルミネッセンス素子を含む照明装置。
 本発明によれば、発光面における発光ムラや発光不良の発生のない発光特性に優れた有機EL素子および該有機EL素子を有する照明装置を効率的に製造することができる。
図1は、従来の有機EL素子の製造において有機発光層を形成するために用いられている凸版印刷版の凸部の表面構造を示す該凸部の断面構成図である。 図2は、本発明の有機EL素子の製造において有機発光層を形成するために用いられている凸版印刷版の凸部の表面構造を示す該凸部の断面構成図である。 図3は、図2に示した凸版印刷版の凸部表面の拡大断面構成図である。
符号の説明
 3 有機発光インキ
 11 凸版印刷版
 12 凸部
 12a 凸条
 12b 凸溝
 以下に、本発明方法が対象とする有機EL素子の構造について説明し、その後、本発明にかかる有機EL素子の製造方法について、さらに詳しく説明する。得られる有機EL素子は、例えば照明装置に用いられる。なお、以下の説明において示す図面における各部材の縮尺は実際と異なる場合がある。
(基板)
 有機EL素子に用いる基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン基板、これらを積層したものなどが用いられる。さらに、プラスチック、高分子フィルムなどに低透水化処理を施したものを用いることもできる。前記基板としては、市販のものが使用可能であり、また公知の方法により製造することもできる。
(電極および有機発光層)
 有機EL素子は、少なくとも陽極と、陰極と、前記陽極および陰極の間に位置する有機発光層とが積層されて構成される。また少なくとも陽極および陰極のうちのいずれか一方が光透過性を有する電極からなる。前記有機発光層には低分子及び/又は高分子の有機発光材料が用いられる。本発明の有機EL素子では、有機発光層を凸版印刷により形成するのであり、有機発光層用の有機発光材料としては高分子発光材料が適している。
 有機EL素子において、陽極および陰極の間には、複数の発光層が設けられてもよく、また発光層以外の層が設けられてもよい。以下、陰極と発光層との間に設ける層を陰極側インターレイヤーといい、陽極と発光層との間に設ける層を陽極側インターレイヤーという場合がある。
 陽極と発光層との間に設ける陽極側インターレイヤーとしては、正孔注入層・正孔輸送層、電子ブロック層等が挙げられる。
 上記正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層であり、上記正孔輸送層とは、正孔注入層または陽極により近い層(正孔輸送層)からの正孔注入を改善する機能を有する層である。また、正孔注入層または正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
 陰極と発光層の間に設ける陰極側インターレイヤーとしては、電子注入層、電子輸送層、正孔ブロック層等が挙げられる。
 上記電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、上記電子輸送層は、電子注入層または陰極により近い層(電子輸送層)からの電子注入を改善する機能を有する層である。また、電子注入層もしくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
 上記のような陽極と陰極との間に設けられる各層の積層構成としては、陽極と発光層との間に正孔輸送層を設けた構成、陰極と発光層との間に電子輸送層を設けた構成、陰極と発光層との間に電子輸送層を設け、かつ陽極と発光層との間に正孔輸送層を設けた構成等が挙げられる。例えば、具体的には、以下のa)~d)の積層構造が挙げられる。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同様。)
 上記構成において、先述のように、発光層とは発光する機能を有する層であり、正孔輸送層とは正孔を輸送する機能を有する層であり、電子輸送層とは電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ場合もある。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と呼ばれることがある。
 さらに、電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記電荷注入層または膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。積層する層の順番や数および各層の厚さについては、発光効率や素子寿命を勘案して適宜に設定すればよい。
 また、電荷注入層(電子注入層、正孔注入層)を設けた有機EL素子としては、陰極に隣接して電荷注入層を設けた有機EL素子、陽極に隣接して電荷注入層を設けた有機EL素子が挙げられる。例えば、具体的には、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
(陽極)
 上記陽極には、たとえば透明電極または半透明電極として、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いることができ、透過率が高いものが好適に利用でき、用いる有機層により適宜、選択して用いる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅等の薄膜が用いられ、これらのなかでも、ITO、IZO、酸化スズが好ましい。
 また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。また、前記有機の透明導電膜に用いられる材料、金属酸化物、金属硫化物、金属、およびカーボンナノチューブなどの炭素材料からなる群から選ばれる少なくとも一種類以上を含む混合物からなる薄膜を、陽極に用いても良い。
 さらに、該陽極に、光を反射させる材料を用いても良く、かかる材料としては、仕事関数が3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
 陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができ、例えば5nm~10μmであり、好ましくは10nm~1μmであり、さらに好ましくは20nm~500nmである。
(陽極側インターレイヤー)
 上述のように、前記陽極と発光層との間に、必要に応じて、正孔注入層、正孔輸送層などの陽極側インターレイヤーが積層される。
(正孔注入層)
 正孔注入層は、上述のように、陽極と正孔輸送層との間、または陽極と発光層との間に設けてもよい。正孔注入層を形成する材料としては、公知の材料を適宜用いてもよく、特に制限はない。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
 また、このような正孔注入層の厚みとしては、5~300nm程度であることが好ましい。この厚みが5nm未満では、製造が困難になる傾向があり、他方、300nmを超えると、駆動電圧、および正孔注入層に印加される電圧が大きくなる傾向となる。
(正孔輸送層)
 正孔輸送層を構成する材料としては、特に制限はないが、例えば、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)4,4’-ジアミノビフェニル(TPD)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)等の芳香族アミン誘導体、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体などが挙げられる。
 これらの中でも、正孔輸送層に用いる正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
 正孔輸送層の厚みは、特に制限されないが、目的とする設計に応じて適宜変更することができ、1~1000nm程度であることが好ましい。この厚みが前記下限値未満となると、製造が困難になる、または正孔輸送の効果が十分に得られないなどの傾向があり、他方、前記上限値を超えると、駆動電圧および正孔輸送層に印加される電圧が大きくなる傾向がある。したがって正孔輸送層の厚みは、上述のように、好ましくは、1~1000nmであるが、より好ましくは、2nm~500nmであり、さらに好ましくは、5nm~200nmである。
(有機発光層)
 有機発光層は、通常、主として蛍光または燐光を発光する有機物(低分子化合物および高分子化合物)を含む。なお、さらにドーパント材料を含んでいてもよい。本発明において用いられる有機発光層を形成する材料としては、例えば、以下の色素系材料、金属錯体系材料、高分子系材料、およびドーパント材料などが挙げられる。
 上記色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、キナクリドン誘導体、クマリン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。
 上記金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体など、中心金属に、Al、Zn、BeなどまたはTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体などが挙げられる。
 上記高分子系材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したものなどが挙げられる。
 上記有機発光層形成材料のうち青色に発光する材料としては、例えば、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
 また、上記有機発光層形成材料のうち緑色に発光する材料としては、例えば、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
 また、上記発光層形成材料のうち赤色に発光する材料としては、例えば、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
 上記有機発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加してもよい。このようなドーパントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどが挙げられる。
 なお、かかる有機発光層の厚さは、通常、2nm~200nmである。
(陰極側インターレイヤー)
 上述のように、前記発光層と後述の陰極との間に、必要に応じて、電子注入層、電子輸送層などの陰極側インターレイヤーが積層される。
(電子輸送層)
 電子輸送層を形成する材料としては、公知のものが使用でき、例えば、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が挙げられる。
 これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
(電子注入層)
 電子注入層は、先に述べたように、電子輸送層と陰極との間、または発光層と陰極との間に設けられる。電子注入層としては、発光層の種類に応じて、例えば、アルカリ金属やアルカリ土類金属、あるいは前記金属を一種類以上含む合金、あるいは前記金属の酸化物、ハロゲン化物および炭酸化物、あるいは前記物質の混合物などが用いられる。
 前記アルカリ金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。
 前記アルカリ土類金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、例えば、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどが挙げられる。
 さらに、金属、金属酸化物、金属塩をドーピングした有機金属化合物、および有機金属錯体化合物、またはこれらの混合物も、電子注入層の材料として用いることができる。
 この電子注入層は、2層以上を積層した積層構造を有していてもよい。具体的には、Li/Caなどが挙げられる。この電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。
 この電子注入層の膜厚としては、1nm~1μm程度が好ましい。
(陰極)
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易な材料および/または電気伝導度が高い材料および/または可視光反射率の高い材料が好ましい。かかる陰極材料としては、具体的には、例えば、金属、金属酸化物、合金、グラファイトまたはグラファイト層間化合物、酸化亜鉛(ZnO)等の無機半導体などを挙げることができる。
 上記金属としては、アルカリ金属やアルカリ土類金属、遷移金属や周期表の13族金属等を用いることができる。これら金属の具体的例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等が挙げられる。
 また、合金としては、上記金属の少なくとも一種を含む合金が挙げられ、具体的には、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 陰極は、必要に応じて透明電極もしくは半透明電極とされるが、それらの材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、ITO、IZOなどの導電性酸化物;ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの導電性有機物が挙げられる。
 なお、陰極を2層以上の積層構造としてもよい。また、電子注入層が陰極として用いられる場合もある。
 陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択すればよく、例えば、10nm~10μmであり、好ましくは、20nm~1μmであり、さらに好ましくは、50nm~500nmである。
(上部封止膜)
 上述のように陰極が形成された後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、該発光機能部を封止する上部封止膜が形成される。この上部封止膜は、通常、少なくとも一つの無機層と少なくとも一つの有機層を有する。積層数は、必要に応じて決定され、基本的には、無機層と有機層は交互に積層される。
 なお、基板および上部封止膜により発光機能部が被包されていても、プラスチック基板はガラス基板に比べて、ガスおよび液体の透過性が高く、また有機発光層などの発光物質は酸化されやすく、水と接触することにより劣化しやすいため、前記基板としてプラスチック基板が用いられる場合は、プラスチック基板上にガスおよび液体に対するバリア性の高い下部封止膜を積層し、その後、この下部封止膜の上に上記発光機能部を積層する。この下部封止膜は、通常、上記上部封止膜と同様の構成、同様の材料にて形成される。
[有機EL素子の製造方法]
 以下、本発明にかかる有機EL素子の製造方法について、さらに詳しく説明する。
(陽極形成工程)
 前述のいずれかの基板材料からなる基板を準備する。ガスおよび液体の透過性が高いプラスチック基板を用いる場合は、必要に応じて、基板上に下部封止膜を形成しておく。
 次に、準備した基板上に前述のいずれかの陽極材料を用いて、陽極をパターン形成する。この陽極を透明電極とする場合には、前述のように、ITO、IZO、酸化錫、酸化亜鉛、酸化インジウム、亜鉛アルミニウム複合酸化物等の透明電極材料を使用する。電極のパターン形成は、例えば、ITOを用いる場合、スパッタリング法により基板上に均一な堆積膜として形成され、続いて、フォトリソグラフィーによりパターニングされる。
(発光層形成領域の形成工程)
 陽極の形成された基板上に絶縁膜を形成し、さらにパターニングすることで、基板の厚み方向の一方から見て、有機発光層の形成される発光層形成領域を囲う隔壁を形成する場合が流。発光層形成領域は、発光領域に相当する。有機EL素子を照明装置の光源に用いる場合、前記発光層形成領域(発光領域)は、通常、0.5cm×0.5cm以上の面積に形成される。
 上記絶縁膜の役割は、複数の有機EL素子を基板上に形成する場合、各有機EL素子間の電気絶縁性を確保するとともに、発光領域を規定することにある。そのために、通常、その厚さ寸法としては0.1~0.2μmに設定される。
 前記絶縁膜の作製方法は、通常、感光性材料(フォトレジスト組成物)を用いてフォトリソグラフィーにより形成する。
 上記感光性材料(フォトレジスト組成物)の塗布は、スピンコーター、バーコーター、ロールコーター、ダイコーター、グラビアコーター、スリットコーター等を用いたコーティング法により行うことができる。
 上記絶縁膜を形成する絶縁性感光性材料は、ポジ型レジスト、ネガ型レジストのどちらであってもよい。この絶縁性を示す感光性材料としては、具体的には、ポリイミド系、アクリル樹脂系、ノボラック樹脂系の各感光性化合物を用いることができる。なお、この感光性材料には、有機EL素子の表示品位を上げる目的で、光遮光性を示す材料を含有させてもよい。
 この絶縁膜の表面に撥インキ性を付与するために、隔壁形成用の感光性材料に撥インキ性物質を加えても良い。あるいは、絶縁膜を形成した後、その表面に撥インキ性物質を被覆させることにより、隔壁表面に撥インキ性を付与しても良い。この撥インキ性は、後述のインターレイヤー用のインキに対しても、有機発光層用のインキに対しても、撥性であることが好ましい。
(陽極側インターレイヤー形成工程)
 絶縁性隔壁形成後、必要に応じて、前述の正孔輸送層などの有機材料層(陽極側インターレイヤー)を形成する。
 陽極側インターレイヤーの成膜方法としては、特に制限はないが、低分子材料では、例えば、高分子バインダーとの混合溶液からの成膜による方法が挙げられる。また、高分子材料では、例えば、溶液からの成膜による方法が挙げられる。
 溶液からの成膜に用いる溶媒としては、前述の陽極側インターレイヤー用の材料を溶解させるものであれば、特に制限はない。かかる溶媒として、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が挙げられる。
 上記溶液からの成膜方法としては、凸版印刷法を用いることが好ましい。中でもフレキソ印刷法が好適である。
 上記混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。かかる高分子バインダーとして、例えば、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
(有機発光層形成工程)
 従来の有機EL素子の製造方法における有機発光層の形成工程では、図1に示すように、前記凸版印刷版1の凸部2の凸面2aを前記有機発光層の形成領域に対応する形状および寸法に形成し、この凸面2aの上に有機発光インキ3を付着させ、この有機発光インキ3を前記有機発光層の形成領域に転写していた。
 これに対して、本発明の有機EL素子の製造方法における有機発光層形成工程の特徴は、図2に示すように、有機発光層の形成される発光層形成領域に対応する形状の凸部12を有する凸版印刷版11を用いて、有機発光材料と溶媒とを含む有機発光インキを前記発光層形成領域に塗布することで有機発光層を形成し、前記凸部12が、表面部に複数本の凹溝12bを有する。前記凸部12の表面部において、複数本の凹溝12bは、それぞれ短手方向に所定の間隔をあけてストライプ状に配置されることが好ましく、さらには前記所定の間隔が、一定の間隔であることが好ましい。ここで短手方向とは、凹溝の深さ方向、および凹溝の延びる方向(長手方向)にそれぞれ垂直な方向である。以下、隣接して配置される凹溝12bと凹溝12bとの間の部位を、凸条12aという。したがって後述する凸条12aの幅とは、前記所定の間隔または前記一定の間隔に相当する。複数本の凹溝12bを短手方向に所定の間隔をあけてストライプ状に配置すると、表面部において凹溝12bと凸条12aとが交互に形成される。なお発光層形成領域に対応する形状とは、凸部12の表面の輪郭が、発光層形成領域の輪郭と略一致する形状である。
 これら凸条12aと凹溝12bとは、等間隔に設けてもよいし、等間隔に設けなくてもよいが、前記凸部の表面部において、前記複数本の凹溝がそれぞれ短手方向に一定の間隔をあけてストライプ状に配置されることが好ましい。また、複数本の凹溝12bの長手方向の少なくとも一端が、前記凸部12の側面に開放することが好ましい。すなわち複数本の凹溝12bの長手方向の少なくとも一端が、前記凸部12の側面にまで達することが好ましく、さらには前記凸部12の表面部において、凹溝12bが、凸部12の両側面間にわたって形成されることが好ましい。凹溝12bの長手方向の少なくとも一端が開放されていることにより、有機発光インキの転写時に塗膜に生じる負圧を緩和することができるものと推察される。
 前記凸条12aと凹溝12bの寸法、すなわちストライプのラインアンドスペースの寸法の好適な範囲は、特に限定されないが、インキ濃度、粘度、溶媒蒸発速度等に応じて適宜設定される。図3を参照して説明すると、前記凸条12aの高さ寸法(凹溝12bの深さ)hとしては、5μm~50μmが好ましく、凸条12aの幅寸法(ラインの幅寸法)としては10μm~100μmが好ましく、凹溝12bの幅寸法(スペースの幅寸法、凹溝の短手方向の幅)としては10μm~100μmが好ましい。
 前記凹溝12bの長手方向、すなわちストライプの形成方向は、特に限定されないが、凸版印刷の印刷方向に平行であることが好ましい。
 上記有機発光インキは、有機発光材料を溶剤に溶解または安定に分散させて調製する。この有機発光材料を溶解または分散する溶剤としては、例えば、トルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の単独またはこれらの混合溶剤が挙げられる。中でも、トルエン、キシレン、アニソールといった芳香族有機溶剤が、有機発光材料の良好な溶解性を有することから好ましい。
 なお、有機発光インキには、必要に応じて、界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤等を添加してもよい。
 なお、発光層形成領域の面積が、1cm×1cm以上であることが好ましい。このような広い面積であっても、有機発光インキを均一に塗布することができるので、広い発光面積を有する有機EL素子を塗布法で簡易に製造することができる。
(陰極側インターレイヤー形成工程)
 上記有機発光層の形成後、必要に応じて、電子輸送層や電子注入層などの陰極側インターレイヤーを形成する。
 この陰極側インターレイヤーの形成方法は、電子輸送層の場合、特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が例示され、高分子電子輸送材料では、溶液または溶融状態からの成膜による方法が例示される。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法を用いることができる。
 また、電子注入層の場合、蒸着法、スパッタリング法、印刷法等を用いて形成される。
(陰極形成工程)
 陰極は、先述のいずれかの材料を用い、例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、レーザーアブレーション法、および金属薄膜を圧着するラミネート法などにより形成する。
 前述のようにして、陰極を形成した後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、該発光機能部を封止する上部封止膜を形成する。この上部封止膜は、必要に応じて、少なくとも一つの無機層と少なくとも一つの有機層とから構成する。これらの積層数は、必要に応じて決定し、基本的には、無機層と有機層は交互に積層する。
 以下、本発明の実施例を示すが、以下に示す実施例は、本発明を説明するための好適な例示であって、なんら本発明を限定するものではない。
(実施例1)
 凸版印刷版を用いて、ガラス基板上に有機発光インキを塗布した。ガラス基板には、200mm(縦)×200mm(横)×0.7mm(厚み)の透明ガラス板を用いた。
 またインキとして、アニソールとシクロへキシルベンゼンとを重量比1:1で混合した混合溶媒に、高分子発光材料(サメイション製、商品名「GP1300」)を溶解して有機発光インキを調整した。有機発光インキにおける高分子発光材料の濃度を1重量%とした。
 印刷に用いた印刷機は、日本写真印刷(株)製の「オングストローマーSDR-0023(商品名)、版ドラム直径:80mm」であった。印刷速度は50mm/秒とした。
 版と基板とが接触する状態を印刷押し込み量0μmとして、その位置から版を50μm押し付けた状態(印刷押し込み量=50μm)で印刷した。
 印刷版としてポリエステル系樹脂製のフレキソ印刷版を用いた。このフレキソ印刷版の表面部には、等間隔で配置された複数本の凹溝が形成されている。凸条の短手方向の幅(ライン)は、40μmであり、凹溝の短手方向の幅(スペース)は、40μmであった(ライン/スペース=40μm/40μm)。凸条の高さは15μmであった。
(実施例2)
 フレキソ印刷版のみを異ならせて、実施例1と同様にガラス基板上に有機発光インキを塗布した。
 用いたフレキソ印刷版の表面部には、等間隔で配置された複数本の凹溝が形成されている。凸条の短手方向の幅(ライン)は、30μmであり、凹溝の短手方向の幅(スペース)は、50μmであった(ライン/スペース=30μm/50μm)。凸条の高さは15μmであった。
(比較例1)
 フレキソ印刷版のみを異ならせて、実施例1と同様にガラス基板上に有機発光インキを塗布した。フレキソ印刷版は、表面が平坦な版(ベタ版)を用いた。
(比較例2~6)
 フレキソ印刷版のみを異ならせて、実施例1と同様にガラス基板上に有機発光インキを塗布した。比較例2~6では、網版を用いた。比較例2、3、4、5、6では、それぞれ100/インチ、200/インチ、400/インチ、600/インチ、900/インチの網版を用いた。網点の高さは15μmであった。
(評価)
 紫外線を印刷物に当て、塗布膜からの蛍光(PL)の強度分布を光学顕微鏡で観察し、印刷膜厚分布(印刷ムラ)を評価した。この評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、記号「○」は、印刷ムラがなかったことを表し、記号「×」は、印刷ムラがあったことを表す。
 以上の結果から、凸版印刷版の凸部表面に複数本の凹溝を形成することにより、均一な膜厚で有機発光インキを塗布できることが確認された。
 以上のように、本発明によれば、発光面における発光ムラや発光不良の発生のない発光特性に優れた有機EL素子および該有機EL素子を有する照明装置を効率的に製造することができる。

Claims (5)

  1.  少なくとも陽極と、陰極と、陽極および陰極の間に設けられる有機発光層とを備える有機エレクトロルミネッセンス素子の製造方法であって、
     前記有機発光層が形成される発光層形成領域に対応する形状の凸部を有するとともに該凸部の表面部に複数本の凹溝が形成されている凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを前記発光層形成領域に塗布して有機発光層を形成する有機発光層形成工程を含む、有機エレクトロルミネッセンス素子の製造方法。
  2.  前記複数本の凹溝の長手方向の少なくとも一端が、前記凸部の側面に開放している請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3.  前記発光層形成領域の面積が、1cm×1cm以上である請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  4.  請求項1に記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。
  5.  請求項4に記載の有機エレクトロルミネッセンス素子を含む照明装置。
PCT/JP2009/054572 2008-03-31 2009-03-10 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置 WO2009122871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/935,367 US8277273B2 (en) 2008-03-31 2009-03-10 Method of producing organic electroluminescence element, organic electroluminescence element, and lighting device
CN2009801114990A CN101982016A (zh) 2008-03-31 2009-03-10 有机电致发光元件的制造方法、有机电致发光元件以及照明装置
EP09726524A EP2278858A1 (en) 2008-03-31 2009-03-10 Method for manufacturing organic electroluminescence element, organic electroluminescence element and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-091566 2008-03-31
JP2008091566A JP5314314B2 (ja) 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置

Publications (1)

Publication Number Publication Date
WO2009122871A1 true WO2009122871A1 (ja) 2009-10-08

Family

ID=41135258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054572 WO2009122871A1 (ja) 2008-03-31 2009-03-10 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置

Country Status (7)

Country Link
US (1) US8277273B2 (ja)
EP (1) EP2278858A1 (ja)
JP (1) JP5314314B2 (ja)
KR (1) KR20110000735A (ja)
CN (1) CN101982016A (ja)
TW (1) TW200950175A (ja)
WO (1) WO2009122871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371793A (zh) * 2010-08-06 2012-03-14 住友橡胶工业株式会社 印刷物品的制造方法、印刷用版和糊料
JP2012051359A (ja) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd 印刷物品の製造方法、印刷用版、およびペースト

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245775A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP5604857B2 (ja) * 2009-12-01 2014-10-15 凸版印刷株式会社 印刷用凸版並びにそれを用いた有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
WO2011152496A1 (ja) 2010-06-04 2011-12-08 コニカミノルタホールディングス株式会社 照明装置
CN102263171B (zh) * 2011-06-24 2013-10-09 清华大学 外延衬底、外延衬底的制备方法及外延衬底作为生长外延层的应用
JP6135159B2 (ja) * 2013-02-06 2017-05-31 凸版印刷株式会社 凸版印刷装置及び有機el素子形成方法
JP6389951B2 (ja) * 2015-02-27 2018-09-12 富士フイルム株式会社 フレキソ印刷版、フレキソ印刷版の製造方法およびフレキソ印刷版原版
CN107464890B (zh) * 2016-06-03 2020-04-28 清华大学 有机发光二极管制备方法和制备装置
CN110265563B (zh) * 2019-06-20 2021-11-16 京东方科技集团股份有限公司 用于在其上喷墨打印发光层的基板、发光器件、和用于制备基板的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155858A (ja) * 1999-11-24 2001-06-08 Sharp Corp 有機el素子の製造方法
JP2004237545A (ja) * 2003-02-05 2004-08-26 Komuratekku:Kk 層形成用凸版
WO2005122648A1 (ja) * 2004-06-11 2005-12-22 Japan Science And Technology Agency 有機エレクトロルミネッセンス素子及びその駆動方法
JP2006286243A (ja) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd 有機el素子とその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582504B1 (en) 1999-11-24 2003-06-24 Sharp Kabushiki Kaisha Coating liquid for forming organic EL element
DE10134132A1 (de) * 2001-07-13 2003-01-30 Siemens Ag Vorrichtung und Verfahren zum kontinuierlichen Drucken von organischen Leuchtdioden
DE10152920A1 (de) * 2001-10-26 2003-05-28 Osram Opto Semiconductors Gmbh Verfahren zum großflächigen Aufbringen von mechanisch empfindlichen Schichten auf ein Substrat
JP2004322329A (ja) * 2003-04-21 2004-11-18 Sumitomo Rubber Ind Ltd フレキソ印刷用版ならびにその製造方法およびそのフレキソ印刷用版を用いて有機発光層を形成する工程を含む有機el素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155858A (ja) * 1999-11-24 2001-06-08 Sharp Corp 有機el素子の製造方法
JP2004237545A (ja) * 2003-02-05 2004-08-26 Komuratekku:Kk 層形成用凸版
WO2005122648A1 (ja) * 2004-06-11 2005-12-22 Japan Science And Technology Agency 有機エレクトロルミネッセンス素子及びその駆動方法
JP2006286243A (ja) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd 有機el素子とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371793A (zh) * 2010-08-06 2012-03-14 住友橡胶工业株式会社 印刷物品的制造方法、印刷用版和糊料
JP2012051359A (ja) * 2010-08-06 2012-03-15 Sumitomo Rubber Ind Ltd 印刷物品の製造方法、印刷用版、およびペースト

Also Published As

Publication number Publication date
KR20110000735A (ko) 2011-01-05
US20110025200A1 (en) 2011-02-03
TW200950175A (en) 2009-12-01
JP5314314B2 (ja) 2013-10-16
US8277273B2 (en) 2012-10-02
JP2009245777A (ja) 2009-10-22
EP2278858A1 (en) 2011-01-26
CN101982016A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5314314B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置
JP5572942B2 (ja) 発光装置およびその製造方法
US8497497B2 (en) Organic electroluminescent element, method for manufacturing the organic electroluminescent element, and light emitting display device
JP5314393B2 (ja) 有機エレクトロルミネッセンス素子
JP5314385B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2009181856A (ja) 透明導電膜付き透明板および有機エレクトロルミネッセンス素子
WO2010029882A1 (ja) 有機エレクトロルミネッセンス素子製造用のインキ、有機エレクトロルミネッセンス素子の製造方法、および表示装置
WO2010013641A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、発光装置および表示装置
WO2009122870A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP5249075B2 (ja) 有機エレクトロルミネッセンス素子
JP2010073579A (ja) 有機el素子の製造方法および塗布装置
JP2010146893A (ja) 有機エレクトロルミネッセンス素子、及びその製造方法
JP2010146894A (ja) 有機エレクトロルミネッセンス素子
JP5036680B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2009122874A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
WO2009122960A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5314395B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2007096270A (ja) エレクトロルミネッセンス素子
WO2009122973A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
WO2011065288A1 (ja) 発光装置の製造方法
JP2011014251A (ja) 有機エレクトロルミネッセンス素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111499.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12935367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726524

Country of ref document: EP