WO2009122870A1 - 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置 - Google Patents

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置 Download PDF

Info

Publication number
WO2009122870A1
WO2009122870A1 PCT/JP2009/054571 JP2009054571W WO2009122870A1 WO 2009122870 A1 WO2009122870 A1 WO 2009122870A1 JP 2009054571 W JP2009054571 W JP 2009054571W WO 2009122870 A1 WO2009122870 A1 WO 2009122870A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
organic light
pixel region
emitting layer
Prior art date
Application number
PCT/JP2009/054571
Other languages
English (en)
French (fr)
Inventor
行一 六原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2009122870A1 publication Critical patent/WO2009122870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), an organic EL element obtained by using the production method, and a display device including the organic EL element.
  • an organic electroluminescence element hereinafter sometimes referred to as an organic EL element
  • an organic EL element has, as a basic structure, a first electrode (anode or cathode) and a second electrode (cathode or anode) and an organic light emitting layer provided between these electrodes. is doing.
  • the organic light emitting layer emits light by passing a current between electrodes facing each other across the organic light emitting layer.
  • a display panel in which a large number of organic EL elements each functioning as one pixel are arranged in a grid pattern is used.
  • the first electrode is formed in a fine pattern, and in order to form a large number of pixel regions on the patterned first electrode, a lattice shape is formed.
  • a partition is formed.
  • the partition walls are formed by forming a photoresist film on the first electrode pattern and patterning the photoresist film using a photolithography technique. The first electrode is exposed in the interior surrounded by a large number of partition walls, and this region becomes a pixel region.
  • This wet coating method is a method in which an organic light-emitting material is dissolved in a solvent to form a coating solution, and this coating solution is selectively applied to the pixel region.
  • printing methods such as letterpress printing and ink jet printing are used (see, for example, Patent Document 1).
  • the purpose of providing the partition walls is to realize electrical insulation between the pixels (hereinafter sometimes referred to as insulation) in order to prevent current from flowing between different pixels, and to enable the coating liquid to be held in each pixel region.
  • An organic light emitting layer can be formed at a predetermined position by a coating method.
  • the partition wall is designed and formed so as to define a pixel region having as wide an area as possible while ensuring insulation.
  • the pixel area has an inner peripheral surface having no corners and a gentle shape. That is, when the pixel area surrounded by the partition is formed in a shape having a corner, when the organic light emitting ink is applied to this pixel area, the organic light emitting ink does not reach the corner and is not applied to the corner. This is because the area may remain.
  • the pixel region defined by the partition is formed in a shape having no corners.
  • the pixel area of the actual design is smaller than the ideal area occupied by the pixel area by the area of the corners reduced by the gentle inner wall surface.
  • an active matrix organic EL element ideally, as shown in FIG. 1, a TFT element and a wiring (not shown) are covered with an insulating partition wall 1, and a region excluding the insulating partition wall 1 is formed.
  • the pixel region 2 is formed.
  • the first electrode 3 is exposed on the bottom surface of the pixel region 2 defined by the partition wall 1 to form a pixel electrode 3a.
  • the ratio (aperture ratio) of the pixel area to the area where the organic EL element is arranged is preferably as high as possible. This is because the higher the aperture ratio, the larger the light emission area per unit area, and as a result, the light emission amount of the entire device including a plurality of organic EL elements can be increased.
  • the shape of the pixel region 2 defined by the partition wall 1 is designed so as to cover the widest possible area excluding the TFT element.
  • the pixel region 2 is not a simple shape such as a rectangle or an ellipse, as shown in FIG. 1, but a rectangle with a smaller area on either side and / or corner of the rectangle. In many cases, the shapes are connected to each other. Such an irregular shape of the pixel region 2 can be defined as a shape having many corners c as a whole.
  • the shape of the pixel region defined by the partition wall is usually It is formed into a shape without a corner having a gentle inner wall surface.
  • This invention is made
  • the subject is obtained by the manufacturing method of an organic EL element which can increase an aperture ratio, without producing an uncoated part, and this manufacturing method.
  • An organic EL element and a display device are provided.
  • organic luminescent ink In order to solve the above problems, the present inventor has made extensive efforts, experiments, and examinations, and it is usually difficult to apply organic luminescent ink to pixel areas having corners without producing uncoated parts. Although it is thought that there are many coating methods, when organic light-emitting ink containing organic light-emitting material and solvent is applied by letterpress printing method, organic light-emitting ink is applied to pixel areas having corners without producing uncoated portions. It has been found that it can be applied.
  • the present invention provides a method for manufacturing an organic electroluminescent element, an organic electroluminescent element, and a display device that adopt the following configuration based on the above knowledge.
  • a method for producing an organic electroluminescent element in which at least a cathode, an anode, and an organic light emitting layer positioned between the cathode and the anode are laminated on a substrate, the substrate having one electrode on the substrate
  • a partition forming process for defining a pixel region having a corner portion by a partition, and an organic light emitting ink containing an organic light emitting material and a solvent is applied by a relief printing method in a partition installed surrounding the pixel region.
  • the manufacturing method of the organic electroluminescent element containing the organic light emitting layer formation process which forms an organic light emitting layer.
  • the width dimension l 2 of the convex surface of the plate used for the relief printing is larger than the width dimension L 1 of the pixel region, and ⁇ (the width dimension L 1 ) + (the width dimension L 2 of the partition wall) / 2.
  • organic light emitting layer forming step various types of inks corresponding to multiple colors are selectively applied as predetermined organic organic light emitting inks to form at least three pixels of red, green, and blue.
  • a display device including the organic electroluminescence element according to [8].
  • the organic light emitting ink is applied to the entire pixel area without causing application leakage to the pixel area having a corner portion in order to increase the aperture ratio of the pixel electrode. be able to. Therefore, according to the present invention, it is possible to obtain an organic EL element and a display device excellent in light emission characteristics in which the light emission amount per unit area is increased without causing uneven light emission or light emission failure on the light emitting surface.
  • FIG. 1 is a plan configuration diagram of a partition forming surface showing an example of a shape of a pixel region obtained when an insulating partition pattern is designed so as to maximize the aperture ratio of a pixel electrode in manufacturing an organic EL element.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • FIG. 3 shows the formation of the organic light emitting layer in the method for producing an organic EL device of the present invention using an organic light emitting ink having a slow drying speed and the width of the convex surface of the flexographic printing plate smaller than the width dimension of the pixel region. It is a figure for demonstrating the printing process in the case of setting and performing, and is a figure which shows the state before making ink contact with a pixel area
  • FIG. 4 shows the formation of the organic light emitting layer in the organic EL device manufacturing method of the present invention using an organic light emitting ink having a slow drying rate and the width of the convex surface of the flexographic printing plate smaller than the width dimension of the pixel region. It is a figure for demonstrating the printing process in the case of setting and performing, and is a figure which shows the state which made the ink contact the pixel area
  • FIG. 5 is a plan view of a pixel region showing an ink application state after the step shown in FIG.
  • FIG. 6 is a side cross-sectional view of the substrate of the organic EL element showing a state where the flexographic printing plate is released and the ink is dried after the step shown in FIG.
  • FIG. 7 shows the formation of the organic light emitting layer in the method for producing an organic EL device of the present invention, using an organic light emitting ink with a high drying speed, and the convex surface width of the flexographic printing plate larger than the width dimension of the pixel region. It is a figure for demonstrating the printing process in the case of setting and performing, and is a figure which shows the state before making ink contact with a pixel area
  • FIG. 8 shows the formation of the organic light emitting layer in the method for producing an organic EL device of the present invention, using an organic light emitting ink with a high drying speed, and the width of the convex surface of the flexographic printing plate larger than the width dimension of the pixel region. It is a figure for demonstrating the printing process in the case of setting and performing, and is a figure which shows the state which made the ink contact the pixel area
  • the organic EL device manufacturing method includes an organic electroluminescence device by laminating at least a cathode, an anode, and an organic light emitting layer located between the cathode and the anode on a substrate.
  • An organic light-emitting ink containing an organic light-emitting material and a solvent is formed by a relief printing method in a partition wall that surrounds a pixel region where pixels are formed when viewed from one side in the thickness direction of the substrate. It includes an organic light emitting layer forming step of forming an organic light emitting layer by coating, wherein the pixel region has a shape having corners.
  • the pixel region is a region defined by the inner peripheral surface of the partition wall.
  • the substrate used for the organic EL element may be any substrate that does not change when the electrode is formed and the organic layer is formed.
  • glass, plastic, polymer film, silicon substrate, or a laminate of these is used. It is done. Further, a plastic, a polymer film or the like that has been subjected to a low water permeability treatment may be used.
  • the substrate a commercially available substrate can be used, and it may be manufactured by a known method.
  • the organic EL element is configured by laminating at least an anode, a cathode, and an organic light emitting layer positioned between the anode and the cathode. Further, at least one of the anode and the cathode is made of an electrode having optical transparency. For the light emitting layer, a low molecular weight and / or high molecular weight organic light emitting material is used.
  • a plurality of light emitting layers may be provided between the anode and the cathode, or layers other than the light emitting layer may be provided.
  • a layer provided between the cathode and the light emitting layer may be referred to as a cathode side interlayer
  • a layer provided between the anode and the light emitting layer may be referred to as an anode side interlayer.
  • Examples of the anode-side interlayer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the hole injection layer is a layer having a function of improving the efficiency of hole injection from the cathode
  • the hole transport layer is a positive hole from the hole injection layer or a layer closer to the anode (hole transport layer).
  • This layer has a function of improving hole injection.
  • these layers may be referred to as an electron block layer. Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
  • Examples of the cathode side interlayer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection from the electron injection layer or a layer closer to the cathode (electron transport layer). It is a layer having.
  • the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer. Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
  • the layered structure of each layer provided between the anode and the cathode as described above includes a hole transport layer provided between the anode and the light emitting layer, and an electron transport layer provided between the cathode and the light emitting layer. And a structure in which an electron transport layer is provided between the cathode and the light emitting layer and a hole transport layer is provided between the anode and the light emitting layer.
  • the following laminated structures a) to d) are specifically exemplified.
  • Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (Here, / indicates that each layer is laminated adjacently. The same applies hereinafter.)
  • the light emitting layer is a layer having a function of emitting light
  • the hole transporting layer is a layer having a function of transporting holes
  • the electron transporting layer is a function of transporting electrons. It is a layer which has.
  • the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers).
  • an electron injection layer Sometimes referred to as an electron injection layer).
  • the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode, and the adhesion at the interface is improved.
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer. What is necessary is just to set suitably about the order and number of the layers to laminate
  • an organic EL element provided with a charge injection layer (electron injection layer, hole injection layer)
  • an organic EL element provided with a charge injection layer adjacent to the cathode and a charge injection layer provided adjacent to the anode.
  • An organic EL element is mentioned.
  • the following structures e) to p) are specifically mentioned.
  • anode for example, a metal oxide, metal sulfide or metal thin film with high electrical conductivity may be used as a transparent electrode or a semi-transparent electrode, and a high transmittance is suitable.
  • a metal oxide, metal sulfide or metal thin film with high electrical conductivity may be used as a transparent electrode or a semi-transparent electrode, and a high transmittance is suitable.
  • indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium A thin film made of tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used.
  • ITO, IZO, and tin oxide are preferable.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • a thin film made of a mixture containing at least one selected from the group consisting of materials used for the organic transparent conductive film, metal oxides, metal sulfides, metals, and carbon materials such as carbon nanotubes is used as an anode. It may be used.
  • a material that reflects light may be used for the anode, and such a material is preferably a metal, metal oxide, or metal sulfide having a work function of 3.0 eV or more.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 5 nm to 10 ⁇ m, preferably 10 nm to 1 ⁇ m, and more preferably 20 nm to 500 nm. .
  • anode-side interlayer such as a hole injection layer and a hole transport layer is laminated between the anode and the light emitting layer as necessary.
  • the hole injection layer may be provided between the anode and the hole transport layer, or between the anode and the light emitting layer.
  • a known material may be appropriately used, and there is no particular limitation.
  • the thickness of such a hole injection layer is preferably about 5 to 300 nm. If the thickness is less than 5 nm, the production tends to be difficult. On the other hand, if the thickness exceeds 300 nm, the driving voltage and the voltage applied to the hole injection layer tend to increase.
  • the material constituting the hole transport layer is not particularly limited.
  • N, N′-diphenyl-N, N′-di (3-methylphenyl) 4,4′-diaminobiphenyl (TPD), 4 , 4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB), etc. polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, aromatic amines in the side chain or main chain Polysiloxane derivatives having pyrazole, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamine or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) Or its derivatives, or poly (2,5-thienylene vinylene) or a derivative thereof.
  • a hole transport material used for the hole transport layer polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof
  • Polymeric hole transport materials such as polythiophene or derivatives thereof, polyarylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and more preferred Is a polysiloxane derivative having an aromatic amine in the side chain or main chain, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • the thickness of the hole transport layer is not particularly limited, but can be appropriately changed according to the intended design, and is preferably about 1 to 1000 nm. If the thickness is less than the lower limit, production tends to be difficult or the effect of hole transport is not sufficiently obtained. On the other hand, if the thickness exceeds the upper limit, the driving voltage and the hole transport layer are increased. There is a tendency that the voltage applied to is increased. Therefore, as described above, the thickness of the hole transport layer is preferably 1 to 1000 nm, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • Organic light emitting layer usually contains organic substances (low molecular compounds and high molecular compounds) that mainly emit fluorescence or phosphorescence. Further, a dopant material may be further included. Examples of the material for forming the organic light emitting layer that can be used in the present invention include the following dye-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
  • the dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, quinacridone derivatives, and coumarin derivatives.
  • metal complex materials include metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, Azomethylzinc complex, porphyrin zinc complex, europium complex, etc., which has Al, Zn, Be, etc. or rare earth metals such as Tb, Eu, Dy, etc. as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenyl as the ligand
  • metal complexes having benzimidazole, quinoline structure, and the like include metal complexes having benzimidazole, quinoline structure, and the like.
  • polymer material examples include a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyparaphenylene derivative, a polysilane derivative, a polyacetylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative, and the above-described dye bodies and metal complex light emitting materials. And the like.
  • Examples of materials that emit blue light among the organic light emitting layer forming materials include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. . Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of the material that emits green light among the organic light emitting layer forming materials include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • examples of the material that emits red light among the above light emitting layer forming materials include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • a dopant may be added to the organic light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of the organic light emitting layer is usually 2 nm to 200 nm.
  • a cathode-side interlayer such as an electron injection layer and an electron transport layer is laminated between the light emitting layer and a cathode described later, if necessary.
  • Electrode transport layer As the material for forming the electron transport layer, known materials can be used. For example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
  • oxadiazole derivatives benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • the electron injection layer is provided between the electron transport layer and the cathode, or between the light emitting layer and the cathode.
  • the electron injection layer may be an alkali metal or alkaline earth metal, an alloy containing one or more of the above metals, an oxide, halide and carbonate of the metal, or a mixture of the substances. Etc.
  • alkali metal or its oxide, halide, carbonate examples include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride. , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate and the like.
  • alkaline earth metal or oxides, halides and carbonates thereof include, for example, magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, calcium fluoride, and barium oxide.
  • a metal, a metal oxide, an organometallic compound doped with a metal salt, an organometallic complex compound, or a mixture thereof may also be used as a material for the electron injection layer.
  • the electron injection layer may have a stacked structure in which two or more layers are stacked. Specifically, Li / Ca etc. are mentioned. This electron injection layer is formed by vapor deposition, sputtering, printing, or the like. The thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • cathode As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer and / or a material having a high electric conductivity and / or a material having a high visible light reflectance are preferable. Specific examples of such cathode materials include metals, metal oxides, alloys, graphite or graphite intercalation compounds, and inorganic semiconductors such as zinc oxide (ZnO).
  • alkali metal for example, alkali metal, alkaline earth metal, transition metal, periodic table group 13 metal, or the like can be used.
  • specific examples of these metals include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, and aluminum.
  • the alloy examples include an alloy containing at least one of the above metals.
  • a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy examples thereof include a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • the cathode is a transparent electrode or a semi-transparent electrode as required.
  • the material include conductive oxides such as indium oxide, zinc oxide, tin oxide, ITO, and IZO; polyaniline or a derivative thereof; Examples thereof include conductive organic substances such as polythiophene or derivatives thereof.
  • the cathode may have a laminated structure of two or more layers. Moreover, an electron injection layer may be used as a cathode.
  • the thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, but is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. is there.
  • an upper sealing film for sealing the light emitting function part is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • This upper sealing film usually has at least one inorganic layer and at least one organic layer. The number of stacked layers is determined as necessary. Basically, inorganic layers and organic layers are alternately stacked.
  • the plastic substrate has higher gas and liquid permeability than the glass substrate, even if the light emitting function portion is encapsulated by the substrate and the upper sealing film, and is organic. Since a luminescent substance such as a luminescent layer is easily oxidized and easily deteriorated by contact with water, a lower sealing film having a high barrier property against gas and liquid is laminated on a plastic substrate, and then the lower sealing film The light emitting function unit is stacked on the substrate.
  • the lower sealing film is usually formed with the same configuration and the same material as the upper sealing film.
  • a substrate made of any of the aforementioned substrate materials is prepared.
  • a plastic substrate having high gas and liquid permeability is used, a lower sealing film is formed on the substrate as necessary.
  • an anode is patterned on the prepared substrate using any of the anode materials described above.
  • a transparent electrode material such as ITO, IZO, tin oxide, zinc oxide, indium oxide, and zinc aluminum composite oxide is used.
  • the electrode pattern is formed as a uniform deposited film on the substrate by a sputtering method, and then patterned into a line shape by photolithography.
  • Partition forming process After forming the line-shaped anode, a photosensitive material is applied onto the substrate on which the anode is formed, and a photoresist film is laminated.
  • the photosensitive material photoresist composition
  • the photosensitive material can be applied by, for example, a coating method using a spin coater, bar coater, roll coater, die coater, gravure coater, slit coater or the like.
  • this photoresist film is patterned by photolithography to form insulating barrier ribs.
  • the photomask used for patterning for forming the barrier ribs is created based on a barrier rib shape for obtaining a pixel region in which the aperture ratio of the pixel electrode is as large as possible.
  • the pixel area defined by the partition walls is rectangular, but when the organic EL element to be manufactured is an element used for an active matrix substrate, the shape of the pixel area designed based on the above criteria Usually has a deformed shape having a large number of corners c as shown in FIG. 1 or FIG. Such an irregularly shaped region having a large number of corners c becomes the pixel region 2, and the aperture ratio of the pixel electrode 3a defined by the pixel region 2 is such as wiring, insulation coating of TFT elements, insulation between electrodes, etc. It is designed to be the maximum value under the constraint of providing the necessary insulation.
  • the insulating photosensitive material forming the insulating partition wall 1 may be either a positive resist or a negative resist. It is important that the partition walls have insulating properties. If they do not have insulating properties, current may flow between different pixels, and display defects may occur.
  • the photosensitive material constituting the partition wall 1 include polyimide, acrylic resin, and novolak resin photosensitive compounds.
  • This photosensitive material may contain a light-shielding material for the purpose of improving the display quality of the organic EL element.
  • an ink repellant substance may be added to the photosensitive material for forming the partition wall.
  • This ink repellency is preferably repellant for both the interlayer ink described later and the organic light emitting layer ink.
  • ink repellent compound used when an ink repellent substance is added to the photosensitive material a silicone compound or a fluorine-containing compound is used. These ink repellent compounds exhibit ink repellency in both organic light-emitting ink (coating liquid) used for forming an organic light-emitting layer, which will be described later, and organic material ink (coating liquid) for an interlayer such as a hole transport layer. Therefore, it can be suitably used.
  • a method of forming an ink repellent film on the surface of the partition wall 1 after the partition wall 1 is formed a method of applying a coating liquid containing an ink repellent component to the surface of the partition wall, or replacing functional groups of organic materials on the partition wall surface with fluorine
  • Examples of such a method include a method of modifying the surface, a method of vaporizing an ink repellent component, and depositing it on the partition wall surface.
  • plasma treatment using CF 4 gas as an introduction gas can be given.
  • the organic partition walls are easily fluorinated by CF 4 gas, and the surface of the partition walls can be selectively made ink-repellent by performing plasma treatment.
  • an organic material layer such as the above-described hole transport layer is formed as necessary.
  • the film formation method of the anode side interlayer is not particularly limited, but for low molecular weight materials, for example, a method by film formation from a mixed solution with a polymer binder can be mentioned. In the case of a polymer material, for example, a method by film formation from a solution can be given.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-mentioned anode side interlayer material.
  • solvents include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and acetic acid.
  • ester solvents such as butyl and ethyl cellosolve acetate.
  • Examples of the film forming method from the above solution include spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, and slit coating from a solution.
  • Coating methods such as coating methods such as coating methods, capillary coating methods, spray coating methods, nozzle coating methods, gravure printing, screen printing methods, flexographic printing methods, offset printing methods, reverse printing methods, ink jet printing methods, etc. Can be mentioned.
  • the printing method such as gravure printing method, screen printing method, flexographic printing method, offset printing method, reversal printing method, ink jet printing method, etc. is preferable in that pattern formation is easy.
  • the letterpress printing used for the application of the organic luminescent ink at the time is particularly preferred.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • examples of such a polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the coating solution When the coating solution is applied to the entire surface of the substrate by the above coating method, the coating solution may be applied onto the partition wall.
  • the coating solution on the partition wall is repelled by the surface of the partition wall and is defined by the partition wall. It falls into the formed pixel region and is formed as a coating film in each pixel region.
  • the coating film in each pixel region then functions as an interlayer by drying.
  • Organic light emitting layer formation process Next, the formation process of an organic light emitting layer is performed.
  • the organic light emitting layer forming step is characterized in that a relief printing method is used to apply organic light emitting ink over the entire pixel region having a corner portion formed by the partition forming step. This relief printing is more preferably flexographic printing.
  • a solvent having a boiling point temperature of 200 ° C. or higher is used for the organic light emitting ink, and the width dimension of the convex surface of the plate used for letterpress printing is set smaller than the width dimension of the pixel region.
  • organic light emission is performed to the pixel region 2 obtained by forming the partition wall 1 as described above on the substrate 10 on which the electrode (either the anode or the cathode) 3 is patterned.
  • the width dimension l 1 of the convex surface 12a of the convex part 12 of the relief plate 11 to be used is set to 99% to 50% of the width dimension L 1 of the pixel region 2.
  • the width of the convex surface 12a is a width in a direction perpendicular to the direction in which the relief plate 11 is sequentially pressed against the substrate (substrate).
  • the width of the pixel region 2 is a width perpendicular to the direction in which the organic light emitting ink is printed.
  • the width of the convex surface 12a of the relief printing plate 11 is set to the width of the pixel region 2 when using a flexographic printing ink containing a high boiling point solvent of 200 ° C. or higher as the solvent of the organic light-emitting ink 4 and having a low drying speed.
  • the size is set to be smaller than the dimension L 1, and the organic luminescent ink 4 is applied to the pixel region 2 using the relief printing plate 11 as shown in FIG.
  • the organic light-emitting ink 4 attached to the convex surface 12a of the relief printing plate 11 is in contact with the bottom surface of the pixel region 2 and is sandwiched between the bottom surface of the pixel region 2 and the convex surface 12a, as shown in FIG.
  • the region 2 is spread over the entire surface including all the corners c.
  • the ink 4 is applied over the entire surface of the pixel region 2.
  • the surface of the ink 4 becomes gentle due to the surface tension.
  • the contact line of the ink 4 with respect to the pixel region 2 does not move so much and a good organic light emitting layer is formed.
  • a solvent having a boiling point of less than 200 ° C. is used for the organic light-emitting ink, and the width dimension of the convex surface of the plate used for letterpress printing is set larger than the width dimension of the pixel region.
  • the width dimension l 2 of the convex surface 22a of the convex portion 22 of the plate 21 used for letterpress printing is larger than the width dimension L 1 of the pixel region 2, and ⁇ (the width dimension L 1 ) + (width dimension L 2 of the partition wall 1) / 2 ⁇ .
  • the width dimension of the convex surface 22a of the relief printing plate 21 is set to the width dimension of the pixel region 2 when an organic light emitting ink having a low drying temperature and containing a low boiling point solvent of less than 200 ° C. is used as the solvent of the organic light emitting ink 4.
  • L 1 larger set than, as shown in FIG. 8, the organic light-emitting ink 4 is applied to the pixel region 2 by using the relief printing plate 21.
  • the organic light-emitting ink 4 attached to the convex surface 22a of the relief printing plate 21 is in contact with the bottom surface of the pixel region 2 and is sandwiched between the bottom surface of the pixel region 2 and the convex surface 22a, as shown in FIG.
  • the region 2 is spread over the entire surface including all the corners c.
  • the ink 4 is applied over the entire surface of the pixel region 2.
  • the fast-drying ink 4 on the convex surface 22a of the plate 21 is semi-dried before being applied to the pixel region 2. For this reason, since the spreadability of the ink 4 is lowered, the width dimension l 2 of the convex surface 22 a is made larger than the width dimension L 1 of the pixel region 2. Therefore, the ink 4 pressed against the pixel region 2 in the semi-dry state is spread over the entire pixel region 2 by the wide convex surface 22a even if the spreadability is lowered. Thereafter, since the drying speed of the highly viscous ink 4 in a semi-dry state is slow, the contact line at the time of solvent evaporation hardly moves, and a good organic light emitting layer is formed.
  • the organic light emitting ink is prepared by dissolving or stably dispersing an organic light emitting material in a solvent.
  • the solvent for dissolving or dispersing the organic light emitting material include toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or a mixed solvent thereof.
  • aromatic organic solvents such as toluene, xylene, and anisole are preferable because they have good solubility of the organic light emitting material.
  • the solvent having a boiling point of 200 ° C. or higher is tetralin, cyclohexylbenzene or the like, and the solvent having a boiling point of less than 200 ° C. is toluene, xylene, anisole or the like.
  • the blending amount of the “solvent having a boiling point of 200 ° C. or higher” in the solvent of the organic light emitting ink used in the first relief printing method is appropriately determined depending on conditions such as the organic light emitting material to be used and the shape of the pixel region.
  • the blending amount of the “solvent having a boiling point of less than 200 ° C.” in the solvent of the organic light-emitting ink used in the second letterpress printing method is appropriately determined depending on conditions such as the organic light-emitting material to be used and the shape of the pixel region. Is done.
  • organic luminescent ink may be added.
  • surfactant antioxidant, a viscosity modifier, a ultraviolet absorber, etc.
  • each convex surface of the plate used for the relief printing is formed in a stripe shape along the direction in which the printing plate is sequentially pressed, and the organic light emitting ink is applied using the plate. It is preferable to do. That is, each convex surface is arranged along the longitudinal direction of each convex surface so that the direction sequentially pressed against the printing material substantially coincides with the longitudinal direction of each convex surface.
  • the circumferential direction of the relief plate corresponds to the direction that is sequentially pressed against the printing material, and each convex surface is substantially the same as the circumferential direction and the longitudinal direction of each convex surface.
  • various organic inks corresponding to multiple colors as the organic light emitting ink are selectively applied in a predetermined partition, and an organic light emitting layer constituting at least red, green, and blue pixels Are preferably formed.
  • an organic light emitting ink that emits red light is applied by letterpress printing
  • an organic light emitting ink that emits green light is applied by letterpress printing
  • an organic light emitting ink that emits blue light is applied by letterpress printing.
  • the organic light emitting ink that emits red, green, and blue light may be attached to a predetermined convex surface of the relief plate, and the organic light emitting ink may be transferred.
  • a cathode-side interlayer such as an electron transport layer or an electron injection layer is formed as necessary.
  • the method for forming this cathode side interlayer is not particularly limited in the case of an electron transport layer, but for low molecular weight electron transport materials, a vacuum deposition method from powder or a method by film formation from a solution or a molten state is exemplified.
  • a vacuum deposition method from powder or a method by film formation from a solution or a molten state is exemplified.
  • a method by film formation from a solution or a molten state is exemplified.
  • a polymer binder may be used in combination.
  • an electron transport layer from a solution As a method for forming an electron transport layer from a solution, a film formation method similar to the method for forming a hole transport layer from a solution described above may be used. In the case of an electron injection layer, it is formed using a vapor deposition method, a sputtering method, a printing method, or the like.
  • the cathode is formed using any of the materials described above by, for example, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a laser ablation method, or a laminating method for pressing a metal thin film.
  • an upper sealing film is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • the upper sealing film is composed of at least one inorganic layer and at least one organic layer as necessary. The number of these layers is determined as necessary. Basically, the inorganic layers and the organic layers are alternately stacked.
  • the organic EL element of this embodiment can be used as a planar light source, a light source of a segment display device and a dot matrix display device, and a backlight of a liquid crystal display device.
  • a planar anode and a cathode may be arranged so as to overlap each other when viewed from one side in the stacking direction.
  • an organic EL element that emits light in a pattern as a light source of a segment display device
  • a method of installing a mask in which a light transmitting window is formed in a pattern on the surface of the planar light source, a portion to be quenched There are a method in which the organic layer is formed to be extremely thick and substantially non-light-emitting, and a method in which at least one of the anode and the cathode is formed in a pattern.
  • organic EL elements that emit light in a pattern using these methods and wiring to selectively apply voltage to several electrodes, numbers, letters, simple symbols, etc. can be displayed.
  • a segment type display device can be realized.
  • the anode and the cathode may be formed in stripes and arranged so as to be orthogonal to each other when viewed from one side in the stacking direction.
  • the dot matrix display device may be passively driven or may be actively driven in combination with a TFT or the like.
  • the above-described display device is useful as a display device for a computer, a television, a mobile terminal, a mobile phone, a car navigation system, a video camera viewfinder, and the like.
  • planar light source is self-luminous and thin, and is useful as a backlight of a liquid crystal display device or a planar illumination light source.
  • a flexible substrate is used, it is also useful as a curved light source or display device.
  • organic EL element manufacturing method according to the present invention is not limited to this driving type organic EL element, such as a passive matrix type.
  • the present invention can be similarly applied to other organic EL elements of driving system.
  • a positive photoresist (trade name “OFPR-800”, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the entire surface of the substrate by spin coating, and this coating film is dried to obtain a film thickness of 1 ⁇ m. A photoresist layer was formed.
  • a photomask designed to maximize the pixel area under the constraint of covering the TFT element and other wirings is placed on the photoresist layer, and an alignment exposure machine (Dainippon Screen Mfg. Co., Ltd.) The trade name “MA1300”) was irradiated with ultraviolet rays through the photomask (exposure process).
  • the exposed portion of the photoresist layer was removed using a resist developer (trade name “NMD-3” manufactured by Tokyo Ohka Kogyo Co., Ltd.) (development step).
  • the glass substrate was heat-treated at 230 ° C. for 1 hour on a hot plate to completely heat and cure the developed photoresist layer (thermosetting step).
  • a partition wall organic insulating layer surrounding the pixel region where the pixel is formed is formed, and the anode is exposed inside the partition wall.
  • the width dimension of the obtained partition line was 20 ⁇ m, and the height dimension was 1 ⁇ m.
  • Each pixel region had a large number of corners and had a deformed shape with a maximum width of 50 ⁇ m and a maximum length of 150 ⁇ m.
  • partition walls were subjected to a liquid repellent treatment using a vacuum plasma apparatus using CF 4 gas (trade name “RIE-200L” manufactured by Samco International Research Co., Ltd.).
  • Organic light-emitting ink (polymer light-emitting material of a polymer light-emitting material) in which a polymer light-emitting material (trade name “RP158” manufactured by Summation Co., Ltd.) is dissolved as an organic light-emitting material in a mixed solvent in which anisole and cyclohexylbenzene are mixed at a weight ratio of 7: 3. Concentration: 1% by weight) was prepared.
  • the boiling point of cyclohexylbenzene in the mixed solvent used is 200 ° C. or more, and the boiling point of anisole is less than 200 ° C.
  • the width of the convex surface of the stripe-shaped convex portion of the flexographic printing plate to be used (material: polyester resin, the height of the convex convex portion is 100 ⁇ m) is 60 of the maximum width of each pixel region (width of the pixel electrode opening) 50 ⁇ m. % was set to 30 ⁇ m.
  • the position was adjusted by the flexographic printing device (trade name “SDR-10” manufactured by Nissha Printing Co., Ltd.) so that the organic light-emitting ink adhered to the relief of the relief printing plate was pressed against the pixel area.
  • the organic light emitting ink after printing spreads due to the pressing by the convex surface, and the entire surface of the pixel electrode in the irregularly shaped pixel region was covered with the organic light emitting ink, and no unpainted portion was generated even after drying.
  • the presence or absence of the unpainted portion is confirmed by observing the shape of the organic light-emitting layer formed in each pixel region with an optical microscope (Nikon Corporation, trade name “Optiphoto 88”, objective lens magnification: 50 ⁇ ). Was done. There is no trace of organic light-emitting ink repelled from the partition walls and anode-side interlayer that define the pixel area, and the organic light-emitting layer is formed over the entire area including all corners of the irregularly shaped pixel area. Was confirmed.
  • the organic EL device obtained as described above was caused to emit light, the light emission intensity was uniform over the entire light emitting surface, and the light emission amount per unit area was also improved compared to the conventional product. confirmed.
  • Example 2 From the preparation of the substrate to the formation of the pixel region by the partition wall formation until the formation of the hole injection layer, it was carried out in the same manner as in the above example, so the details of those steps were omitted, and the subsequent formation of the organic light emitting layer The following is described below.
  • An organic light-emitting ink (concentration: 1% by weight, viscosity: 10 cp) in which a polymer light-emitting material (trade name “RP158” manufactured by Summation Co., Ltd.) was dissolved in a single solvent of xylene was prepared as an organic light-emitting material.
  • the boiling point of xylene used is less than 200 ° C.
  • the width of the convex surface of the stripe-shaped convex portion of the flexographic printing plate (material: polyester resin, height of convex convex portion 100 ⁇ m) to be used is wider than the maximum width of each pixel region (width of the pixel electrode opening) 50 ⁇ m. Set to 60 ⁇ m.
  • a flexographic printing apparatus (trade name “SDR-10” manufactured by Nissha Printing Co., Ltd.). The position was adjusted and printed.
  • the organic light emitting ink after printing spreads due to the pressing by the convex surface, and the entire surface of the pixel electrode in the irregularly shaped pixel region was covered with the organic light emitting ink, and no unpainted portion was generated even after drying.
  • the presence or absence of the unpainted portion is confirmed by observing the shape of the organic light-emitting layer formed in each pixel region with an optical microscope (Nikon Corporation, trade name “Optiphoto 88”, objective lens magnification: 50 ⁇ ). Was done. There is no trace of organic light-emitting ink repelled from the partition walls and anode-side interlayer that define the pixel area, and the organic light-emitting layer is formed over the entire area including all corners of the irregularly shaped pixel area. Was confirmed.
  • the organic EL device obtained as described above was caused to emit light, the light emission intensity was uniform over the entire light emitting surface, and the light emission amount per unit area was also improved compared to the conventional product. confirmed.
  • the method for producing an organic EL element according to the present invention can produce an organic EL element in which the aperture ratio of the pixel electrode is increased without causing uneven coating of the organic light emitting layer.
  • the method for producing an organic EL element according to the present invention it is possible to obtain an organic EL element and a display device excellent in light emission characteristics with an increased light emission amount per unit area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明にかかる有機EL素子の製造方法は、基板上に少なくとも陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とを積層してなる有機エレクトロルミネッセンス素子の製造方法であって、一方の電極を有する基板上に隔壁によって角部を有する形状の画素領域を画成する隔壁形成工程と、画素領域を囲って設置された隔壁内に、有機発光材料と溶媒とを含む有機発光インキを凸版印刷法で塗布して有機発光層を形成する有機発光層形成工程とを、含むことを特徴とする。本願発明方法により、有機EL素子の有機発光層を膜欠損を生じさせることなく画素電極の開口率を増大させることができる。

Description

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
 本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す場合もある)の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む表示装置に関する。
 周知のように、有機EL素子は、基本的な構造として、第1の電極(陽極または陰極)および第2の電極(陰極または陽極)と、これらの電極間に設けられる有機発光層とを有している。かかる構造において、前記有機発光層を挟んで相対向する電極間に電流を流すことにより前記有機発光層が発光する。
 通常、有機EL素子を用いた表示装置では、それぞれ1つの画素として機能する多数の有機EL素子が格子状に配置された表示パネルが用いられる。かかる表示パネルでは、多数の画素を確保するために、前記第1の電極が微細なパターンに形成され、このパターン化された第1の電極上に多数の画素領域を形成するために格子状の隔壁が形成される。この隔壁は、前記第1の電極パターン上にフォトレジスト膜を形成し、このフォトレジスト膜をフォトリソグラフィー技術を用いてパターン化することにより形成される。多数の隔壁により囲まれた内部には、第1の電極が露出しており、この領域が画素領域となる。
 各画素領域へ100nmオーダーの膜厚で有機発光層を形成する方法としては、真空蒸着法を用いる方法もあるが、通常、高精度かつ効率的な層形成(成膜)が可能であることから、ウェットコーティング法が用いられている。このウェットコーティング法は、有機発光材料を溶剤に溶かして塗布液とし、この塗布液を前記画素領域に選択的に塗布する方法である。この選択的な塗布には、凸版印刷法、インキジェットプリント法などの印刷法が用いられている(例えば特許文献1参照)。
特開2006-286243号公報
 特許文献1に記載のように、画素領域に有機発光インキを凸版印刷法を用いて塗布することで有機発光層を形成する方法は、有機EL素子を効率的に製造するに適した方法であるが、本発明者らの検討によれば、以下のような解決すべき問題点があることが判明した。
 隔壁を設ける目的は、異なる画素間に電流が流れることを防ぐために画素間の電気絶縁性(以下、絶縁性という場合がある)を実現すること、および塗布液を各画素領域内において保持可能にし、塗布法で所定の位置に有機発光層を形成可能にすることにある。画素間の絶縁性を確実にするには、隔壁の幅寸法を大きくした方が良いし、発光領域となる画素領域を広くするためには、隔壁の幅寸法を小さくした方がよい。かかる相反する要求を実現するために、隔壁は、絶縁性を確保しつつ、できるだけ広い面積の画素領域を画成できるように設計され、形成される。かかる観点から隔壁を設計すると、特許文献1には、隔壁の形状、隔壁により画成される画素領域の形状の詳細についての記載はないが、得られる理想的な画素領域の形状は矩形状となる。
 しかしながら、従来の有機EL素子では、画素領域は角部を持たない内周面がなだらかな形状に形成されている。それは、隔壁で囲まれた画素領域が角部を有する形状に形成された場合、この画素領域に有機発光インキを塗布した場合、有機発光インキが角部にまで行き届かず、角部に未塗布領域が残るおそれがあるからである。
 上述のように画素領域に未塗布領域が残ると、画素領域内に有機発光層で覆われていない部分が存在することになり、その画素領域は発光不良となるおそれがある。そのために、従来の有機EL素子では、隔壁で画成される画素領域を角部のない形状に形成している。その結果、実際の設計の画素領域は、なだらかな内壁面とすることにより減じられた角部の面積分だけ、理想的な画素領域の占有面積から小さくなっている。
 かかる問題は、印刷法として特にインキジェットプリント法を用いた場合に顕著に現れる。
 また、例えばアクティブマトリクス型有機EL素子では、理想的には、図1に示すように、TFT素子と配線(不図示)とが絶縁性隔壁1で覆われ、該絶縁性隔壁1を除く領域が画素領域2として形成される。隔壁1によって画成された画素領域2の底面には、第1の電極3が露出して画素電極3aを構成する。有機EL素子の配置される領域に対する画素領域の割合(開口率)は、できるだけ高い方が好ましい。なぜなら、開口率が高ければ高いほど、単位面積当たりの発光面積が大きくなり、その結果、複数の有機EL素子を備える装置全体としての発光量を高めることができるからである。そこで、隔壁1により画成する画素領域2の形状は、TFT素子を除いたできるだけ広い面積をカバーするように設計することが好ましいことになる。そのような基準に基づいて設計すると、画素領域2は、図1に示すように、矩形や楕円形といった単純な形状ではなく、矩形のいずれかの辺及び/又は角部にさらに小面積の矩形が連接した異形形状となる場合が多い。このような画素領域2の異形形状は、全体に多くの角部cを有する形状と定義し得る。
 しかしながら、前述した理由と同様の理由で、図2に示すように、前記角部cを多く有する形状の画素領域2に有機発光インキ4を印刷すると、画素領域2の多数の角部cは、インキ未塗布部分として残ってしまう。
 したがって、角部を面取してなだらかにすると、開口率が低下することになるが、従来、アクティブマトリックス型の有機EL素子の場合でも、隔壁で画成される画素領域の形状は、通常、なだらかな内壁面を有する角部のない形状に形成されている。
 本発明は、上記従来の事情に鑑みてなされたもので、その課題は、未塗布部分を生じることなく、開口率を増大させることのできる有機EL素子の製造方法と、該製造方法により得られる有機EL素子および表示装置を提供することにある。
 上記課題を解決するために、本発明者は、鋭意、実験、検討を重ねたところ、未塗布部分を生じることなく角部を有する画素領域に有機発光インキを塗布することは、通常、困難であると考えられるが、数ある塗布法のなかでも有機発光材料と溶媒とを含む有機発光インキを凸版印刷法で塗布すると、未塗布部分を生じることなく角部を有する画素領域に有機発光インキを塗布することができることを見出した。
 本発明は、上述した課題を解決するために、上記知見に基づき、下記の構成を採用した有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置を提供する。
[1] 基板上に少なくとも陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とが積層されてなる有機エレクトロルミネッセンス素子の製造方法であって、一方の電極を有する基板上に隔壁によって角部を有する形状の画素領域を画成する隔壁形成工程と、画素領域を囲って設置された隔壁内に、有機発光材料と溶媒とを含む有機発光インキを凸版印刷法で塗布して有機発光層を形成する有機発光層形成工程とを、含む有機エレクトロルミネッセンス素子の製造方法。
[2] 前記有機発光インキに沸点温度200℃以上の溶媒を用いるとともに、前記凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法より小さく設定する、上記[1]に記載の有機エレクトロルミネッセンス素子の製造方法。
[3] 前記凸版印刷に用いる版の凸面の幅寸法lを前記画素領域の幅寸法Lの99%~50%に設定する、上記[2]に記載の有機エレクトロルミネッセンス素子の製造方法。
[4] 前記有機発光インキに沸点温度200℃未満の溶媒を用いるとともに、前記凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法よりも大きく設定する、上記[1]に記載の有機エレクトロルミネッセンス素子の製造方法。
[5] 前記凸版印刷に用いる版の凸面の幅寸法lを、前記画素領域の幅寸法Lよりも大きく、{(前記幅寸法L)+(前記隔壁の幅寸法L)/2}未満に設定する、上記[4]に記載の有機エレクトロルミネッセンス素子の製造方法。
[6] 前記凸版印刷に用いる版の凸面が、被印刷物に順次押圧される方向に沿ってストライプ状に形成されている、上記[1]~[5]のいずれか一つに記載の有機エレクトロルミネッセンス素子の製造方法。
[7] 有機発光層形成工程では、前記有機発光インキとして多色に対応した多種のインキを所定の隔壁内に選択的に塗布し、少なくとも赤、緑、青の三色の画素を構成する有機発光層をそれぞれ形成する、上記[1]~[6]のいずれか一つに記載の有機エレクトロルミネッセンス素子の製造方法。
[8] 上記[1]~[7]のいずれか一つに記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。
[9] 上記[8]に記載の有機エレクトロルミネッセンス素子を含む表示装置。
 本発明にかかる製造方法により、例えば、画素電極の開口率を高めるために角部を有する形状とした画素領域へ有機発光インキを塗布漏れを生じさせることなく、画素領域の全面に隈無く塗布することができる。したがって、本発明によれば、発光面における発光むらや発光不良を生じさせることなく、単位面積あたりの発光量が増大した発光特性に優れた有機EL素子および表示装置を得ることができる。
図1は、有機EL素子の製造において画素電極の開口率を最大になるように絶縁性隔壁のパターンを設計した場合に得られる画素領域の形状の一例を示す隔壁形成面の平面構成図である。 図2は、図1の要部拡大図である。 図3は、本発明の有機EL素子の製造方法における有機発光層の形成を、乾燥速度の遅い有機発光インキを用いるとともに、フレキソ印刷版の凸部の凸面の幅を画素領域の幅寸法より小さく設定して行う場合の印刷工程を説明するためのもので、画素領域に対してインキを接触させる前の状態を示す図である。 図4は、本発明の有機EL素子の製造方法における有機発光層の形成を、乾燥速度の遅い有機発光インキを用いるとともに、フレキソ印刷版の凸部の凸面の幅を画素領域の幅寸法より小さく設定して行う場合の印刷工程を説明するためのもので、画素領域に対してインキを接触させ、印刷版の凸面で押し付けた状態を示す図である。 図5は、図4に示した工程の後のインキ塗布状態を示す画素領域の平面図である。 図6は、図4に示した工程の後、フレキソ印刷版が離され、インキが乾燥された状態を示す有機EL素子の基板の側断面図である。 図7は、本発明の有機EL素子の製造方法における有機発光層の形成を、乾燥速度の速い有機発光インキを用いるとともに、フレキソ印刷版の凸部の凸面の幅を画素領域の幅寸法より大きく設定して行う場合の印刷工程を説明するためのもので、画素領域に対してインキを接触させる前の状態を示す図である。 図8は、本発明の有機EL素子の製造方法における有機発光層の形成を、乾燥速度の速い有機発光インキを用いるとともに、フレキソ印刷版の凸部の凸面の幅を画素領域の幅寸法より大きく設定して行う場合の印刷工程を説明するためのもので、画素領域に対してインキを接触させ、印刷版の凸面で押し付けた状態を示す図である。
符号の説明
 1 絶縁性隔壁
 2 画素領域
 3 第1の電極(陽極)
 3a 画素電極
 4 有機発光インキ
 10 基板
 11、21 凸版印刷版
 12、22 凸版印刷版の凸部
 12a、22a 凸部の凸面
 c 画素領域の角部
 l、l 凸版印刷に用いる版の凸面の幅寸法
 L 画素領域の幅寸法
 L 絶縁性隔壁の幅寸法
 以下に、本発明方法が対象とする有機EL素子の構造について説明し、その後、本発明にかかる有機EL素子の製造方法について、さらに詳しく説明する。なお、以下の説明において示す図面における各部材の縮尺は実際と異なる場合がある。また、有機EL素子には電極のリード線などの部材も存在するが、本発明の説明として直接的に関係はないために記載および図示を省略している。かかる点は、先述の図面およびその説明においても同様である。
 前述のように、本発明にかかる有機EL素子の製造方法は、基板上に少なくとも陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とをそれぞれ積層することで有機エレクトロルミネッセンス素子を製造する方法であって、基板の厚み方向の一方から見て画素の形成される画素領域を囲って設置された隔壁内に、有機発光材料と溶媒とを含む有機発光インキを凸版印刷法で塗布して有機発光層を形成する有機発光層形成工程を含み、前記画素領域が角部を有する形状であることを特徴とする。なお画素領域は、隔壁の内周面によって規定される領域である。
(基板)
 有機EL素子に用いる基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン基板、これらを積層したものなどが用いられる。さらに、プラスチック、高分子フィルムなどに低透水化処理を施したものを用いてもよい。前記基板としては、市販のものを使用可能であり、また公知の方法により製造してもよい。
(電極および発光層)
 有機EL素子は、少なくとも陽極と、陰極と、前記陽極および陰極の間に位置する有機発光層とが積層されて構成される。また少なくとも陽極および陰極のうちのいずれか一方が光透過性を有する電極からなる。前記発光層には低分子および/または高分子の有機発光材料が用いられる。
 有機EL素子において、陽極および陰極の間には、複数の発光層が設けられてもよく、また発光層以外の層が設けられてもよい。以下、陰極と発光層との間に設けるもの層を陰極側インターレイヤー、陽極と発光層との間に設ける層を陽極側インターレイヤーという場合がある。
 陽極と発光層との間に設ける陽極側インターレイヤーとしては、正孔注入層・正孔輸送層、電子ブロック層等が挙げられる。
 上記正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層であり、上記正孔輸送層とは、正孔注入層または陽極により近い層(正孔輸送層)からの正孔注入を改善する機能を有する層である。また、正孔注入層または正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
 陰極と発光層の間に設ける陰極側インターレイヤーとしては、電子注入層、電子輸送層、正孔ブロック層等が挙げられる。
 上記電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、上記電子輸送層は、電子注入層または陰極により近い層(電子輸送層)からの電子注入を改善する機能を有する層である。また、電子注入層もしくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
 上記のような陽極と陰極との間に設けられる各層の積層構成としては、陽極と発光層との間に正孔輸送層を設けた構成、陰極と発光層との間に電子輸送層を設けた構成、陰極と発光層との間に電子輸送層を設け、かつ陽極と発光層との間に正孔輸送層を設けた構成等が挙げられる。例えば、具体的には以下のa)~d)の積層構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同様。)
 上記構成において、先述のように、発光層とは発光する機能を有する層であり、正孔輸送層とは正孔を輸送する機能を有する層であり、電子輸送層とは電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ場合もある。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と呼ばれることがある。
 さらに、電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記電荷注入層または膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。積層する層の順番や数および各層の厚さについては、発光効率や素子寿命を勘案して適宜に設定すればよい。
 また、電荷注入層(電子注入層、正孔注入層)を設けた有機EL素子としては、陰極に隣接して電荷注入層を設けた有機EL素子、陽極に隣接して電荷注入層を設けた有機EL素子が挙げられる。例えば、具体的には、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
(陽極)
 上記陽極には、例えば、透明電極または半透明電極として、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いてもよく、透過率が高いものが好適であり、用いる有機層により適宜、選択して用いる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium
Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅等から成る薄膜が用いられ、これらのなかでも、ITO、IZO、酸化スズが好ましい。
 また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。また、前記有機の透明導電膜に用いられる材料、金属酸化物、金属硫化物、金属、およびカーボンナノチューブなどの炭素材料からなる群から選ばれる少なくとも一種類以上を含む混合物からなる薄膜を、陽極に用いてもよい。
 さらに、該陽極に、光を反射させる材料を用いてもよく、かかる材料としては、仕事関数が3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
 陽極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができ、例えば5nm~10μmであり、好ましくは10nm~1μmであり、さらに好ましくは20nm~500nmである。
(陽極側インターレイヤー)
 上述のように、前記陽極と発光層との間に、必要に応じて、正孔注入層、正孔輸送層などの陽極側インターレイヤーが積層される。
(正孔注入層)
 正孔注入層は、上述のように、陽極と正孔輸送層との間、または陽極と発光層との間に設けてもよい。正孔注入層を形成する材料としては、公知の材料を適宜用いてもよく、特に制限はない。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
 また、このような正孔注入層の厚みとしては、5~300nm程度であることが好ましい。この厚みが5nm未満では、製造が困難になる傾向があり、他方、300nmを超えると、駆動電圧、および正孔注入層に印加される電圧が大きくなる傾向となる。
(正孔輸送層)
 正孔輸送層を構成する材料としては、特に制限はないが、例えば、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)4,4’-ジアミノビフェニル(TPD)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)等の芳香族アミン誘導体、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体などが挙げられる。
 これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくは、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
 正孔輸送層の厚みは、特に制限されないが、目的とする設計に応じて適宜変更することができ、1~1000nm程度であることが好ましい。この厚みが前記下限値未満となると、製造が困難になる、または正孔輸送の効果が十分に得られないなどの傾向があり、他方、前記上限値を超えると、駆動電圧および正孔輸送層に印加される電圧が大きくなる傾向がある。したがって、正孔輸送層の厚みは、上述のように、好ましくは、1~1000nmであるが、より好ましくは、2nm~500nmであり、さらに好ましくは、5nm~200nmである。
(有機発光層)
 有機発光層は、通常、主として蛍光または燐光を発光する有機物(低分子化合物および高分子化合物)を含む。なお、さらにドーパント材料を含んでいてもよい。本発明において用いることができる有機発光層を形成する材料としては、例えば、以下の色素系材料、金属錯体系材料、高分子系材料、およびドーパント材料などが挙げられる。
 上記色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、キナクリドン誘導体、クマリン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。
 上記金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体など、中心金属に、Al、Zn、BeなどまたはTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体などが挙げられる。
 上記高分子系材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したものなどが挙げられる。
 上記有機発光層形成材料のうち青色に発光する材料としては、例えば、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
 また、上記有機発光層形成材料のうち緑色に発光する材料としては、例えば、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
 また、上記発光層形成材料のうち赤色に発光する材料としては、例えば、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
 上記有機発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加してもよい。このようなドーパントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどが挙げられる。
 なお、かかる有機発光層の厚さは、通常、2nm~200nmである。
(陰極側インターレイヤー)
 上述のように、前記発光層と後述の陰極との間に、必要に応じて、電子注入層、電子輸送層などの陰極側インターレイヤーが積層される。
(電子輸送層)
 電子輸送層を形成する材料としては、公知のものが使用でき、例えば、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が挙げられる。
 これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
(電子注入層)
 電子注入層は、先に述べたように、電子輸送層と陰極との間、または発光層と陰極との間に設けられる。電子注入層としては、発光層の種類に応じて、アルカリ金属やアルカリ土類金属、あるいは前記金属を一種類以上含む合金、あるいは前記金属の酸化物、ハロゲン化物および炭酸化物、あるいは前記物質の混合物などが挙げられる。
 前記アルカリ金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。
 前記アルカリ土類金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、例えば、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどが挙げられる。
 さらに、金属、金属酸化物、金属塩をドーピングした有機金属化合物、および有機金属錯体化合物、またはこれらの混合物も、電子注入層の材料として用いてもよい。
 この電子注入層は、2層以上を積層した積層構造あってもよい。具体的には、Li/Caなどが挙げられる。この電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。
 この電子注入層の膜厚としては、1nm~1μm程度が好ましい。
(陰極)
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易な材料および/または電気伝導度が高い材料および/または可視光反射率の高い材料が好ましい。かかる陰極材料としては、具体的には、金属、金属酸化物、合金、グラファイトまたはグラファイト層間化合物、酸化亜鉛(ZnO)等の無機半導体などが挙げられる。
 上記金属としては、例えば、アルカリ金属やアルカリ土類金属、遷移金属や周期表13族金属等を用いることができる。これら金属の具体的例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等が挙げられる。
 また、合金としては、上記金属の少なくとも一種を含む合金が挙げられ、具体的には、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 陰極は、必要に応じて透明電極もしくは半透明電極とされるが、それらの材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、ITO、IZOなどの導電性酸化物;ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの導電性有機物が挙げられる。
 なお、陰極を2層以上の積層構造としてもよい。また、電子注入層が陰極として用いられる場合もある。
 陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば、10nm~10μmであり、好ましくは、20nm~1μmであり、さらに好ましくは、50nm~500nmである。
(上部封止膜)
 上述のように陰極が形成された後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、該発光機能部を封止する上部封止膜が形成される。この上部封止膜は、通常、少なくとも一つの無機層と少なくとも一つの有機層を有する。積層数は、必要に応じて決定され、基本的には、無機層と有機層は交互に積層される。
 なお、前記基板としてプラスチック基板が用いられる場合は、基板および上部封止膜により発光機能部が被包されていても、プラスチック基板がガラス基板に比べて、ガスおよび液体の透過性が高く、有機発光層などの発光物質は、酸化されやすく、水と接触することにより劣化しやすいため、プラスチック基板上にガスおよび液体に対するバリア性の高い下部封止膜を積層し、その後、この下部封止膜の上に上記発光機能部を積層する。この下部封止膜は、通常、上記上部封止膜と同様の構成、同様の材料にて形成される。
[有機EL素子の製造方法]
 以下、本発明にかかる有機EL素子の製造方法について、さらに詳しく説明する。
(陽極形成工程)
 前述のいずれかの基板材料からなる基板を準備する。ガスおよび液体の透過性が高いプラスチック基板を用いる場合は、必要に応じて、基板上に下部封止膜を形成しておく。
 次に、準備した基板上に前述のいずれかの陽極材料を用いて、陽極をパターン形成する。この陽極を透明電極とする場合には、前述のように、ITO、IZO、酸化錫、酸化亜鉛、酸化インジウム、亜鉛アルミニウム複合酸化物等の透明電極材料を使用する。電極のパターン形成は、例えば、ITOを用いる場合、スパッタリング法により基板上に均一な堆積膜として形成され、続いて、フォトリソグラフィーによりライン状にパターニングされる。
(隔壁形成工程)
 ライン状の陽極を形成後、陽極が形成された基板上に感光性材料を塗布してフォトレジスト膜を積層する。この感光性材料(フォトレジスト組成物)の塗布は、例えば、スピンコーター、バーコーター、ロールコーター、ダイコーター、グラビアコーター、スリットコーター等を用いたコーティング法により行うことができる。次に、このフォトレジスト膜を、フォトリソグラフィーによりパターニングして絶縁性を示す隔壁を形成する。この隔壁形成のパターニングに用いるフォトマスクは、画素電極の開口率を可能な限り大きくした画素領域を得るための隔壁形状を設計し、それに基づいて、作成される。通常、隔壁で画成される画素領域は、矩形となるが、作製対象の有機EL素子がアクティブマトリクス型の基板に用いられる素子の場合には、上記基準に基づいて設計された画素領域の形状は、通常、図1または図2に示すような多数の角部cを有する異形形状となる。このような多数の角部cを有する異形形状の領域が画素領域2となり、この画素領域2により規定される画素電極3aの開口率は、配線、TFT素子の絶縁被覆、および電極間の絶縁などの必要な絶縁を行うという制約の下で最大値となるように設計される。
 上記絶縁性隔壁1を形成する絶縁性の感光性材料は、ポジ型レジスト、ネガ型レジストのどちらであってもよい。隔壁は、絶縁性を示すことが重要であり、絶縁性を有さない場合には、互いに異なる画素間に電流が流れてしまい表示不良が発生するおそれがある。
 この隔壁1を構成する感光性材料としては、具体的には、例えば、ポリイミド系、アクリル樹脂系、ノボラック樹脂系の各感光性化合物が挙げられる。なお、この感光性材料には、有機EL素子の表示品位を上げる目的で、光遮光性を示す材料を含有させてもよい。
 この絶縁性隔壁1の表面に撥インキ性を付与するために、隔壁形成用の感光性材料に撥インキ性物質を加えてもよい。あるいは、絶縁性隔壁を形成した後、その表面に撥インキ性物質を被覆させることにより、隔壁表面に撥インキ性を付与してもよい。この撥インキ性は、後述のインターレイヤー用のインキに対しても、有機発光層用のインキに対しても、撥性であることが好ましい。
 前記感光性材料に撥インキ性物質を添加する場合に用いる撥インキ性化合物としては、シリコーン系化合物またはフッ素含有化合物が用いられる。これらの撥インキ性化合物は、後述の有機発光層形成に用いる有機発光インキ(塗布液)と、正孔輸送層などのインターレイヤー用の有機材料インキ(塗布液)の両方に撥インキ性を示すため、好適に用いることができる。
 隔壁1を形成した後に隔壁1の表面に撥インキ性被膜を形成する方法としては、撥インキ性成分を含む塗布液を隔壁表面に塗布する方法、隔壁表面の有機材料の官能基をフッ素で置換することにより表面を改質する方法、撥インキ性成分を気化させて隔壁表面に堆積させる方法などを挙げることができる。具体的には、CFガスを導入ガスとして用いるプラズマ処理を挙げることができる。基板および電極などに比べると、有機物の隔壁はCFガスによってフッ化され易く、プラズマ処理を行うことで隔壁表面を選択的に撥インキ化することができる。
(陽極側インターレイヤー形成工程)
 絶縁性隔壁形成後、必要に応じて、前述の正孔輸送層などの有機材料層(陽極側インターレイヤー)を形成する。
 陽極側インターレイヤーの成膜方法としては、特に制限はないが、低分子材料では、例えば、高分子バインダーとの混合溶液からの成膜による方法が挙げられる。また、高分子材料では、例えば、溶液からの成膜による方法が挙げられる。
 溶液からの成膜に用いる溶媒としては、前述の陽極側インターレイヤー用の材料を溶解させるものであれば、特に制限はない。かかる溶媒として、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が挙げられる。
 上記溶液からの成膜方法としては、例えば、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法などのコート法、グラビア印刷、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インキジェットプリント法等の印刷法などの塗布法が挙げられる。パターン形成が容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インキジェットプリント法などの印刷法が好ましく、中でも、後述の有機発光層の形成時の有機発光インキの塗布に用いる凸版印刷が、特に好ましい。
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。かかる高分子バインダーとして、例えば、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
 上記塗布方法により塗布液を基板全面に塗布した場合、塗布液が上記隔壁上に塗布される場合があるが、その場合、隔壁上の塗布液は、隔壁の表面によりはじかれて、隔壁により画成された画素領域内に落ち込み、各画素領域内に塗布膜として形成される。各画素領域内の塗布膜は、その後、乾燥することによりインターレイヤーとして機能する。
(有機発光層形成工程)
 次に有機発光層の形成工程が実行される。この有機発光層形成工程の特徴は、前記隔壁形成工程によって形成した角部を有する形状の画素領域の全域に有機発光インキを塗布するために、凸版印刷法を用いることにある。この凸版印刷は、より好ましくはフレキソ印刷である。
 上記凸版印刷を用いるに際して、具体的な手順として、下記2つの好適な方法のいずれかを用いることが好ましい。
 上記好適な凸版印刷の第1の方法は、前記有機発光インキに沸点温度200℃以上の溶媒を用いるとともに、凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法より小さく設定する。具体的には、図3に示すように、電極(陽極または陰極のいずれか一方)3がパターニングされた基板10上に前述のように隔壁1が形成されて得られた画素領域2へ有機発光インキ4を塗布するために凸版印刷を行うに際して、用いる凸版11の凸部12の凸面12aの幅寸法lを前記画素領域2の幅寸法Lの99%~50%に設定する。ここで、凸面12aの幅とは、凸版11が被印刷物(基板)に順次押圧される方向に垂直な方向の幅であり、例えば凸版11が円筒状であり、軸線まわりに回転する場合、該凸版11の周方向に垂直な軸線方向の幅である。また画素領域2の幅とは、有機発光インキが印刷される方向に垂直な幅である。
 有機発光インキ4の溶媒として200℃以上の高沸点溶媒を含む乾燥速度の遅いフレキソ印刷用インキを用いる場合に、上述のように、凸版印刷版11の凸面12aの幅寸法を画素領域2の幅寸法Lより小さく設定し、図4に示すように、前記凸版印刷版11を用いて有機発光インキ4を画素領域2に塗布する。凸版印刷版11の凸面12aに付着していた有機発光インキ4は、画素領域2の底面に接触し、画素領域2の底面と前記凸面12aとに挟まれて、図5に示すように、画素領域2の全ての角部cを含めた全面に押し広げられる。その結果、画素領域2の全面にわたってインキ4が塗布される。その後、図6に示すように、凸版印刷版11が基板から離れると、インキ4の表面が表面張力によりなだらかになる。そして、その後の乾燥(溶媒の蒸発)によっても、インキ4の粘度が高いために、インキ4の画素領域2に対する接触線があまり移動せず、良好な有機発光層が形成される。
 上記好適な凸版印刷の第2の方法は、前記有機発光インキに沸点温度200℃未満の溶媒を用いるとともに、凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法より大きく設定する。具体的には、図7に示すように、凸版印刷に用いる版21の凸部22の凸面22aの幅寸法lを、前記画素領域2の幅寸法Lよりも大きく、{(前記幅寸法L)+(前記隔壁1の幅寸法L)/2}未満に設定する。
 有機発光インキ4の溶媒として200℃未満の低沸点溶媒を含む乾燥速度の速い有機発光インキを用いる場合に、上述のように、凸版印刷版21の凸面22aの幅寸法を画素領域2の幅寸法Lよりも大きく設定し、図8に示すように、前記凸版印刷版21を用いて有機発光インキ4を画素領域2に塗布させる。凸版印刷版21の凸面22aに付着していた有機発光インキ4は、画素領域2の底面に接触し、画素領域2の底面と前記凸面22aとに挟まれて、図5に示すように、画素領域2の全ての角部cを含めた全面に押し広げられる。その結果、上記第1の方法と同様に、画素領域2の全面に隈無くインキ4が塗布される。
 この方法では、上記第1の方法の場合と異なり、版21の凸面22a上の速乾性のインキ4が画素領域2に塗布する前に半乾燥状態となる。そのため、インキ4の展延性が下がるので、凸面22aの幅寸法lを画素領域2の幅寸法Lより大きくしている。したがって、半乾燥状態で画素領域2に押し付けられたインキ4は、展延性が低下していても、幅の広い凸面22aによって画素領域2全面に押し広げられる。その後、半乾燥状態で高粘度なインキ4の乾燥速度は緩やかであるため、溶媒蒸発時の接触線がほとんど動かず、良好な有機発光層を形成する。
 上記有機発光インキは、有機発光材料を溶剤に溶解または安定に分散させて調製する。この有機発光材料を溶解または分散する溶剤としては、例えば、トルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の単独またはこれらの混合溶剤が挙げられる。中でも、トルエン、キシレン、アニソールといった芳香族有機溶剤が、有機発光材料の良好な溶解性を有することから好ましい。
 上記溶剤の内、沸点が200℃以上の溶剤は、テトラリン、シクロヘキシルベンゼンなどであり、沸点が200℃未満の溶剤は、トルエン、キシレン、アニソールなどである。上記第1の凸版印刷方法において用いる有機発光インキの溶媒に占める「沸点が200℃以上の溶媒」の配合量は、使用する有機発光材料や画素領域の形状等の条件により適宜に決定される。同様に、上記第2の凸版印刷方法において用いる有機発光インキの溶媒に占める「沸点が200℃未満の溶媒」の配合量は、使用する有機発光材料や画素領域の形状等の条件により適宜に決定される。
 なお、有機発光インキには、必要に応じて、界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤等を添加してもよい。
 さらに、隔壁が格子状に形成されている場合、前記凸版印刷に用いる版の凸面が、被印刷物に順次押圧される方向に沿ってストライプ状に形成されて版を用いて、有機発光インキを塗布することが好ましい。すなわち、被印刷物に順次押圧される方向が各凸面の長手方向に略一致するように、各凸面の長手方向に沿って各凸面がそれぞれ配置される。例えば凸版が円筒状であり、軸線まわりに回転する場合、該凸版の周方向が、被印刷物に順次押圧される方向に相当し、各凸面は、この周方向と各凸面の長手方向とを略一致させて、周方向に沿ってストライプ状に配置する。
 また有機発光層形成工程では、前記有機発光インキとして多色に対応した多種のインキを所定の隔壁内に選択的に塗布し、少なくとも赤、緑、青の三色の画素を構成する有機発光層をそれぞれ形成することが好ましい。具体的には、例えば、赤色を発光する有機発光インキを凸版印刷で塗布し、次に緑色を発光する有機発光インキを凸版印刷で塗布し、次に青色を発光する有機発光インキを凸版印刷で塗布してもよく、また赤、緑、青のそれぞれを発光する有機発光インキを凸版の所定の凸面に付着させ、さらに有機発光インキを転写するようにしてもよい。
(陰極側インターレイヤー形成工程)
 上記有機発光層の形成後、必要に応じて、電子輸送層や電子注入層などの陰極側インターレイヤーを形成する。
 この陰極側インターレイヤーの形成方法は、電子輸送層の場合、特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が例示され、高分子電子輸送材料では、溶液または溶融状態からの成膜による方法が例示される。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法を用いてもよい。
 また、電子注入層の場合、蒸着法、スパッタリング法、印刷法等を用いて形成される。
(陰極形成工程)
 陰極は、前述のいずれかの材料を用い、例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、レーザーアブレーション法、および金属薄膜を圧着するラミネート法などにより形成する。
 前述のようにして、陰極を形成した後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、上部封止膜を形成する。この上部封止膜は、必要に応じて、少なくとも一つの無機層と少なくとも一つの有機層とから構成する。これらの積層数は、必要に応じて決定し、基本的には、無機層と有機層は交互に積層する。
 本実施の形態の有機EL素子は、面状光源、セグメント表示装置およびドットマトリックス表示装置の光源、並びに液晶表示装置のバックライトとして用いることができる。
 本実施の形態の有機EL素子を面状光源として用いる場合には、例えば面状の陽極と陰極とを積層方向の一方から見て重なり合うように配置すればよい。
 また、セグメント表示装置の光源としてパターン状に発光する有機EL素子を構成するには、光を通す窓がパターン状に形成されたマスクを前記面状光源の表面に設置する方法、消光すべき部位の有機物層を極端に厚く形成して実質的に非発光とする方法、陽極および陰極のうちの少なくともいずれか一方の電極をパターン状に形成する方法がある。これらの方法でパターン状に発光する有機EL素子を形成するとともに、いくつかの電極に対して選択的に電圧を印加できるように配線を施すことによって、数字や文字、簡単な記号などを表示可能なセグメントタイプ表示装置を実現することができる。ドットマトリックス表示装置の光源とするためには、陽極と陰極とをそれぞれストライプ状に形成して、積層方向の一方からみて互いに直交するように配置すればよい。
 また、部分カラー表示、マルチカラー表示が可能なドットマトリックス表示装置を実現するためには、発光色の異なる複数の種類の発光材料を塗り分ける方法、並びにカラーフィルターおよび蛍光変換フィルターなどを用いる方法を用いればよい。ドットマトリックス表示装置は、パッシブ駆動してもよく、TFTなどと組み合わせてアクティブ駆動してもよい。
 上述の表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として有用である。
 さらに、前記面状光源は、自発光薄型であり、液晶表示装置のバックライト、あるいは面状の照明用光源として有用である。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても有用である。
 以下、本発明の実施例を示すが、以下に示す実施例は、本発明を説明するための好適な例示であって、なんら本発明を限定するものではない。
 以下に示す実施例は、アクティブマトリックス型有機EL素子を対象として実施したが本発明にかかる有機EL素子の製造方法は、この駆動方式の有機EL素子に限定されるものではなく、パッシブマトリックス型などの他の駆動方式の有機EL素子に対しても同様に適用することができる。
(実施例1)
(基板の準備および陽極の形成)
 まず、200mm(縦)×200mm(横)×0.7mm(厚み)の透明ガラス板上にTFTアレイと陽極(画素電極)が形成された基板を準備した。ITO薄膜を形成し、さらにパターニングを行ってストライプ状の陽極を形成した。陽極の繰り返し間隔(ピッチ)は、80μmで、陽極の幅(ライン幅)70μmに対して陽極間の間隔(スペース幅)は10μmであった(ライン/スペース=70μm/10μm)。基板の厚み方向の一方から見て画素の形成される画素領域は、一方向に伸びるITO薄膜上において、前記一方向に所定の間隔をあけて島状に設定される。
(隔壁の形成)
 次に、上記基板上の全面に、ポジ型フォトレジスト(東京応化工業(株)製、商品名「OFPR-800」)をスピンコーティング法により塗布し、この塗膜を乾燥させて、膜厚1μmのフォトレジスト層を形成した。
 次に、TFT素子およびその他の配線を覆うという制約の下で画素領域が最大となるように設計されたフォトマスクを上記フォトレジスト層の上に配置し、アライメント露光機(大日本スクリーン製造社製、商品名「MA1300」)から前記フォトマスクを介して前記フォトレジスト層に紫外線を照射した(露光工程)。
 前記露光工程に続いて、レジスト現像液(東京応化工業(株)製、商品名「NMD-3」)を用いて、前記フォトレジスト層の露光部を除去した(現像工程)。
 続いて、上記ガラス基板をホットプレート上で230℃で1時間加熱処理を行なって、上記現像後のフォトレジスト層を完全に加熱硬化させた(熱硬化工程)。
 上記一連のフォトリソグラフィー工程により、画素の形成される画素領域を囲う隔壁(有機絶縁層)が形成され、この隔壁の内部で陽極が露出する。得られた隔壁ラインの幅寸法は、20μmであり、高さ寸法は、1μmであった。また、各画素領域は多数の角部を有し最大幅50μm×最大長さ150μmの異形形状であった。
 次に、CF4ガスを用いた真空プラズマ装置(サムコインターナショナル研究社製、商品名「RIE-200L」)を用いて、隔壁に撥液処理を行った。
(陽極側インターレイヤーの形成)
 次に、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(Bayer社製、商品名「BaytronP AI4083」)の懸濁液を調製し、この懸濁液を0.2μmメンブランフィルターで濾過した。この濾過液をノズルコート法により上記画素領域に塗布した。続いて、この塗布層を200℃×20分間、加熱処理して、60nm厚の正孔注入層を形成した。
(有機発光層の形成)
 アニソールとシクロヘキシルベンゼンとを重量比7:3で混合した混合溶媒に、有機発光材料として高分子発光材料(サメイション社製、商品名「RP158」)を溶解させた有機発光インキ(高分子発光材料の濃度:1重量%)を準備した。なお、使用した混合溶媒中のシクロヘキシルベンゼンの沸点は200℃以上であり、アニソールの沸点は200℃未満である。
 使用するフレキソ印刷版(材質:ポリエステル系樹脂、凸版凸部の高さ100μm)のストライプ形状凸部の凸面の幅寸法を、上記各画素領域の最大幅(画素電極開口部の幅)50μmの60%に相当する30μmに設定した。この凸版を用いて、フレキソ印刷装置(日本写真印刷社製、商品名「SDR-10」)により、画素領域に凸版の凸部に付着させた上記有機発光インキが押し当てるように位置調整をして印刷した。印刷後の有機発光インキは上記凸面による押圧により広がり、有機発光インキにより異型形状の画素領域内の画素電極の全面が覆われ、乾燥後も、塗り残し部の発生がなかった。
 上記塗り残し部の有無の確認は、各画素領域内に形成された有機発光層の形状を光学顕微鏡(ニコン社製、商品名「オプチフォト88」、対物レンズ倍率:50倍)にて観察することにより行った。画素領域を画成している隔壁および陽極側インターレイヤーから有機発光インキがはじかれた痕跡はなく、有機発光層は異形形状の画素領域の全ての角部を含む全域に成膜していることが確認された。
(陰極の形成)
 次に、上記有機発光層の上に、陰極として、カルシウムを100Åの厚さで蒸着し、さらに、酸化保護層としてアルミニウムを2000Åの厚さで蒸着した。これにより、ボトムエミッション構造の有機EL素子を作製した。
 上述のようにして得た有機EL素子を発光させたところ、発光強度は、発光面全面に亘って均一であり、単位面積あたりの発光量も、従来品に比較して向上していることが確認された。
(実施例2)
 基板の準備から隔壁形成による画素領域の形成を行い、正孔注入層を形成するまでは、上記実施例と同様に実施したので、それらの工程の詳細は省略し、その後の有機発光層の形成以降を以下に説明する。
(有機発光層の形成)
 有機発光材料として高分子発光材料(サメイション社製、商品名「RP158」)をキシレン単独溶媒に溶解させた有機発光インキ(濃度:1重量%、粘度:10cp)を準備した。なお、使用したキシレンの沸点は200℃未満である。
 使用するフレキソ印刷版(材質:ポリエステル系樹脂、凸版凸部の高さ100μm)のストライプ形状凸部の凸面の幅寸法を、上記各画素領域の最大幅(画素電極開口部の幅)50μmより広い60μmに設定した。この凸版を用いて、フレキソ印刷装置(日本写真印刷社製、商品名「SDR-10」)により、画素領域の電極露出部に凸版の凸部に付着させた上記有機発光インキが押し当てられるように位置調整をして印刷した。印刷後の有機発光インキは上記凸面による押圧により広がり、有機発光インキにより異型形状の画素領域内の画素電極の全面が覆われ、乾燥後も、塗り残し部の発生がなかった。
 上記塗り残し部の有無の確認は、各画素領域内に形成された有機発光層の形状を光学顕微鏡(ニコン社製、商品名「オプチフォト88」、対物レンズ倍率:50倍)にて観察することにより行った。画素領域を画成している隔壁および陽極側インターレイヤーから有機発光インキがはじかれた痕跡はなく、有機発光層は異形形状の画素領域の全ての角部を含む全域に成膜していることが確認された。
(第2電極の形成)
 次に、上記有機発光層の上に、第2電極(陰極)として、カルシウムを100Åの厚さで蒸着し、さらに、酸化保護層としてアルミニウムを2000Åの厚さで蒸着した。これにより、ボトムエミッション構造の有機EL素子を作製した。
 上述のようにして得た有機EL素子を発光させたところ、発光強度は、発光面全面に亘って均一であり、単位面積あたりの発光量も、従来品に比較して向上していることが確認された。
 以上のように、本発明にかかる有機EL素子の製造方法は、有機発光層の塗布むらを生じることなく画素電極の開口率を増大させた有機EL素子を製造することができる。本発明にかかる有機EL素子の製造方法を用いることにより単位面積あたりの発光量が増大した発光特性に優れた有機EL素子および表示装置を得ることができる。

Claims (9)

  1.  基板上に少なくとも陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とが積層されてなる有機エレクトロルミネッセンス素子の製造方法であって、
     一方の電極を有する基板上に隔壁によって角部を有する形状の画素領域を画成する隔壁形成工程と、
     画素領域を囲って設置された隔壁内に、有機発光材料と溶媒とを含む有機発光インキを凸版印刷法で塗布して有機発光層を形成する有機発光層形成工程とを、
    を含む有機エレクトロルミネッセンス素子の製造方法。
  2.  前記有機発光インキに沸点温度200℃以上の溶媒を用いるとともに、前記凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法より小さく設定する請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  3.  前記凸版印刷に用いる版の凸面の幅寸法lを前記画素領域の幅寸法Lの99%~50%に設定する請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。
  4.  前記有機発光インキに沸点温度200℃未満の溶媒を用いるとともに、前記凸版印刷に用いる版の凸面の幅寸法を前記画素領域の幅寸法よりも大きく設定する請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  5.  前記凸版印刷に用いる版の凸面の幅寸法lを、前記画素領域の幅寸法Lよりも大きく、{(前記幅寸法L)+(前記隔壁の幅寸法L)/2}未満に設定する請求項4に記載の有機エレクトロルミネッセンス素子の製造方法。
  6.  前記凸版印刷に用いる版の凸面が、被印刷物に順次押圧される方向に沿ってストライプ状に形成されている請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  7.  有機発光層形成工程では、前記有機発光インキとして多色に対応した多種のインキを所定の隔壁内に選択的に塗布し、少なくとも赤、緑、青の三色の画素を構成する有機発光層をそれぞれ形成する請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。
  8.  請求項1に記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。
  9.  請求項8に記載の有機エレクトロルミネッセンス素子を含む表示装置。
PCT/JP2009/054571 2008-03-31 2009-03-10 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置 WO2009122870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008091565A JP2009245776A (ja) 2008-03-31 2008-03-31 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP2008-091565 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122870A1 true WO2009122870A1 (ja) 2009-10-08

Family

ID=41135257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054571 WO2009122870A1 (ja) 2008-03-31 2009-03-10 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置

Country Status (3)

Country Link
JP (1) JP2009245776A (ja)
TW (1) TW201002136A (ja)
WO (1) WO2009122870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529375A (ja) * 2010-04-12 2013-07-18 メルク パテント ゲーエムベーハー 有機電子デバイスを作製するための組成物および方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488101B2 (ja) * 2010-03-25 2014-05-14 凸版印刷株式会社 印刷用凸版並びにそれを用いた電子デバイス及び有機エレクトロルミネッセンス素子の製造方法
JP5699511B2 (ja) * 2010-09-30 2015-04-15 凸版印刷株式会社 印刷用凸版及びそれを用いた凸版印刷装置、並びに有機エレクトロルミネッセンス素子の製造方法
TW201403905A (zh) * 2012-06-01 2014-01-16 Sony Corp 有機電場發光裝置及其製造方法、以及電子機器
WO2022149713A1 (ko) * 2021-01-08 2022-07-14 삼성전자주식회사 디스플레이 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155858A (ja) * 1999-11-24 2001-06-08 Sharp Corp 有機el素子の製造方法
JP2007090597A (ja) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd 高精細印刷用凸版及びそれを用いた電子デバイスの製造方法並びに有機el素子
JP2007250298A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2007305465A (ja) * 2006-05-12 2007-11-22 Toppan Printing Co Ltd 有機elディスプレイパネルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155858A (ja) * 1999-11-24 2001-06-08 Sharp Corp 有機el素子の製造方法
JP2007090597A (ja) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd 高精細印刷用凸版及びそれを用いた電子デバイスの製造方法並びに有機el素子
JP2007250298A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子及びその製造方法
JP2007305465A (ja) * 2006-05-12 2007-11-22 Toppan Printing Co Ltd 有機elディスプレイパネルの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529375A (ja) * 2010-04-12 2013-07-18 メルク パテント ゲーエムベーハー 有機電子デバイスを作製するための組成物および方法
US10256408B2 (en) 2010-04-12 2019-04-09 Merck Patent Gmbh Composition and method for preparation of organic electronic devices

Also Published As

Publication number Publication date
JP2009245776A (ja) 2009-10-22
TW201002136A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP5417732B2 (ja) 親液撥液パターンの形成方法および有機エレクトロルミネッセンス素子の製造方法
JP5572942B2 (ja) 発光装置およびその製造方法
JP5192828B2 (ja) 有機エレクトロルミネッセンス表示素子及びその製造方法
JP5314314B2 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および照明装置
WO2010035643A1 (ja) パターン塗布用基板および有機el素子
JP2010108851A (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2010013641A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、発光装置および表示装置
JP4983940B2 (ja) 有機エレクトロルミネッセンス装置の製造方法
WO2009122870A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP2010129345A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5036680B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010147180A (ja) 有機エレクトロルミネッセンス素子の製造方法
US20110018433A1 (en) Method of producing organic electroluminescence element, organic electroluminescence element, and display device
JP5185007B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP2010160945A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2010160946A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP5314395B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5184938B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2009122973A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置
JP2010277879A (ja) 有機エレクトロルミネッセンス装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726662

Country of ref document: EP

Kind code of ref document: A1