JP2008130609A - 加熱装置 - Google Patents

加熱装置 Download PDF

Info

Publication number
JP2008130609A
JP2008130609A JP2006310521A JP2006310521A JP2008130609A JP 2008130609 A JP2008130609 A JP 2008130609A JP 2006310521 A JP2006310521 A JP 2006310521A JP 2006310521 A JP2006310521 A JP 2006310521A JP 2008130609 A JP2008130609 A JP 2008130609A
Authority
JP
Japan
Prior art keywords
terminal
conductive ceramic
ceramic member
terminal hole
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006310521A
Other languages
English (en)
Other versions
JP4421595B2 (ja
Inventor
Hiroya Sugimoto
博哉 杉本
Masao Nishioka
正雄 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006310521A priority Critical patent/JP4421595B2/ja
Priority to US11/939,601 priority patent/US8071913B2/en
Publication of JP2008130609A publication Critical patent/JP2008130609A/ja
Application granted granted Critical
Publication of JP4421595B2 publication Critical patent/JP4421595B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Resistance Heating (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】高周波電極の端子部近傍にクラックが生じることを有利に抑制して、信頼性が高く、寿命が長い加熱装置を提供する。
【解決手段】セラミックス基体11の加熱面11aの近傍で加熱面11aにほぼ平行に埋設された電極12を備える。この電極12に向かう端子穴11cが、セラミックス基体11の裏面に形成されている。端子穴11cの底面と、電極12との間に、セラミックス基体と同等の熱膨張係数を有する導電性セラミックス部材17が電極12に接続して埋設され、この導電性セラミックス部材17を介して電極12と端子13とが電気的に接続される。
【選択図】図1

Description

本発明は、加熱装置に関する。
半導体製造装置を用いた半導体デバイスの製造工程においては、ウエハ上へ酸化膜を形成する等のために加熱処理が施される。このウエハを加熱するための加熱装置には、被加熱物としてのウエハを載置して加熱する加熱面を有する円盤状のセラミックス基体中に、抵抗発熱体が埋設された加熱装置がある。この加熱装置は、半導体製造プロセスに使用される成膜装置ばかりでなく、板状の被加熱材の表面をドライエッチングする表面処理装置等に用いられても有利に適合するものである。
加熱装置を用いた加熱時には、ウエハにプラズマCVDによる成膜処理や、プラズマエッチング処理等を行うことがある。そのためにウエハ近傍をプラズマ雰囲気にできる加熱装置は、セラミックス基体中の加熱面の近傍で加熱面とほぼ平行に、平板状の高周波電極が埋設されている。また、セラミックス基体の加熱面とは反対側の裏面に、この高周波電極に電力を導く端子を挿入するための穴が高周波電極に向けて形成されている。この穴の底面に、高周波電極それ自体又は高周波電極と接続している金属製の導電性部材が露出していて、これらと穴に挿入された端子とが、ろう付けにより導通可能に接合されている。そして、この端子に電源が接続されて高周波電極に電力が供給される。
このような高周波電極を具備する加熱装置に関し、セラミックス基材としての窒化アルミニウムに、メッシュ状の高周波電極が埋設され、このセラミックス基材の穴に露出した高周波電極と、Ni製の端子とを、ロウ材にて接合したものがある(例えば、特許文献1)。
また、Mo製のメッシュ状高周波電極とNi製端子の間に、これらの部材の熱膨張係数の中間の熱膨張係数を有するコバールを介在させ、Mo/コバール/Niの間をロウ材で接合したものがある。また、Mo製のメッシュ状高周波電極とコバール材とを直接接合するのではなく、Mo製のメッシュ状高周波電極に直径3mm、厚み2mmほどのMoのバルク材を導電性部材として共焼結させ、このMoバルク材にコバール材を接合させているものもある(例えば、特許文献2、特許文献3)。
この高周波電極は、被加熱物上に生じさせるプラズマの分布を均一にするために、セラミックス基体加熱面と平行な平板状になる。また、高周波電極とセラミックス基体加熱面との間は、セラミックス基体の材質である、例えば窒化アルミニウムにより誘電体層や絶縁体層になる部分であり、プラズマの分布を均一にするために、1mm程度の厚さとなっている。
このような高周波電極の構造は、ヒーター、静電チャック及びサセセプターに共通して用いられる。
特開平8−277173号公報 特開2002−134590号公報 特許第3790000号明細書
高周波電極用のメッシュが埋設される窒化アルミニウム製のセラミックス基体は、一般に厚みが5〜25mm程度であり、この厚みのなかで、高周波電極と加熱面との間の誘電体層又は絶縁体層となる窒化アルミニウム層の厚さは、前述のとおり1mm程度である。セラミックス基体において、高周波電極に接続する端子を挿入するための穴が形成されている部分が、構造的にもっとも薄く、強度が低い部分となっている。そのため、この部分にクラックが生じるおそれがあった。
例えば、この高周波電極と加熱面との間の領域のうち、端子が挿入される穴と対向する部分に、端子に外部導電コネクターを組み付け接続するときの押圧力が加わって、クラックが生じるおそれがあった。また、被加熱材の加熱時において、端子への熱移動によりセラミックス基体の加熱面の端子の先端部近傍が他の部分よりも低温になり、そのために熱応力が生じて、端子部近傍のセラミックス基体の加熱面にクラックが生じるおそれがあった。更に、端子が挿入される穴と高周波電極との間にMoバルク材が埋設されている加熱装置においては、このMoバルク材と窒化アルミニウム基体との熱膨張係数差により、端子部近傍にクラックが生じるおそれがあった。更に、これらのクラックは加熱装置の長期に亘る使用に伴う加熱面の腐食によって誘発される虞が高かった。
そこで本発明は、高周波電極の端子部近傍にクラックが生じることを有利に抑制して、信頼性が高く、寿命が長い加熱装置を提供することを目的とする。
前記目的を達成するために、本発明の加熱装置は、絶縁性セラミックスを主成分とする板状の基体と、この基体の一方の表面近傍に埋設された平板状の電極と、この基体の他方の表面から前記高周波電極に向けて穿設された端子穴に挿入され、前記電極と導通する端子とを備え、かつ、前記端子穴の底面と、前記電極との間に、前記基体の絶縁性セラミックスと同等の熱膨張係数を有する導電性セラミックス部材が前記電極に接続して埋設され、この導電性セラミックス部材を介して前記電極と前記端子とが電気的に接続されることを特徴とする。
本発明の加熱装置によれば、端子が挿入される端子穴近傍のクラックの発生を防止することが可能となり、高信頼性の加熱装置を得ることができる。
以下、本発明の加熱装置の実施例について図面を用いて説明する。
図1は、本発明の一実施例の加熱装置を示す断面図である。なお、以下の図面においては、本発明の理解を容易にするために、実際の加熱装置とは寸法、比率を異ならせて図示している。したがって、本発明の加熱装置は、図示された加熱装置の寸法、比率に限定されるものではない。
図1に示す加熱装置10は、円盤状のセラミックス基体11を有している。このセラミックス基体11は、窒化アルミニウムやアルミナ等を主成分とする絶縁性セラミックスからなる。図1に示す本実施例では、セラミックス基体11が、窒化アルミニウムの例を示している。セラミックス基体11の一方の面は、被加熱物、例えば半導体ウエハを載置して加熱するための加熱面11aとなる。
このセラミックス基体11の内部には、メッシュ状の平面形状を有し、厚さが0.2mm程度の平板状の高周波電極12が、加熱面11aから所定の距離(例えば、1〜1.2mm程度)で、加熱面11aとほぼ平行に埋設されている。また、セラミックス基体11の加熱面11aとは反対側の裏面11bには、高周波電極12に向かう端子穴11cが形成されている。この端子穴11cは、内周面にねじ溝が形成されたねじ穴である。この端子穴11cに、耐酸化性を有するNi製の端子13が挿入される。端子13の一方の先端は、図示しない電気接続部材を介して高周波電源と接続される。
図2は、図1に示された加熱装置10の端子穴11c近傍の拡大断面図である。図2に示されるように、この端子穴11cには、耐酸化性を有する金属製(例えばNi製)のスリーブ14が、この端子穴11cのねじ溝とスリーブ14のねじ山14aとでねじ結合されている。端子13は、このスリーブ14を介して端子穴11cに挿入されている。この端子13とスリーブ14とは、ろう付けにより接合されている。
端子穴11cの底面には、Ni製の端子13の熱膨張係数と窒化アルミニウムの熱膨張係数との中間の熱膨張係数を有する、例えばコバールよりなる応力緩和材15が配設されている。応力緩和材15と端子13とは、ろう材16により接合されている。
そして、本実施形態の加熱装置10では、端子穴11cの底面と高周波電極12との間に、窒化アルミニウムを主成分とし、炭素繊維を含む導電性セラミックス部材17Aが、この高周波電極12と接するように埋設されるとともに、この導電性セラミックス部材17Aの表面の一部が端子穴11cの底面に露出している。この導電性セラミックス部材17Aは、窒化アルミニウムを主成分とし、導電材料、例えばカーボンナノチューブを含有するセラミックスである。端子穴11cの底面に露出した導電性セラミックス部材17Aと応力緩和材15とが、ろう材16により接合されることにより、応力緩和材15、さらには端子13と、高周波電極12とが、電気的に接続されている。本実施例では、導電性セラミックス部材17Aの径Aは端子穴11cの径Cよりも小さく、導電性セラミックス部材17Aの厚さBは、従来の加熱装置のMoバルク材と同程度の厚さである。また、導電性セラミックス部材17Aと接する高周波電極12と加熱面11aとの距離Dは、公知の加熱装置と同程度の、例えば、1〜1.2mm程度である。
セラミックス基体11の加熱面11aに載置される被加熱材を加熱するために、セラミックス基体11の内部には、抵抗発熱体19が埋設されている。なお、被加熱材を加熱するための加熱手段は、抵抗発熱体19に限られず、例えば、セラミックス基体11の裏面11bに密着させたシート状発熱体でもよい。
図1及び図2に示した本実施例の加熱装置10は、上述したようにセラミックス基体11と同種のセラミックスよりなる導電性セラミックス部材17Aが、端子穴13cの底面と高周波電極12との間に埋設されている。つまり、端子穴13cの底面から高周波電極12までの間に、セラミックス基体11と同種のセラミックス材が形成されていることになる。したがって、セラミックス基体11の加熱面11aから端子穴13cの底面までのセラミックス材の厚さは、従来の加熱装置、例えば、端子穴の底面と高周波電極12との間にMoバルク材が埋設されているものや、端子穴の底面に高周波電極12が露出するように端子穴が形成されているものよりも厚い。従来の加熱装置は、このようなセラミックス材の厚さは、実質的に加熱面11aから高周波電極までのセラミックス材の厚さと同じであり、1mm程度であり、構造的にもっとも薄く、強度が低い部分であったことは、既に述べたとおりである。
本実施例に係る加熱装置10は、従来の加熱装置よりもセラミックス基体11の加熱面11aから端子穴13cの底面までのセラミックス材の厚さが厚くなっていることから、この部分の強度が向上している。そのため、端子13を端子穴11c内に挿入するときの押圧力によって、セラミックス基体11の当該押圧力を受ける部分へのクラックの発生を防止することができる。また、セラミックス基体11の加熱面11aから端子穴13cの底面までのセラミックス材の厚さが厚いことから、被加熱材の加熱時において、端子への熱移動が抑制されるとともに、この部分の熱容量が大きくなり、よって加熱面11aにおける温度分布が均一となって熱応力が抑制される結果、セラミックス基体11の当該端子近傍でのクラックの発生を防止することができる。
また、従来の加熱装置のように熱伝導性の高い金属製のMoバルク材を高周波電極12と端子穴11cの底面との間に埋設することがないので、このMoバルク材を埋設していたことに由来する不具合、例えば、周囲のセラミックス材とMoバルク材との熱膨張係数差による加熱時やろう付け時のクラックの発生や、Moバルク材が周囲のセラミックスよりも熱伝導性が高いために端子の先端部近傍が他の部分よりも低温になる、局所的な温度差によるクラックの発生などを抑制することができ、長期にわたって信頼性が高い加熱装置とすることができる。
更に、高周波電極12と加熱面11aとの間の距離Dは、従来同様の厚さであって、特に肥厚化する必要がない。したがって、高周波電極12によってプラズマを発生させる際の条件(例えば、カップリング)を従来と同じくすることができる。クラック発生の抑制及び強度向上のために距離Dを厚くすると、カップリングが適合せず、プラズマを十分に発生させることが難しくなるが、本発明の実施形態の加熱装置では、そのような問題が発生しない。
本実施形態の加熱装置は、高周波電極12と端子穴11cの底面との間に、セラミックス基体11と主成分を同じくする導電性セラミックス部材17Aが埋設されている。この導電性セラミックス部材17Aは、セラミックス基体11と同等の熱膨張係数を有しているので、導電性セラミックス部材17Aは、周囲のセラミックス材とは熱膨張係数差がほとんどなく、熱膨張係数差によるクラックが生じない。具体的には熱膨張係数差は0.3×10−6/K以下である。また、導電性セラミックス部材17Aは、周囲のセラミックス材と同様の熱伝導率であるため、導電性セラミックス部材17Aの部分が局所的に低温になることが抑制されるため、熱応力によるクラックが抑制される。
この導電性セラミックス部材17Aの材料は、セラミックス基体11よりも電気抵抗が低い、導電性を有するセラミックス材料であって、例えば、特開2005−41765号公報に開示されているような、炭素繊維を含有する窒化アルミニウムを用いることができる。また、従来から低抵抗窒化アルミニウム系セラミックスとして知られている、酸化イットリウム、酸化セリウム又は酸化サマリウムなどの希土類元素の酸化物を含有する窒化アルミニウムや、耐熱性及び導電性を有する金属や金属間化合物、例えばタングステン(W)や炭化タングステン(WC)を35〜65wt%程度含有する窒化アルミニウムを適用することもできる。
この導電性セラミックス部材17Aの体積抵抗率は、セラミックス基体11よりも電気抵抗が低く、端子13に接続する応力緩和材15と、高周波電極12とを電気的に接続可能な体積抵抗率である必要がある。良好な電気伝導性を得るという観点から、導電性セラミックス部材17Aは、例えば、10Ω・cm以下のものを用いることができる。より好ましい体積抵抗率は、0.05Ω・cm以下である。体積抵抗率が0.05Ω・cm以下であれば、この導電性セラミックス部材17Aに通電されることにより生じるジュール熱は、全投入電力の0.2%以下とすることができるので、この導電性セラミックス部材17Aが異常発熱することはない。このような数値範囲の体積抵抗率を有する材料には、例えば、前掲特開2005−41765号公報に開示された炭素繊維を含有する低抵抗窒化アルミニウム系セラミックス材料があり、炭素繊維(カーボンナノチューブを含む)を7〜14wt%含有する当該低抵抗窒化アルミニウム系セラミックス材料を適用することにより、上記した体積抵抗率を有することができる。特に、カーボンナノチューブを分散させた導電性セラミックス部材17Aは、セラミックス中の導電材としてのカーボンナノチューブが3次元網目状に連なっているため、効率良く電流を流すことができるとともに、窒化アルミニウムよりも熱膨張係数が若干小さいので、セラミックス基体11の窒化アルミニウムと完全に密着する。また、強度も周囲のセラミックス基体11と同じである。
セラミックス基体11が窒化アルミニウムよりなり、導電性セラミックス部材17Aが低抵抗窒化アルミニウム系セラミックス材料よりなる場合は、主成分を共通することから両者の熱膨張係数の相違は軽微であり(例えば、0.2×10−6/K以下)、内部応力がほとんど生じず、その結果、優れた耐久性を具備する。また、熱伝導率の相違についてもほとんどなく、セラミックス基体11の加熱面11aの均熱性を損なうことがなく、端子13周囲のセラミックス基体11の温度低下を抑制することができる。したがって、導電性セラミックス部材17Aが、セラミックス基体11と主成分を共通する同種のセラミックスであることが、より好適である。
同種のセラミックスの例として本実施例のように、セラミックス基体11としてAlNを用い、導電性セラミックス部材17Aとして炭素繊維を含有して低抵抗化したAlNを用いることは、加熱装置の製造上も有利である。すなわち、マトリックスが同種のセラミックスであるため、焼結時にセラミックス基体11と導電性セラミックス部材17Aとは、両者の界面において完全に拡散結合し、密着する。しかも、焼結収縮および焼結後の熱収縮も同等であるために、内部応力がほとんど発生せず、よってクラックも発生せず、実用上十分な強度および耐久性を与えることが可能となる。
次に、図3を用いて、本発明に係る加熱装置の別の実施例を説明する。図3は、本発明の別の実施例に係る加熱装置20の要部の断面図である。図3において、図1及び図2に示した部材と同一の部材については同一の符号を付しており、以下では重複する説明を省略する。
図3に示した本実施例に係る加熱装置20は、端子穴11cの底面と、高周波電極12との間に、窒化アルミニウムを主成分し、炭素繊維を含む導電性セラミックス部材17Bが埋設されている。この導電性セラミックス部材17Bは板状であり、その平面の長さが、端子穴11cの底面の直径よりも大きい。その点以外は、図1及び図2に示した実施例と同じ構成を有している。また、導電性セラミックス部材17Bは、図1及び図2に示した実施例における導電性セラミックス部材17Aと同じ材料を適用することができる。
図3に示した本実施例に係る加熱装置は、導電性セラミックス部材17Bを具備することにより、図1及び図2を用いて説明した先の実施形態の加熱装置の同様の効果を有している。そればかりでなく、図3に示した本実施例に係る加熱装置は、導電性セラミックス部材17Bが、端子穴11cの底面の直径よりも大きい平面形状を有していることから、この導電性セラミックス部材17Bを流れる電流の密度を下げることができる。そのため、この導電性セラミックス部材17Bの発熱を抑制することができ、セラミックス基体11の加熱面11aの均熱性を向上させることができる。また、導電性セラミックス部材17Bの発熱を抑制することができることから、高周波電極12から端子穴11cの底面までの距離、すなわち、板状の導電性セラミックス部材17Bの厚さを、それ自体の発熱特性に制限されずに、より厚くすることができる。したがって、この部分の強度を、いっそう向上させることができる
導電性セラミックス部材17Bの平面形状は、特に限定されない。導電性セラミックス部材17Bから高周波電極12に流れる電流を等配分できるように、円形や正方形などのような中心軸対称の形状とすることが、より好ましい。
次に、図4を用いて、本発明に係る加熱装置の別の実施例を説明する。図4は、本発明の別の実施例に係る加熱装置30の要部の断面図である。図4において、図1〜図3に示した部材と同一の部材については同一の符号を付しており、以下では重複する説明を省略する。
図4に示した本実施例に係る加熱装置30は、端子穴11cの底面と、高周波電極12との間に、導電性セラミックス部材17Cが埋設されている。この導電性セラミックス部材17Cは、端子穴11cの底面部及び側面部を含む、下向きに開口を有する凹形状であり、かつ、この凹形状の内側の側面に、スリーブ14のねじと嵌まり合うねじが形成されている例である。その点以外は、図1及び図2に示した実施例と同じ構成を有している。また、導電性セラミックス部材17Cは、図1及び図2に示した実施例における導電性セラミックス部材17Aと同じ材料を適用することができる。
図4に示した本実施例の加熱装置30は、端子穴11cの底面と高周波電極12との間に、導電性セラミックス部材17Cを具備することにより、図1及び図2を用いて説明した先の実施例の加熱装置10と同様の効果を有している。また、図4に示した本実施例の加熱装置30は、導電性セラミックス部材17Cが、端子穴11cの底面部及び側面部の一部を構成しており、これにより端子穴11cの底面の径よりもよりも大きい形状を有していることから、図3を用いて説明した先の実施例の加熱装置20と同様の効果を有している。
そればかりでなく、本実施例の加熱装置30は、導電性セラミックス部材17Cが、内側面にねじ溝が形成されていることから、外周面にねじ山が形成されたスリーブ14と当該導電性セラミックス部材17Cとを、ねじ結合することができる。このねじ結合された領域を、クラックが生じない条件のもとで更にろう付けにより固着することもできる。したがって、導電性セラミックス部材17Cは、端子穴11cの底面のみならず、ねじが形成された側面にてスリーブ14を介して端子13と接触することになるから、導電性セラミックス部材17Cと端子13との接触面積を拡大することが可能となり、接続部の信頼性がより優れた加熱装置30とすることができる。
また、端子13とスリーブ14とを、ろう付けや溶接等により予め一体的に接合しておくことにより、この一体的に接合された端子13及びスリーブ14を、導電性セラミックス部材17Cに対してねじ結合することができる。そのため、これらの端子13及びスリーブ14と、導電性セラミックス部材17Cとを、ろう付けすることを必ずしも要しない。ろう付けしない場合は、ろう付け時の高温で生じる熱応力により、加熱装置30の部材が破損するおそれをなくすことができる。更に、ろう付けが不要となることにより、端子13との接合工程の工数が削減でき、生産性を向上させることができる。なお、ろう付けをしない場合には、導電性セラミックス部材17Cが、所定の雰囲気ガスに触れ、この雰囲気中の酸素により表面酸化される可能性が考えられるが、加熱装置30の使用条件が比較的低温である場合や、非酸化性雰囲気である場合には、導電性セラミックス部材17Cの酸化が抑制され、実用上問題となることはない。
また、図4に示した本実施例の加熱装置30は、端子13が、ろう付けや溶接により一体的に接合されたスリーブ14を介して導電性セラミックス部材17Cとねじ結合している例を図示している。端子13はスリーブ14とねじ部以外の端部でのみ接合されており、端子13は導電性セラミックス部材17Cのねじ穴の底面では接触していない。スリーブ14はねじ部分で導電性セラミックス部材17と嵌合されている。この端子13と導電性セラミックス部材17Cとの間に、熱膨張係数差による応力を緩和するための応力緩和材15を具備していない。すなわち、スリーブ14内の端子13の端面とセラミックス部材17Cのねじ穴底面の間は空洞になっている。この構造によると、ねじ部により導電面積が大きくなるので、ろう付けしなくても十分な導電機能を付与することができる。また、端子13に加えられる荷重はねじ山全体で支持されるため、ねじ穴底のもっとも厚みの小さいセラミックス部分に荷重が集中せず、押込みや引張荷重に対して高い強度を有する。また、空洞により端子13に直接熱が逃げないため、この接合構造が取り付けられる加熱面の表面にクールスポットが発生しなくなるという利点がある。さらに、ねじ部分をロウ付けさせる場合には、スリーブ14が薄肉であることから変形により導電性セラミックス部材17Cとの熱膨張差を吸収するため、強固なろう付け接合を実現できる。ろう付けをした場合は端子13と導電性セラミックスの間の電気的導通もより良い。なお、ねじ結合する部分のスリーブ14の肉厚は、0.3mm以下が望ましい。
図4に図示された例に限られず、端子13が、このスリーブ14を兼ねた形状、すなわち、端子13の先端部に導電性セラミックス部材17Cのねじ溝と嵌まり合うねじ山を有する形状であり、端子13と導電性セラミックス部材17Cとが、直接的にねじ結合やろう付けされる例であってもよい。
次に、図5及び図6を用いて、本発明に係る別の実施例を説明する。図5は、本発明の別の実施例に係る加熱装置40の要部の断面図であり、図6は、図5のV−V線視の断面図である。なお、図5及び図6において、図1〜図4に示した部材と同一の部材については同一の符号を付しており、以下では重複する説明を省略する。
図5及び図6に示した本実施形態に係る加熱装置40は、端子穴11cの底面と、高周波電極12との間に、導電性セラミックス部材17Dが埋設されている。この導電性セラミックス部材17Dは、端子穴11cの底面に露出する部分が凸部の頂部となる、下向きの凸形の形状を有している。この導電性セラミックス部材17Dの凸形の形状に関し、高周波電極12に接する凸部の底部の径Aは、端子穴11cの底面の直径Cよりも大きい。また、端子穴11cの底面に露出する凸部の頂部の径Gは、端子穴11cの底面の直径Cよりも小さい。その点以外は、図1及び図2に示した実施例と同じ構成を有している。また、導電性セラミックス部材17Dは、図1及び図2に示した実施例における導電性セラミックス部材17Aと同じ材料を適用することができる。
図5及び図6に示した本実施例の加熱装置40は、端子穴11cの底面と高周波電極12との間に、導電性セラミックス部材17Dを具備することにより、図1及び図2を用いて説明した先の実施例の加熱装置10と同様の効果を有している。また、本実施例の加熱装置40は、導電性セラミックス部材17Dが高周波電極と接する凸部の底部において、端子穴11cの底面の径よりも大きい形状を有していることから、図3を用いて説明した先の実施例の加熱装置20と同様の効果を有している。
更に、本実施例の加熱装置40は、図6に、端子穴11cの底部に沿って切断した断面図を示すように、端子穴11cの底部において、端子穴11cの底面に露出する凸部の頂部の径Gが、この端子穴11cの底面の直径Cよりも小さい。このことにより、凸部の頂部の径Gは、ろう付けされる領域Hよりも小さい。すなわち、端子穴11cの底面に露出している導電性セラミックス部材17Dの表面が、ろう材により全面的に被覆されていることになる。導電性セラミックス部材17Dの材料は、例えば、先に説明した炭素繊維を7〜14wt%含有する低抵抗窒化アルミニウム系セラミックス材料であり、このような炭素繊維を7〜14wt%含有する窒化アルミニウムは、高温において表面が酸化され易く、空気中で長期間使用することによって電気抵抗が上昇するおそれがある。この点、本実施例の加熱装置20は、上述したように凸部の頂部の径Gが、ろう付けされる領域Hよりも小さく、端子穴11cの底面に露出している導電性セラミックス部材17Dの表面が、ろう材により全面的に被覆されていることから、導電性セラミックス部材17Dが露出している部分がなく、導電性セラミックス部材17Dの表面酸化が抑制され、よって、空気中で長期間使用することによる電気抵抗の変化を防止することができる。
導電性セラミックス部材17Dの凸形状に関し、端子穴11cの底面に露出する凸部の頂部の径Gは、この端子穴11cの底面の直径Cよりも0.5mm以上小さいことが好ましく、凸部の頂部の径Gは具体的には、3〜5mmとすることができる。また、高周波電極12と接する凸部の底部の径Cは、例えば、10mm以上とすることができる。底部の径Cの上限は、特に限定するものではないが、直径が30mmもあれば、十分な効果を得ることができる。また、底部の厚さF1は2mm以上、頂部の厚さF2は1mm以上とすることができる。また、セラミックス基体11の加熱面11aから端子穴11cの底面までの距離Eは、5mmもあれば、十分な信頼性を得ることができる。この距離Eは、5mm以上であってもよいが、あまりに厚いと、製造上の不具合などを発生させるおそれがあるので、上限としては10mm程度とすることが好ましい。
導電性セラミックス部材17Dの凸形状は、図5及び図6に示した例では、底部に円盤状、頂部に円柱状のものを組み合わせた凸形状としているが、この形に限定されるわけではない。もっとも、導電性セラミックスに流れる電流を高周波電極12に等配分するという観点からは、中心軸対称の形状とすることがより好ましい。中心軸対称の形状としては、中心軸を含む断面が台形の組み合わせや、側面が曲面のものや、半楕円形状のものであってもよい。
次に、図7を用いて、本発明に係る加熱装置の別の実施例を説明する。図7は、本発明の別の実施例に係る加熱装置50の要部の断面図である。図7において、図1〜図6に示した部材と同一の部材については同一の符号を付しており、以下では重複する説明を省略する。
図7に示した本実施例に係る加熱装置50は、端子穴11cの底面と、高周波電極12との間に、導電性セラミックス部材17Eが埋設されている。この導電性セラミックス部材17Eは、円盤状であり、高周波電極12と接する部分の径Aが、端子穴11cの底面の直径Cよりも大きい。この導電性セラミックス部材17Eに接して、メッシュ状の金属板18が埋設されている。そして、この金属板18に接した状態で、金属板18と端子穴11cの底面との間に、端子穴11cの直径よりも小さい直径を有する円柱状の金属導電部材21が埋設されている。金属導電部材21の一方の端面は、端子穴11cの底面に露出している。金属導電部材21と応力緩和材15とがロウ付けされることにより、端子13と接続する応力緩和材15と、高周波電極12とは、金属導電部材21、金属板18及び導電性セラミックス部材17Eを介して電気的に接続されている。その点以外は、図5及び図6に示した実施例と同じ構成を有している。また、導電性セラミックス部材17Dは、図5及び図6に示した実施例における導電性セラミックス部材17Dと同じ材料を適用することができる。
図7に示した本実施例の加熱装置50は、金属導電部材21及び導電性セラミックス部材17Eにより凸形の導電部材を構成している。したがって、図5及び図6を用いて先に説明した実施例と同様の効果を有している。加えて、本実施例の加熱装置50凸形の導電部材の頂部を構成する金属導電部材21が、Mo等の金属よりなることから、端子穴11cの底面には、導電性セラミックス部材17Eが露出することはない。したがって、導電性セラミックス部材17Eの酸化による電気抵抗の上昇を防止することができる。
また、金属導電部材21と導電性セラミックス部材17Eとの間に金属板18が埋設されていることから、端子13を端子穴11cに挿入するときの押圧力に対する強度が向上している。
次に、参考のため、比較例として従来の加熱装置の一例を図8に示す。図8は、従来の加熱装置80の要部の断面図である。なお、図8において図1〜7に示した部材と同一の部材については、同一の符号を付して以下では重複する説明を省略する。図8に示された従来の加熱装置80は、セラミックス基体11に埋設された高周波電極12に接して、金属導電材22が埋設されている。この金属導電材22の一方の表面は、端子穴11cの底面に露出しており、この底面において、応力緩和材15とロウ付けされている。このような構造により、高周波電極12と端子13とは、金属導電材22を介して電気的に接続されている。
図8に示された従来の加熱装置80は、金属導電材22がセラミックス基体11に埋設されているが、金属導電材22とその周囲のセラミックス材との熱膨張係数差により、内部応力が生じ、製造工程後にクラックが発生していることがあった。これは、表面11aと電極12の間の誘電体層が1〜1.2mmしかなく、熱膨張係数差に伴う内部応力によって誘電体層が変形するためと考えられる。また、金属導電材22は熱伝導性が良好であるため、セラミックス基体の加熱時には、この金属導電材22から応力緩和材15及び端子13を通じて放熱され、金属導電材22近傍の温度が局所的に低くなり、熱応力を生じるおそれがあった。更に、金属導電材22の直径を大きくすることは、熱膨張係数差によるクラックの発生を招くために制限があり、その制限された直径の金属導電材22に大電流を流すと、電流が集中するので温度が上昇し、加熱面11aにおける均熱性が低下するというおそれがあった。更に、突入電流があると、金属導電材22の温度上昇に伴う熱膨張でクラックが発生するおそれがあった。
これに対して、これまで説明した本発明に係る加熱装置10〜50は、上記した従来の加熱装置80の不具合がない。したがって、本発明に係る加熱装置が従来の加熱装置に対して有利な効果を有していることは明らかである。
次に、本発明に係る加熱装置の製造方法の例について説明する。
まず、セラミックス基体11用の原料セラミックス粉と、導電性セラミックス部材17A〜17E用のセラミックス粉とを、それぞれ調製する。
セラミックス基体11用の原料セラミックス粉は、還元窒化法、気相合成法、直接窒化法等の従来公知の製造方法により得られた窒化アルミニウム原料粉と、所望の体積抵抗率に応じて添加される酸化イットリウム等の希土類酸化物又は希土類酸化物の原料化合物である硝酸塩、硫酸塩、シュウ酸塩、塩化物、アルコキシド等を、所定の配合比で調合し、イソプロピルアルコール等の溶媒を加え、ポットミル、トロンメル又はアトリッションミル等の混合粉砕機を用いて混合する。混合は湿式、乾式いずれでもよく、湿式を用いた場合は、混合後、スプレードライ法等を用い乾燥を行い、原料混合粉を得る。また、真空乾燥法を実施した後に乾燥粉末をふるいをかけ、粒度の調整を行うことが望ましい。
導電性セラミックス部材17A〜17Eのセラミックス粉は、窒化アルミニウム原料粉と炭素繊維と、さらに好ましくは酸化イットリウム等の希土類酸化物とを所定の配合比で調合し、イソプロピルアルコール等の溶媒を加え、ポットミル、トロンメル又はアトリッションミル等の混合粉砕機を用いて混合する。窒化アルミニウム原料粉に対して、導電性セラミックス部材は、希土類酸化物の添加によっても実現可能であるが、炭素繊維の添加による低抵抗セラミックス部材は、焼結体中で導電パスを形成し易く窒化アルミニウムの具備する特性を維持したまま、低い体積抵抗率が得られるために有利である。
炭素繊維としては、例えば、繊維径1μm以下、アスペクト比5以上、より好ましくはアスペクト比10以上の炭素繊維を使用することができる。カーボンナノチューブを使用することもできる。
窒化アルミニウム原料粉に対する炭素繊維の添加量は、最終的に得られる焼結体の用途に必要な電気的特性と物性に合わせて定めればよい。窒化アルミニウム原料粉を100重量部に対し、炭素繊維の添加量は、好ましくは5〜20重量部とすることでセラミックス基体と同等の強度、熱膨張係数を維持しつつ体積抵抗率を10Ωcm以下とすることができる。さらに好ましくは炭素繊維の添加量を10〜15重量部とする。
また、希土類酸化物を加える場合には、好ましくはその配合比は0.2重量部以上20重量部以下、好ましくは10重量部以下とする。
これらの原料粉末の混合は湿式、乾式いずれでもよく、湿式を用いた場合は、混合後、スプレードライ法等を用い乾燥を行い、原料混合粉を得る。また、真空乾燥法を実施した後に乾燥粉末をふるいをかけ、粒度の調整を行うことが望ましい。なお、原料混合粉中にポリビニルアルコール等のバインダ成分を添加することができる。バインダを添加した場合は、脱脂工程を窒素等の不活性雰囲気中で行う方法等により、炭素繊維が酸化消失しないよう注意する必要がある。
次に、セラミックス基体11を製造するに当たり、所望の形状の導電性セラミックス部材17A〜17Eを成形する。導電性セラミックス部材17A〜17Eの成形は、原料セラミックス粉を所望の形状に加圧成形することによって行う。この加圧成形により得られた成形体を焼結して、所定の焼結体としてもよい。要は、導電性セラミックス部材17A〜17Eは、セラミックス基体11の製造過程で、導電性セラミックス部材17A〜17Eの形状を確実に保持できれば、未焼結の成形体であってもよいし、また、焼結体であっても良い。
導電性セラミックス部材17A〜17Eの加圧成形には、金型成形法を用いてもよいし、またCIPを用いてもよく、セラミックス粉を成形するための公知の方法を用いることができる。もっとも、造粒粉をなるべく低い成形圧で作成すると、より好ましい。なぜなら、高い成形圧で成形し、密度の高い成形体は、セラミックス基体の部分的な成形体を成形する時の加圧力により、高周波電極12を変形させるおそれがあるからである。また、この導電性セラミックス部材17A〜17Eの成形体の焼結は、ホットプレス法、常圧焼結法又はHIP等の、公知の焼結方法を用いることができる。このとき成形体の加熱及び焼成時の雰囲気は、真空、不活性、または還元雰囲気として、導電性セラミックス部材17A〜17E中に含有される炭素繊維が酸化、焼失されないようにすることが望ましい。また、焼成温度は、焼結助剤の添加量等によっても異なるが、好ましくは1650℃〜2200℃とする。焼成後に得られた窒化アルミニウム焼結体には、炭素繊維がほぼ原料時の繊維状構造を維持したまま粒界、粒内に分散した状態で残留し、窒化アルミニウム焼結体中で、互いに隣接する炭素繊維と接し、連続する三次元の導電パスを形成する。
次に、セラミックス基体11を作製する。このセラミックス基体11は、その内部に高周波電極12及び抵抗発熱体19を埋設して備えているので、製法の一例としては、セラミックス基体11を厚み方向に分割した、部分的な成形体を作製し、その成形体に高周波電極12、原料セラミックス粉末、抵抗発熱体19及び原料セラミックス粉末を順次積層し、加圧成形して、得られた成形体を最終的に焼結することにより、セラミックス基体11の焼結体を得ることができる。
このセラミックス基体11の作製の過程において、前述したセラミックス基体11を厚み方向に分割した、部分的な成形体は、セラミックス基体11の加熱面となる部分を含む成形体であり、金型による一軸加圧成形により成形することができる。
次に、高周波電極12を、上述の部分的な成形体の一方の表面上に載置する。この高周波電極12には、MoやWなどの金属のバルク体からなる孔明きパターンを持つ面状の電極、より好ましくは、メッシュ状(金網状)の電極を用いることができる。
この高周波電極12上の所定の位置に、前述した導電性セラミックス部材17A〜17E用の成形体又は焼結体を埋め込む。この埋め込みは、例えば、所定の形状の導電性セラミックス部材17A〜17E用の焼結体を、高周波電極12が載置された金型の所定の位置に設置し、そこにセラミック基体の原料粉を流し込んで、原料と一緒に一軸加圧成形することで行うことができる。もしくは、成形体の表面に孔を開け、そこに機械的に厚み方向に押し込むことによって行うことができる。
なお、図7に示す構造を得るには、導電性セラミックス部材17Eを埋め込む際に、導電性セラミックス17E上に同径のMoメッシュ18を設置し、さらにバルク体の金属導電部材21を設置し、セラミック基体の原料粉を流し込んで、原料と一緒に一軸加圧成形する。埋め込む金属導電部材21の直径を3mm以下、高さを2mm以下とすると焼結時におけるセラミックス粉の収縮を妨げないので、より好ましい。
この高周波電極12上の導電性セラミックス部材17A〜17E用の焼結体及びその周囲に、セラミックス基体11の原料セラミックス粉を所定の厚みを形成するための必要量だけ置き、再び一軸加圧成形した後、更に抵抗発熱体19を載置する。この抵抗発熱体19は、コイル状、スパイラル状等の所定形状に加工した金属バルク体からなるMoやW等の高融点金属を用いることができる。
抵抗発熱体19を載置した後、更にセラミックス基体11の原料セラミックス粉末を所定の厚みを形成するための必要量だけ置き、再び一軸加圧成形して成形体を得る。
得られた成形体を、ホットプレス法又は常圧焼結法等を用いて、加熱及び焼成し、焼結体を作製する。この焼成では、ホットプレス法を用いることにより、焼成時に一軸方向の加圧を行うため、電極と窒化アルミニウム焼結体との密着性をより良好なものにできるので有利である。焼成温度は、焼結助剤の添加量等によっても異なるが、好ましくは1650℃〜2200℃とする。このとき焼成時の雰囲気は、真空、不活性、または還元雰囲気とすることが望ましい。
得られたセラミックス基体11の焼結体の電極に近い面(加熱面)を研削加工し、所定厚みの誘電体層を形成し、さらに誘電体層の反対側の面から端子穴11cを穿設し、この端子穴11cにスリーブ14をねじ結合させ、このスリーブの内部空間に応力緩和材15及び端子13をろう付けして加熱装置が得られる。また、所望の形状に機械加工することができるし、また、加熱面の表面粗さ調整をすることもできる。
上述した製造方法に従い、加熱装置を製造した。
直径Φ345mmの金型に、焼結後の厚みが1.5mmとなるように5wt%のY23を含有する窒化アルミニウム粉を入れ、一軸加圧成形により円盤状に成形した。次に、高周波電極となる直径Φ335mmのMoメッシュを置いた。
また、導電性セラミックス部材用に、12wt%の炭素繊維と、5wt%のY23を含有する窒化アルミニウムにより、種々の形状になる導電性セラミックス部材の焼結体をあらかじめ作製した。この円柱状の焼結体の体積抵抗率は0.05Ωcmであり、気孔率は0.2〜6%、熱膨張係数は5.6ppm/Kであった。この焼結体を、上述したMoメッシュ上に置いた。
次に5wt%Y23含有窒化アルミニウム粉を、焼結後の厚みが8.8mmとなるように入れ、再び一軸加圧成形した。更に、Moコイルよりなる抵抗発熱体を設置し、その上から5wt%Y23含有窒化アルミニウム粉を金型に入れて一軸成形し、成形体を得た。
この成形体を、ホットプレス炉内で窒素不活性雰囲気で2100℃で焼成した。
焼成後のヒータープレートは導電性セラミックス部材が高周波電極に接するとともに、周囲のセラミックス基体とは界面なく密着しており、気孔率は0.1%以下であった。なお、セラミックス基体の熱膨張係数は5.7ppm/Kであった。得られたヒータープレートは、厚さが19mmであった。
このヒータープレートの裏面側から、抵抗発熱体の二つの端部及び導電性セラミックス部材又は金属導電部材が露出するように、焼結体に端子穴をあけた。その後、各端子穴に、Ni製の端子を、応力緩和材と金ロウを介して接合した。
このようにして得られた各加熱装置について、このNi製の端子側から加熱面に向けて端子を押し込み、加熱面にクラックが生ずるまでの押し込み荷重を調べた。またNi製の端子に垂直に荷重がかかるように引張試験機にヒーターを設置し、端子の接合部の引っ張り強度を調べた。また、製造中のクラックの発生状況と、常温から600℃まで、加熱−降温を繰り返した300回のヒートサイクル試験後のクラックの発生状況を調べた。
その結果を表1に示す。
Figure 2008130609
表1から分かるように、実施例1〜3は、図1及び図2に示した構造になる加熱装置であり、製造中のクラック発生頻度、300回熱サイクル後のクラック発生は、従来の加熱装置よりも減少し、平均押し込み強度、引張り強度は向上した。
実施例4〜6は、図3に示した構造になる加熱装置であり、導電性セラミックス部材の直径Aが、端子穴の直径Cよりも大きいため、導電性セラミックス部材の電流密度が下がり、抵抗が低い。よって、導電性セラミックス部材の温度上昇を抑えつつ、セラミック部材の厚みBを厚くすることができ、押し込み強度が上昇している。
実施例7〜9は図4に示した構造になる加熱装置であり、導電性セラミックス部材の径Aをより大きくして円筒状にし、ニッケル製のスリーブとの接合をねじのある側面で行っている。これらの実施例では、周囲のセラミックス基体との熱膨張差を吸収するため、接合部のスリーブの肉厚は0.3mm以下が望ましい。実施例7〜9では、端子穴の側面で接合することにより、接合面積拡大の効果が生じ、引張り荷重の強度に現れている。また、導電性セラミックス部材の厚さを、実質的にホットプレートの厚さと誘電体層の厚さDとの差の値まで厚くすることが可能となる。また、導電性セラミックス部材が酸化しないような、例えばN雰囲気の環境においては、導電性セラミックス部材の酸化防止のためのろう材が不要であり、導電性セラミックス部材とスリーブとを、ねじ結合により結合させることができ、ろう接合工程を省略することが可能となる。
次に、図5及び図6並びに図7に示した加熱装置を作成した。これらの加熱装置の製造は、先に述べた実施例と同様にして行い、原料の成分、濃度、ホットプレートの厚み等も同様である。
得られた各加熱装置について、前述の実施例と同様に押し込み荷重やクラックの発生頻度について調査するとともに、加熱面における均熱性及びソーキング後の抵抗変化について調べた。この均熱性は、加熱面における端子中心の位置の温度と、この端子を囲む直径30mmの円上の4点の平均温度の差として表し、高周波電極への電力供給なしの場合と電力供給ありの場合のそれぞれについて調べた。また、ソーキング後の抵抗変化は、ろう付け後、500℃でソーキングした後の抵抗変化を、高周波電極側に孔をあけて、端子と孔に露出した高周波電極との導通を取ることにより測定した。
これらの調査結果を表2に示す。
Figure 2008130609
表2の実施例11〜18は、図5及び図6に示した加熱装置の例であり、実施例19、20は、図7に示した加熱装置の例である。表2に示されたこれらの実施例から、本発明に係る加熱装置は、製造中にクラックが発生せず、端子の押し込みに対して高い強度を有し、高周波電極へ電力を供給しないときの局所的な温度低下が少なく、高周波電極へ電力を供給したときの局所的な温度上昇が少なく、また、加熱を繰り返してもクラックが発生しなかった。また、端子孔の底面の径よりも、その底面に露出している導電性セラミックス部材の凸部の頂部の径が2mm以上小さいことから、導電性セラミックス部材に含まれる炭素繊維(カーボンナノチューブ)の酸化が防止され、電気抵抗の変化が抑制されている。
以上、本発明の加熱装置を実施例及び図面を用いて説明したが、本発明の加熱装置は、これらの実施例及び図面に限定されるものではなく、本発明の趣旨を逸脱しない範囲で幾多の変形が可能である。また、本発明の端子構造は、加熱装置に適用される場合に限られず、静電チャックなど、セラミックスよりなる基体に電極が埋設され、その電極に端子を接続された装置に適用することができる。
本発明の加熱装置の一例を示す断面図である。 図1の加熱装置の要部を示す断面図である。 本発明の加熱装置の他の例の要部を示す断面図である。 本発明の加熱装置の他の例の要部を示す断面図である。 本発明の加熱装置の他の例の要部を示す断面図である。 図5の加熱装置のV−V線視断面図である。 本発明の加熱装置の他の例の要部を示す断面図である。 従来の加熱装置の要部を示す断面図である。
符号の説明
10 加熱装置
11 セラミックス基体
11a 加熱面
11b 裏面
11c 導通穴
12 高周波電極
13 端子
14 スリーブ
15 応力緩和材
16 ろう材
17A〜17E 導電性セラミックス部材

Claims (8)

  1. 絶縁性セラミックスを主成分とする板状の基体と、
    この基体の一方の表面近傍に埋設された平板状の電極と、
    この基体の他方の表面から前記電極に向けて穿設された端子穴に挿入され、前記電極と導通する端子と
    を備え、かつ、
    前記端子穴の底面と、前記電極との間に、前記基体の絶縁性セラミックスと同等の熱膨張係数を有する導電性セラミックス部材が前記電極に接続して埋設され、この導電性セラミックス部材を介して前記電極と前記端子とが電気的に接続されることを特徴とする加熱装置。
  2. 前記導電性セラミックス部材は板状であり、その平面の長さが、前記端子穴の底面の直径よりも大きいものであることを特徴とする請求項1に記載の加熱装置。
  3. 前記導電性セラミックス部材は、前記端子穴の底面部及び側面部を含む凹形状であり、この端子穴の側面に、ねじ溝が形成されていることを特徴とする請求項1に記載の加熱装置。
  4. 前記導電性セラミックス部材は、前記端子穴の底面に頂面が露出する凸形状であり、この頂面の長さが、前記端子穴の底面の直径よりも小さいものであることを特徴とする請求項1に記載の加熱装置。
  5. 前記導電性セラミックス部材と前記端子穴の底面との間に、前記端子穴の底面に露出する部分の平面の長さが、前記端子穴の底面の直径よりも小さい金属電極材を更に有することを特徴とする請求項1に記載の加熱装置。
  6. 前記導電性セラミックス部材が、電気伝導率が10Ω・cm以下であることを特徴とする請求項1〜5のいずれか1項に記載の加熱装置。
  7. 前記導電性セラミックス部材が、炭素繊維を含む窒化アルミニウムよりなることを特徴とする請求項6に記載の加熱装置。
  8. 基体と導電性セラミックス部材とが、同種のセラミックスを主成分とすることを特徴とする請求項1〜7のいずれか1項に記載の加熱装置。
JP2006310521A 2006-11-16 2006-11-16 加熱装置 Active JP4421595B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006310521A JP4421595B2 (ja) 2006-11-16 2006-11-16 加熱装置
US11/939,601 US8071913B2 (en) 2006-11-16 2007-11-14 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310521A JP4421595B2 (ja) 2006-11-16 2006-11-16 加熱装置

Publications (2)

Publication Number Publication Date
JP2008130609A true JP2008130609A (ja) 2008-06-05
JP4421595B2 JP4421595B2 (ja) 2010-02-24

Family

ID=39415891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310521A Active JP4421595B2 (ja) 2006-11-16 2006-11-16 加熱装置

Country Status (2)

Country Link
US (1) US8071913B2 (ja)
JP (1) JP4421595B2 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188389A (ja) * 2008-01-08 2009-08-20 Ngk Insulators Ltd 接合構造及び半導体製造装置
JP2010056040A (ja) * 2008-08-29 2010-03-11 Taiheiyo Cement Corp セラミックス部材
JP2010177415A (ja) * 2009-01-29 2010-08-12 Kyocera Corp 保持用治具およびこれを備えた吸着装置
WO2012043441A1 (ja) * 2010-09-29 2012-04-05 住友大阪セメント株式会社 セラミック部材
KR101339981B1 (ko) * 2011-11-29 2013-12-11 (주)티티에스 기판 지지 모듈
WO2013183862A1 (ko) * 2012-06-04 2013-12-12 주식회사 케이에스엠컴포넌트 세라믹 히터용 전기 단자 구조
KR101488806B1 (ko) * 2013-06-04 2015-02-04 (주)티티에스 기판 지지 유닛
JP2015050025A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 セラミックヒータ
JP2017098507A (ja) * 2015-11-27 2017-06-01 日本特殊陶業株式会社 端子を備えた部材及びその製造方法
JP2017117658A (ja) * 2015-12-24 2017-06-29 京セラ株式会社 ヒータ
JP2018073657A (ja) * 2016-10-31 2018-05-10 信越化学工業株式会社 加熱素子
JP6586259B1 (ja) * 2018-04-27 2019-10-02 日本碍子株式会社 ウエハ支持台
JP2019175995A (ja) * 2018-03-28 2019-10-10 京セラ株式会社 試料保持具
JP2019185905A (ja) * 2018-04-04 2019-10-24 日本特殊陶業株式会社 セラミックス部材および緩衝部材の製造方法
WO2019208191A1 (ja) * 2018-04-27 2019-10-31 日本碍子株式会社 ウエハ支持台
WO2020196339A1 (ja) * 2019-03-26 2020-10-01 日本特殊陶業株式会社 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
JP2020177735A (ja) * 2019-04-15 2020-10-29 日本特殊陶業株式会社 電極埋設部材の製造方法
JP2020191199A (ja) * 2019-05-21 2020-11-26 日本特殊陶業株式会社 加熱装置および加熱装置の製造方法
JP2021009910A (ja) * 2019-07-01 2021-01-28 日本碍子株式会社 ウエハ載置台及びその製法
JP2021027180A (ja) * 2019-08-06 2021-02-22 日本特殊陶業株式会社 保持装置
JP2021075401A (ja) * 2019-11-05 2021-05-20 日本特殊陶業株式会社 複合部材
WO2024047857A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 ウエハ載置台
WO2024047858A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 ウエハ載置台

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450353B (zh) * 2008-01-08 2014-08-21 Ngk Insulators Ltd A bonding structure and a semiconductor manufacturing apparatus
JP5807032B2 (ja) * 2012-03-21 2015-11-10 日本碍子株式会社 加熱装置及び半導体製造装置
JP2016535389A (ja) * 2013-10-01 2016-11-10 ワンサブシー アイピー ユーケー リミティド 導電体及び該導電体を製造する方法
JP6497248B2 (ja) * 2015-07-13 2019-04-10 住友電気工業株式会社 ウェハ保持体
KR102298654B1 (ko) * 2017-04-19 2021-09-07 주식회사 미코세라믹스 내구성이 개선된 세라믹 히터
WO2019065464A1 (ja) * 2017-09-28 2019-04-04 京セラ株式会社 構造体
KR102259995B1 (ko) * 2017-10-30 2021-06-02 니뽄 도쿠슈 도교 가부시키가이샤 전극 매설 부재
JP7284561B2 (ja) * 2017-10-30 2023-05-31 日本特殊陶業株式会社 電極埋設部材
TWI713098B (zh) * 2017-10-30 2020-12-11 日商日本特殊陶業股份有限公司 電極埋設構件
US20210400800A1 (en) * 2018-10-30 2021-12-23 Kyocera Corporation Board-like structure and heater system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813654B2 (ja) 1995-02-09 2006-08-23 日本碍子株式会社 セラミックスの接合構造およびその製造方法
US5633073A (en) * 1995-07-14 1997-05-27 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and eutectic connection
US5817406A (en) * 1995-07-14 1998-10-06 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and brazing material connection
JP3790000B2 (ja) 1997-01-27 2006-06-28 日本碍子株式会社 セラミックス部材と電力供給用コネクターとの接合構造
JP2000106391A (ja) * 1998-07-28 2000-04-11 Ngk Insulators Ltd 半導体支持装置、その製造方法、接合体の製造方法および接合体
JP4005268B2 (ja) * 1999-06-01 2007-11-07 日本碍子株式会社 セラミックスと金属との接合構造およびこれに使用する中間挿入材
WO2001066488A1 (fr) * 2000-03-07 2001-09-13 Ibiden Co., Ltd. Substrat ceramique pour fabrication/inspection de semi-conducteur
JP3618640B2 (ja) * 2000-06-15 2005-02-09 イビデン株式会社 半導体製造・検査装置用ホットプレート
JP4156788B2 (ja) * 2000-10-23 2008-09-24 日本碍子株式会社 半導体製造装置用サセプター
JP2003077781A (ja) 2001-08-31 2003-03-14 Ibiden Co Ltd 半導体製造・検査装置用セラミックヒータ
US6838646B2 (en) * 2002-08-22 2005-01-04 Sumitomo Osaka Cement Co., Ltd. Susceptor device
JP4451098B2 (ja) 2002-08-22 2010-04-14 住友大阪セメント株式会社 サセプタ装置
JP4499431B2 (ja) * 2003-07-07 2010-07-07 日本碍子株式会社 窒化アルミニウム焼結体、静電チャック、導電性部材、半導体製造装置用部材及び窒化アルミニウム焼結体の製造方法
JP4482472B2 (ja) * 2005-03-24 2010-06-16 日本碍子株式会社 静電チャック及びその製造方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188389A (ja) * 2008-01-08 2009-08-20 Ngk Insulators Ltd 接合構造及び半導体製造装置
JP2010056040A (ja) * 2008-08-29 2010-03-11 Taiheiyo Cement Corp セラミックス部材
JP2010177415A (ja) * 2009-01-29 2010-08-12 Kyocera Corp 保持用治具およびこれを備えた吸着装置
US9776380B2 (en) 2010-09-29 2017-10-03 Sumitomo Osaka Cement Co., Ltd. Ceramic member
WO2012043441A1 (ja) * 2010-09-29 2012-04-05 住友大阪セメント株式会社 セラミック部材
JP2012072025A (ja) * 2010-09-29 2012-04-12 Sumitomo Osaka Cement Co Ltd セラミック部材
KR101339981B1 (ko) * 2011-11-29 2013-12-11 (주)티티에스 기판 지지 모듈
WO2013183862A1 (ko) * 2012-06-04 2013-12-12 주식회사 케이에스엠컴포넌트 세라믹 히터용 전기 단자 구조
KR101488806B1 (ko) * 2013-06-04 2015-02-04 (주)티티에스 기판 지지 유닛
JP2015050025A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 セラミックヒータ
JP2017098507A (ja) * 2015-11-27 2017-06-01 日本特殊陶業株式会社 端子を備えた部材及びその製造方法
JP2017117658A (ja) * 2015-12-24 2017-06-29 京セラ株式会社 ヒータ
JP2018073657A (ja) * 2016-10-31 2018-05-10 信越化学工業株式会社 加熱素子
JP7027219B2 (ja) 2018-03-28 2022-03-01 京セラ株式会社 試料保持具
JP2019175995A (ja) * 2018-03-28 2019-10-10 京セラ株式会社 試料保持具
JP7010750B2 (ja) 2018-04-04 2022-01-26 日本特殊陶業株式会社 セラミックス部材および緩衝部材の製造方法
JP2019185905A (ja) * 2018-04-04 2019-10-24 日本特殊陶業株式会社 セラミックス部材および緩衝部材の製造方法
KR20200014354A (ko) 2018-04-27 2020-02-10 엔지케이 인슐레이터 엘티디 웨이퍼 지지대
WO2019208191A1 (ja) * 2018-04-27 2019-10-31 日本碍子株式会社 ウエハ支持台
US11469129B2 (en) 2018-04-27 2022-10-11 Ngk Insulators, Ltd. Wafer support table
JP6586259B1 (ja) * 2018-04-27 2019-10-02 日本碍子株式会社 ウエハ支持台
KR102331072B1 (ko) 2018-04-27 2021-11-29 엔지케이 인슐레이터 엘티디 웨이퍼 지지대
WO2020196339A1 (ja) * 2019-03-26 2020-10-01 日本特殊陶業株式会社 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
CN113196870B (zh) * 2019-03-26 2023-09-29 日本特殊陶业株式会社 电极埋设构件和其制造方法、静电卡盘、陶瓷制加热器
JPWO2020196339A1 (ja) * 2019-03-26 2021-04-08 日本特殊陶業株式会社 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
CN113196870A (zh) * 2019-03-26 2021-07-30 日本特殊陶业株式会社 电极埋设构件和其制造方法、静电卡盘、陶瓷制加热器
JP2020177735A (ja) * 2019-04-15 2020-10-29 日本特殊陶業株式会社 電極埋設部材の製造方法
JP7265930B2 (ja) 2019-05-21 2023-04-27 日本特殊陶業株式会社 加熱装置および加熱装置の製造方法
JP2020191199A (ja) * 2019-05-21 2020-11-26 日本特殊陶業株式会社 加熱装置および加熱装置の製造方法
JP7143256B2 (ja) 2019-07-01 2022-09-28 日本碍子株式会社 ウエハ載置台及びその製法
JP2021009910A (ja) * 2019-07-01 2021-01-28 日本碍子株式会社 ウエハ載置台及びその製法
JP2021027180A (ja) * 2019-08-06 2021-02-22 日本特殊陶業株式会社 保持装置
JP2021075401A (ja) * 2019-11-05 2021-05-20 日本特殊陶業株式会社 複合部材
JP7356868B2 (ja) 2019-11-05 2023-10-05 日本特殊陶業株式会社 複合部材
WO2024047857A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 ウエハ載置台
WO2024047858A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 ウエハ載置台

Also Published As

Publication number Publication date
US8071913B2 (en) 2011-12-06
JP4421595B2 (ja) 2010-02-24
US20080116187A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4421595B2 (ja) 加熱装置
JP4542485B2 (ja) アルミナ部材及びその製造方法
JP5117146B2 (ja) 加熱装置
JP3790000B2 (ja) セラミックス部材と電力供給用コネクターとの接合構造
KR101099891B1 (ko) 접합 구조체 및 그 제조 방법
KR102103705B1 (ko) 세라믹스 부재
JP4531004B2 (ja) 加熱装置
JPWO2005117492A1 (ja) セラミックヒータ及びそれを用いたグロープラグ
TWI480972B (zh) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus comprising the same
JP5591627B2 (ja) セラミックス部材及びその製造方法
JP4482535B2 (ja) 加熱装置
JP5345449B2 (ja) 接合構造体及びその製造方法
JP4005268B2 (ja) セラミックスと金属との接合構造およびこれに使用する中間挿入材
JP4321857B2 (ja) セラミックスの接合構造
JP2005085657A (ja) セラミックヒータ
JP4596883B2 (ja) 環状ヒータ
JP2005032842A (ja) 電極構造およびセラミック接合体
US20040146737A1 (en) Joined structures of ceramics
JP3568194B2 (ja) 半導体熱処理用セラミックヒーター
JP2020126913A (ja) セラミックス部材
JP2006191124A (ja) 被処理物保持体、処理装置および半導体製造装置用セラミックスサセプタ
JP7143256B2 (ja) ウエハ載置台及びその製法
WO2022209619A1 (ja) ウエハ支持台及びrfロッド
JP2019009021A (ja) セラミックス部材及びその製造方法
KR100794960B1 (ko) 하이브리드형 히터 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4