JP2009111375A - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP2009111375A
JP2009111375A JP2008262641A JP2008262641A JP2009111375A JP 2009111375 A JP2009111375 A JP 2009111375A JP 2008262641 A JP2008262641 A JP 2008262641A JP 2008262641 A JP2008262641 A JP 2008262641A JP 2009111375 A JP2009111375 A JP 2009111375A
Authority
JP
Japan
Prior art keywords
film
substrate
insulating film
semiconductor
bond substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008262641A
Other languages
English (en)
Other versions
JP2009111375A5 (ja
Inventor
Hideto Onuma
英人 大沼
Yoichi Iikubo
陽一 飯窪
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2008262641A priority Critical patent/JP2009111375A/ja
Publication of JP2009111375A publication Critical patent/JP2009111375A/ja
Publication of JP2009111375A5 publication Critical patent/JP2009111375A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】SOI基板に不純物が混入するのを防ぐことができる、半導体装置の作製方法を提供する。
【解決手段】水素ガス、ヘリウムガスおよびハロゲンガスから選ばれた1種または複数種のガスを含むソースガスを励起してイオンを生成し、該イオンをボンド基板に添加することで、ボンド基板中に脆化層を形成する。そして、ボンド基板の表面近傍、すなわち、ボンド基板のうち、脆化層よりも浅い位置から表面までの領域を、エッチングまたは研磨などにより除去する。次に、ボンド基板とベース基板とを貼り合わせた後、該ボンド基板を脆化層において分離させることで、ベース基板上に半導体膜を形成する。上記半導体膜をベース基板上に形成した後、該半導体膜を用いて半導体素子を形成する。
【選択図】図1

Description

本発明は、SOI(Silicon on Insulator)基板を用いた半導体装置の作製方法に関する。本発明は特に貼り合わせSOI技術に関するものであって、絶縁膜を間に挟んで単結晶若しくは多結晶の半導体膜を基板に貼り合わせることで得られる、SOI基板を用いた、半導体装置の作製方法に関する。
半導体集積回路に対する高集積化、高速化、高機能化、低消費電力化への要求が厳しさを増しており、その実現に向け、バルクのトランジスタに替わる有力な手段としてSOI基板を用いたトランジスタが注目されている。SOI基板を用いたトランジスタはバルクのトランジスタと比較すると、半導体膜が絶縁膜上に形成されているので、寄生容量が低減され、基板に流れる漏れ電流の発生を抑えることができ、高速化、低消費電力化がより期待できる。そして活性層として用いる半導体膜を薄くできるので、短チャネル効果を抑制し、よって素子の微細化、延いては半導体集積回路の高集積化を実現することができる。
SOI基板の作製方法の一つに、スマートカット(登録商標)に代表されるUNIBOND(登録商標)、ELTRAN(Epitaxial Layer Transfer)、誘電体分離法、PACE(Plasma Assisted Chemical Etching)法などの、絶縁膜を介して半導体膜を基板に貼り合わせる方法がある。上記の貼り合わせ方法を用いることで、単結晶の半導体膜を用いた高機能な集積回路を安価なガラス基板上に形成することができる。
例えば下記の特許文献1には、バルクの半導体基板から剥離された半導体膜をガラス基板に貼り合わせてSOI基板を作製する方法が開示されている。
特開2004−087606号公報
ところで、薄膜の半導体膜をバルクの半導体基板から分離するためには、上記半導体基板に水素イオンを注入することで微小ボイドを複数含む脆化層を形成する必要がある。脆化層を形成した後、半導体基板に加熱処理を施すことで、脆化層において半導体基板が分離し、薄膜の半導体膜を分離させることができる。そして、該水素イオンの注入は、イオン注入法を用いることが一般的である。イオン注入法は、ソースガスをプラズマ化し、このプラズマに含まれるイオン種を引き出し、質量分離して、所定の質量を有するイオン種を加速して、イオンビームとして、被処理物に注入する方法である。
また、株式会社半導体エネルギー研究所(SEL:Semiconductor Energy Laboratory)の研究によって、イオンドーピング法を用いて脆化層を形成する場合、ガラス基板の歪み点よりも低い温度での加熱処理によって、半導体基板を分離させることが可能であることが分かった。イオンドーピング法とは、ソースガスをプラズマ化し、所定の電界の作用によりプラズマからイオン種を引き出し、引き出したイオン種を質量分離せずに加速し、イオンビームとして被処理物に照射する方法である。この知見をもとに、イオンドーピング法で脆化層を形成することで、歪み点が700℃以下のガラス基板を用いてSOI基板の作製を行うことができる。
またイオンドーピング法は、質量分離を行わずにイオンを電界で加速して半導体基板に打ち込むので、脆化層の形成におけるタクトタイムを短縮できるというメリットを有している。そのためイオンドーピング法は、複数の半導体基板に水素イオンの照射を行う場合、サイズの大きい半導体基板に水素イオンの照射を行う場合など、タクトタイムがかかりやすい場合に特に好ましい方法であると言える。
しかしイオンドーピング法は、タクトタイムを短縮するには有効な方法であるが、質量分離を行わないが故に、イオンドーピング装置の電極などの材料に含まれている金属元素等の不純物が、水素イオンと共に半導体基板に打ち込まれるおそれがある。そして上記不純物は、最終的に形成されるSOI基板に含まれることになるため、該SOI基板を用いて作製された半導体装置では、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下を招きやすい。また、イオンドーピング法を用いると、パーティクルも発生しやすく、パーティクルに起因するボンド基板(半導体基板)とベース基板の貼り合わせ不良も生じやすい。
本発明は上述した問題に鑑み、SOI基板に不純物が混入するのを防ぐことができる、半導体装置の作製方法の提案を課題とする。
上記問題を解決するために、本発明の半導体装置の作製方法の一つでは、水素ガス、ヘリウムガスおよびハロゲンガスから選ばれた1種または複数種のガスを含むソースガスを励起してイオンを生成し、該イオンをボンド基板(半導体基板)に添加することで、ボンド基板中に脆化層を形成する。そして、ボンド基板の表面近傍、すなわち、ボンド基板のうち、脆化層よりも浅い位置から表面までの領域を、エッチングまたは研磨などにより除去する。次に、ボンド基板とベース基板とを貼り合わせた後、該ボンド基板を脆化層において分離させることで、ベース基板上に半導体膜を形成する。
また上記問題を解決するために、本発明の半導体装置の作製方法の一つでは、ボンド基板上に絶縁膜を形成した後、水素ガス、ヘリウムガスおよびハロゲンガスから選ばれた1種または複数種のガスを含むソースガスを励起してイオンを生成し、該イオンを絶縁膜を介してボンド基板(半導体基板)に添加することで、ボンド基板中に脆化層を形成する。そして、絶縁膜の表面近傍の領域を、エッチングまたは研磨などにより除去する。次に、エッチング後の絶縁膜を間に挟んでボンド基板とベース基板とを貼り合わせた後、該ボンド基板を脆化層において分離させることで、ベース基板上に半導体膜を形成する。
さらに本発明の一つでは、上記半導体膜をベース基板上に形成した後、該半導体膜を用いて半導体素子を形成する。
本発明では、脆化層の形成後に、絶縁膜の表面近傍における不純物の汚染やパーティクルの付着が著しい領域を、エッチングまたは研磨などにより除去する。そのため、ベース基板上の半導体膜に混入する不純物の量を抑えることができる。また、半導体膜が形成されたベース基板を用いて最終的に形成される半導体装置では、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
また本発明では、脆化層の形成後に、ボンド基板の表面近傍における不純物の汚染が著しい領域を、エッチングまたは研磨などにより除去する。そのため、ベース基板上の半導体膜に混入する不純物の量を抑えることができる。また、半導体膜が形成されたベース基板を用いて最終的に形成される半導体装置では、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。また、異なる図面間で同じ参照符号が付されている要素は同じ要素を表しており、材料、形状、作製方法などについて繰り返しになる説明は省略している。
(実施の形態1)
本実施の形態では、本発明の半導体装置の作製方法の一つについて説明する。
まず図1(A)に示すように、ボンド基板100を洗浄した後、ボンド基板100上に絶縁膜101を形成する。ボンド基板100として、シリコン、ゲルマニウムなどの単結晶半導体基板または多結晶半導体基板を用いることができる。その他に、ガリウムヒ素、インジウムリンなどの化合物半導体で形成された単結晶半導体基板または多結晶半導体基板を、ボンド基板100として用いることができる。またボンド基板100として、結晶格子に歪みを有するシリコン、シリコンに対しゲルマニウムが添加されたシリコンゲルマニウムなどの半導体基板を用いていても良い。歪みを有するシリコンは、シリコンよりも格子定数の大きいシリコンゲルマニウムまたは窒化珪素上における成膜により、形成することができる。
また、ボンド基板100は、所望の大きさ、形状に加工されていても良い。後にボンド基板100を貼り合わせるベース基板105の形状が一般的に矩形状であること、および縮小投影型露光装置などの露光装置の露光領域が矩形であること等を考慮すると、ボンド基板100の形状は矩形であることが好ましい。なお、特段の断りが無い限り、矩形には正方形が含まれることとする。例えば、矩形状のボンド基板100の長辺の長さは、縮小投影型露光装置の1ショットの露光領域の一辺のn倍(nは任意の正の整数で、n≧1)を満たすように加工することが好ましい。
矩形のボンド基板100は、市販の円形状のバルク単結晶半導体基板を切断することで形成することができる。基板の切断には、ダイサー或いはワイヤソー等の切断装置、レーザ切断装置、プラズマ切断装置、電子ビーム切断装置、その他任意の切断装置を用いることができる。また、基板として薄片化する前の半導体基板製造用のインゴットを、その断面が矩形になるように直方体状に加工し、この直方体状のインゴットを薄片化することでも、矩形状のボンド基板100を製造することができる。
絶縁膜101は、単数の絶縁膜を用いたものであっても、複数の絶縁膜を積層して用いたものであっても良い。例えば本実施の形態では、酸化珪素を絶縁膜101として用いる。絶縁膜101の厚さは、後に不純物が含まれる領域が除去されることを考慮して、15nm以上500nm以下とすると良い。絶縁膜101を構成する膜には、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜、酸化ゲルマニウム膜、窒化ゲルマニウム膜、酸化窒化ゲルマニウム膜、窒化酸化ゲルマニウム膜などの珪素またはゲルマニウムを組成に含む絶縁膜を用いることができる。また、酸化アルミニウム、酸化タンタル、酸化ハフニウムなどの金属の酸化物でなる絶縁膜、窒化アルミニウムなどの金属の窒化物でなる絶縁膜、酸化窒化アルミニウム膜などの金属の酸化窒化物でなる絶縁膜、窒化酸化アルミニウム膜などの金属の窒化酸化物でなる絶縁膜を用いることもできる。
なお、本明細書において、酸化窒化物とは、その組成として、窒素原子よりも酸素原子の数が多い物質とし、また、窒化酸化物とは、その組成として、酸素原子より窒素原子の数が多い物質とする。例えば、ここで酸化窒化珪素膜とは、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、Siが25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化珪素膜とは、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、Siが25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。但し、酸化窒化珪素または窒化酸化珪素を構成する原子の合計を100原子%としたとき、窒素、酸素、Si及び水素の含有比率が上記の範囲内に含まれるものとする。
ベース基板105にアルカリ金属若しくはアルカリ土類金属などの半導体装置の信頼性を低下させる不純物を含むような基板を用いる場合、上記不純物がベース基板105からSOI基板の半導体膜に拡散することを防止できるような膜を、少なくとも1層以上、絶縁膜101が有することが好ましい。このような膜には、窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜などがある。このような膜を絶縁膜101が有することで、絶縁膜101をバリア膜として機能させることができる。
例えば、絶縁膜101を単層構造のバリア膜として形成する場合、厚さ15nm以上300nm以下の窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜で形成することができる。
絶縁膜101を、バリア膜として機能する2層構造の膜とする場合は、上層は、バリア機能の高い絶縁膜で構成する。上層の絶縁膜は、例えば厚さ15nm〜300nmの窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜で形成することができる。これらの膜は、不純物の拡散を防止するブロッキング効果が高いが、内部応力が高い。そのため、ボンド基板100と接する下層の絶縁膜には、上層の絶縁膜の応力を緩和する効果のある膜を選択することが好ましい。上層の絶縁膜の応力を緩和する効果のある絶縁膜として、酸化珪素膜、およびボンド基板100を熱酸化して形成した熱酸化膜などがある。下層の絶縁膜の厚さは5nm以上200nm以下とすることができる。
例えば、絶縁膜101をブロッキング膜として機能させるために、酸化珪素膜と窒化珪素膜、酸化窒化珪素膜と窒化珪素膜、酸化珪素膜と窒化酸化珪素膜、酸化窒化珪素膜と窒化酸化珪素膜などの組み合わせで絶縁膜101を形成すると良い。
酸化珪素を絶縁膜101として用いる場合、絶縁膜101はシランと酸素、TEOS(テトラエトキシシラン)と酸素等の混合ガスを用い、熱CVD、プラズマCVD、常圧CVD、バイアスECRCVD等の気相成長法によって形成することができる。この場合、絶縁膜101の表面を酸素プラズマ処理で緻密化しても良い。また、窒化珪素を絶縁膜101として用いる場合、シランとアンモニアの混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。また、窒化酸化珪素を絶縁膜101として用いる場合、シランとアンモニアの混合ガス、またはシランと酸化窒素の混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。
また、有機シランガスを用いて化学気相成長法により作製される酸化珪素を、絶縁膜101として用いても良い。有機シランガスとしては、テトラエトキシシラン(TEOS:化学式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、トリスジメチルアミノシラン(SiH(N(CH)等のシリコン含有化合物を用いることができる。
また、ボンド基板100を酸化することで得られる酸化膜で、絶縁膜101を形成することもできる。上記酸化膜を形成するための、熱酸化処理には、ドライ酸化でも良いが、酸化雰囲気中にハロゲンを含むガスを添加しても良い。ハロゲンを含むガスとして、HCl、HF、NF、HBr、Cl、ClF、BCl、F、Brなどから選ばれた一種又は複数種ガスを用いることができる。
例えば、酸素に対しHClを0.5〜10体積%(好ましくは3体積%)の割合で含む雰囲気中で、700℃以上の温度で熱処理を行う。950℃以上1100℃以下の加熱温度で熱酸化を行うとよい。処理時間は0.1〜6時間、好ましくは0.5〜1時間とすればよい。形成される酸化膜の膜厚は、15nm〜1100nm(好ましくは60nm〜300nm)、例えば150nmとすることができる。
このような温度範囲で酸化処理を行うことで、ハロゲン元素によるゲッタリング効果を得ることができる。ゲッタリングとしては、特に、金属不純物を除去する効果がある。すなわち、塩素の作用により、金属などの不純物が揮発性の塩化物となって気相中へ離脱して、ボンド基板100から除去される。また、酸化処理に含まれるハロゲン元素により、ボンド基板100の表面の欠陥が終端化されるため、酸化膜とボンド基板100との界面の局在準位密度が低減できる。
このハロゲンを含む雰囲気での熱酸化処理により、酸化膜にハロゲンを含ませることができる。ハロゲン元素を1×1017atoms/cm〜5×1020atoms/cmの濃度で酸化膜に含ませることにより、金属などの不純物を酸化膜が捕獲するので、後に形成される半導体膜の汚染を防止することができる。
次に図1(B)に示すように、ボンド基板100に、電界で加速されたイオンでなるイオンビームを、矢印で示すように絶縁膜101を介してボンド基板100に添加し、ボンド基板100の表面から一定の深さの領域に、微小ボイドを有する脆化層102を形成する。脆化層102が形成される領域の深さは、イオンビームの加速エネルギーとイオンビームの入射角によって調節することができる。加速エネルギーは加速電圧、ドーズ量などにより調節できる。イオンの平均侵入深さとほぼ同じ深さの領域に脆化層102が形成される。イオンを添加する深さで、後にボンド基板100から分離される半導体膜106の厚さが決定される。脆化層102が形成される深さは、例えばボンド基板100の表面から50nm以上500nm以下とすることができ、好ましい深さの範囲は50nm以上200nm以下とすると良い。
イオンをボンド基板100に添加するには、質量分離を伴わないイオンドーピング法で行うことがタクトタイムを短縮するという点で望ましいが、本発明は質量分離を伴うイオン注入法を用いていても良い。
ソースガスに水素(H)を用いる場合、水素ガスを励起してH、H 、H を生成することができる。ソースガスから生成されるイオン種の割合は、プラズマの励起方法、プラズマを発生させる雰囲気の圧力、ソースガスの供給量などを調節することで、変化させることができる。イオンドーピング法でイオン照射を行う場合、イオンビームに、H、H 、H の総量に対してH が70%以上含まれるようにすることが好ましく、H の割合は80%以上がより好ましい。H の割合を70%以上とすることで、イオンビームに含まれるH イオンの割合が相対的に小さくなるため、イオンビームに含まれる水素イオンの平均侵入深さのばらつきが小さくなるので、イオンの添加効率が向上し、タクトタイムを短縮することができる。
また、H はH、H に比べて質量が大きい。そのため、イオンビームにおいて、H の割合が多い場合と、H、H の割合が多い場合とでは、ドーピングの際の加速電圧が同じであっても、前者の場合の方が、ボンド基板100の浅い領域に水素を添加することができる。また前者の場合、ボンド基板100に添加される水素の、厚さ方向における濃度分布が急峻となるため、脆化層102の厚さ自体も薄くすることができる。
水素ガスを用いて、イオンドーピング法でイオン照射を行う場合、加速電圧10kV以上200kV以下、ドーズ量1×1016ions/cm以上6×1016ions/cm以下とすることで、イオンビームに含まれるイオン種及びその割合、絶縁膜101の膜厚にもよるが、脆化層102をボンド基板100の深さ50nm以上500nm以下の領域に形成することができる。
例えば、ボンド基板100が単結晶シリコン基板であり、絶縁膜101が厚さ50nmの酸化窒化珪素膜と厚さ50nmの窒化酸化珪素膜で形成されている場合、ソースガスが水素であり、加速電圧40kV、ドーズ量2.2×1016ions/cmの条件では、ボンド基板100から厚さ120nm程度の半導体膜を分離することができる。また、絶縁膜101を100nmの酸化窒化珪素膜と厚さ50nmの窒化酸化珪素膜で形成されている場合、ソースガスが水素であり、加速電圧40kV、ドーズ量2.2×1016ions/cmの条件では、ボンド基板100から厚さ70nm程度の半導体膜を分離することができる。よって、絶縁膜101の膜厚をより厚くすることで、後に形成される半導体膜106の膜厚をより薄くすることができる。
イオンビームのソースガスにヘリウム(He)を用いることもできる。ヘリウムを励起して生成されるイオン種がHeが殆どであるため、質量分離を伴わないイオンドーピング法でも、Heを主たるイオンとしてボンド基板100に添加することができる。よって、イオンドーピング法で、効率良く、微小な空孔を脆化層102に形成することができる。ヘリウムを用いて、イオンドーピング法でイオン照射を行う場合、加速電圧10kV以上200kV以下、ドーズ量1×1016ions/cm以上6×1016ions/cm以下とすることができる。
ソースガスに塩素ガス(Clガス)、フッ素ガス(Fガス)などのハロゲンガスを用いることもできる。
なお、イオンドーピング法でボンド基板100にイオン照射を行う場合、イオンドーピング装置内に存在する不純物がイオンと共に被処理物に添加されるため、絶縁膜101の表面近傍に該不純物が存在する可能性がある。また、イオンドーピング法を用いると、パーティクルも発生しやすく、パーティクルに起因するボンド基板100とベース基板の貼り合わせ不良も生じやすい。
イオンドーピング法を用い、水素の流量を50sccm、加速電圧20kV、ドーズ量1.5×1016ions/cmでシリコンウェハに水素イオンを添加したサンプルを用いて、全反射蛍光X線分析(Total Reflection X−Ray Fluorescence Analysis(TXRF))を行ったところ、P、S、Cl、Ca、Mn、Fe、Mo等の元素がシリコンウェハの表面に存在していることが実験により分かった。
よって本実施の形態では、絶縁膜101の表面近傍の最も不純物やパーティクルが多い領域を除去する。具体的には、絶縁膜101の表面から0.5nm〜50nm、より望ましくは1nm〜5nm、若しくは絶縁膜101の膜厚の0.5%〜50%、より望ましくは1%〜5%程度の深さまでの領域を除去すれば良い。絶縁膜101の表面近傍の除去は、ドライエッチングまたはウェットエッチング等のエッチングや、研磨などを用いて行うことができる。
ドライエッチングだと、反応性イオンエッチング(RIE:Reactive Ion Etching)法、ICP(Inductively Coupled Plasma)エッチング法、ECR(Electron Cyclotron Resonance)エッチング法、平行平板型(容量結合型)エッチング法、マグネトロンプラズマエッチング法、2周波プラズマエッチング法またはヘリコン波プラズマエッチング法などを用いることができる。例えば、窒化酸化珪素膜の表面近傍をICPエッチング法で除去する場合、エッチングガスであるCHFの流量を7.5sccm、Heの流量を100sccm、反応圧力5.5Pa、下部電極の温度70℃、コイル型の電極に投入するRF(13.56MHz)電力475W、下部電極(バイアス側)に投入する電力300W、エッチング時間10sec程度とすることで、表面から50nm程度の深さまでの領域を除去することができる。
エッチングガスとして、フッ素系ガスであるCHFの他に、Cl、BCl、SiCl、CClなどの塩素系ガス、CF、SF、NFなどのフッ素系ガス、Oを適宜用いることができる。また用いるエッチングガスにHe以外の不活性気体を添加しても良い。例えば、添加する不活性元素として、Ne、Ar、Kr、Xeから選ばれた一種または複数種の元素を用いることができる。
また窒化酸化珪素膜や酸化珪素膜の表面近傍をウェットエッチングで除去する場合、フッ化水素アンモニウム、フッ化アンモニウム等を含むフッ酸系の溶液を、エッチャントとして用いれば良い。また、希フッ酸を用いても良いし、希フッ酸とオゾン添加水を交互に吐出して処理しても良い。また、ウェットエッチングの後に純水や、水素添加水または炭酸添加水などの機能水でリンスしても良い。
また研磨は、化学的機械的研磨(CMP:Chemical Mechanical Polishing)または液体ジェット研磨などにより、行うことができる。
絶縁膜101の表面近傍の除去により、図1(C)に示すように、絶縁膜101よりも膜厚の薄い絶縁膜103が形成される。
なお、本実施の形態では、絶縁膜101の表面近傍を除去する例について説明したが、絶縁膜101全体を完全に除去し、新たに絶縁膜を形成し直すようにしても良い。
次に図1(D)に示すように、絶縁膜103上に絶縁膜104を形成する。絶縁膜104の形成は、脆化層102に添加した元素または分子が析出しない程度の温度、言い換えると、脆化層102からガスが抜けない程度の温度が、ボンド基板100に加わるように行う。具体的には上記温度は、350℃以下程度が好ましい。
絶縁膜104は、平滑で親水性の接合面をボンド基板100の表面に形成するための膜である。そのため、絶縁膜104の平均粗さRaが0.7nm以下、より好ましくは、0.4nm以下が好ましく、さらに好ましくは、0.2nm以下が好ましい。また、絶縁膜104の好ましい厚さは5nm以上500nm以下であり、より好ましくは10nm以上200nm以下である。
絶縁膜104には、化学的気相反応により形成される絶縁膜が好ましく、酸化珪素膜が好ましい。絶縁膜104として、プラズマ励起CVD法で酸化珪素膜を形成する場合には、ソースガスに有機シランガスおよび酸素(O)ガスを用いることが好ましい。ソースガスに有機シランを用いることで、プロセス温度が350℃以下で、平滑な表面を有する酸化珪素膜を形成することができる。また、熱CVD法で、加熱温度が500℃以下200℃以上で形成されるLTO(低温酸化物、low temperature oxide)で形成することができる。LTOの形成には、シリコンソースガスにモノシラン(SiH)またはジシラン(Si)などを用い、酸素ソースガスに一酸化二窒素(NO)などを用いることができる。
例えば、ソースガスにTEOSとOを用いて、酸化珪素膜でなる絶縁膜104を形成する場合、TEOSの流量15sccm、Oの流量750sccm、成膜圧力100Pa、成膜温度300℃、RF出力300W、電源周波数13.56MHzとすれば良い。
なお、有機シランを用いて形成された酸化珪素膜、または低温で成膜した窒化酸化珪素膜などの、比較的低温で成膜された絶縁膜は、表面にOH基を多く有する。OH基は水分子と水素結合することでシラノール基を形成して、ベース基板と絶縁膜とを低温で接合する。そして、最終的には共有結合であるシロキサン結合が、ベース基板と絶縁膜との間に形成される。よって、上記の有機シランを用いて形成された酸化珪素膜、または比較的低温で成膜されたLTOなどの絶縁膜は、Smart Cutなどで用いられているOH基が存在しない或いは飛躍的に少ない熱酸化膜よりも、低温での接合に向いていると言える。
次に、絶縁膜103および絶縁膜104が形成されたボンド基板100を洗浄する。この洗浄工程は、純水による超音波洗浄や純水と窒素による2流体ジェット洗浄で行うことができる。超音波洗浄はメガヘルツ超音波洗浄(メガソニック洗浄)が好ましい。超音波洗浄や2流体ジェット洗浄の後、ボンド基板100をオゾン水で洗浄してもよい。オゾン水で洗浄することで、有機物の除去と、絶縁膜104表面の親水性を向上させる表面の活性化処理を行うことができる。
絶縁膜104の表面の活性化処理には、オゾン水による洗浄の他原子ビーム若しくはイオンビームの照射処理、プラズマ処理、若しくはラジカル処理で行うことができる。原子ビーム若しくはイオンビームを利用する場合には、アルゴン等の不活性ガス中性原子ビーム若しくは不活性ガスイオンビームを用いることができる。
なお本実施の形態では、脆化層102を形成した後に絶縁膜104を形成しているが、絶縁膜104は必ずしも形成する必要はない。ただし絶縁膜104は脆化層102を形成した後に形成されるので、脆化層102を形成する前に形成される絶縁膜101よりも、その表面の平坦性は高い。よって、絶縁膜104を形成することで、後に行われる接合の強度をより高めることができる。
次に図2(A)に示すように、絶縁膜104がベース基板105側を向くように、ボンド基板100とベース基板105を貼り合わせる。貼り合わせを行う前に、ベース基板105の表面を洗浄する。ベース基板105の表面の洗浄は、塩酸と過酸化水素水を用いた洗浄や、メガヘルツ超音波洗浄や、2流体ジェット洗浄や、オゾン水による洗浄で行うことができる。
貼り合わせは、ベース基板105の端の一箇所に5kPa〜5MPa程度の圧力を加える。ベース基板105の圧力をかけた部分から絶縁膜104とベース基板105とが接合し始め、1枚のベース基板105とボンド基板100とが貼り合わされる。
接合はファン・デル・ワールス力を用いて行われているため、室温でも強固な接合が形成される。ボンド基板100とベース基板105とに圧力を加えることで水素結合により強固な接合を形成することが可能である。なお、上記接合は低温で行うことが可能であるため、ベース基板105は様々なものを用いることが可能である。例えばベース基板105としては、アルミノシリケートガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどの電子工業用に使われる各種ガラス基板の他、石英基板、セラミック基板、サファイア基板などの基板を用いることが出来る。さらにベース基板105として、シリコン、ガリウムヒ素、インジウムリンなどの半導体基板などを用いることができる。或いは、ステンレス基板を含む金属基板をベース基板105として用いても良い。なお、ベース基板105として用いるガラス基板は、熱膨張係数が25×10−7/℃以上50×10−7/℃以下(好ましくは、30×10−7/℃以上40×10−7/℃以下)であり、歪み点が580℃以上680℃以下(好ましくは、600℃以上680℃以下)である基板を用いることが好ましい。また、ガラス基板として無アルカリガラス基板を用いると、不純物による半導体装置の汚染を抑えることができる。
ガラス基板としては、液晶パネルの製造用に開発されたマザーガラス基板を用いることが好ましい。マザーガラスとしては、例えば、第3世代(550mm×650mm)、第3.5世代(600mm×720mm)、第4世代(680mm×880mmまたは、730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)などのサイズの基板が知られている。大面積のマザーガラス基板をベース基板105として用いてSOI基板を製造することで、SOI基板の大面積化が実現できる。SOI基板の大面積化が実現すれば、一度に多数のIC、LSI等のチップを製造することができ、1枚の基板から製造されるチップ数が増加するので、生産性を飛躍的に向上させることができる。
EAGLE2000(コーニング社製)等のように、加熱処理を加えることで大きくシュリンクするようなガラス基板をベース基板105として用いる場合、接合工程後に貼り合わせの不良が生じる場合がある。よって、シュリンクに起因する貼り合わせの不良を回避するために、次に示す接合工程に移る前に、ベース基板105に予め加熱処理を施しておいても良い。
また、ベース基板105上に絶縁膜を形成しておいても良い。ベース基板105は、その表面に絶縁膜が必ずしも形成されていなくとも良いが、ベース基板105の表面に絶縁膜を形成しておくことで、ベース基板105からボンド基板100に、アルカリ金属やアルカリ土類金属などの不純物が入り込むのを防ぐことができる。またベース基板105の表面に絶縁膜を形成しておく場合、ベース基板105上の絶縁膜が絶縁膜104と接合するので、ベース基板105として用いることができる基板の種類がさらに広がる。プラスチック等の可撓性を有する合成樹脂からなる基板は耐熱温度が一般的に低い傾向にあるが、作製工程における処理温度に耐え得るのであれば、ベース基板105上に絶縁膜を形成する場合において、ベース基板105として用いることが可能である。プラスチック基板として、ポリエチレンテレフタレート(PET)に代表されるポリエステル、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリブチレンテレフタレート(PBT)、ポリイミド、アクリロニトリルブタジエンスチレン樹脂、ポリ塩化ビニル、ポリプロピレン、ポリ酢酸ビニル、アクリル樹脂などが挙げられる。ベース基板105上に絶縁膜を形成する場合、絶縁膜104と同様に、該絶縁膜の表面に活性化処理を行ってから貼り合わせを行うと良い。
なお、ベース基板と、複数のボンド基板100基板とを貼り合わせる場合、ボンド基板100の厚さの違いにより、絶縁膜104の表面がベース基板105と接触しないボンド基板100が生じる場合がある。そのため、圧力をかける場所は一箇所ではなく、各ボンド基板100に圧力をかけるようにすることが好ましい。また、絶縁膜104表面の高さが多少違っていても、ベース基板105のたわみにより絶縁膜104の一部分がベース基板105と密着すれば、絶縁膜104表面全体に接合が進行することが可能である。
ベース基板105にボンド基板100を貼り合わせた後、ベース基板105と絶縁膜104との接合界面での結合力を増加させるための加熱処理を行うことが好ましい。この処理温度は、脆化層102に亀裂を発生させない温度とし、200℃以上450℃以下の温度範囲で処理することができる。また、この温度範囲で加熱しながら、ベース基板105にボンド基板100を貼り合わせることで、ベース基板105と絶縁膜104と間における接合の結合力を強固にすることができる。
なお、ボンド基板100とベース基板105とを貼り合わせるときに、接合面にゴミなどにより汚染されてしまうと、汚染部分は接合されなくなる。接合面の汚染を防ぐために、ボンド基板100とベース基板105との貼り合わせは、気密な処理室内で行うことが好ましい。また、ボンド基板100とベース基板105との貼り合わせるとき、処理室内を5.0×10−3Pa程度の減圧状態とし、接合処理の雰囲気を清浄にするようにしても良い。
次いで図2(B)に示すように、加熱処理を行うことで、脆化層102において隣接する微小ボイドどうしが結合して、微小ボイドの体積が増大する。その結果、脆化層102においてボンド基板100が爆発的な反応を伴って分離し、ボンド基板100から半導体膜106が分離する。絶縁膜104はベース基板105に接合しているので、ベース基板105上にはボンド基板100から分離された半導体膜106が固定される。半導体膜106をボンド基板100から分離するための加熱処理の温度は、ベース基板105の歪み点を越えない温度とする。
この加熱処理には、RTA(Rapid Thermal Anneal)装置、抵抗加熱炉、マイクロ波加熱装置を用いることができる。RTA装置には、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置を用いることができる。
GRTA装置を用いる場合は、加熱温度550℃以上650℃以下、処理時間0.5分以上60分以内とすることができる。抵抗加熱装置を用いる場合は、加熱温度200℃以上650℃以下、処理時間2時間以上4時間以内とすることができる。
また、上記加熱処理は、マイクロ波などの高周波による誘電加熱を用いて行っても良い。誘電加熱による加熱処理は、高周波発生装置において生成された周波数300MHz乃至3THzの高周波をボンド基板100に照射することで行うことができる。具体的には、例えば、2.45GHzのマイクロ波を900W、14分間照射することで、脆化層において隣接する微小ボイドどうしを結合させ、最終的にボンド基板100を分離させることができる。
抵抗加熱を有する縦型炉を用いた加熱処理の具体的な処理方法を説明する。ボンド基板100が貼り付けられたベース基板105を、縦型炉のボートに載置し、該ボートを縦型炉のチャンバーに搬入する。ボンド基板100の酸化を抑制するため、まずチャンバー内を排気して真空状態とする。真空度は、5×10−3Pa程度とする。真空状態にした後、窒素をチャンバー内に供給して、チャンバー内を大気圧の窒素雰囲気にする。この間、加熱温度を200℃に上昇させる。
チャンバー内を大気圧の窒素雰囲気にした後、温度200℃で2時間加熱する。その後、1時間かけて400℃に温度上昇させる。加熱温度400℃の状態が安定したら、1時間かけて600℃に温度上昇させる。加熱温度600℃の状態が安定したら、600℃で2時間加熱処理する。その後、1時間かけて、加熱温度400℃まで下げ、10分〜30分間後に、チャンバー内からボートを搬出する。大気雰囲気下で、ボート上に並べられたボンド基板100、及び半導体膜106が貼り付けられたベース基板105を冷却する。
上記の抵抗加熱炉を用いた加熱処理は、絶縁膜104とベース基板105との結合力を強化するための加熱処理と、脆化層102を分割させる加熱処理が連続して行われる。この2つの加熱処理を異なる装置で行う場合は、例えば、抵抗加熱炉において、処理温度200℃、処理時間2時間の加熱処理を行った後、貼り合わされたベース基板105とボンド基板100を炉から搬出する。次いで、RTA装置で、処理温度600℃以上700℃以下、処理時間1分以上30分以下の加熱処理を行い、ボンド基板100を脆化層102で分離させる。
なお、ボンド基板100の周辺部は、ベース基板105と接合していないことがある。これは、ボンド基板100の周辺部が面取りされている、或いは周辺部が曲率を有しているため、ベース基板105と絶縁膜104とが密着しない、ボンド基板100の周辺部では脆化層102が分割しにくいなどの理由による。また、その他の理由として、ボンド基板100を作製する際に行われるCMPなどの研磨が、ボンド基板100の周辺部で不十分であり、中央部に比べて周辺部では表面が荒れていることが挙げられる。また、ボンド基板100を移送する際に、キャリア等でボンド基板100の周辺部に傷が入ってしまった場合、該傷も、周辺部がベース基板105に接合しにくい理由の一つとなる。そのため、ベース基板105には、ボンド基板100よりもサイズの小さい半導体膜106が貼り付けられる。
なお、ボンド基板100を分離させる前に、ボンド基板100に水素化処理を行うようにしても良い。水素化処理は、例えば、水素雰囲気中において350℃、2時間程度行う。
なお、ベース基板105と複数のボンド基板100とを貼り合わせる場合、該複数のボンド基板100が異なる結晶面方位を有していても良い。半導体中における多数キャリアの移動度は、結晶面方位によって異なる。よって、形成する半導体素子に適した結晶面方位を有するボンド基板100を、適宜選択して半導体膜106を形成すればよい。例えば半導体膜106を用いてn型の半導体素子を形成するならば、{100}面を有する半導体膜106を形成することで、該半導体素子における多数キャリアの移動度を高めることができる。また、例えば半導体膜106を用いてp型の半導体素子を形成するならば、{110}面を有する半導体膜106を形成することで、該半導体素子における多数キャリアの移動度を高めることができる。そして、半導体素子としてトランジスタを形成するならば、チャネルの向きと結晶面方位とを考慮し、半導体膜106の貼り合わせの方向を定めるようにする。
次に図2(C)に示すように、半導体膜106の表面を研磨により平坦化しても良い。平坦化は必ずしも必須ではないが、平坦化を行うことで、後に形成される半導体膜107及び半導体膜108とゲート絶縁膜の界面の特性を向上させることが出来る。具体的に研磨は、化学的機械的研磨(CMP:Chemical Mechanical Polishing)または液体ジェット研磨などにより、行うことができる。半導体膜106の厚さは、上記平坦化により薄膜化される。上記平坦化は、エッチングする前の半導体膜106に施しても良いが、後にエッチングにより形成される半導体膜107及び半導体膜108に施しても良い。
また研磨ではなく、半導体膜106の表面をエッチングすることでも、半導体膜106の表面を平坦化することができる。エッチングには、例えば反応性イオンエッチング(RIE:Reactive Ion Etching)法、ICP(Inductively Coupled Plasma)エッチング法、ECR(Electron Cyclotron Resonance)エッチング法、平行平板型(容量結合型)エッチング法、マグネトロンプラズマエッチング法、2周波プラズマエッチング法またはヘリコン波プラズマエッチング法等のドライエッチング法を用いれば良い。
例えばICPエッチング法を用いる場合、エッチングガスである塩素の流量40sccm〜100sccm、コイル型の電極に投入する電力100W〜200W、下部電極(バイアス側)に投入する電力40W〜100W、反応圧力0.5Pa〜1.0Paとすれば良い。本実施の形態では、エッチングガスである塩素の流量100sccm、反応圧力1.0Pa、下部電極の温度70℃、コイル型の電極に投入するRF(13.56MHz)電力150W、下部電極(バイアス側)に投入する電力40W、エッチング時間25sec〜27secとし、半導体膜106を50nm乃至60nm程度にまで薄膜化する。エッチングガスには、塩素、塩化硼素、塩化珪素または四塩化炭素などの塩素系ガス、四弗化炭素、弗化硫黄または弗化窒素などのフッ素系ガス、酸素などを適宜用いることができる。
上記エッチングにより、後に形成される半導体素子にとって最適となる膜厚まで半導体膜106を薄膜化できるのみならず、半導体膜106の表面を平坦化することができる。
なお、ベース基板105に密着された半導体膜106は、脆化層102の分離、および脆化層102の形成によって、結晶欠陥が形成されている。また、その表面は平坦性が損なわれている。結晶欠陥を低減、および平坦性を向上するために、半導体膜106にレーザ光を照射しても良い。
なお、レーザ光を照射する前に、ドライエッチングにより半導体膜106の表面を平坦化している場合、ドライエッチングにより半導体膜106の表面付近で結晶欠陥などの損傷が生じていることがある。しかし上記レーザ光の照射により、ドライエッチングにより生じる損傷をも補修することが可能である。
このレーザ光の照射工程では、ベース基板105の温度上昇が抑えられるため、ガラス基板のような耐熱性の低い基板をベース基板105に用いることが可能になる。レーザ光の照射によって半導体膜106は部分溶融させることが好ましい。完全溶融させると、液相となった半導体膜106での無秩序な核発生により、半導体膜106が再結晶化することとなり、半導体膜106の結晶性が低下するからである。部分溶融させることで、半導体膜106では、溶融されていない固相部分から結晶成長が進行する、いわゆる縦成長が起こる。縦成長による再結晶化によって、半導体膜106の結晶欠陥が減少され、結晶性が回復される。なお、半導体膜106が完全溶融状態であるとは、半導体膜106が絶縁膜104との界面まで溶融され、液体状態になっていることをいう。他方、半導体膜106が部分溶融状態であるとは、上層が溶融して液相であり、下層が固相である状態をいう。
レーザ光を発振するレーザ発振器は、その発振波長が、紫外光域乃至可視光域にあるものが選択される。レーザ光の波長は、半導体膜106に吸収される波長とする。その波長は、レーザ光の表皮深さ(skin depth)などを考慮して決定することができる。例えば、波長は250nm以上700nm以下の範囲とすることができる。
このレーザ発振器には、連続発振レーザ、疑似連続発振レーザ及びパルス発振レーザを用いることができる。部分溶融させるためパルス発振レーザが好ましい。例えば、パルス発振レーザの場合は、繰り返し周波数1MHz以下、パルス幅10n秒以上500n秒以下である。例えば、繰り返し周波数10Hz〜300Hz、パルス幅25n秒、波長308nmのXeClエキシマレーザを用いることができる。
また、レーザ光のエネルギーは、レーザ光の波長、レーザ光の表皮深さ、半導体膜106の膜厚などを考慮して決定することができる。レーザ光のエネルギーは、例えば、300mJ/cm以上800mJ/cm以下の範囲とすることができ例えば、半導体膜106の厚さが120nm程度であり、レーザ発振器にパルス発振レーザを用い、レーザ光の波長が308nmの場合は、レーザ光のエネルギー密度は600mJ/cm〜700mJ/cmとすることができる。
レーザ光の照射の雰囲気は、希ガスまたは窒素雰囲気のような不活性雰囲気、または真空状態で行うことが好ましい。不活性雰囲気中でレーザ光を照射するには、気密性のあるチャンバー内でレーザ光を照射し、このチャンバー内の雰囲気を制御すればよい。チャンバーを用いない場合は、レーザ光の被照射面に窒素ガスなど不活性ガスを吹き付けることで不活性雰囲気でのレーザ光の照射を実現することができる。
窒素などの不活性雰囲気や真空状態のほうが、大気雰囲気よりも半導体膜106の平坦性を向上させる効果が高く、また、これらの雰囲気のほうが大気雰囲気よりもクラックやリッジの発生を抑える効果が高くなるため、レーザ光の使用可能なエネルギー範囲が広くなる。
光学系により、レーザ光は、エネルギー分布を均一にし、かつ断面の形状を線状にすることが好ましい。このことにより、スループット良く、かつレーザ光の照射を均一に行うことができる。レーザ光のビーム長は、ベース基板105の1辺より長くすることで、1回の走査で、ベース基板105に貼り付けられた全ての半導体膜106にレーザ光を照射することができる。レーザ光のビーム長がベース基板105の1辺より短い場合は、複数回の走査で、ベース基板105に貼り付けられた全ての半導体膜106にレーザ光を照射することができるような、長さにすればよい。
なお、レーザ光を半導体膜106に照射する前に、半導体膜106の表面に形成されている自然酸化膜などの酸化膜を除去する処理を行う。酸化膜を除去するのは、半導体膜106表面に酸化膜が残存した状態で、レーザ光を照射しても、平坦化の効果が十分に得られないからである。酸化膜の除去処理は、フッ酸で半導体膜106を処理することで行うことができる。フッ酸による処理は、半導体膜106の表面が撥水性を示すまで行うことが望ましい。撥水性を示すことで、半導体膜106から酸化膜が除去されたことが確認できる。
例えばレーザ光の照射工程は、次のように行うことができる。まず、半導体膜106を1/100に希釈されたフッ酸で110秒間処理して、表面の酸化膜を除去する。レーザ光のレーザ発振器として、XeClエキシマレーザ(波長:308nm、パルス幅:25n秒、繰り返し周波数60Hz)を用いる。光学系により、レーザ光の断面を300mm×0.34mmの線状に整形する。レーザ光の走査速度を2.0mm/秒とし、スキャンピッチを33μm、ビームショット数を約10ショットで、レーザ光を半導体膜106に照射する。照射面に窒素ガスを吹き付けながら、レーザ光を走査する。ベース基板105が730mm×920mmの場合は、レーザ光のビーム長が300mmであるので、レーザ光の照射領域を3分割することで、ベース基板105に貼り付けられた全ての半導体膜106にレーザ光を照射することができる。
次にレーザ光を照射した後に、半導体膜106の表面をエッチングしても良い。レーザ光の照射後に半導体膜106の表面をエッチングする場合は、必ずしもレーザ光の照射を行う前に半導体膜106の表面をエッチングする必要はない。また、レーザ光の照射を行う前に半導体膜106の表面をエッチングした場合は、必ずしもレーザ光の照射後に半導体膜106の表面をエッチングする必要はない。また本発明では、レーザ光の照射前と照射後の両方のタイミングでエッチングを行っても良い。
上記エッチングにより、後に形成される半導体素子にとって最適となる膜厚まで半導体膜106を薄膜化できるのみならず、半導体膜106の表面を平坦化することができる。
レーザ光を照射した後、半導体膜106に500℃以上650℃以下の加熱処理を行うことが好ましい。この加熱処理によって、レーザ光の照射で回復されなかった、半導体膜106の欠陥の消滅、半導体膜106の歪みの緩和をすることができる。この加熱処理には、RTA(Rapid Thermal Anneal)装置、抵抗加熱炉、マイクロ波加熱装置を用いることができる。RTA装置には、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置を用いることができる。例えば、抵抗加熱炉を用いた場合は、500℃の温度で1時間加熱した後、550℃で4時間加熱するとよい。
次に、図3(A)に示すように、半導体膜106を部分的にエッチングすることで、半導体膜106から半導体膜107と半導体膜108を形成する。半導体膜106をさらにエッチングすることで、半導体膜106の端部において接合の強度が不十分である領域を、除去することができる。
なお、本実施の形態では、一つの半導体膜106をエッチングすることで半導体膜107と半導体膜108を形成しているが、形成される半導体膜の数はこれに限定されない。
上記工程を経て形成された半導体膜107と半導体膜108を用い、例えば図3(B)に示すようにトランジスタ109、トランジスタ110などの各種半導体素子を形成することが出来る。
本発明では、脆化層102の形成後に、絶縁膜101の表面近傍における汚染の著しい領域を、エッチングまたは研磨などにより除去する。そのため、ベース基板105上の半導体膜106に混入する不純物の量を抑えることができる。また、最終的に形成される半導体装置では、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
なお本発明は、マイクロプロセッサ、画像処理回路などの集積回路や、質問器とデータの送受信が非接触でできるRFタグ、半導体表示装置等、ありとあらゆる半導体装置の作製に用いることができる。半導体表示装置には、液晶表示装置、有機発光素子(OLED)に代表される発光素子を各画素に備えた発光装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)等や、半導体膜を用いた回路素子を駆動回路に有しているその他の半導体表示装置がその範疇に含まれる。
(実施の形態2)
本実施の形態では、実施の形態1とは異なり、絶縁膜103を形成する前に脆化層102を形成する場合の、本発明の半導体装置の作製方法の一つについて説明する。
まず図4(A)に示すように、ボンド基板100を洗浄した後、電界で加速されたイオンでなるイオンビームを、矢印で示すようにボンド基板100に照射し、ボンド基板100の表面から一定の深さの領域に、微小ボイドを有する脆化層102を形成する。脆化層102が形成される領域の深さは、イオンビームの加速エネルギーとイオンビームの入射角によって調節することができる。加速エネルギーは加速電圧、ドーズ量などにより調節できる。イオンの平均侵入深さとほぼ同じ深さの領域に脆化層102が形成される。イオンを添加する深さで、後にボンド基板100から分離される半導体膜106の厚さが決定される。脆化層102が形成される深さは、例えば50nm以上600nm以下とすることができ、好ましい深さの範囲は50nm以上300nm以下とすると良い。
イオンをボンド基板100に添加するには、質量分離を伴わないイオンドーピング法で行うことがタクトタイムを短縮するという点で望ましいが、本発明は質量分離を伴うイオン注入法を用いていても良い。
ソースガスに水素(H)を用いる場合、水素ガスを励起してH、H 、H を生成することができる。ソースガスから生成されるイオン種の割合は、プラズマの励起方法、プラズマを発生させる雰囲気の圧力、ソースガスの供給量などを調節することで、変化させることができる。イオンドーピング法でイオン照射を行う場合、イオンビームに、H、H 、H の総量に対してH が70%以上含まれるようにすることが好ましく、H の割合は80%以上がより好ましい。H の割合を70%以上とすることで、イオンビームに含まれるH イオンの割合が相対的に小さくなるため、イオンビームに含まれる水素イオンの平均侵入深さのばらつきが小さくなるので、イオンの添加効率が向上し、タクトタイムを短縮することができる。
また、H はH、H に比べて質量が大きい。そのため、イオンビームにおいて、H の割合が多い場合と、H、H の割合が多い場合とでは、ドーピングの際の加速電圧が同じであっても、前者の場合の方が、ボンド基板100の浅い領域に水素を添加することができる。また前者の場合、ボンド基板100に添加される水素の、厚さ方向における濃度分布が急峻となるため、脆化層102の厚さ自体も薄くすることができる。
水素ガスを用いて、イオンドーピング法でイオン照射を行う場合、加速電圧5kV以上200kV以下、ドーズ量1×1016ions/cm以上6×1016ions/cm以下とすることで、イオンビームに含まれるイオン種及びその割合にもよるが、脆化層102をボンド基板100の深さ50nm以上600nm以下の領域に形成することができる。
例えば、ボンド基板100が単結晶シリコン基板である場合、ソースガスが水素であり、加速電圧40kV、ドーズ量2.2×1016ions/cmの条件では、ボンド基板100から厚さ220nm程度の半導体膜を分離することができる。また、ソースガスが水素であり、加速電圧40kV、ドーズ量2.2×1016ions/cmの条件では、ボンド基板100から厚さ120nm程度の半導体膜を分離することができる。
イオンビームのソースガスにヘリウム(He)を用いることもできる。ヘリウムを励起して生成されるイオン種がHeが殆どであるため、質量分離を伴わないイオンドーピング法でも、Heを主たるイオンとしてボンド基板100に添加することができる。よって、イオンドーピング法で、効率良く、微小な空孔を脆化層102に形成することができる。ヘリウムを用いて、イオンドーピング法でイオン照射を行う場合、加速電圧5kV以上200kV以下、ドーズ量1×1016ions/cm以上6×1016ions/cm以下とすることができる。
ソースガスに塩素ガス(Clガス)、フッ素ガス(Fガス)などのハロゲンガスを用いることもできる。
なお、イオンドーピング法でボンド基板100にイオン照射を行う場合、イオンドーピング装置内に存在する不純物がイオンと共に被処理物に添加されるため、ボンド基板100の表面近傍に該不純物が存在する可能性がある。また、イオンドーピング法を用いると、パーティクルも発生しやすく、パーティクルに起因するボンド基板100とベース基板の貼り合わせ不良も生じやすい。
よって本実施の形態では、ボンド基板100の表面近傍の最も不純物やパーティクルが多い領域であって、脆化層102よりも浅い領域を部分的に除去する。具体的には、脆化層102が形成されている深さにもよるが、ボンド基板100の表面から0.5nm〜50nm、より望ましくは1〜5nm程度の深さまでの領域を除去すれば良い。ただし、ボンド基板を除去する領域は、脆化層102より深くならないようにする。ボンド基板100の表面近傍の除去は、ドライエッチングまたはウェットエッチング等のエッチングや、研磨などを用いて行うことができる。
ドライエッチングだと、反応性イオンエッチング(RIE:Reactive Ion Etching)法、ICP(Inductively Coupled Plasma)エッチング法、ECR(Electron Cyclotron Resonance)エッチング法、平行平板型(容量結合型)エッチング法、マグネトロンプラズマエッチング法、2周波プラズマエッチング法またはヘリコン波プラズマエッチング法などを用いることができる。例えば、単結晶シリコン基板を用いたボンド基板100の表面近傍をICPエッチング法で除去する場合、エッチングガスであるClの流量を100sccm、反応圧力1.0Pa、下部電極の温度70℃、コイル型の電極に投入するRF(13.56MHz)電力150W、下部電極(バイアス側)に投入する電力40W、エッチング時間30sec程度とすることで、表面から40nm程度の深さまでの領域を除去することができる。
エッチングガスとして、Clの他にBCl、SiCl、CClなどの塩素系ガス、CF、CHF、SF、NFなどのフッ素系ガス、Oを適宜用いることができる。また用いるエッチングガスにHe以外の不活性気体を添加しても良い。例えば、添加する不活性元素として、Ne、Ar、Kr、Xeから選ばれた一種または複数種の元素を用いることができる。
また単結晶シリコン基板を用いたボンド基板100の表面近傍をウェットエッチングで除去する場合、エッチャントとしては、水酸化テトラメチルアンモニウム(TMAH:tetramethylammonium hydroxide)溶液に代表される有機アルカリ系水溶液などを用いることができる。水酸化テトラメチルアンモニウム溶液を用いてボンド基板100の表面近傍をウェットエッチングする場合、水酸化テトラメチルアンモニウムが2.38%の濃度になるように水酸化テトラメチルアンモニウム溶液を調整し、50℃、エッチング時間30sec程度とすることで、表面から50nm程度の深さまでの領域を除去することができる。
また研磨は、化学的機械的研磨(CMP:Chemical Mechanical Polishing)または液体ジェット研磨などにより、行うことができる。
ボンド基板100の表面近傍の除去により、図4(B)に示すように、ボンド基板100において脆化層102の形成されている深さが、浅くなる。
次に図4(C)に示すように、ボンド基板100の上記エッチングにより露出した面上に、絶縁膜103を形成する。絶縁膜103は、単数の絶縁膜を用いたものであっても、複数の絶縁膜を積層して用いたものであっても良い。例えば本実施の形態では、酸化珪素を絶縁膜103として用いる。絶縁膜103の厚さは、5nm以上400nm以下とすると良い。絶縁膜103を構成する膜には、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜、酸化ゲルマニウム、窒化ゲルマニウム膜、酸化窒化ゲルマニウム膜、窒化酸化ゲルマニウム膜などの珪素またはゲルマニウムを組成に含む絶縁膜を用いることができる。また、酸化アルミニウム、酸化タンタル、酸化ハフニウムなどの金属の酸化物でなる絶縁膜、窒化アルミニウムなどの金属の窒化物でなる絶縁膜、酸化窒化アルミニウム膜などの金属の酸化窒化物でなる絶縁膜、窒化酸化アルミニウム膜などの金属の窒化酸化物でなる絶縁膜を用いることもできる。
ベース基板105にアルカリ金属若しくはアルカリ土類金属などの半導体装置の信頼性を低下させる不純物を含むような基板を用いる場合、上記不純物がベース基板105からSOI基板の半導体膜に拡散することを防止できるような膜を、少なくとも1層以上、絶縁膜103が有することが好ましい。このような膜には、窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜などがある。このような膜を絶縁膜103が有することで、絶縁膜103をバリア膜として機能させることができる。
例えば、絶縁膜103を単層構造のバリア膜として形成する場合、厚さ5nm以上200nm以下の窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜で形成することができる。
絶縁膜103を、バリア膜として機能する2層構造の膜とする場合は、上層は、バリア機能の高い絶縁膜で構成する。上層の絶縁膜は、例えば厚さ5nm〜200nmの窒化珪素膜、窒化酸化珪素膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜で形成することができる。これらの膜は、不純物の拡散を防止するブロッキング効果が高いが、内部応力が高い。そのため、ボンド基板100と接する下層の絶縁膜には、上層の絶縁膜の応力を緩和する効果のある膜を選択することが好ましい。上層の絶縁膜の応力を緩和する効果のある絶縁膜として、酸化珪素膜、およびボンド基板100を熱酸化して形成した熱酸化膜などがある。下層の絶縁膜の厚さは5nm以上200nm以下とすることができる。
例えば、絶縁膜103をブロッキング膜として機能させるために、酸化珪素膜と窒化珪素膜、酸化窒化珪素膜と窒化珪素膜、酸化珪素膜と窒化酸化珪素膜、酸化窒化珪素膜と窒化酸化珪素膜などの組み合わせで絶縁膜103を形成すると良い。
酸化珪素を絶縁膜103として用いる場合、絶縁膜103はシランと酸素、TEOS(テトラエトキシシラン)と酸素等の混合ガスを用い、熱CVD、プラズマCVD、常圧CVD、バイアスECRCVD等の気相成長法によって形成することができる。この場合、絶縁膜103の表面を酸素プラズマ処理で緻密化しても良い。また、窒化珪素を絶縁膜103として用いる場合、シランとアンモニアの混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。また、窒化酸化珪素を絶縁膜103として用いる場合、シランとアンモニアの混合ガス、またはシランと酸化窒素の混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。
また、有機シランガスを用いて化学気相成長法により作製される酸化珪素を、絶縁膜103として用いても良い。有機シランガスとしては、テトラエトキシシラン(TEOS:化学式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、トリスジメチルアミノシラン(SiH(N(CH)等のシリコン含有化合物を用いることができる。
また、ボンド基板100を酸化することで得られる酸化膜で、絶縁膜103を形成することもできる。上記酸化膜を形成するための、熱酸化処理には、ドライ酸化でも良いが、酸化雰囲気中にハロゲンを含むガスを添加しても良い。ハロゲンを含むガスとして、HCl、HF、NF、HBr、Cl、ClF、BCl、F、Brなどから選ばれた一種又は複数種ガスを用いることができる。
例えば、酸素に対しHClを0.5〜10体積%(好ましくは3体積%)の割合で含む雰囲気中で、700℃以上の温度で熱処理を行う。950℃以上1100℃以下の加熱温度で熱酸化を行うとよい。処理時間は0.1〜6時間、好ましくは0.5〜1時間とすればよい。形成される酸化膜の膜厚は、10nm〜1000nm(好ましくは50nm〜200nm)、例えば100nmとすることができる。
このような温度範囲で酸化処理を行うことで、ハロゲン元素によるゲッタリング効果を得ることができる。ゲッタリングとしては、特に、金属不純物を除去する効果がある。すなわち、塩素の作用により、金属などの不純物が揮発性の塩化物となって気相中へ離脱して、ボンド基板100から除去される。また、酸化処理に含まれるハロゲン元素により、ボンド基板100の表面の欠陥が終端化されるため、酸化膜とボンド基板100との界面の局在準位密度が低減できる。
このハロゲンを含む雰囲気での熱酸化処理により、酸化膜にハロゲンを含ませることができる。ハロゲン元素を1×1017atoms/cm〜5×1020atoms/cmの濃度で酸化膜に含ませることにより、金属などの不純物を酸化膜が捕獲するので、後に形成される半導体膜の汚染を防止することができる。
次に図4(D)に示すように、絶縁膜103上に絶縁膜104を形成する。絶縁膜104の形成以降は、実施の形態1を参照することで、半導体装置を作製することができる。
本発明では、脆化層102の形成後に、ボンド基板100の表面近傍における汚染の著しい領域を、エッチングまたは研磨などにより除去する。そのため、後に形成されるベース基板上の半導体膜に混入する不純物の量を抑えることができる。また、最終的に形成される半導体装置では、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
(実施の形態3)
本実施の形態では、半導体膜が貼り付けられたベース基板、所謂SOI基板を用いた半導体装置の作製方法の一例として、半導体素子の一つである薄膜トランジスタを作製する方法を説明する。複数の薄膜トランジスタを組み合わせることで、各種の半導体装置が形成される。
まず図5(A)に示すように、ベース基板105上の半導体膜106をエッチングにより所望の形状に加工(パターニング)することで、半導体膜603と半導体膜604とを形成する。
半導体膜603と半導体膜604には、閾値電圧を制御するために、硼素、アルミニウム、ガリウムなどのp型不純物、若しくはリン、砒素などのn型不純物が添加されていても良い。例えば、p型を付与する不純物としてボロンを添加する場合、5×1016atoms/cm以上1×1017atoms/cm以下の濃度で添加すれば良い。閾値電圧を制御するための不純物の添加は、半導体膜106に対して行っても良いし、半導体膜603と半導体膜604に対して行っても良い。また、閾値電圧を制御するための不純物の添加を、ボンド基板100に対して行っても良い。若しくは、不純物の添加を、閾値電圧を大まかに調整するためにボンド基板100に対して行った上で、閾値電圧を微調整するために、半導体膜106に対して、または半導体膜603及び半導体膜604に対しても行うようにしても良い。
また半導体膜603と半導体膜604を形成した後、ゲート絶縁膜606を形成する前に水素化処理を行っても良い。水素化処理は、例えば、水素雰囲気中において350℃、2時間程度行う。
次に図5(B)に示すように、半導体膜603と半導体膜604を覆うように、ゲート絶縁膜606を形成する。ゲート絶縁膜606は、高密度プラズマ処理を行うことにより半導体膜603と半導体膜604の表面を酸化または窒化することで形成することができる。高密度プラズマ処理は、例えばHe、Ar、Kr、Xeなどの希ガスと酸素、酸化窒素、アンモニア、窒素、水素などの混合ガスとを用いて行う。この場合プラズマの励起をマイクロ波の導入により行うことで、低電子温度で高密度のプラズマを生成することができる。このような高密度のプラズマで生成された酸素ラジカル(OHラジカルを含む場合もある)や窒素ラジカル(NHラジカルを含む場合もある)によって、半導体膜の表面を酸化または窒化することにより、1〜20nm、望ましくは5〜10nmの絶縁膜が半導体膜に接するように形成される。この5〜10nmの絶縁膜をゲート絶縁膜606として用いる。例えば、亜酸化窒素(NO)をArで1〜3倍(流量比)に希釈して、10〜30Paの圧力にて3〜5kWのマイクロ波(2.45GHz)電力を印加して半導体膜603と半導体膜604の表面を酸化若しくは窒化させる。この処理により1nm〜10nm(好ましくは2nm〜6nm)の絶縁膜を形成する。さらに亜酸化窒素(NO)とシラン(SiH)を導入し、10〜30Paの圧力にて3〜5kWのマイクロ波(2.45GHz)電力を印加して気相成長法により酸化窒化珪素膜を形成してゲート絶縁膜を形成する。固相反応と気相成長法による反応を組み合わせることにより界面準位密度が低く絶縁耐圧の優れたゲート絶縁膜を形成することができる。
上述した高密度プラズマ処理による半導体膜の酸化または窒化は固相反応で進むため、ゲート絶縁膜606と半導体膜603及び半導体膜604との界面準位密度をきわめて低くすることができる。また高密度プラズマ処理により半導体膜603及び半導体膜604を直接酸化または窒化することで、形成される絶縁膜の厚さのばらつきを抑えることが出来る。また半導体膜が結晶性を有する場合、高密度プラズマ処理を用いて半導体膜の表面を固相反応で酸化させることにより、結晶粒界においてのみ酸化が速く進んでしまうのを抑え、均一性が良く、界面準位密度の低いゲート絶縁膜を形成することができる。高密度プラズマ処理により形成された絶縁膜を、ゲート絶縁膜の一部または全部に含んで形成されるトランジスタは、特性のばらつきを抑えることができる。
或いは、半導体膜603と半導体膜604を熱酸化させることで、ゲート絶縁膜606を形成するようにしても良い。また、プラズマCVD法またはスパッタリング法などを用い、酸化珪素、窒化酸化珪素、窒化珪素、酸化ハフニウム、酸化アルミニウムまたは酸化タンタルを含む膜を、単層で、または積層させることで、ゲート絶縁膜606を形成しても良い。
或いは、水素を含んだゲート絶縁膜606を形成した後、350℃以上450℃以下の温度による加熱処理を行うことで、ゲート絶縁膜606中に含まれる水素を半導体膜603及び半導体膜604中に拡散させるようにしても良い。この場合、ゲート絶縁膜606は、プロセス温度を350℃以下で、プラズマCVD法で窒化シリコン又は窒化酸化シリコンを堆積することで、形成すれば良い。半導体膜603及び半導体膜604に水素を供給することで、半導体膜603及び半導体膜604中、及びゲート絶縁膜606と半導体膜603及び半導体膜604の界面での、捕獲中心となるような欠陥を低減することができる。
次に図5(C)に示すように、ゲート絶縁膜606上に導電膜を形成した後、該導電膜を所定の形状に加工(パターニング)することで、半導体膜603と半導体膜604の上方に電極607を形成する。導電膜の形成にはCVD法、スパッタリング法等を用いることが出来る。導電膜は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)等を用いることが出来る。また上記金属を主成分とする合金を用いても良いし、上記金属を含む化合物を用いても良い。または、半導体膜に導電性を付与するリン等の不純物元素をドーピングした、多結晶珪素などの半導体を用いて形成しても良い。
2層構造の導電膜を用いる場合、1層目に窒化タンタルまたはタンタル(Ta)を、2層目にタングステン(W)を用いることが出来る。上記例の他に、窒化タングステンとタングステン、窒化モリブデンとモリブデン、アルミニウムとタンタル、アルミニウムとチタン等が挙げられる。タングステンや窒化タンタルは、耐熱性が高いため、2層の導電膜を形成した後の工程において、熱活性化を目的とした加熱処理を行うことができる。また、2層目の導電膜の組み合わせとして、例えば、n型を付与する不純物がドーピングされた珪素とニッケルシリサイド、n型を付与する不純物がドーピングされたSiとWSix等も用いることが出来る。
また、本実施の形態では電極607を単層の導電膜で形成しているが、本実施の形態はこの構成に限定されない。電極607は積層された複数の導電膜で形成されていても良い。3つの導電膜を積層する3層構造の場合は、モリブデン膜とアルミニウム膜とモリブデン膜の積層構造を採用するとよい。
なお電極607を形成する際に用いるマスクとして、レジストの代わりに酸化珪素、窒化酸化珪素等をマスクとして用いてもよい。この場合、パターニングして酸化珪素、窒化酸化珪素等のマスクを形成する工程が加わるが、エッチング時におけるマスクの膜減りがレジストよりも少ないため、所望の幅を有する電極607を形成することができる。またマスクを用いずに、液滴吐出法を用いて選択的に電極607を形成しても良い。
なお液滴吐出法とは、所定の組成物を含む液滴を細孔から吐出または噴出することで所定のパターンを形成する方法を意味し、インクジェット法などがその範疇に含まれる。
また電極607は、導電膜を形成後、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング条件(コイル型の電極層に印加される電力量、基板側の電極層に印加される電力量、基板側の電極温度等)を適宜調節することにより、所望のテーパー形状を有するようにエッチングすることができる。また、テーパー形状は、マスクの形状によっても角度等を制御することができる。なお、エッチング用ガスとしては、塩素、塩化硼素、塩化珪素もしくは四塩化炭素などの塩素系ガス、四弗化炭素、弗化硫黄もしくは弗化窒素などのフッ素系ガス又は酸素を適宜用いることができる。
次に図5(D)に示すように、電極607をマスクとして一導電型を付与する不純物元素を半導体膜603、半導体膜604に添加する。本実施の形態では、半導体膜604にp型を付与する不純物元素(例えばボロン)を、半導体膜603にn型を付与する不純物元素(例えばリンまたはヒ素)を添加する。なお、p型を付与する不純物元素を半導体膜604に添加する際、n型の不純物が添加される半導体膜603はマスク等で覆い、p型を付与する不純物元素の添加が選択的に行われるようにする。逆にn型を付与する不純物元素を半導体膜603に添加する際、p型の不純物が添加される半導体膜604はマスク等で覆い、n型を付与する不純物元素の添加が選択的に行われるようにする。或いは、先に半導体膜603及び半導体膜604にp型もしくはn型のいずれか一方を付与する不純物元素を添加した後、一方の半導体膜のみに選択的により高い濃度でp型もしくはn型のうちの他方を付与する不純物元素のいずれか一方を添加するようにしても良い。上記不純物の添加により、半導体膜603に不純物領域608、半導体膜604に不純物領域609が形成される。
次に、図6(A)に示すように、電極607の側面にサイドウォール610を形成する。サイドウォール610は、例えば、ゲート絶縁膜606及び電極607を覆うように新たに絶縁膜を形成し、垂直方向を主体とした異方性エッチングにより、新たに形成された該絶縁膜を部分的にエッチングすることで、形成することが出来る。上記異方性エッチングにより、新たに形成された絶縁膜が部分的にエッチングされて、電極607の側面にサイドウォール610が形成される。なお上記異方性エッチングにより、ゲート絶縁膜606も部分的にエッチングしても良い。サイドウォール610を形成するための絶縁膜は、プラズマCVD法やスパッタリング法等により、珪素膜、酸化珪素膜、窒化酸化珪素膜や、有機樹脂などの有機材料を含む膜を、単層または積層して形成することができる。本実施の形態では、膜厚100nmの酸化珪素膜をプラズマCVD法によって形成する。またエッチングガスとしては、CHFとヘリウムの混合ガスを用いることができる。なお、サイドウォール610を形成する工程は、これらに限定されるものではない。
次に図6(B)に示すように、電極607及びサイドウォール610をマスクとして、半導体膜603、半導体膜604に一導電型を付与する不純物元素を添加する。なお、半導体膜603、半導体膜604には、それぞれ先の工程で添加した不純物元素と同じ導電型の不純物元素をより高い濃度で添加する。なお、p型を付与する不純物元素を半導体膜604に添加する際、n型の不純物が添加される半導体膜603はマスク等で覆い、p型を付与する不純物元素の添加が選択的に行われるようにする。逆にn型を付与する不純物元素を半導体膜603に添加する際、p型の不純物が添加される半導体膜604はマスク等で覆い、n型を付与する不純物元素の添加が選択的に行われるようにする。
上記不純物元素の添加により、半導体膜603に、一対の高濃度不純物領域611と、一対の低濃度不純物領域612と、チャネル形成領域613とが形成される。また上記不純物元素の添加により、半導体膜604に、一対の高濃度不純物領域614と、一対の低濃度不純物領域615と、チャネル形成領域616とが形成される。高濃度不純物領域611、614はソース又はドレインとして機能し、低濃度不純物領域612、615はLDD(Lightly Doped Drain)領域として機能する。
なお、半導体膜604上に形成されたサイドウォール610と、半導体膜603上に形成されたサイドウォール610は、キャリアが移動する方向における幅が同じになるように形成しても良いが、該幅が異なるように形成しても良い。p型トランジスタとなる半導体膜604上のサイドウォール610の幅は、n型トランジスタとなる半導体膜603上のサイドウォール610の幅よりも長くすると良い。なぜならば、p型トランジスタにおいてソース及びドレインを形成するために注入されるボロンは拡散しやすく、短チャネル効果を誘起しやすいためである。p型トランジスタにおいて、サイドウォール610の幅より長くすることで、ソース及びドレインに高濃度のボロンを添加することが可能となり、ソース及びドレインを低抵抗化することができる。
次に、ソース及びドレインをさらに低抵抗化するために、半導体膜603、半導体膜604をシリサイド化することで、シリサイド層を形成しても良い。シリサイド化は、半導体膜に金属を接触させ、加熱処理、GRTA法、LRTA法等により、半導体層中の珪素と金属とを反応させて行う。シリサイド層としては、コバルトシリサイド若しくはニッケルシリサイドを用いれば良い。半導体膜603、半導体膜604の厚さが薄い場合には、この領域の半導体膜603、半導体膜604の底部までシリサイド反応を進めても良い。シリサイド化に用いる金属の材料として、チタン(Ti)、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)、コバルト(Co)、ジルコニウム(Zr)、Ha(ハフニウム)、タンタル(Ta)、バナジウム(V)、ネオジム(Nb)、クロム(Cr)、白金(Pt)、パラジウム(Pd)等を用いることができる。また、レーザ照射やランプなどの光照射によってシリサイドを形成しても良い。
上述した一連の工程により、nチャネル型トランジスタ617と、pチャネル型トランジスタ618とが形成される。
次に図6(C)に示すように、トランジスタ617、トランジスタ618を覆うように絶縁膜619を形成する。絶縁膜619は必ずしも設ける必要はないが、絶縁膜619を形成することで、アルカリ金属やアルカリ土類金属などの不純物がトランジスタ617、トランジスタ618へ侵入するのを防ぐことが出来る。具体的に絶縁膜619として、窒化珪素、窒化酸化珪素、窒化アルミニウム、酸化アルミニウム、酸化珪素などを用いるのが望ましい。本実施の形態では、膜厚600nm程度の窒化酸化珪素膜を、絶縁膜619として用いる。この場合、上記水素化の工程は、該窒化酸化珪素膜形成後に行っても良い。
次に、トランジスタ617、トランジスタ618を覆うように、絶縁膜619上に絶縁膜620を形成する。絶縁膜620は、ポリイミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、酸化珪素、窒化珪素、窒化酸化珪素、PSG(リンガラス)、BPSG(リンボロンガラス)、アルミナ等を用いることができる。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有していても良い。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁膜620を形成しても良い。絶縁膜620は、その表面をCMP法などにより平坦化させても良い。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン系樹脂は、置換基に水素の他、フッ素、アルキル基、または芳香族炭化水素のうち、少なくとも1種を有していても良い。
絶縁膜620の形成には、その材料に応じて、CVD法、スパッタ法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用いることができる。
次に図7に示すように、半導体膜603と半導体膜604がそれぞれ一部露出するように絶縁膜619及び絶縁膜620にコンタクトホールを形成する。そして、該コンタクトホールを介して半導体膜603と半導体膜604に接する導電膜621、622を形成する。コンタクトホール開口時のエッチングに用いられるガスは、CHFとHeの混合ガスを用いたが、これに限定されるものではない。
導電膜621、622は、CVD法やスパッタリング法等により形成することができる。具体的に導電膜621、622として、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)、ニッケル(Ni)、白金(Pt)、銅(Cu)、金(Au)、銀(Ag)、マンガン(Mn)、ネオジム(Nd)、炭素(C)、珪素(Si)等を用いることが出来る。また上記金属を主成分とする合金を用いても良いし、上記金属を含む化合物を用いても良い。導電膜621、622は、上記金属が用いられた膜を単層または複数積層させて形成することが出来る。
アルミニウムを主成分とする合金の例として、アルミニウムを主成分としニッケルを含むものが挙げられる。また、アルミニウムを主成分とし、ニッケルと、炭素または珪素の一方または両方とを含むものも例として挙げることが出来る。アルミニウムやアルミニウムシリコンは抵抗値が低く、安価であるため、導電膜621、622を形成する材料として最適である。特にアルミニウムシリコン膜は、導電膜621、622をパターニングで形成するとき、レジストベークにおけるヒロックの発生をアルミニウム膜に比べて防止することができる。また、珪素(Si)の代わりに、アルミニウム膜に0.5%程度のCuを混入させても良い。
導電膜621、622は、例えば、バリア膜とアルミニウムシリコン膜とバリア膜の積層構造、バリア膜とアルミニウムシリコン膜と窒化チタン膜とバリア膜の積層構造を採用するとよい。なお、バリア膜とは、チタン、チタンの窒化物、モリブデンまたはモリブデンの窒化物を用いて形成された膜である。アルミニウムシリコン膜を間に挟むようにバリア膜を形成すると、アルミニウムやアルミニウムシリコンのヒロックの発生をより防止することができる。また、還元性の高い元素であるチタンを用いてバリア膜を形成すると、半導体膜603と半導体膜604上に薄い酸化膜ができていたとしても、バリア膜に含まれるチタンがこの酸化膜を還元し、導電膜621、622と、半導体膜603及び半導体膜604とがそれぞれ良好なコンタクトをとることができる。またバリア膜を複数積層するようにして用いても良い。その場合、例えば、導電膜621、622を下層からTi、窒化チタン、Al−Si、Ti、窒化チタンの5層構造とすることが出来る。
また導電膜621、622として、WFガスとSiHガスから化学気相成長法で形成したタングステンシリサイドを用いても良い。また、WFを水素還元して形成したタングステンを、導電膜621、622として用いても良い。
なお、導電膜621はnチャネル型トランジスタ617の高濃度不純物領域611に接続されている。導電膜622はpチャネル型トランジスタ618の高濃度不純物領域614に接続されている。
図7には、nチャネル型トランジスタ617及びpチャネル型トランジスタ618の上面図が示されている。ただし図7では導電膜621、622、絶縁膜619、絶縁膜620を省略した図を示している。
また本実施の形態では、nチャネル型トランジスタ617とpチャネル型トランジスタ618が、それぞれゲートとして機能する電極607を1つずつ有する場合を例示しているが、本発明はこの構成に限定されない。本発明の作製方法で形成された半導体装置が有するトランジスタは、ゲートとして機能する電極を複数有し、なおかつ該複数の電極が電気的に接続されているマルチゲート構造を有していても良い。
また本発明の作製方法で形成された半導体装置が有するトランジスタは、ゲートプレナー構造を有していても良い。
なお、SOI基板が有する半導体膜は、ほぼ単結晶に近いものが得られる。そのため、多結晶の半導体膜と比べて、配向のばらつきが小さいのでトランジスタの閾値電圧のばらつきを小さくすることができる。また、多結晶の半導体膜とは異なり結晶粒界が殆ど見られないので、結晶粒界に起因するリーク電流を抑え、半導体装置の省電力化を実現することができる。そしてレーザ結晶化により得られる多結晶の半導体膜では、ビームスポット内のエネルギー密度の分布に起因して、半導体膜の表面に突起(リッジ)が現れやすい。しかし、SOI基板が有する半導体膜は、レーザ光を照射する必要がない、或いは、貼り合わせにより生じた半導体膜内の欠陥を修復できる程度に、低いエネルギー密度で照射すれば良い。よって、SOI基板が有する半導体膜の表面の平坦性は、レーザ結晶化により得られる多結晶の半導体膜に比べて飛躍的に高いため、SOI基板が有する半導体膜上に形成されるゲート絶縁膜の膜厚を5nm乃至50nm程度まで薄くすることが可能である。よって、ゲート電圧を抑えつつも高いオン電流を得ることができる。また、レーザ結晶化により得られる多結晶の半導体膜を用いる場合、高い移動度を得るために、レーザ光の走査方向に沿ってトランジスタが有する半導体膜の配置を決める必要があったが、SOI基板が有する半導体膜ではその必要がないため、半導体装置の設計における制約が少なくなる。
本実施の形態は、上記実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、1枚のベース基板を用いて複数の半導体装置を形成する場合の手順について説明する。
図8(A)に、絶縁膜1802が形成されたベース基板1803の外観を示す。
次に図8(B)に示すように、絶縁膜がその表面に形成されたボンド基板1804をベース基板1803に貼り合わせる。貼り合わせはボンド基板1804に形成された絶縁膜と絶縁膜1802とが接合することで行われる。
そして、図9(A)に示すようにボンド基板1804を分離させることで、図9(B)に示すようにボンド基板1804の一部である半導体膜1805を、ベース基板1803に形成する。
そして図10に示すように、ベース基板1803上に形成された半導体膜1805を用いて、半導体装置1806を複数形成し、ダイシングなどでベース基板1803ごと半導体装置1806どうしを切り離す。上記構成により、複数の半導体装置1806を形成することが出来る。
なお、本実施例ではベース基板1803とボンド基板1804とを一対一で貼り合わせる場合について説明したが、本発明はこの構成に限定されない。1つのベース基板1803にボンド基板1804を複数貼り合わせるようにしても良い。
本実施例は、上記実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、本発明の作製方法で形成された半導体装置が有する各種回路の具体的な構成について、インバータを例に挙げて説明する。インバータの回路図を図11(A)に、また図11(A)に示すインバータの上面図を図11(B)に、一例として示す。
図11(A)に示すインバータは、pチャネル型のトランジスタ2001と、nチャネル型のトランジスタ2002とを有する。トランジスタ2001とトランジスタ2002は直列に接続されている。具体的には、トランジスタ2001のドレインと、トランジスタ2002のドレインが接続されている。そして、トランジスタ2001のドレイン及びトランジスタ2002のドレインの電位は、出力端子OUTに与えられる。
またトランジスタ2001のゲートとトランジスタ2002のゲートは接続されている。そして、入力端子INに入力された信号の電位は、トランジスタ2001のゲート及びトランジスタ2002のゲートに与えられる。トランジスタ2001のソースにはハイレベルの電圧VDDが与えられ、トランジスタ2002のソースにはローレベルの電圧VSSが与えられる。
図11(B)に示すインバータでは、トランジスタ2001のドレインと、トランジスタ2002のドレインは、配線2003を介して電気的に接続されている。そして配線2003は配線2004に接続されている。よって、トランジスタ2001のドレイン及びトランジスタ2002のドレインの電位は、配線2003及び配線2004を介して、出力端子OUTの電位として後段の回路に与えられる。
また図11(B)に示すインバータでは、トランジスタ2001が半導体膜2010を有し、トランジスタ2002が半導体膜2008を有している。また配線2005の一部がトランジスタ2001のゲート及びトランジスタ2002のゲートとして機能している。そして配線2005に与えられた電位が、入力端子INの電位としてトランジスタ2001のゲート及びトランジスタ2002のゲートに与えられる。そしてトランジスタ2001のソースには、配線2006を介して電圧VDDが与えられ、トランジスタ2002のソースには、配線2007を介して電圧VSSが与えられている。
本実施例は、上記実施の形態または実施例と適宜組み合わせて実施することが可能である。
本実施例では、本発明の作製方法で形成された半導体装置が有する各種回路の具体的な構成について、NANDを例に挙げて説明する。NANDの回路図を図12(A)に、また図12(A)に示すNANDの上面図を図12(B)に、一例として示す。
図12(A)に示すNANDは、pチャネル型のトランジスタ3001と、pチャネル型のトランジスタ3002と、nチャネル型のトランジスタ3003と、nチャネル型のトランジスタ3004とを有する。トランジスタ3001と、トランジスタ3003と、トランジスタ3004とは、順に直列に接続されている。またトランジスタ3001と、トランジスタ3002とは並列に接続されている。
具体的にトランジスタ3001のソースとドレインは、一方にはハイレベルの電圧VDDが与えられ、他方は出力端子OUTに接続されている。トランジスタ3002のソースとドレインは、一方にはハイレベルの電圧VDDが与えられ、他方は出力端子OUTに接続されている。トランジスタ3004のソースとドレインは、一方にはローレベルの電圧VSSが与えられている。トランジスタ3003のソースとドレインは、一方は出力端子OUTに接続されている。そして、トランジスタ3003のソースとドレインの他方と、トランジスタ3004のソースとドレインの他方とが接続されている。トランジスタ3001のゲートと、トランジスタ3003のゲートには、入力端子IN1の電位が与えられる。またトランジスタ3002のゲートと、トランジスタ3004のゲートには、入力端子IN2の電位が与えられる。
図12(B)に示すNANDでは、並列に接続されているトランジスタ3001とトランジスタ3002とが、半導体膜3005を共有している。また直列に接続されているトランジスタ3003とトランジスタ3004とが、半導体膜3006を共有している。また配線3007の一部はトランジスタ3001のゲート及びトランジスタ3003のゲートとして機能している。そして配線3007に与えられた電位が、入力端子IN1の電位としてトランジスタ3001のゲート及びトランジスタ3003のゲートに与えられる。配線3008の一部はトランジスタ3002のゲート及びトランジスタ3004のゲートとして機能している。そして配線3008に与えられた電位が、入力端子IN2の電位としてトランジスタ3002のゲート及びトランジスタ3004のゲートに与えられる。
ハイレベルの電圧VDDは、配線3009を介してトランジスタ3001のソースとドレインの一方、及びトランジスタ3002のソースとドレインの一方に与えられる。またローレベルの電圧VSSは、配線3010を介してトランジスタ3004のソースとドレインの一方に与えられる。トランジスタ3001のソースとドレインの他方、トランジスタ3002のソースとドレインの他方、及びトランジスタ3003のソースとドレインの一方は、その電位が配線3011及び配線3012を介して出力端子OUTの電位として後段の回路に与えられる。
本実施例は、上記実施の形態または実施例と適宜組み合わせて実施することが可能である。
本実施例では、本発明の作製方法で形成された半導体装置の一つであるRFタグの構成について説明する。図13(A)は本発明のRFタグの一形態を示すブロック図である。図13(A)においてRFタグ500は、アンテナ501と、集積回路502とを有している。集積回路502は、電源回路503、復調回路504、変調回路505、レギュレータ506、制御回路507、メモリ509を有している。
質問器から電波が送られてくると、アンテナ501において該電波が交流電圧に変換される。電源回路503では、アンテナ501からの交流電圧を整流し、電源用の電圧を生成する。電源回路503において生成された電源用の電圧は、制御回路507とレギュレータ506に与えられる。レギュレータ506は、電源回路503からの電源用の電圧を安定化させるか、またはその高さを調整した後、集積回路502内の復調回路504、変調回路505、制御回路507またはメモリ509などの各種回路に供給する。
復調回路504は、アンテナ501が受信した交流信号を復調して、後段の制御回路507に出力する。制御回路507は復調回路504から入力された信号に従って演算処理を行い、別途信号を生成する。上記演算処理を行う際に、メモリ509は一次キャッシュメモリまたは二次キャッシュメモリとして用いることが出来る。また制御回路507は、復調回路504から入力された信号を解析し、質問器から送られてきた命令の内容に従って、メモリ509内の情報の出力、またはメモリ509内における命令の内容の保存を行う。制御回路507から出力される信号は符号化され、変調回路505に送られる。変調回路505は該信号に従ってアンテナ501が受信している電波を変調する。変調回路505において変調された電波は質問器で受け取られる。そしてRFタグ500から出力された情報を知ることができる。
このようにRFタグ500と質問器との通信は、キャリア(搬送波)として用いる電波を変調することで行われる。キャリアは、125kHz、13.56MHz、950MHzなど規格により様々である。また変調の方式も規格により振幅変調、周波数変調、位相変調など様々な方式があるが、規格に即した変調方式であればどの変調方式を用いても良い。
信号の伝送方式は、キャリアの波長によって電磁結合方式、電磁誘導方式、マイクロ波方式など様々な種類に分類することが出来る。
メモリ509は不揮発性メモリであっても揮発性メモリであってもどちらでも良い。メモリ509として、例えばSRAM、DRAM、フラッシュメモリ、EEPROM、FeRAMなどを用いることが出来る。
本実施例では、アンテナ501を有するRFタグ500の構成について説明しているが、本発明のRFタグは必ずしもアンテナを有していなくとも良い。また図13(A)に示したRFタグに、発振回路または二次電池を設けても良い。
また図13(A)では、アンテナを1つだけ有するRFタグの構成について説明したが、本発明はこの構成に限定されない。電力を受信するためのアンテナと、信号を受信するためのアンテナとの、2つのアンテナを有していても良い。アンテナが1つだと、例えば950MHzの電波で電力の供給と信号の伝送を両方行う場合、遠方まで大電力が伝送され、他の無線機器の受信妨害を起こす可能性がある。そのため、電力の供給は電波の周波数を下げて近距離にて行う方が望ましいが、この場合通信距離は必然的に短くなってしまう。しかしアンテナが2つあると、電力を供給する電波の周波数と、信号を送るための電波の周波数とを使い分けることができる。例えば電力を送る際は電波の周波数を13.56MHzとして磁界を用い、信号を送る際は電波の周波数を950MHzとして電界を用いることができる。このように機能合わせてアンテナを使い分けることによって、電力の供給は近距離のみの通信とし、信号の伝送は遠距離も可能なものとすることができる。
本発明の作製方法で形成された半導体装置の一つであるRFタグは、絶縁表面を有する基板もしくは絶縁基板上に接合された単結晶半導体層(SOI層)によって集積回路502を形成できるので、処理速度の高速化のみならず低消費電力化を図ることができる。また、本発明では半導体膜に混入する不純物の量を抑えることができので、最終的に形成されるRFタグにおいて、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
本実施例は、上記実施の形態または実施例と適宜組み合わせて実施することが可能である。
次に、本発明の作製方法で形成された半導体装置の一つであるCPU(central processing unit)の構成について説明する。
図13(B)に、本実施例のCPUの構成をブロック図で示す。図13(B)に示すCPUは、基板800上に、演算回路(ALU:Arithmetic logic unit)801、演算回路用制御部(ALU Controller)802、命令解析部(Instruction Decoder)803、割り込み制御部(Interrupt Controller)804、タイミング制御部(Timing Controller)805、レジスタ(Register)806、レジスタ制御部(Register Controller)807、バスインターフェース(Bus I/F)808、メモリ809、メモリ用インターフェース820を主に有している。メモリ809及びメモリ用インターフェース820は、別チップに設けても良い。勿論、図13(B)に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。
バスインターフェース808を介してCPUに入力された命令は、命令解析部803においてデコードされた後、演算回路用制御部802、割り込み制御部804、レジスタ制御部807、タイミング制御部805に入力される。演算回路用制御部802、割り込み制御部804、レジスタ制御部807、タイミング制御部805は、デコードされた命令にもとづき、各種制御を行なう。具体的に演算回路用制御部802は、演算回路801の動作を制御するための信号を生成する。また、割り込み制御部804は、CPUのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタ制御部807は、レジスタ806のアドレスを生成し、CPUの状態に応じてレジスタ806の読み出しや書き込みを行なう。
またタイミング制御部805は、演算回路801、演算回路用制御部802、命令解析部803、割り込み制御部804、レジスタ制御部807の動作のタイミングを制御する信号を生成する。例えばタイミング制御部805は、基準クロック信号をもとに、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
本発明の作製方法で形成された半導体装置の一つであるCPUは、絶縁表面を有する基板もしくは絶縁基板上に接合された単結晶半導体層(SOI層)によって集積回路を形成できるので、処理速度の高速化のみならず低消費電力化を図ることができる。また、本発明では半導体膜に混入する不純物の量を抑えることができるので、最終的に形成されるCPUにおいて、不純物の影響により、しきい値電圧の変動、リーク電流の増加などのトランジスタの電気的特性の低下及び信頼性の低下が生じるのを防ぐことができる。
本実施例は、上記実施の形態または実施例と適宜組み合わせて実施することが可能である。
本実施例では、本発明で作製される半導体装置の一つである、アクティブマトリクス型の半導体表示装置の構成について説明する。
アクティブマトリクス型の発光装置は、各画素に表示素子に相当する発光素子が設けられている。発光素子は自ら発光するため視認性が高く、液晶表示装置で必要なバックライトが要らず薄型化に最適であると共に、視野角にも制限が無い。本実施例では、発光素子の1つである有機発光素子(OLED:Organic Light Emitting Diode)を用いた発光装置について説明するが、本発明で作製される半導体表示装置は、他の発光素子を用いた発光装置であっても良い。
OLEDは、電場を加えることで発生するルミネッセンス(Electroluminescence)が得られる材料を含む層(以下、電界発光層と記す)と、陽極層と、陰極層とを有している。エレクトロルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とがあるが、本発明で作製される発光装置は、上述した発光のうちの、いずれか一方の発光を用いていても良いし、または両方の発光を用いていても良い。
図14(A)に、本実施例の発光装置の断面図を示す。図14(A)に示す発光装置は、駆動回路に用いられるトランジスタ1601、トランジスタ1602と、画素に用いられる駆動用トランジスタ1604、スイッチング用トランジスタ1603とを素子基板1600上に有している。また図14(A)に示す発光装置は、素子基板1600上において、画素に発光素子1605を有している。
発光素子1605は、画素電極1606と、電界発光層1607と、対向電極1608とを有している。画素電極1606と対向電極1608は、いずれか一方が陽極であり、他方が陰極である。
陽極は、酸化珪素を含むインジウム錫酸化物(ITSO)、インジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などの透光性酸化物導電材料を用いることができる。また陽極は、透光性酸化物導電材料の他に、例えば窒化チタン、窒化ジルコニウム、Ti、W、Ni、Pt、Cr、Ag、Al等の1つまたは複数からなる単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との三層構造等を用いることができる。ただし透光性酸化物導電材料以外の材料で陽極側から光を取り出す場合、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で形成する。
なお、陽極として導電性高分子(導電性ポリマーともいう)を含む導電性組成物を用いることもできる。導電性組成物は、陽極となる導電膜のシート抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが好ましい。また、含まれる導電性高分子の抵抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例えばπ電子共役系導電性高分子として、ポリアニリン及びまたはその誘導体、ポリピロール及びまたはその誘導体、ポリチオフェン及びまたはその誘導体、これらの2種以上の共重合体などがあげられる。
共役導電性高分子の具体例としては、ポリピロ−ル、ポリ(3−メチルピロ−ル)、ポリ(3−ブチルピロ−ル)、ポリ(3−オクチルピロ−ル)、ポリ(3−デシルピロ−ル)、ポリ(3,4−ジメチルピロ−ル)、ポリ(3,4−ジブチルピロ−ル)、ポリ(3−ヒドロキシピロ−ル)、ポリ(3−メチル−4−ヒドロキシピロ−ル)、ポリ(3−メトキシピロ−ル)、ポリ(3−エトキシピロ−ル)、ポリ(3−オクトキシピロ−ル)、ポリ(3−カルボキシルピロ−ル)、ポリ(3−メチル−4−カルボキシルピロ−ル)、ポリN−メチルピロール、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−オクトキシチオフェン)、ポリ(3−カルボキシルチオフェン)、ポリ(3−メチル−4−カルボキシルチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(2−オクチルアニリン)、ポリ(2−イソブチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。
上記導電性高分子を、単独で導電性組成物として陽極に使用してもよいし、導電性組成物の膜の厚さの均一性、膜強度等の膜特性を調整するために有機樹脂を添加して使用することができる。
有機樹脂としては、導電性高分子と相溶または混合分散可能であれば熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよく、光硬化性樹脂であってもよい。例えば、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリエチレンナフタレ−ト等のポリエステル系樹脂、ポリイミド、ポリアミドイミド等のポリイミド系樹脂、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド樹脂、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマ−、ポリクロロトリフルオロエチレン等のフッ素樹脂、ポリビニルアルコ−ル、ポリビニルエ−テル、ポリビニルブチラ−ル、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂、エポキシ樹脂、キシレン樹脂、アラミド樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、メラミン樹脂、フェノ−ル系樹脂、ポリエ−テル、アクリル系樹脂及びこれらの共重合体等が挙げられる。
さらに、導電性組成物の電気伝導度を調整するために、導電性組成物にアクセプタ性またはドナー性ド−パントをド−ピングすることにより、共役導電性高分子の共役電子の酸化還元電位を変化させてもよい。
アクセプタ性ド−パントとしては、ハロゲン化合物、ルイス酸、プロトン酸、有機シアノ化合物、有機金属化合物等を使用することができる。ハロゲン化合物としては、塩素、臭素、ヨウ素、塩化ヨウ素、臭化ヨウ素、フッ化ヨウ素等が挙げられる。ルイス酸としては五フッ化燐、五フッ化ヒ素、五フッ化アンチモン、三フッ化硼素、三塩化硼素、三臭化硼素等が挙げられる。プロトン酸としては、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等の無機酸と、有機カルボン酸、有機スルホン酸等の有機酸を挙げることができる。有機カルボン酸及び有機スルホン酸としては、カルボン酸化合物及びスルホン酸化合物を使用することができる。有機シアノ化合物としては、共役結合に二つ以上のシアノ基を含む化合物が使用できる。例えば、テトラシアノエチレン、テトラシアノエチレンオキサイド、テトラシアノベンゼン、テトラシアノキノジメタン、テトラシアノアザナフタレン等を挙げられる。
ドナー性ドーパントとしては、アルカリ金属、アルカリ土類金属、4級アミン化合物等を挙げることができる。
導電性組成物を、水または有機溶剤(アルコール系溶剤、ケトン系溶剤、エステル系溶剤、炭化水素系溶剤、芳香族系溶剤など)に溶解させて、湿式法により陽極となる薄膜を形成することができる。
導電性組成物を溶解する溶媒としては、特に限定することはなく、上記した導電性高分子及び有機樹脂などの高分子樹脂化合物を溶解するものを用いればよく、例えば、水、メタノール、エタノール、プロピレンカーボネート、N‐メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエンなどの単独もしくは混合溶剤に溶解すればよい。
導電性組成物の成膜は上述のように溶媒に溶解した後、塗布法、コーティング法、液滴吐出法(インクジェット法ともいう)、印刷法等の湿式法を用いて成膜することができる。溶媒の乾燥は、熱処理を行ってもよいし、減圧下で行ってもよい。また、有機樹脂が熱硬化性の場合は、さらに加熱処理を行い、光硬化性の場合は、光照射処理を行えばよい。
陰極は、一般的に仕事関数の小さい金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属を用いて形成することもできる。また、電子注入性の高い材料を含む層を陰極に接するように形成することで、アルミニウムや、透光性酸化物導電材料等を用いた、通常の導電膜も用いることができる。
電界発光層1607は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良く、各層には有機材料のみならず無機材料が含まれていても良い。電界発光層1607におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とが含まれる。複数の層で構成されている場合、画素電極1606が陰極だとすると、画素電極1606上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なお画素電極1606が陽極に相当する場合は、電界発光層1607を、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層して形成する。
また電界発光層1607は、高分子系有機化合物、中分子系有機化合物(昇華性を有さず、連鎖する分子の長さが10μm以下の有機化合物)、低分子系有機化合物、無機化合物のいずれを用いていても、液滴吐出法で形成することが可能である。また中分子系有機化合物、低分子系有機化合物、無機化合物は蒸着法で形成しても良い。
なお、スイッチング用トランジスタ1603、駆動用トランジスタ1604は、シングルゲート構造ではなく、ダブルゲート構造、やトリプルゲート構造などのマルチゲート構造を有していても良い。
次に図14(B)に、本実施例の液晶表示装置の断面図を示す。図14(B)に示す液晶表示装置は、駆動回路に用いられるトランジスタ1611、トランジスタ1612と、画素においてスイッチング素子として機能するトランジスタ1613とを素子基板1610上に有している。また図14(B)に示す液晶表示装置は、素子基板1610と対向基板1614の間に液晶セル1615を有している。
液晶セル1615は、素子基板1610に形成された画素電極1616と、対向基板1614に形成された対向電極1617と、画素電極1616と対向電極1617の間に設けられた液晶1618とを有している。画素電極1616には、例えば酸化インジウムスズ(ITSO)、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などを用いることができる。
本実施例は、上記実施の形態または実施例と適宜組み合わせて実施することが可能である。
本発明の作製方法で形成された半導体装置を用いることができる電子機器として、携帯電話、携帯型ゲーム機または電子書籍、ビデオカメラ、デジタルスチルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)などが挙げられる。これら電子機器の具体例を図15に示す。
図15(A)は携帯電話であり、本体2101、表示部2102、音声入力部2103、音声出力部2104、操作キー2105を有する。表示部2102またはその他の信号処理回路に本発明の作製方法で半導体装置を用いることで、信頼性の高い携帯電話が得られる。
図15(B)はビデオカメラであり、本体2601、表示部2602、筐体2603、外部接続ポート2604、リモコン受信部2605、受像部2606、バッテリー2607、音声入力部2608、操作キー2609、接眼部2610等を有する。表示部2602またはその他の信号処理回路に本発明の作製方法で半導体装置を用いることで、信頼性の高いビデオカメラが得られる。
図15(C)は映像表示装置であり、筐体2401、表示部2402、スピーカー部2403等を有する。表示部2402またはその他の信号処理回路に本発明の作製方法で半導体装置を用いることで、信頼性の高い映像表示装置が得られる。なお、映像表示装置には、パーソナルコンピュータ用、TV放送受信用、広告表示用などの、映像を表示するための全ての映像表示装置が含まれる。
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。
本実施例は、上記実施の形態または上記実施例と適宜組み合わせて実施することができる。
本実施例では、イオンドーピング法によって脆化層を形成したシリコンウェハの表面に存在する元素の濃度について評価した結果を示す。
本実施例では、まず、シリコンウェハに表面処理としてオゾン水処理とメガソニック洗浄を行ってから、全反射蛍光X線分析(Total Reflection X−Ray Fluorescence Analysis(TXRF))を行った。それから、シリコンウェハに再度メガソニック処理を行ってから、イオンドーピング法を用いて、水素の流量を50sccm、加速電圧20kV、ドーズ量1.5×1016ions/cmの条件で、水素イオンビームを照射してシリコンウェハに脆化層を形成した。このようにして得られたシリコンウェハに対して再びTXRFを行った。
ここで、TXRFとは、X線を極浅い角度で基板に照射して、全反射した際に発生する蛍光X線を検出する分析方法である。蛍光X線の波長から基板表面の元素の種類、強度から濃度や量に関する知見を得ることができる。
シリコンウェハ表面における元素の検出結果を図16(a)、図16(b)に示す。図16(a)はイオン照射前とイオン照射後における測定元素の検出濃度を上限100×1010atoms/cmで表したグラフであり、図16(b)はイオン照射前とイオン照射後における測定元素の検出濃度を上限10×1010atoms/cmで表したグラフである。
図16(a)より、本来シリコンウェハの構成元素であるSiを除けば、リン、硫黄、塩素、モリブデンがイオン照射後のシリコンウェハ上に多く存在していることが分かる。それに加えて、図16(b)より、カルシウム、マンガン、鉄などもシリコンウェハ上に存在していることが分かる。イオン照射の前後で比較すると、硫黄やカルシウムはイオン照射後に減少しているが、リン、塩素、マンガン、鉄、モリブデンに関しては、イオン照射後に増加している。特にモリブデンに関しては、イオン照射前はほとんど存在していないにも関わらず、イオン照射後は25.45×1010atoms/cmも存在している。
以上より、イオンドーピング法によって脆化層を形成したシリコンウェハの表面に多くの不純物元素が存在することが示された。イオンドーピング後に、モリブデンを代表として、リン、塩素、マンガン、鉄などの原子が増加していることが示された。
本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す図。 本発明の半導体装置の作製方法を示す斜視図。 本発明の半導体装置の作製方法を示す斜視図。 本発明の半導体装置の作製方法を示す斜視図。 本発明の半導体装置の作製方法を用いて形成されたインバータの構成を示す図。 本発明の半導体装置の作製方法を用いて形成されたNANDの構成を示す図。 本発明の半導体装置の作製方法を用いて形成されたRFタグ及びCPUのブロック図。 本発明の作製方法を用いて形成される発光装置及び液晶表示装置の断面図。 本発明の作製方法を用いて形成される半導体装置を用いた電子機器の図。 イオン照射前後のシリコンウェハ表面における測定元素の検出濃度の図。
符号の説明
100 ボンド基板
101 絶縁膜
102 脆化層
103 絶縁膜
104 絶縁膜
105 ベース基板
106 半導体膜
107 半導体膜
108 半導体膜
109 トランジスタ
110 トランジスタ

Claims (9)

  1. イオンをボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記ボンド基板において、前記脆化層よりも浅い位置から表面までの領域を部分的に除去し、
    前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  2. イオンドーピング法を用いてイオンをボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記ボンド基板において、前記脆化層よりも浅い位置から表面までの領域を部分的に除去し、
    前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  3. イオンをボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記ボンド基板において、前記脆化層よりも浅い位置から表面までの領域を部分的に除去し、
    前記ボンド基板の、前記除去により露出した面上に、単数または複数の絶縁膜を形成し、
    前記絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  4. イオンドーピング法を用いてイオンをボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記ボンド基板において、前記脆化層よりも浅い位置から表面までの領域を部分的に除去し、
    前記ボンド基板の、前記除去により露出した面上に、単数または複数の絶縁膜を形成し、
    前記絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  5. ボンド基板上に絶縁膜を形成し、
    前記絶縁膜を介してイオンを前記ボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記絶縁膜の表面近傍の領域を部分的に除去し、
    前記領域が除去された前記絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  6. ボンド基板上に絶縁膜を形成し、
    イオンドーピング法を用いて、前記絶縁膜を介してイオンを前記ボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記絶縁膜の表面近傍の領域を部分的に除去し、
    前記領域が除去された前記絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  7. ボンド基板上に第1の絶縁膜を形成し、
    前記第1の絶縁膜を介してイオンを前記ボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記第1の絶縁膜の表面近傍の領域を部分的に除去し、
    前記第1の絶縁膜の、前記除去により露出した面上に、単数または複数の第2の絶縁膜を形成し、
    前記領域が除去された前記第1の絶縁膜及び前記第2の絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  8. ボンド基板上に第1の絶縁膜を形成し、
    イオンドーピング法を用いて、前記第1の絶縁膜を介してイオンを前記ボンド基板に添加することで、前記ボンド基板中に脆化層を形成し、
    前記第1の絶縁膜の表面近傍の領域を部分的に除去し、
    前記第1の絶縁膜の、前記除去により露出した面上に、単数または複数の第2の絶縁膜を形成し、
    前記領域が除去された前記第1の絶縁膜及び前記第2の絶縁膜を間に挟んで前記ボンド基板とベース基板とを貼り合わせた後、前記ボンド基板を前記脆化層において分離させることで、前記ベース基板上に半導体膜を形成することを特徴とする半導体装置の作製方法。
  9. 請求項1乃至請求項8のいずれか1項において、
    前記除去は、エッチングまたは研磨を用いて行われることを特徴とする半導体装置の作製方法。
JP2008262641A 2007-10-10 2008-10-09 半導体装置の作製方法 Withdrawn JP2009111375A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262641A JP2009111375A (ja) 2007-10-10 2008-10-09 半導体装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007264051 2007-10-10
JP2008262641A JP2009111375A (ja) 2007-10-10 2008-10-09 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2009111375A true JP2009111375A (ja) 2009-05-21
JP2009111375A5 JP2009111375A5 (ja) 2011-11-04

Family

ID=40534650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262641A Withdrawn JP2009111375A (ja) 2007-10-10 2008-10-09 半導体装置の作製方法

Country Status (5)

Country Link
US (1) US8101501B2 (ja)
JP (1) JP2009111375A (ja)
KR (1) KR101498576B1 (ja)
CN (1) CN101409214B (ja)
TW (1) TWI453803B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019125A (ja) * 2010-07-09 2012-01-26 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法、及び半導体装置の作製方法
CN102593285A (zh) * 2012-03-06 2012-07-18 华灿光电股份有限公司 一种回收图形化蓝宝石衬底的方法
JP2016012729A (ja) * 2009-06-26 2016-01-21 株式会社半導体エネルギー研究所 半導体装置
JP2022164678A (ja) * 2017-08-04 2022-10-27 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143146A1 (en) * 2007-04-13 2010-01-13 Semiconductor Energy Laboratory Co, Ltd. Photovoltaic device and method for manufacturing the same
SG178765A1 (en) * 2009-01-21 2012-03-29 Semiconductor Energy Lab Method for manufacturing soi substrate and semiconductor device
US8361890B2 (en) 2009-07-28 2013-01-29 Gigasi Solar, Inc. Systems, methods and materials including crystallization of substrates via sub-melt laser anneal, as well as products produced by such processes
EP2282332B1 (en) * 2009-08-04 2012-06-27 S.O.I. TEC Silicon Method for fabricating a semiconductor substrate
JP5713603B2 (ja) * 2009-09-02 2015-05-07 株式会社半導体エネルギー研究所 Soi基板の作製方法
TWI426565B (zh) * 2009-10-15 2014-02-11 Au Optronics Corp 顯示面板及薄膜電晶體之閘極絕緣層的重工方法
KR101772639B1 (ko) * 2009-10-16 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US20110165721A1 (en) * 2009-11-25 2011-07-07 Venkatraman Prabhakar Systems, methods and products including features of laser irradiation and/or cleaving of silicon with other substrates or layers
TWI451474B (zh) * 2009-12-14 2014-09-01 Tien Hsi Lee 一種製作可轉移性晶體薄膜的方法
KR102063214B1 (ko) * 2009-12-28 2020-01-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치와 반도체 장치
US8735263B2 (en) 2011-01-21 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
EP3447789B1 (de) 2011-01-25 2021-04-14 EV Group E. Thallner GmbH Verfahren zum permanenten bonden von wafern
JP5839804B2 (ja) * 2011-01-25 2016-01-06 国立大学法人東北大学 半導体装置の製造方法、および半導体装置
SG192180A1 (en) 2011-04-08 2013-08-30 Ev Group E Thallner Gmbh Method for permanent bonding of wafer
SG193903A1 (en) 2011-04-08 2013-11-29 Ev Group E Thallner Gmbh Method for permanent bonding of wafers
FR2995445B1 (fr) * 2012-09-07 2016-01-08 Soitec Silicon On Insulator Procede de fabrication d'une structure en vue d'une separation ulterieure
JP6393574B2 (ja) * 2014-10-09 2018-09-19 東京エレクトロン株式会社 エッチング方法
US9870940B2 (en) 2015-08-03 2018-01-16 Samsung Electronics Co., Ltd. Methods of forming nanosheets on lattice mismatched substrates
JP6737066B2 (ja) * 2016-08-22 2020-08-05 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、及び固体撮像素子の製造方法
CN106449689A (zh) * 2016-11-11 2017-02-22 中国电子科技集团公司第四十四研究所 带聚酰亚胺垫层的帧转移可见光ccd
JP6810578B2 (ja) * 2016-11-18 2021-01-06 株式会社Screenホールディングス ドーパント導入方法および熱処理方法
FR3077923B1 (fr) * 2018-02-12 2021-07-16 Soitec Silicon On Insulator Procede de fabrication d'une structure de type semi-conducteur sur isolant par transfert de couche
KR102463727B1 (ko) * 2018-06-08 2022-11-07 글로벌웨이퍼스 씨오., 엘티디. 얇은 실리콘 층의 전사 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265136A (ja) * 1990-03-15 1991-11-26 Fujitsu Ltd 半導体基板のドライ洗浄方法
JPH1197379A (ja) * 1997-07-25 1999-04-09 Denso Corp 半導体基板及び半導体基板の製造方法
JPH11233449A (ja) * 1998-02-13 1999-08-27 Denso Corp 半導体基板の製造方法
JP2000012285A (ja) * 1998-06-26 2000-01-14 Nissin Electric Co Ltd パルスバイアス水素負イオン注入方法及び注入装置
JP2000077287A (ja) * 1998-08-26 2000-03-14 Nissin Electric Co Ltd 結晶薄膜基板の製造方法
JP2000331899A (ja) * 1999-05-21 2000-11-30 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法およびsoiウェーハ
WO2001048825A1 (fr) * 1999-12-24 2001-07-05 Shin-Etsu Handotai Co., Ltd. Procédé de production de tranche collée
JP2001203340A (ja) * 2000-01-21 2001-07-27 Nissin Electric Co Ltd シリコン系結晶薄膜の形成方法
WO2007014320A2 (en) * 2005-07-27 2007-02-01 Silicon Genesis Corporation Method and structure for fabricating multiple tile regions onto a plate using a controlled cleaving process

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (fr) * 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
EP0553852B1 (en) * 1992-01-30 2003-08-20 Canon Kabushiki Kaisha Process for producing semiconductor substrate
JPH07263721A (ja) * 1994-03-25 1995-10-13 Nippondenso Co Ltd 半導体装置及びその製造方法
JP4103968B2 (ja) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 絶縁ゲイト型半導体装置
US6191007B1 (en) * 1997-04-28 2001-02-20 Denso Corporation Method for manufacturing a semiconductor substrate
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US6388652B1 (en) 1997-08-20 2002-05-14 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JPH11163363A (ja) 1997-11-22 1999-06-18 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
FR2773261B1 (fr) * 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
JP2000012864A (ja) 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
JP4476390B2 (ja) 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2000124092A (ja) 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ
US6255195B1 (en) * 1999-02-22 2001-07-03 Intersil Corporation Method for forming a bonded substrate containing a planar intrinsic gettering zone and substrate formed by said method
JP2000349266A (ja) 1999-03-26 2000-12-15 Canon Inc 半導体部材の製造方法、半導体基体の利用方法、半導体部材の製造システム、半導体部材の生産管理方法及び堆積膜形成装置の利用方法
US6653209B1 (en) * 1999-09-30 2003-11-25 Canon Kabushiki Kaisha Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device
JP2001168308A (ja) 1999-09-30 2001-06-22 Canon Inc シリコン薄膜の製造方法、soi基板の作製方法及び半導体装置
JP3943782B2 (ja) * 1999-11-29 2007-07-11 信越半導体株式会社 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
JP2001196566A (ja) * 2000-01-07 2001-07-19 Sony Corp 半導体基板およびその製造方法
EP1302985A1 (en) * 2000-05-30 2003-04-16 Shin-Etsu Handotai Co., Ltd Method for producing bonded wafer and bonded wafer
CN100454552C (zh) * 2001-07-17 2009-01-21 信越半导体株式会社 贴合晶片的制造方法及贴合晶片、以及贴合soi晶片
JP4772258B2 (ja) 2002-08-23 2011-09-14 シャープ株式会社 Soi基板の製造方法
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
JP2004063730A (ja) * 2002-07-29 2004-02-26 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
US6995427B2 (en) * 2003-01-29 2006-02-07 S.O.I.Tec Silicon On Insulator Technologies S.A. Semiconductor structure for providing strained crystalline layer on insulator and method for fabricating same
EP1667214B1 (en) * 2003-09-10 2012-03-21 Shin-Etsu Handotai Co., Ltd. Method for cleaning a multilayer substrate and method for bonding substrates and method for producing bonded wafer
US7071122B2 (en) * 2003-12-10 2006-07-04 International Business Machines Corporation Field effect transistor with etched-back gate dielectric
WO2005074033A1 (ja) * 2004-01-30 2005-08-11 Sumco Corporation Soiウェーハの製造方法
JP4626175B2 (ja) * 2004-04-09 2011-02-02 株式会社Sumco Soi基板の製造方法
JP4730581B2 (ja) * 2004-06-17 2011-07-20 信越半導体株式会社 貼り合わせウェーハの製造方法
DE102004030612B3 (de) * 2004-06-24 2006-04-20 Siltronic Ag Halbleitersubstrat und Verfahren zu dessen Herstellung
US6893936B1 (en) * 2004-06-29 2005-05-17 International Business Machines Corporation Method of Forming strained SI/SIGE on insulator with silicon germanium buffer
US7279400B2 (en) * 2004-08-05 2007-10-09 Sharp Laboratories Of America, Inc. Method of fabricating single-layer and multi-layer single crystalline silicon and silicon devices on plastic using sacrificial glass
US7276430B2 (en) * 2004-12-14 2007-10-02 Electronics And Telecommunications Research Institute Manufacturing method of silicon on insulator wafer
JP2006303089A (ja) * 2005-04-19 2006-11-02 Sumco Corp シリコン基板の洗浄方法
FR2896619B1 (fr) * 2006-01-23 2008-05-23 Soitec Silicon On Insulator Procede de fabrication d'un substrat composite a proprietes electriques ameliorees
FR2911430B1 (fr) * 2007-01-15 2009-04-17 Soitec Silicon On Insulator "procede de fabrication d'un substrat hybride"
KR101443580B1 (ko) * 2007-05-11 2014-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi구조를 갖는 기판

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265136A (ja) * 1990-03-15 1991-11-26 Fujitsu Ltd 半導体基板のドライ洗浄方法
JPH1197379A (ja) * 1997-07-25 1999-04-09 Denso Corp 半導体基板及び半導体基板の製造方法
JPH11233449A (ja) * 1998-02-13 1999-08-27 Denso Corp 半導体基板の製造方法
JP2000012285A (ja) * 1998-06-26 2000-01-14 Nissin Electric Co Ltd パルスバイアス水素負イオン注入方法及び注入装置
JP2000077287A (ja) * 1998-08-26 2000-03-14 Nissin Electric Co Ltd 結晶薄膜基板の製造方法
JP2000331899A (ja) * 1999-05-21 2000-11-30 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法およびsoiウェーハ
WO2001048825A1 (fr) * 1999-12-24 2001-07-05 Shin-Etsu Handotai Co., Ltd. Procédé de production de tranche collée
JP2001203340A (ja) * 2000-01-21 2001-07-27 Nissin Electric Co Ltd シリコン系結晶薄膜の形成方法
WO2007014320A2 (en) * 2005-07-27 2007-02-01 Silicon Genesis Corporation Method and structure for fabricating multiple tile regions onto a plate using a controlled cleaving process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012729A (ja) * 2009-06-26 2016-01-21 株式会社半導体エネルギー研究所 半導体装置
JP2012019125A (ja) * 2010-07-09 2012-01-26 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法、及び半導体装置の作製方法
CN102593285A (zh) * 2012-03-06 2012-07-18 华灿光电股份有限公司 一种回收图形化蓝宝石衬底的方法
CN102593285B (zh) * 2012-03-06 2014-07-09 华灿光电股份有限公司 一种回收图形化蓝宝石衬底的方法
JP2022164678A (ja) * 2017-08-04 2022-10-27 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
US20090098709A1 (en) 2009-04-16
KR20090037312A (ko) 2009-04-15
CN101409214B (zh) 2012-11-14
TWI453803B (zh) 2014-09-21
KR101498576B1 (ko) 2015-03-04
US8101501B2 (en) 2012-01-24
CN101409214A (zh) 2009-04-15
TW200931503A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8101501B2 (en) Method of manufacturing semiconductor device
JP5250228B2 (ja) 半導体装置の作製方法
JP5619474B2 (ja) Soi基板の作製方法
JP5523693B2 (ja) 半導体基板の作製方法
US8772128B2 (en) Method for manufacturing semiconductor device
US8211780B2 (en) Method for manufacturing SOI substrate
US7851332B2 (en) Semiconductor device and method for manufacturing the same
US8318587B2 (en) Method for manufacturing semiconductor device
US7816234B2 (en) Method for manufacturing semiconductor device
US7829396B2 (en) Manufacturing method of semiconductor device and manufacturing apparatus of the same
US20100022070A1 (en) Method for manufacturing soi substrate
JP2009071287A (ja) 半導体装置の作製方法および製造装置
US8415228B2 (en) Manufacturing method of SOI substrate and semiconductor device
JP2009038358A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140414