WO2012043441A1 - セラミック部材 - Google Patents

セラミック部材 Download PDF

Info

Publication number
WO2012043441A1
WO2012043441A1 PCT/JP2011/071822 JP2011071822W WO2012043441A1 WO 2012043441 A1 WO2012043441 A1 WO 2012043441A1 JP 2011071822 W JP2011071822 W JP 2011071822W WO 2012043441 A1 WO2012043441 A1 WO 2012043441A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
conductive
yttrium oxide
insulating
thermal expansion
Prior art date
Application number
PCT/JP2011/071822
Other languages
English (en)
French (fr)
Inventor
慎太郎 林
石塚 雅之
和人 安藤
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/876,466 priority Critical patent/US9776380B2/en
Publication of WO2012043441A1 publication Critical patent/WO2012043441A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
    • C04B2237/584Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives the different additives being fibers or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix

Definitions

  • the present invention relates to a ceramic member, and more particularly, to a ceramic member suitable for use in an etching apparatus, a CVD apparatus, an ashing apparatus or the like using plasma.
  • the above-mentioned member includes a member that needs conductivity, such as a plasma focus ring having a function of converging plasma on the wafer surface and a showerhead electrode having a role as an electrode, while a chamber wall that transmits high frequency.
  • Some members need insulating properties, such as a pedestal for holding a wafer, a focus ring and a clamp ring for holding a wafer, and a jig for fixing an electrode. Therefore, insulating ceramics and conductive ceramics are properly used depending on the application.
  • oxide ceramics such as aluminum oxide (Al 2 O 3 ) and yttrium oxide (Y 2 O 3 ) are used.
  • a conductive material such as silicon carbide (SiC), carbon (C), metal or the like is added to ceramics such as silicon carbide (SiC) that expresses conductivity alone or insulating ceramics.
  • SiC silicon carbide
  • a composite ceramic composite is used.
  • a ceramic member in which insulating ceramics and conductive ceramics are combined and used is used.
  • This ceramic member is obtained by processing insulating ceramics and conductive ceramics into predetermined shapes and bonding them with an adhesive, or mechanically joining them with clamps, screws, bolts, or the like.
  • an adhesive an organic adhesive such as epoxy cannot be used from the viewpoint of corrosion resistance and heat resistance, and therefore an inorganic adhesive is used. In this case, the thermal expansion coefficient of the adhesive is adjusted to one of insulating ceramics or conductive ceramics.
  • the thermal expansion coefficient of this adhesive can be matched only to either insulating ceramics or conductive ceramics. There is a problem that peeling may occur at the interface with ceramics that do not match. Similarly, when mechanically joined, stress generated by thermal expansion mismatch is applied to the ceramic member, which causes a problem that the ceramic member itself is broken.
  • the present invention has been made in view of the above circumstances, and the difference in coefficient of thermal expansion between the insulating ceramics and the conductive ceramics is extremely small. Therefore, the heat between the insulating ceramics and the conductive ceramics is It is an object of the present invention to provide a ceramic member that does not have a risk of mismatch due to a difference in expansion, and that does not have a risk of occurrence of problems such as breakage, cracks, peeling, and destruction.
  • the present inventors have found that conductive ceramics containing yttrium oxide as a main component and containing 0.1% to 3% by volume of a fibrous conductive material If the insulating ceramic mainly composed of yttrium oxide is bonded or bonded, the difference in thermal expansion coefficient between the insulating ceramic and the conductive ceramic is extremely small. It has been found that there is no possibility of mismatch due to the difference in thermal expansion between them, and there is obtained a ceramic member that does not have the possibility of occurrence of defects such as cracks, peeling and destruction, and the present invention has been completed.
  • the ceramic member of the present invention is composed of conductive ceramics containing yttrium oxide as a main component and containing 0.1% by volume or more and 3% by volume or less of a fibrous conductive material, and insulation containing yttrium oxide as a main component. It is characterized in that it is formed by adhering or bonding a functional ceramic.
  • the fibrous conductive material is preferably a nanofiber having an aspect ratio of 10 or more.
  • the nanofiber is preferably a carbon nanotube. It is preferable that the conductive ceramic and the insulating ceramic are bonded through an adhesive layer made of an inorganic adhesive. It is preferable that the thermal expansion coefficient of the conductive ceramics and the insulating ceramic and the thermal expansion coefficient of the adhesive layer substantially coincide. The conductive ceramic and the insulating ceramic may be heat bonded.
  • the difference between the thermal expansion coefficient of the insulating ceramic and the thermal expansion coefficient of the conductive ceramic can be made extremely small. Mismatch due to thermal expansion difference can be eliminated.
  • problems such as breakage, cracks, peeling and destruction
  • contamination of the wafer or the like can be suppressed when this ceramic member is applied to a semiconductor manufacturing apparatus.
  • FIG. 1 is a cross-sectional view showing a ceramic member according to a first embodiment of the present invention.
  • reference numeral 1 denotes a ceramic member, and a conductive ceramic 2 and an insulating ceramic 3 are bonded together by an adhesive layer 4. It is integrated.
  • the conductive ceramic 2 is a ceramic containing yttrium oxide as a main component and containing 0.1% by volume to 3% by volume of a fibrous conductive material, having a relative density of 95% or more and a volume resistivity value. 0.5 ⁇ ⁇ cm or more and 10 ⁇ ⁇ cm or less.
  • yttrium oxide (Y 2 O 3 ) particles having particularly high corrosion resistance against halogen-based plasma constitute a matrix.
  • the average particle diameter of the yttrium oxide particles is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the reason why the average particle diameter of the yttrium oxide particles is limited to 0.1 ⁇ m or more and 10 ⁇ m or less is that if the average particle diameter is less than 0.1 ⁇ m, the total number of grain boundaries of yttrium oxide in the conductive ceramic increases. In order to develop conductivity, it is necessary to increase the addition amount of the fibrous conductive material.
  • the addition amount of the fibrous conductive material is not preferable because the corrosion resistance is lowered.
  • the thickness exceeds 10 ⁇ m, the amount of fibrous conductive material added decreases, so that the conductivity is improved.
  • the fibrous conductive material becomes locally localized. In other words, the electrical conductivity in the conductive ceramics is uneven, and abnormal discharge may occur when applied to vacuum process equipment. Since undesirable.
  • the fibrous conductive material is three-dimensionally dispersed.
  • the fibrous conductive material is dispersed in three dimensions means that the fibrous conductive material is randomly arranged without exhibiting a specific orientation, and between the yttrium oxide particles (grain boundaries). It means that it is dispersed. That is, when taking a certain volume from the conductive ceramic 2 and taking the average value in the longitudinal direction of each of the fibrous conductive materials contained in this volume, this average value becomes zero.
  • This fibrous conductive material is preferably one that does not melt, disappear, or change quality in the operating atmosphere or temperature range.
  • the aspect ratio (length / Diameter) needs to be 10 or more.
  • the nanofibers include carbon nanofibers and metal nanofibers. Among these, carbon nanofibers are preferable, and carbon nanofibers are preferable.
  • an aspect ratio (length / diameter) of 10 or more for example, a single-walled carbon nanotube (SWCNT: Single ⁇ Walled ⁇ Carbon Nanotube) having a diameter of 30 nm or less and a length of 10 ⁇ m or less, a double-walled carbon nanotube (DWCNT: Double One type or two or more types selected from the group of Walled® Carbon® Nanotube) and multi-walled carbon nanotubes (MWCNT: Multi® Walled® Carbon® Nanotube) are used.
  • SWCNT Single ⁇ Walled ⁇ Carbon Nanotube
  • DWCNT Double One type or two or more types selected from the group of Walled® Carbon® Nanotube
  • MWCNT Multi® Walled® Carbon® Nanotube
  • This fibrous conductive material is randomly present between yttrium oxide particles (grain boundaries) due to its anisotropic shape, so that these fibrous conductive materials are partly in contact with each other and are three-dimensional. Thus, a conductive path is formed at the grain boundary in the conductive ceramic 2. Therefore, by adding a very small amount of fibrous conductive material of 0.1% by volume or more and 3% by volume or less, the conductive ceramics 2 can develop conductivity of about 1 to 100 ⁇ ⁇ cm, and The coefficient of thermal expansion hardly changes.
  • the fibrous conductive material is not necessarily present between yttrium oxide particles (grain boundaries), and there may be a grain boundary where no fibrous conductive material is present.
  • This fibrous conductive material exists in a matrix composed of yttrium oxide particles as a single fibrous conductive material or as an aggregate in which a plurality of single fibrous conductive materials are aggregated.
  • the aggregate diameter (diameter of the aggregate) is 5 ⁇ m or less, preferably 2 ⁇ m or less.
  • the fibrous conductive material tends to disappear due to the halogen-based plasma, the corrosion resistance is lowered, the conductivity is lowered, and the generation of particles is not preferable.
  • the aggregate portion is selectively consumed by plasma, resulting in a decrease in corrosion resistance, a decrease in conductivity, and generation of particles.
  • the content of the fibrous conductive substance is preferably 0.1% by volume or more and 3% by volume or less, more preferably 0.5% by volume or more and 2% by volume or less.
  • the content of the fibrous conductive material is lower than 0.1% by volume, the formation of the conductive path becomes insufficient, and the conductivity required for the conductive ceramic 2 cannot be expressed.
  • the content of the fibrous conductive material exceeds 3% by volume, it becomes easy for the fibrous conductive material to form coarse aggregates larger than 10 ⁇ m, and the corrosion resistance decreases.
  • the conductive ceramic 2 is as dense as 95% or more when the relative density, that is, the ratio (d 0 / d t ) of the true density (d 0 ) to the theoretical density (d t ) is expressed as a percentage. ing.
  • the volume specific resistance value of the conductive ceramic 2 is 0.5 ⁇ ⁇ cm to 10 ⁇ ⁇ cm.
  • the volume resistivity value of the conductive ceramic 2 is 0.5 ⁇ ⁇ cm to 10 ⁇ ⁇ cm.
  • it is necessary to increase the content of the fibrous conductive material but when the content is increased, the fibrous conductive material Is not preferred because it tends to cause aggregation and the corrosion resistance decreases. Also, it is not economical in terms of cost.
  • the volume resistivity exceeds 10 ⁇ ⁇ cm, it is difficult to achieve electrical compatibility with the vacuum process equipment members used at the same time when used under various conditions in various vacuum process equipment. This is not preferable because of the above restrictions.
  • This conductive ceramic 2 is excellent in corrosion resistance and thermal conductivity against halogen-based corrosive gases and their plasmas, and has excellent volume resistivity of 10 ⁇ ⁇ cm or less.
  • This conductive ceramic 2 exhibits conductivity by adding an extremely small amount of fibrous conductive material of 0.1% by volume or more and 3% by volume or less to insulating ceramics mainly composed of yttrium oxide. Compared with insulating ceramics mainly composed of yttrium oxide, physical properties other than conductivity, such as the coefficient of thermal expansion and plasma corrosion resistance, are not changed.
  • the insulating ceramic 3 is a ceramic mainly composed of yttrium oxide, and is composed of yttrium oxide (Y 2 O 3 ) particles that have particularly high corrosion resistance against halogen-based plasma. Since the yttrium oxide particles are the same as the yttrium oxide particles used for the conductive ceramics 2, description thereof is omitted.
  • the relative density that is, the ratio (d 0 / d t ) of the true density (d 0 ) to the theoretical density (d t ) is expressed as a percentage. % And more precise.
  • the insulating ceramic 3 has a volume resistivity of 10 8 ⁇ ⁇ cm or more, and is extremely excellent in insulating properties.
  • the adhesive layer 4 is for bonding and integrating the conductive ceramic 2 and the insulating ceramic 3, and the thermal expansion coefficient thereof substantially matches the thermal expansion coefficient of the conductive ceramic 2 and the insulating ceramic 3. ing.
  • an inorganic adhesive having sufficient resistance even in a high temperature atmosphere of 1000 ° C. or higher is preferably used.
  • the inorganic adhesive include an alkali metal silicate adhesive and silica sol. Based adhesives, metal alkoxide based adhesives, and the like.
  • the thermal expansion coefficient of the conductive ceramic 2 and the insulating ceramic 3 and the thermal expansion coefficient of the adhesive layer 4 are substantially the same.
  • substantially coincide means that the thermal expansion coefficient of the conductive ceramic 2 and the insulating ceramic 3 and the thermal expansion coefficient of the adhesive layer 4 coincide within a range of ⁇ 10%.
  • the thermal expansion coefficient of the insulating ceramic 3 made of yttrium oxide is 8 ⁇ 10 ⁇ 6 / ° C.
  • the thermal expansion coefficient of the conductive ceramic 2 made of yttrium oxide containing 1% by volume of single-walled carbon nanotubes (SWCNT) is 7
  • the thermal expansion coefficient of the adhesive layer 4 is 8 ⁇ 10 ⁇ 6 / ° C.
  • the ceramic member 1 in which the conductive ceramic 2 and the insulating ceramic 3 are bonded and integrated by the adhesive layer 4 is mismatched due to the difference in thermal expansion between the conductive ceramic 2 and the insulating ceramic 3 and the adhesive layer 4.
  • the adhesive layer 4 is resistant to use at 1000 ° C. or higher depending on the material of the adhesive layer 4.
  • the conductive ceramic 2 and the insulating ceramic 3 are produced.
  • the conductive ceramic 2 is obtained by mixing an yttrium oxide slurry and a fibrous conductive material slurry to form a mixed slurry, then spray-drying the mixed slurry and granulating the resulting granulated powder using a mold. It can be produced by forming into a desired shape and firing the molded body in an inert atmosphere.
  • the yttrium oxide slurry in which the yttrium oxide particles are uniformly dispersed in the dispersion medium and the fibrous conductive material slurry in which the fibrous conductive material is uniformly dispersed in the dispersion medium are separately prepared in advance. To do.
  • yttrium oxide particles are added to a dispersion medium and mixed so that the content thereof is 30% by mass or more and 50% by mass or less.
  • the reason why the content of the yttrium oxide particles is 30% by mass or more and 50% by mass or less is that when the mixed slurry is prepared by mixing the yttrium oxide slurry and the fibrous conductive material slurry, This is to prevent the viscosity from increasing.
  • a fibrous conductive substance (solid content) is added to the dispersion medium so that the content thereof is 0.5 mass% or more and 2 mass% or less. Then, the mixture containing the fibrous conductive material and the dispersion medium is subjected to a dispersion treatment.
  • the reason why the content of the fibrous conductive material in the fibrous conductive material slurry is 0.5% by mass or more and 2% by mass or less is that the content of the fibrous conductive material exceeds 2% by mass.
  • the fibrous conductive material slurry becomes highly viscous, making it difficult to peptize and disperse the fibrous conductive material aggregate, and further, yttrium oxide. This is because there is a problem that a uniform mixed slurry cannot be obtained when mixed with the slurry.
  • the lower limit of the content of the fibrous conductive material is preferably 0.5% by mass.
  • the average secondary particle diameter of the fibrous conductive material in the fibrous conductive material slurry is preferably 2 ⁇ m or less.
  • the fibrous conductive material aggregates when mixed with yttrium oxide slurry and dried, and then sintered in the sintered body obtained after firing.
  • the aggregate of the fibrous conductive material becomes coarse and the corrosion resistance is lowered, which is not preferable.
  • the fibrous conductive material is re-agglomerated in the mixed slurry and during drying when mixed with the yttrium oxide slurry. Can be deterred.
  • the fibrous conductive material in the sintered body can be three-dimensionally dispersed in the grain boundaries of the yttrium oxide particles without forming coarse aggregates, thereby efficiently forming a conductive path. .
  • water and organic solvents can be used as a dispersion medium used for these yttrium oxide slurry and fibrous conductive material slurry.
  • the organic solvent include monohydric alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol and modified products thereof; alcohols belonging to monocyclic monoterpenes such as ⁇ -terpineol; and carbitols such as butyl carbitol.
  • Esters such as ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, butyl carbitol acetate, ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), Ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethyl Ethers such as lenglycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, cyclohexanone; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene; dimethylformamide
  • a dispersant or a binder may be added when preparing these slurries.
  • the dispersant and binder for example, polycarboxylic acid salts such as polycarboxylic acid ammonium salt, organic polymers such as polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone are used.
  • the pre-dispersion method is not particularly limited, and examples thereof include a high speed homogenizer. Although it does not specifically limit as a subsequent dispersion process, Dispersers, such as an ultrasonic homogenizer, a bead mill, and an ultrahigh pressure grinder, are used.
  • the yttrium oxide slurry and the fibrous conductive material slurry are obtained by adding 0.1% to 3% by volume, preferably 0.5% to 2% by volume of the fibrous conductive material with respect to yttrium oxide. % To make a mixed slurry.
  • a mixing method For example, the method of combining a rotary 2 blade type homogenizer and a wet ball mill is used.
  • the mixed slurry is granulated by a spray drying method to obtain a granulated powder composed of mixed particles of yttrium oxide particles and a fibrous conductive substance.
  • the mixed slurry is sprayed into a heated air stream and dried to rapidly dry the mixed particles containing these while maintaining the dispersibility of the yttrium oxide particles and the fibrous conductive material in the mixed slurry. And can be granulated.
  • the spray drying conditions of the mixed slurry are appropriately adjusted so as to obtain a granulated powder having such a size as to obtain good characteristics in the subsequent baking step. For example, the spray drying conditions of the mixed slurry are adjusted so that the average particle diameter of the granulated powder is 30 ⁇ m to 100 ⁇ m.
  • the granulated powder is molded using a mold to form a molded body having a desired shape, and the molded body is fired in an inert atmosphere.
  • an organic solvent etc. are contained in the molded object, it is preferable to perform temporary baking at a temperature lower than the baking temperature and then to perform main baking.
  • an inert atmosphere such as nitrogen (N 2 ) or argon (Ar) is preferable because it is necessary to prevent oxidation of the fibrous conductive material.
  • the firing temperature is preferably 1600 ° C. or higher and 1850 ° C. or lower.
  • the reason why the firing temperature is preferably 1600 ° C. or more and 1850 ° C. or less is that when the firing temperature is less than 1600 ° C., the fibrous conductive material inhibits the sintering of yttrium oxide, and a dense sintered body is obtained.
  • the firing temperature exceeds 1850 ° C. the yttrium oxide and the fibrous conductive substance react directly to form a carbide.
  • the firing time may be a time sufficient to obtain a dense sintered body, and is, for example, 1 to 6 hours. As described above, it is possible to obtain the conductive ceramic 2 capable of expressing the conductivity of 10 ⁇ ⁇ cm or less without cutting the conductive path formed by the fibrous conductive material.
  • Insulating ceramics 3 is prepared by spray drying and using the yttrium oxide slurry instead of the mixed slurry obtained by mixing the yttrium oxide slurry and the fibrous conductive material slurry. It can be produced by granulating and molding the resulting granulated powder using a mold to form a molded body having a desired shape and firing the molded body in an inert atmosphere. The steps after spray drying are exactly the same as the method for manufacturing the conductive ceramic 2.
  • the conductive ceramic 2 and the insulating ceramic 3 thus obtained are subjected to shape processing as necessary, and the above-described inorganic adhesion is applied to at least one of the bonding surfaces of the conductive ceramic 2 and the insulating ceramic 3. Apply material.
  • the kind and amount of the inorganic material contained in the inorganic adhesive are adjusted so that the thermal expansion coefficients of the conductive ceramics 2 and the insulating ceramics 3 and the thermal expansion coefficient of the adhesive layer 4 substantially coincide.
  • the conductive ceramics 2 and the insulating ceramics 3 are temporarily bonded via the inorganic adhesive, and the inorganic adhesive is cured by heating in the temporarily bonded state to form the adhesive layer 4.
  • the ceramic member 1 in which the conductive ceramic 2 and the insulating ceramic 3 are bonded and integrated by the adhesive layer 4 is obtained.
  • the conductive ceramic 2 comprising yttrium oxide as a main component and containing 0.1 to 3% by volume of a fibrous conductive material; Since the insulating ceramic 3 mainly composed of yttrium oxide is bonded and integrated by the adhesive layer 4 having substantially the same thermal expansion coefficient, the thermal expansion coefficient of the insulating ceramic 3 and the thermal expansion coefficient of the conductive ceramic 2 are Difference can be made extremely small, mismatch due to thermal expansion difference between the insulating ceramic 3 and the conductive ceramic 2 can be eliminated, and there is no possibility of causing problems such as breakage, cracks, peeling and destruction. As described above, it is possible to provide the ceramic member 1 which is excellent in corrosion resistance against plasma and corrosive halogen gas and has no fear of occurrence of problems such as breakage, cracks, peeling and destruction.
  • FIG. 2 is a cross-sectional view showing a ceramic member according to the second embodiment of the present invention.
  • the ceramic member 11 according to the present embodiment is different from the ceramic member 1 according to the first embodiment in the first embodiment.
  • the conductive ceramic 2 and the insulating ceramic 3 are bonded by the adhesive layer 4 having substantially the same thermal expansion coefficient, whereas in the ceramic member 11 of the present embodiment, the conductive ceramic 2 and the insulating ceramic 3 are insulated.
  • the surface (one main surface) 2a and 3a are joined and integrated by heat-bonding the conductive ceramic 3.
  • the ceramic member 11 is made by bonding the conductive ceramics 2 and the insulating ceramics 3 through a paste that substantially matches the thermal expansion coefficient of the conductive ceramics 2 and the insulating ceramics 3, and then nitrogen (N 2 ), It can be obtained by heating at a temperature in the range of 1000 ° C. to 1600 ° C. in an inert atmosphere such as argon (Ar).
  • the conductive molded body that is the precursor of the conductive ceramic 2 and the insulating molded body that is the precursor of the insulating ceramic 3 are superposed and fired under pressure by a hot press or the like. Can also be obtained.
  • action and effect similar to the ceramic member 1 of 1st Embodiment can be show
  • the bonding strength at the interface between the insulating ceramics 3 and the conductive ceramics 2 can be improved. There is no risk of occurrence.
  • Example 1 A. Production of conductive ceramics Carbon nanotubes having a diameter of 10 nm and a length of 1.5 ⁇ m were added to pure water so that the content (solid content) of the carbon nanotubes was 1% by mass, and after adding a dispersant, Peptization pretreatment was performed with a single-blade homogenizer. Subsequently, the dispersion process was performed for 9 hours with the ultrasonic homogenizer, and the carbon nanotube slurry was produced.
  • yttrium oxide powder having an average particle diameter of 1 ⁇ m is added to pure water so that the content (solid content) of yttrium oxide powder is 40% by mass, and after adding a dispersant, stirring is performed with a stirrer. And prepared an yttrium oxide slurry. Next, these carbon nanotube slurry and yttrium oxide slurry were prepared and mixed so that the carbon nanotube content in the solid content was 1% by volume, and stirred with a stirrer to prepare a mixed slurry.
  • this mixed slurry was dried and granulated by a spray drying method to produce a granulated powder containing carbon nanotubes and yttrium oxide.
  • the obtained granulated powder was molded using a mold to obtain a disk-shaped molded body having a diameter of 50 mm and a thickness of 15 mm.
  • this compact was fired at 1850 ° C. and a pressure of 20 MPa for 2 hours in an argon atmosphere, and the conductive ceramic of Example 1 was produced.
  • Example 2 A ceramic member of Example 2 was produced according to Example 1 except that the mixed slurry was prepared so that the carbon nanotube content in the solid content was 0.5% by volume. Next, the ceramic member of Example 2 was evaluated according to Example 1. As a result, it was found that there was no occurrence of cracking or peeling by hand pulling, and the durability at high temperatures was excellent.
  • Example 3 A ceramic member of Example 3 was produced according to Example 1 except that the mixed slurry was prepared so that the carbon nanotube content in the solid content was 3% by volume. Next, the ceramic member of Example 3 was evaluated according to Example 1. As a result, it was found that there was no occurrence of cracking or peeling by hand pulling, and the durability at high temperatures was excellent.
  • Example 4 The conductive ceramic obtained in accordance with Example 1 and the insulating ceramic were bonded together via a paste whose coefficient of thermal expansion was adjusted to 8 ⁇ 10 ⁇ 6 / ° C., and then at 1400 ° C. in a nitrogen atmosphere. A heat treatment was performed for 1 hour to produce a ceramic member of Example 4. Next, the ceramic member of Example 4 was evaluated according to Example 1. As a result, it was found that there was no occurrence of cracking or peeling by hand pulling, and the durability at high temperatures was excellent.
  • Comparative Example 1 A ceramic member of Comparative Example 1 was produced in accordance with Example 1 except that the conductive ceramic of Example 1 was replaced with silicon carbide (SiC) ceramics. Next, the ceramic member of Comparative Example 1 was evaluated according to Example 1. As a result, cracks were generated in the ceramic, and peeling of the adhesive layer was also observed. It was found that the heat resistance was inferior to the ceramic members of Examples 1 to 4.
  • Comparative Example 2 A ceramic member of Comparative Example 2 was prepared in the same manner as in Example 1 except that the conductive ceramic of Example 1 was replaced with yttrium oxide ceramics added with 10% by volume of silicon carbide (SiC). Next, the ceramic member of Comparative Example 2 was evaluated according to Example 1. As a result, it was recognized that many cracks were generated in the adhesive layer, and it was found that the heat resistance was inferior to the ceramic members of Examples 1 to 4.
  • Comparative Example 3 The ceramic member of Comparative Example 3 was formed by drilling holes for bolt joining in the yttrium oxide ceramics added with 10% by volume of silicon carbide (SiC) and the insulating ceramics of Example 1 and fastening them with bolts and nuts. Produced. Next, the ceramic member of Comparative Example 3 was evaluated according to Example 1. As a result, it was recognized that cracks were generated around the hole, and it was found that the bonding strength at high temperature was inferior as compared with the ceramic members of Examples 1 to 4.
  • SiC silicon carbide
  • Comparative Example 4 A ceramic member of Comparative Example 4 was produced according to Example 1 except that the content of carbon nanotubes in the solid content was 5% by volume. Next, the ceramic member of Comparative Example 4 was evaluated according to Example 1. As a result, it was recognized that many cracks were generated in the adhesive layer, and it was found that the heat resistance was inferior to the ceramic members of Examples 1 to 4.
  • Comparative Example 5 The conductive ceramic obtained according to Example 1 and the insulating ceramic were bonded using an epoxy adhesive to produce a ceramic member of Comparative Example 5. Next, the ceramic member of Comparative Example 5 was evaluated according to Example 1. As a result, it was recognized that the adhesive layer was altered, and it was found that the heat resistance was inferior to the ceramic members of Examples 1 to 4.
  • Comparative Example 6 A ceramic member of Comparative Example 6 was produced in the same manner as in Example 1 except that the inorganic adhesive of Example 1 was replaced with an inorganic adhesive having a coefficient of thermal expansion adjusted to 13 ⁇ 10 ⁇ 6 / ° C. Next, the ceramic member of Comparative Example 6 was evaluated according to Example 1. As a result, it was recognized that many cracks were generated in the adhesive layer, and it was found that the heat resistance was inferior to the ceramic members of Examples 1 to 4.
  • the present invention comprises a conductive ceramic containing yttrium oxide as a main component and containing 0.1 to 3% by volume of a fibrous conductive material, and an insulating ceramic containing yttrium oxide as a main component,
  • a conductive ceramic containing yttrium oxide as a main component and containing 0.1 to 3% by volume of a fibrous conductive material and an insulating ceramic containing yttrium oxide as a main component
  • an adhesive layer made of an inorganic adhesive By bonding or heat bonding through an adhesive layer made of an inorganic adhesive, the difference between the thermal expansion coefficient of the insulating ceramic and the thermal expansion coefficient of the conductive ceramic can be made extremely small. Since mismatches due to thermal expansion differences with conductive ceramics can be eliminated, not only semiconductor manufacturing equipment such as plasma etching equipment, CVD equipment, ashing equipment, but flat panel display manufacturing equipment It is also applicable in fields other than semiconductor manufacturing equipment, such as members for manufacturing equipment and solar battery manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

絶縁性セラミックスと導電性セラミックスとの間の熱膨張率差が極めて小さく、この熱膨張差によるミスマッチが生じる虞がなく、破損やクラックや剥離や破壊等の不具合が生じる虞がないセラミック部材が提供される。そのようなセラミック部材(1)は、酸化イットリウムを主成分とし、カーボンナノチューブ等の繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックス(2)と、酸化イットリウムを主成分とする絶縁性セラミックス(3)とを、無機系接着材からなる接着層(4)を介して接着して一体化されている。

Description

セラミック部材
 本発明は、セラミック部材に関し、さらに詳しくは、プラズマを用いたエッチング装置、CVD装置、アッシング装置等に用いて好適なセラミック部材に関するものである。
本願は、2010年9月29日に、日本に出願された特願2010-218657号に基づき優先権を主張し、その内容をここに援用する。
 従来、半導体製造工程のうち、プラズマプロセスが主流であるエッチング工程、CVD成膜工程、レジストを除去するアッシング工程に用いられる半導体製造装置では、部材が反応性の高いフッ素、塩素等のハロゲン系腐食性ガスに曝される。そこで、上記部材の材料として、プラズマや腐食性ハロゲンガスに対する耐食性に優れた材料であるセラミックス材料が用いられている。
 また、上記部材は、プラズマをウエハ面に収束させる機能を有するプラズマフォーカスリングや、電極としての役割を有するシャワーヘッド電極等のように導電性が必要な部材がある一方、高周波を透過するチャンバー壁、ウエハーを保持するペディスタル、フォーカスリングとウエハを保持するクランプリング、電極を固定する冶具等のように絶縁性が必要な部材もある。そこで、用途に応じて絶縁性セラミックスや導電性セラミックスを使い分けている。
 絶縁性セラミックスとしては、酸化アルミニウム(Al)や酸化イットリウム(Y)等の酸化物セラミックスが用いられている。また、導電性セラミックスとしては、単体で導電性を発現する炭化ケイ素(SiC)等のセラミックス、あるいは絶縁性セラミックスに炭化ケイ素(SiC)、カーボン(C)、金属等の導電性材料を添加して複合化させた複合セラミックスが用いられている。
 この複合セラミックスとしては、例えば、絶縁性セラミックスである酸化イットリウム(Y)に、金属イットリウム、炭素、窒化イットリウム、炭化イットリウム等の導電性材料を添加した導電性セラミックスが提案されている(特許文献1)。
 また、半導体製造装置の中でも、プラズマを用いたエッチング装置、CVD装置、アッシング装置等においては、絶縁性セラミックスと導電性セラミックスとを組み合わせて一体化したセラミック部材が用いられている。
 このセラミック部材は、絶縁性セラミックス及び導電性セラミックスをそれぞれ所定の形状に加工し、接着剤で接着するか、あるいはクランプ、ねじ、ボルト等で機械的に接合することにより得られる。接着剤を用いる場合、エポキシ等の有機系接着剤は耐食性、耐熱性の点から使用することができず、したがって、無機系の接着剤が使用される。この場合、接着剤の熱膨張率は、絶縁性セラミックスあるいは導電性セラミックスのいずれか一方に合わせることとなる。
特開2005-206412号公報
 ところで、従来の絶縁性セラミックスと導電性セラミックスとを接着剤により接着し一体化したセラミック部材をプラズマを用いたエッチング装置に適用した場合、このセラミック部材がプラズマによって高温になると、絶縁性セラミックスと導電性セラミックスとは、熱膨張率が異なるために、これらの間の熱膨張差により絶縁性セラミックスと導電性セラミックスとの間にミスマッチが生じ、このミスマッチのために破損が生じたり、あるいは接着層にクラックが発生するという問題点があった。特に、セラミック部材の形状が大きくなると、この傾向が顕著になる。
 また、無機系の接着剤を用いて接着した場合、この接着剤の熱膨張率を絶縁性セラミックスあるいは導電性セラミックスのいずれか一方にしか合わせることができず、したがって、この接着剤と熱膨張率が合っていないセラミックスとの界面に剥離が生じる虞があるという問題点があった。
 また、機械的に接合した場合においても同様、熱膨張のミスマッチによって発生する応力がセラミック部材に掛かるために、セラミック部材自体が破壊に至るという問題点があった。
 この熱膨張のミスマッチを解消する方法として、絶縁性セラミックスと導電性セラミックスとの間に緩衝層を挟む方法があるが、この場合、緩衝層によりセラミックス間の熱伝導が阻害されるために、これらのセラミックスの界面に熱が蓄積され、その結果、プラズマが不均一になる原因となり、半導体製造工程における歩留まりが低下するという問題点が生じる虞がある。また、設計段階で、絶縁性セラミックスと導電性セラミックスとの間に熱膨張差を考慮したギャップを設ける方法もあるが、このギャップによってもセラミックス間の熱伝導が阻害されてしまうという問題点が生じる虞がある。
 また、従来の酸化イットリウムを用いた導電性セラミックスでは、酸化イットリウムに金属イットリウムを添加した場合、金属イットリウムの熱膨張率が酸化イットリウムの熱膨張率より非常に大きいために、この導電性セラミックスの熱膨張率が大きく変化してしまうこととなる。したがって、熱膨張のミスマッチを解消することは不可能である。
 また、酸化イットリウムに窒化イットリウム、炭化イットリウム、カーボン等を添加した場合、導電性を十分に確保するためには、これらの添加物を5体積%以上添加する必要があるが、5体積%以上添加することにより導電性セラミックス自体の熱膨張率が大きく変化してしまうこととなる。したがって、熱膨張のミスマッチを解消することは不可能である。
 本発明は、上記の事情に鑑みてなされたものであって、絶縁性セラミックスと導電性セラミックスとの間の熱膨張率差が極めて小さく、したがって、絶縁性セラミックスと導電性セラミックスとの間の熱膨張差によるミスマッチが生じる虞がなく、破損やクラックや剥離や破壊等の不具合が生じる虞がないセラミック部材を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意検討した結果、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックスと、酸化イットリウムを主成分とする絶縁性セラミックスとを、接着または接合すれば、絶縁性セラミックスと導電性セラミックスとの間の熱膨張率差が極めて小さく、よって、絶縁性セラミックスと導電性セラミックスとの間の熱膨張差によるミスマッチが生じる虞がなく、クラックや剥離や破壊等の不具合が生じる虞がないセラミック部材が得られることを知見し、本発明を完成するに至った。
 すなわち、本発明のセラミック部材は、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックスと、酸化イットリウムを主成分とする絶縁性セラミックスとを、接着または接合してなることを特徴とする。
 前記繊維状導電性物質は、アスペクト比が10以上のナノファイバーであることが好ましい。
 前記ナノファイバーは、カーボンナノチューブであることが好ましい。
 前記導電性セラミックスと前記絶縁性セラミックスとを、無機系接着材からなる接着層を介して接着してなることが好ましい。
 前記導電性セラミックス及び前記絶縁性セラミックスの熱膨張率と、前記接着層の熱膨張率とは、略一致していることが好ましい。
 前記導電性セラミックスと前記絶縁性セラミックスとを、加熱接合したこととしてもよい。
 本発明のセラミック部材によれば、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックスと、酸化イットリウムを主成分とする絶縁性セラミックスとを、接着または接合したので、絶縁性セラミックスの熱膨張率と導電性セラミックスの熱膨張率との差を極めて小さくすることができ、したがって、絶縁性セラミックスと導電性セラミックスとの間の熱膨張差によるミスマッチを無くすことができる。
 これにより、プラズマや腐食性ハロゲンガスに対する耐食性に優れ、破損やクラックや剥離や破壊等の不具合が生じる虞がないセラミック部材を提供することができる。
 また、破損やクラックや剥離や破壊等の不具合が生じる虞がないので、このセラミック部材を半導体製造装置に適用した場合に、ウエハ等への汚染を抑制することができる。
本発明の第1の実施形態のセラミック部材を示す断面図である。 本発明の第2の実施形態のセラミック部材を示す断面図である。
 本発明のセラミック部材を実施するための形態について説明する。
 なお、以下の実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[第1の実施形態]
 図1は、本発明の第1の実施形態のセラミック部材を示す断面図であり、図において、1はセラミック部材であり、導電性セラミックス2と絶縁性セラミックス3とが接着層4により接着されて一体化されている。
 導電性セラミックス2は、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有しているセラミックスであり、相対密度が95%以上、体積固有抵抗値が0.5Ω・cm以上かつ10Ω・cm以下である。
 この導電性セラミックス2では、ハロゲン系プラズマに対して特に耐食性の高い酸化イットリウム(Y)粒子がマトリックスを構成している。
 この酸化イットリウム粒子の平均粒子径は、0.1μm以上かつ10μm以下が好ましく、より好ましくは0.5μm以上かつ5μm以下である。
 ここで、酸化イットリウム粒子の平均粒子径を0.1μm以上かつ10μm以下と限定した理由は、平均粒子径が0.1μm未満では、導電性セラミックス中における酸化イットリウムの粒界総数が増加するために、導電性を発現させるためには繊維状導電性物質の添加量を増加させる必要があるが、繊維状導電性物質の添加量を増加させると耐食性が低下するので好ましくなく、一方、平均粒子径が10μmを超えると、繊維状導電性物質の添加量が減少するので、導電性は向上するが、導電性セラミックス中における酸化イットリウムの粒界総数が減少するので、繊維状導電性物質が局所的に存在(偏在)することとなり、導電性セラミックス内での導電性に偏りが生じ、真空プロセス装置に適用した場合に、異常放電等が発生する虞があるので好ましくない。
 この導電性セラミックス2では、繊維状導電性物質が三次元に分散している。ここで、「繊維状導電性物質が三次元に分散する」とは、繊維状導電性物質が特定の配向性を示すことなくランダムに配置しており、酸化イットリウム粒子同士の間(粒界)に分散しているという意味である。すなわち、この導電性セラミックス2から一定体積を取り、この体積中に含まれる繊維状導電性物質それぞれの長手方向の平均値を取った場合、この平均値が零となるということである。
 この繊維状導電性物質としては、使用雰囲気や温度領域にて融解、消失、変質をしないものであることが好ましく、特に、極微量添加で導電性を発現するためには、アスペクト比(長さ/直径)は10以上である必要がある。
 このナノファイバーとしては、カーボンナノファイバーや金属ナノファイバーが挙げられるが、これらの中でもカーボンナノファイバーが好ましく、カーボンナノファイバーとしては、カーボンナノチューブが好ましい。
 このカーボンナノチューブとしては、アスペクト比(長さ/直径)が10以上、例えば、直径30nm以下、長さ10μm以下の単層カーボンナノチューブ(SWCNT:Single Walled Carbon Nanotube)、二層カーボンナノチューブ(DWCNT:Double Walled Carbon Nanotube)、多層カーボンナノチューブ(MWCNT:Multi Walled Carbon Nanotube)の群から選択される1種または2種以上が用いられる。
 この繊維状導電性物質は、その異方性形状により、酸化イットリウム粒子同士の間(粒界)にランダムに存在することにより、これら繊維状導電性物質同士が一部で接触して三次元的にネットワークを形成し、よって、導電性セラミックス2中の粒界に導電パスを形成している。
 したがって、繊維状導電性物質を0.1体積%以上かつ3体積%以下の極微量添加することにより、導電性セラミックス2に1~100Ω・cm程度の導電性を発現させることができ、なおかつ、熱膨張率も殆ど変化しない。
 なお、この繊維状導電性物質は、酸化イットリウム粒子同士の間(粒界)に必ず存在している必要はなく、繊維状導電性物質が存在しない粒界があってもよい。
 この繊維状導電性物質は、酸化イットリウム粒子からなるマトリックス中に、繊維状導電性物質が単体、あるいは、単体の繊維状導電性物質が複数本凝集した凝集体として存在しており、この凝集体の凝集径(凝集体の直径)は5μm以下、好ましくは2μm以下となっている。
 ここで、凝集径が5μmを超えると、ハロゲン系プラズマにより繊維状導電性物質が消失し易くなり、耐食性が低下し、導電性の低下、パーティクルの発生を引き起こすので、好ましくない。特に、半導体製造装置用部材として使用した際には、凝集体の部分がプラズマにより選択的に消耗してしまい、その結果、耐食性の低下、導電性の低下、パーティクルの発生が生じることとなり、半導体製造装置用部材として不適当であり、また、凝集体が焼結を阻害する要因となり、低圧焼成時に導電性セラミックス2の密度が向上せず、体積抵抗率の低下も不十分なものとなる。さらに、導電パスが形成しづらく、導電性セラミックス2に求められる導電性を発現させるためには、繊維状導電性物質の含有量を高くする必要がある。
 この繊維状導電性物質の含有率は、0.1体積%以上かつ3体積%以下であることが好ましく、より好ましくは0.5体積%以上かつ2体積%以下である。
 ここで、繊維状導電性物質の含有率が0.1体積%より低いと、導電パスの形成が不十分なものとなり、導電性セラミックス2に必要とされる導電性を発現させることができず、一方、繊維状導電性物質の含有率が3体積%を超えると、繊維状導電性物質が10μmより大きい粗大凝集体を形成し易くなり、耐食性が低下する。
 この導電性セラミックス2は、その相対密度、すなわち真密度(d)の理論密度(d)に対する比(d/d)を百分率で表した場合、95%以上と緻密なものとなっている。
 また、この導電性セラミックス2の体積固有抵抗値は、0.5Ω・cm以上かつ10Ω・cm以下である。
 ここで、導電性セラミックス2の体積固有抵抗値を0.5Ω・cm未満にするには、繊維状導電性物質の含有率を高める必要があるが、含有率を高めると、繊維状導電性物質が凝集を生じ易くなり、耐食性が低下してしまうので好ましくない。また、コストの面でも経済的ではない。一方、体積固有抵抗値が10Ω・cmを超えると、様々な真空プロセス装置での各種条件下で使用する場合、同時に使用される真空プロセス装置用部材と電気的整合性をとることが難しく、設計上の制約が生じるので好ましくない。
 この導電性セラミックス2は、ハロゲン系腐食性ガス及びこれらのプラズマに対する耐食性及び熱伝導性に優れており、体積固有抵抗値が10Ω・cm以下と導電性にも優れている。
 この導電性セラミックス2は、酸化イットリウムを主成分とする絶縁性セラミックスに0.1体積%以上かつ3体積%以下という極微量の繊維状導電性物質を添加することで、導電性を発現したものであり、酸化イットリウムを主成分とする絶縁性セラミックスと比べて、導電性以外の物性、例えば、熱膨張率、プラズマ耐食性等を変化させることが無い。
 また、絶縁性セラミックス3は、酸化イットリウムを主成分とするセラミックスであり、ハロゲン系プラズマに対して特に耐食性の高い酸化イットリウム(Y)粒子により構成されている。
 この酸化イットリウム粒子は、導電性セラミックス2に用いられる酸化イットリウム粒子と同様であるから、説明を省略する。
 この絶縁性セラミックス3においても、導電性セラミックス2と同様、その相対密度、すなわち真密度(d)の理論密度(d)に対する比(d/d)を百分率で表した場合、95%以上と緻密なものとなっている。
 また、この絶縁性セラミックス3の体積固有抵抗値は10Ω・cm以上であり、極めて絶縁性に優れたものとなっている。
 接着層4は、導電性セラミックス2と絶縁性セラミックス3とを接着し一体化するためのものであり、その熱膨張率は、導電性セラミックス2及び絶縁性セラミックス3の熱膨張率に略一致している。
 この接着層4としては、例えば1000℃以上の高温雰囲気中にても十分耐性を有する無機系接着材が好適に用いられ、この無機系接着材としては、アルカリ金属ケイ酸塩系接着材、シリカゾル系接着材、金属アルコキシド系接着材等が挙げられる。
 このセラミック部材1では、導電性セラミックス2及び絶縁性セラミックス3の熱膨張率と、接着層4の熱膨張率とは、略一致している。
 ここで、略一致とは、導電性セラミックス2及び絶縁性セラミックス3の熱膨張率と、接着層4の熱膨張率とが、±10%の範囲内で一致していることである。
 例えば、酸化イットリウムからなる絶縁性セラミックス3の熱膨張率が8×10-6/℃、単層カーボンナノチューブ(SWCNT)を1体積%含有する酸化イットリウムからなる導電性セラミックス2の熱膨張率が7.9×10-6/℃の場合、接着層4の熱膨張率は8×10-6/℃となる等である。
 このように、接着層4により導電性セラミックス2及び絶縁性セラミックス3を接着し一体化したセラミック部材1は、導電性セラミックス2及び絶縁性セラミックス3と接着層4との間の熱膨張差によるミスマッチが無く、高温でも破損しなくなり、この接着層4の材質によっては、1000℃以上での使用に対しても耐性を有するものとなる。
 次に、セラミック部材1の製造方法について説明する。
 まず、導電性セラミックス2と絶縁性セラミックス3を作製する。
 導電性セラミックス2は、酸化イットリウムスラリーと繊維状導電性物質スラリーとを混合して混合スラリーとし、次いで、この混合スラリーを噴霧乾燥して造粒し、得られた造粒粉を金型を用いて成形して所望の形状の成形体とし、この成形体を不活性雰囲気下にて焼成することにより、作製することができる。
 ここでは、予め、酸化イットリウム粒子を分散媒中に均一に分散させた酸化イットリウムスラリーと、繊維状導電性物質を分散媒中に均一に分散させた繊維状導電性物質スラリーとを、個別に調製する。
 酸化イットリウムスラリーを調製するには、分散媒に、酸化イットリウム粒子を、その含有率が30質量%以上かつ50質量%以下となるように添加して混合する。
 ここで、酸化イットリウム粒子の含有率を30質量%以上かつ50質量%以下とした理由は、酸化イットリウムスラリーと繊維状導電性物質スラリーとを混合して混合スラリーを調製した際に、混合スラリーが高粘度化するのを防止するためである。
 また、繊維状導電性物質スラリーを調製するには、分散媒に、繊維状導電性物質(固形分)を、その含有率が0.5質量%以上かつ2質量%以下となるように添加し、この繊維状導電性物質及び分散媒を含む混合物に対して分散処理を施す。
 ここで、繊維状導電性物質スラリーにおける繊維状導電性物質の含有率を0.5質量%以上かつ2質量%以下とした理由は、繊維状導電性物質の含有率が2質量%を超えると、繊維状導電性物質が再び凝集する虞があるばかりでなく、繊維状導電性物質スラリーが高粘度化し、繊維状導電性物質凝集体の解膠、分散が困難になり、さらには、酸化イットリウムスラリーと混合した場合に均一な混合スラリーが得られない等の問題が生じるからである。
 なお、繊維状導電性物質スラリーにおける繊維状導電性物質の含有率は2質量%以下であれば特に問題ないが、繊維状導電性物質の含有率を必要以上に下げると、スラリー中の繊維状導電性物質の絶対量が減少しかつ溶媒の量が過剰となり、製造上非効率かつ高コストとなる等の問題が生じる。それ故、繊維状導電性物質の含有率の下限値は0.5質量%が好ましい。
 この繊維状導電性物質スラリー中の繊維状導電性物質の平均二次粒子径は、2μm以下であることが好ましい。
 繊維状導電性物質の平均二次粒子径が2μmを超えると、酸化イットリウムスラリーと混合、乾燥する際に、繊維状導電性物質が凝集してしまい、その後焼成した際に得られる焼結体中の繊維状導電性物質の凝集体が粗大となり、耐食性が低下してしまうので好ましくない。
 繊維状導電性物質スラリー中の繊維状導電性物質の平均二次粒子径を2μm以下とすることにより、酸化イットリウムスラリーと混合する際に、繊維状導電性物質が混合スラリー中および乾燥時に再凝集することを抑止することができる。この結果、焼結体中での繊維状導電性物質が粗大凝集物を形成せずに、酸化イットリウム粒子の粒界中に三次元的に分散し、効率的に導電パスを形成することができる。
 これら酸化イットリウムスラリー及び繊維状導電性物質スラリーに用いられる分散媒としては、水および有機溶媒が使用可能である。有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、ブタノール、オクタノール等の一価アルコール類およびその変性体;α-テルピネオール等の単環式モノテルペンに属するアルコール類;ブチルカルビトール等のカルビトール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ブチルカルビトールアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類が好適に用いられ、これらの溶媒のうち1種または2種以上を用いることができる。
 これらのスラリーを調製する際に分散剤やバインダーを添加してもよい。
 分散剤やバインダーとしては、例えば、ポリカルボン酸アンモニウム塩等のポリカルボン酸塩、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン等の有機高分子等が用いられる。
 分散処理としては、繊維状導電性物質自体の凝集力が強いために、まず前分散として、機械的な力を加えて解膠を行う必要がある。前分散方法としては、特に限定されないが、高速ホモジナイザー等が挙げられる。
 その後の分散処理としては、特に限定されないが、超音波ホモジナイザー、ビーズミル、超高圧粉砕機等の分散機が用いられる。
 次いで、この酸化イットリウムスラリーと繊維状導電性物質スラリーとを、酸化イットリウムに対して繊維状導電性物質が0.1体積%以上かつ3体積%以下、好ましくは0.5体積%以上かつ2体積%以下となるように混合して混合スラリーとする。
 混合方法としては、特に限定されないが、例えば、回転二枚刃式ホモジナイザーと湿式ボールミルを組み合わせた方法が用いられる。
 次いで、この混合スラリーを噴霧乾燥法により造粒し、酸化イットリウム粒子と繊維状導電性物質との混合粒子からなる造粒粉を得る。
 ここでは、混合スラリーを加熱された気流中に噴霧し乾燥することにより、混合スラリー中の酸化イットリウム粒子及び繊維状導電性物質それぞれの分散性を保持したまま、これらを含む混合粒子を急速に乾燥させ、造粒することができる。
 噴霧乾燥の際に、混合スラリーの噴霧乾燥条件を、後段の焼成工程において良好な特性が得られるような大きさの造粒粉が得られるように、適宜調整する。
 例えば、造粒粉の平均粒子径が30μm~100μm等の大きさになるように、混合スラリーの噴霧乾燥条件を調整する。
 次いで、この造粒粉を金型を用いて成形して所望の形状の成形体とし、この成形体を不活性雰囲気下にて焼成する。なお、成形体に有機溶媒等が含まれている場合には、焼成温度を下回る温度にて仮焼成し、その後、本焼成を行うことが好ましい。
 焼成時の雰囲気としては、繊維状導電性物質の酸化を防止する必要があることから、窒素(N)、アルゴン(Ar)等の不活性雰囲気が好ましい。
 また、焼成温度は、1600℃以上かつ1850℃以下が好ましい。
 ここで、焼成温度を1600℃以上かつ1850℃以下が好ましいとした理由は、焼成温度が1600℃未満では、繊維状導電性物質が酸化イットリウムの焼結を阻害し、緻密な焼結体を得ることができないからであり、一方、焼成温度が1850℃を超えると、酸化イットリウムと繊維状導電性物質が直接反応して炭化物を形成してしまうからである。
 また、焼成時間は、緻密な焼結体が得られるのに十分な時間であればよく、例えば、1~6時間である。
 以上により、繊維状導電性物質が形成する導電パスの切断を行うことなく、10Ω・cm以下の導電性を発現することができる導電性セラミックス2を得ることができる。
 また、絶縁性セラミックス3は、上記の酸化イットリウムスラリーと繊維状導電性物質スラリーとを混合した混合スラリーの替わりに、上記の酸化イットリウムスラリーを用い、上記の混合スラリーと同様、噴霧乾燥して造粒し、得られた造粒粉を金型を用いて成形して所望の形状の成形体とし、この成形体を不活性雰囲気下にて焼成することにより、作製することができる。
 噴霧乾燥以降の工程は、導電性セラミックス2の製造方法と全く同様である。
 このようにして得られた導電性セラミックス2と絶縁性セラミックス3とに、必要に応じて形状加工を施し、これら導電性セラミックス2及び絶縁性セラミックス3の少なくとも一方の接着面に上述した無機系接着材を塗布する。
 ここでは、導電性セラミックス2及び絶縁性セラミックス3の熱膨張率と、接着層4の熱膨張率とが略一致するように、無機系接着材に含まれる無機材料の種類及び量を調整する。
 次いで、この無機系接着材を介して導電性セラミックス2と絶縁性セラミックス3とを仮接着し、この仮接着した状態で加熱して無機系接着材を硬化させ、接着層4とする。
 これにより、導電性セラミックス2と絶縁性セラミックス3とを接着層4により接着一体化したセラミック部材1が得られる。
 以上説明したように、本実施形態のセラミック部材1によれば、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックス2と、酸化イットリウムを主成分とする絶縁性セラミックス3とを、熱膨張率が略一致する接着層4により接着一体化したので、絶縁性セラミックス3の熱膨張率と導電性セラミックス2の熱膨張率との差を極めて小さくすることができ、絶縁性セラミックス3と導電性セラミックス2との間の熱膨張差によるミスマッチを無くすことができ、破損やクラックや剥離や破壊等の不具合が生じる虞もない。
 以上により、プラズマや腐食性ハロゲンガスに対する耐食性に優れ、破損やクラックや剥離や破壊等の不具合が生じる虞がないセラミック部材1を提供することができる。
[第2の実施形態]
 図2は、本発明の第2の実施形態のセラミック部材を示す断面図であり、本実施形態のセラミック部材11が、第1の実施形態のセラミック部材1と異なる点は、第1の実施形態のセラミック部材1では、導電性セラミックス2と絶縁性セラミックス3とを、熱膨張率が略一致する接着層4により接着したのに対し、本実施形態のセラミック部材11では、導電性セラミックス2と絶縁性セラミックス3とを加熱接合することにより、これらの表面(一主面)2a、3a同士を接合し一体化した点である。
 このセラミック部材11は、これら導電性セラミックス2及び絶縁性セラミックス3を、導電性セラミックス2及び絶縁性セラミックス3の熱膨張率に略一致するペーストを介して貼り合わせ、次いで、窒素(N)、アルゴン(Ar)等の不活性雰囲気下、1000℃以上かつ1600℃以下の範囲の温度にて加熱することにより、得ることができる。
 また、導電性セラミックス2の前駆体である導電性成形体と、絶縁性セラミックス3の前駆体である絶縁性成形体とを、重ね合わせ、これをホットプレス等により加圧下にて焼成することによっても、得ることができる。
 本実施形態のセラミック部材11においても、第1の実施形態のセラミック部材1と同様の作用・効果を奏することができる。
 しかも、導電性セラミックス2と絶縁性セラミックス3とを加熱接合したので、絶縁性セラミックス3と導電性セラミックス2との界面の接合強度を向上させることができ、破損やクラックや剥離や破壊等の不具合が生じる虞もない。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
「実施例1」
A.導電性セラミックスの作製
 直径10nm、長さ1.5μmのカーボンナノチューブを、純水中に、カーボンナノチューブの含有率(固形分)が1質量%となるように加え、分散剤を添加後、回転二枚刃式ホモジナイザー装置により解膠前処理を行った。次いで、超音波ホモジナイザーにより9時間分散処理を行い、カーボンナノチューブスラリーを作製した。
 また、平均粒子径が1μmの酸化イットリウム粉体を、純水中に、酸化イットリウム粉体の含有率(固形分)が40質量%となるように加え、分散剤を添加後、攪拌機で攪拌を行い、酸化イットリウムスラリーを調整した。
 次いで、これらカーボンナノチューブスラリーと酸化イットリウムスラリーを、固形分中のカーボンナノチューブの含有率が1体積%となるように、調製混合し、攪拌機で攪拌し、混合スラリーを調製した。
 次いで、この混合スラリーを噴霧乾燥法により乾燥、造粒し、カーボンナノチューブと酸化イットリウムとを含む造粒粉を作製した。次いで、得られた造粒粉を金型を用いて成形し、直径50mm、厚み15mmの円板状の成形体とした。
 次いで、この成形体を、アルゴン雰囲気下、1850℃、圧力20MPaにて2時間焼成を行い、実施例1の導電性セラミックスを作製した。
B.絶縁性セラミックスの作製
 上記の酸化イットリウムスラリーを噴霧乾燥法により乾燥、造粒し、酸化イットリウムからなる造粒粉を作製した。次いで、得られた造粒粉を金型を用いて成形し、直径50mm、厚み15mmの円板状の成形体とした。
 次いで、この成形体を、アルゴン雰囲気下、1850℃、圧力20MPaにて2時間焼成を行い、実施例1の絶縁性セラミックスを作製した。
C.セラミック部材の作製
 上記の導電性セラミックスと絶縁性セラミックスとを、熱膨張率を8×10-6/℃に調整した無機系接着材を用いて接着し、次いで、アルゴン雰囲気下、250℃にて3時間焼成を行い、実施例1のセラミック部材を作製した。
D.セラミック部材の評価
 上記のセラミック部材を、窒素雰囲気下、10℃/分の昇温速度にて1000℃まで加熱し、1000℃にて1時間保持した後、10℃/分の冷却速度にて室温(25℃)まで冷却した。その後、取り出して、クラックの発生の有無、手での引っ張りによる剥離の有無、を目視にて評価した。
 その結果、クラックの発生や手での引っ張りによる剥離も無く、高温域での耐久性に優れていることが分かった。
「実施例2」
 固形分中のカーボンナノチューブの含有率が0.5体積%となるように混合スラリーを調製した他は、実施例1に準じて実施例2のセラミック部材を作製した。
 次いで、実施例1に準じて実施例2のセラミック部材の評価を行った。
 その結果、クラックの発生や手での引っ張りによる剥離も無く、高温域での耐久性に優れていることが分かった。
「実施例3」
 固形分中のカーボンナノチューブの含有率が3体積%となるように混合スラリーを調製した他は、実施例1に準じて実施例3のセラミック部材を作製した。
 次いで、実施例1に準じて実施例3のセラミック部材の評価を行った。
 その結果、クラックの発生や手での引っ張りによる剥離も無く、高温域での耐久性に優れていることが分かった。
「実施例4」
 実施例1に準じて得られた導電性セラミックスと絶縁性セラミックスとを、熱膨張率を8×10-6/℃に調整したペーストを介して貼り合わせ、次いで、窒素雰囲気下、1400℃にて1時間加熱処理を行い、実施例4のセラミック部材を作製した。
 次いで、実施例1に準じて実施例4のセラミック部材の評価を行った。
 その結果、クラックの発生や手での引っ張りによる剥離も無く、高温域での耐久性に優れていることが分かった。
「比較例1」
 実施例1の導電性セラミックスを炭化ケイ素(SiC)セラミックスに替えた他は、実施例1に準じて比較例1のセラミック部材を作製した。
 次いで、実施例1に準じて比較例1のセラミック部材の評価を行った。
 その結果、セラミックスにクラックが発生しており、また、接着層の剥離も認められ、実施例1~4のセラミック部材と比較して耐熱性が劣っていることが分かった。
「比較例2」
 実施例1の導電性セラミックスを炭化ケイ素(SiC)を10体積%添加した酸化イットリウムセラミックスに替えた他は、実施例1に準じて比較例2のセラミック部材を作製した。
 次いで、実施例1に準じて比較例2のセラミック部材の評価を行った。
 その結果、接着層に多数のクラックが発生していることが認められ、実施例1~4のセラミック部材と比較して耐熱性が劣っていることが分かった。
「比較例3」
 炭化ケイ素(SiC)を10体積%添加した酸化イットリウムセラミックスと、実施例1の絶縁性セラミックスとに、ボルト接合用の孔を開け、ボルト・ナットにより締結することにより、比較例3のセラミック部材を作製した。
 次いで、実施例1に準じて比較例3のセラミック部材の評価を行った。
 その結果、孔を中心にクラックが発生していることが認められ、実施例1~4のセラミック部材と比較して高温での結合力が劣っていることが分かった。
「比較例4」
 固形分中のカーボンナノチューブの含有率を5体積%とした他は、実施例1に準じて比較例4のセラミック部材を作製した。
 次いで、実施例1に準じて比較例4のセラミック部材の評価を行った。
 その結果、接着層に多数のクラックが発生していることが認められ、実施例1~4のセラミック部材と比較して耐熱性が劣っていることが分かった。
「比較例5」
 実施例1に準じて得られた導電性セラミックスと絶縁性セラミックスとを、エポキシ接着剤を用いて接着し、比較例5のセラミック部材を作製した。
 次いで、実施例1に準じて比較例5のセラミック部材の評価を行った。
 その結果、接着層が変質していることが認められ、実施例1~4のセラミック部材と比較して耐熱性が劣っていることが分かった。
「比較例6」
 実施例1の無機系接着材を、熱膨張率を13×10-6/℃に調整した無機系接着材に替えた他は、実施例1に準じて比較例6のセラミック部材を作製した。
 次いで、実施例1に準じて比較例6のセラミック部材の評価を行った。
 その結果、接着層に多数のクラックが発生していることが認められ、実施例1~4のセラミック部材と比較して耐熱性が劣っていることが分かった。
 本発明は、酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックスと、酸化イットリウムを主成分とする絶縁性セラミックスとを、無機系接着材からなる接着層を介して接着、または加熱接合したことにより、絶縁性セラミックスの熱膨張率と導電性セラミックスの熱膨張率との差を極めて小さくすることができ、絶縁性セラミックスと導電性セラミックスとの間の熱膨張差によるミスマッチを無くすことができるものであるから、プラズマを用いたエッチング装置、CVD装置、アッシング装置等の半導体製造装置はもちろんのこと、フラットパネルディスプレイの製造装置用部材、太陽電池の製造装置用部材等、半導体製造装置以外の分野においても、適用可能である。
 1 セラミック部材
 2 導電性セラミックス
 2a 表面
 3 絶縁性セラミックス
 3a 表面
 4 接着層
 11 セラミック部材

Claims (6)

  1.  酸化イットリウムを主成分とし、繊維状導電性物質を0.1体積%以上かつ3体積%以下含有してなる導電性セラミックスと、酸化イットリウムを主成分とする絶縁性セラミックスとを、接着または接合してなることを特徴とするセラミック部材。
  2.  前記繊維状導電性物質は、アスペクト比が10以上のナノファイバーであることを特徴とする請求項1記載のセラミック部材。
  3.  前記ナノファイバーは、カーボンナノチューブであることを特徴とする請求項2記載のセラミック部材。
  4.  前記導電性セラミックスと前記絶縁性セラミックスとを、無機系接着材からなる接着層を介して接着してなることを特徴とする請求項1ないし3のいずれか1項記載のセラミック部材。
  5.  前記導電性セラミックス及び前記絶縁性セラミックスの熱膨張率と、前記接着層の熱膨張率とは、略一致していることを特徴とする請求項4記載のセラミック部材。
  6.  前記導電性セラミックスと前記絶縁性セラミックスとを、加熱接合してなることを特徴とする請求項1ないし3のいずれか1項記載のセラミック部材。
PCT/JP2011/071822 2010-09-29 2011-09-26 セラミック部材 WO2012043441A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/876,466 US9776380B2 (en) 2010-09-29 2011-09-26 Ceramic member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-218657 2010-09-29
JP2010218657A JP5732798B2 (ja) 2010-09-29 2010-09-29 セラミック部材

Publications (1)

Publication Number Publication Date
WO2012043441A1 true WO2012043441A1 (ja) 2012-04-05

Family

ID=45892887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071822 WO2012043441A1 (ja) 2010-09-29 2011-09-26 セラミック部材

Country Status (3)

Country Link
US (1) US9776380B2 (ja)
JP (1) JP5732798B2 (ja)
WO (1) WO2012043441A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466760B (zh) * 2013-09-27 2015-12-23 上海原青环保工程有限公司 电磁式泥水分离塔及电磁式泥水分离方法
CN110776321B (zh) * 2019-10-17 2022-03-04 航天材料及工艺研究所 一种超高温轻质热防护材料大梯度过渡层的制备方法
US20220032585A1 (en) * 2020-07-28 2022-02-03 Ge Aviation Systems Llc Insulated ferromagnetic laminates and method of manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246319A (ja) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp 中空構造を有するセラミックス接合体
JP2008130609A (ja) * 2006-11-16 2008-06-05 Ngk Insulators Ltd 加熱装置
JP2009184881A (ja) * 2008-02-06 2009-08-20 Sumitomo Osaka Cement Co Ltd 焼結体およびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278571A (en) * 1965-03-19 1966-10-11 Khodabakhsh S Mazdiyasni Yttrium, dysprosium, and ytterbium alkoxides and process for making same
US4861410A (en) * 1985-02-25 1989-08-29 University Of Florida Method of joining metal oxide containing ceramic bodies
DE3885140T2 (de) * 1987-04-10 1994-03-31 Hitachi Ltd Keramischer Verbundwerkstoff und Verfahren zu seiner Herstellung.
EP0526648B1 (en) * 1991-02-26 1996-05-08 Daihen Corporation Method of bonding ceramics together and insert material for heat bonding
JPH0782049A (ja) * 1993-09-17 1995-03-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Y系酸化物超電導体の接合方法
JP4022954B2 (ja) * 1997-01-29 2007-12-19 ソニー株式会社 複合材料及びその製造方法、基体処理装置及びその作製方法、基体載置ステージ及びその作製方法、並びに基体処理方法
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
JPH10300085A (ja) * 1997-04-22 1998-11-13 Ngk Spark Plug Co Ltd セラミックヒータおよびセラミックグロープラグ
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
EP1100135A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp CELL AND METHOD FOR THE PRODUCTION THEREOF
US6884967B1 (en) * 1999-06-16 2005-04-26 Chongging Le-Mark Ceramic Technology Co. Ltd. Multi-layer ceramic heater element and method of making same
JP4698018B2 (ja) * 2000-12-12 2011-06-08 日本碍子株式会社 接着体の製造方法、および接着剤
US6610964B2 (en) * 2001-03-08 2003-08-26 Stephen J. Radmacher Multi-layer ceramic heater
WO2002083596A1 (fr) * 2001-04-13 2002-10-24 Sumitomo Electric Industries, Ltd. Article ceramique assemble, structure de maintien de substrat et appareil permettant de traiter les substrats
US6858173B2 (en) * 2003-01-30 2005-02-22 The Regents Of The University Of California Nanocrystalline ceramic materials reinforced with single-wall carbon nanotubes
JP4499431B2 (ja) * 2003-07-07 2010-07-07 日本碍子株式会社 窒化アルミニウム焼結体、静電チャック、導電性部材、半導体製造装置用部材及び窒化アルミニウム焼結体の製造方法
US20050272856A1 (en) * 2003-07-08 2005-12-08 Cooper Christopher H Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation
JP2005206412A (ja) 2004-01-22 2005-08-04 Toshiba Ceramics Co Ltd 二酸化チタン微粒子および二酸化チタン多孔体
JP4467453B2 (ja) * 2004-09-30 2010-05-26 日本碍子株式会社 セラミックス部材及びその製造方法
CN100530766C (zh) * 2004-11-30 2009-08-19 加州大学评议会 用于电化学器件的密封接头结构
BRPI0716127A2 (pt) * 2006-08-16 2013-09-17 Saint Gobain Ceramics moldagem por injeÇço de elementos cerÂmicos
US7701693B2 (en) * 2006-09-13 2010-04-20 Ngk Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
US7667944B2 (en) * 2007-06-29 2010-02-23 Praxair Technology, Inc. Polyceramic e-chuck
DE102008005529A1 (de) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Kühlkörper und Verfahren zur Herstellung eines Kühlkörpers
JP5363132B2 (ja) * 2008-02-13 2013-12-11 日本碍子株式会社 酸化イットリウム材料、半導体製造装置用部材及び酸化イットリウム材料の製造方法
WO2011099466A1 (ja) 2010-02-09 2011-08-18 住友大阪セメント株式会社 焼結体及びその製造方法
JP2014507363A (ja) * 2010-12-14 2014-03-27 ヘクサテック,インコーポレイテッド 多結晶質窒化アルミニウム焼結体の熱膨張処理、および半導体製造へのその応用
KR20130044813A (ko) * 2011-10-25 2013-05-03 주식회사 코미코 내플라즈마 부재 및 이의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246319A (ja) * 2006-03-15 2007-09-27 Taiheiyo Cement Corp 中空構造を有するセラミックス接合体
JP2008130609A (ja) * 2006-11-16 2008-06-05 Ngk Insulators Ltd 加熱装置
JP2009184881A (ja) * 2008-02-06 2009-08-20 Sumitomo Osaka Cement Co Ltd 焼結体およびその製造方法

Also Published As

Publication number Publication date
JP5732798B2 (ja) 2015-06-10
JP2012072025A (ja) 2012-04-12
US9776380B2 (en) 2017-10-03
US20130183503A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US9944561B2 (en) Dielectric material and electrostatic chucking device
JP5034992B2 (ja) 焼結体およびその製造方法
US9745499B2 (en) Hexagonal boron nitride nanosheet/ceramic nanocomposite powder and producing method of the same, and hexagonal boron nitride nanosheet/ceramic nanocomposite materials and producing method of the same
KR101634160B1 (ko) 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
US9403722B2 (en) Sintered objects and processes for producing same
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
JP5732798B2 (ja) セラミック部材
TW201946204A (zh) 靜電夾頭裝置及其製造方法
JP6424563B2 (ja) 静電チャック装置およびその製造方法
JP2018108918A (ja) カーボンナノチューブ及びグラフェンを用いたセラミックマトリックス複合材の製作
JP5768384B2 (ja) 焼結体及びその製造方法
KR20230042679A (ko) 복합 소결체 및 복합 소결체의 제조 방법
JP6503689B2 (ja) 静電チャック装置およびその製造方法
TWI240985B (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP5768378B2 (ja) 焼結体及びその製造方法
JP5720127B2 (ja) 高周波透過材料
JP5454623B2 (ja) 焼結体およびその製造方法
KR20140115517A (ko) 탄화규소와 전기 전도성 성분이 함유된 히터용 조성물 및 히터
JP2020150169A (ja) 静電チャック装置およびその製造方法
KR101560196B1 (ko) 탄화규소와 전기 전도성 성분의 그래핀이 함유된 히터용 조성물 및 히터
TW202128597A (zh) SiC與Si的混合部件及製造方法
JP2015059067A (ja) 焼結体及びその製造方法
JP2019048748A (ja) 導電性セラミックス
JP2015110492A (ja) 導電性耐食部材及び導電性耐食部品並びに導電性耐食部材の製造方法
JP2002075962A (ja) シリコンウェハー搭載用ガラス状カーボン−グラファイト複合リング及びそれを装着したドライエッチング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13876466

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828995

Country of ref document: EP

Kind code of ref document: A1