WO2020196339A1 - 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター - Google Patents

電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター Download PDF

Info

Publication number
WO2020196339A1
WO2020196339A1 PCT/JP2020/012499 JP2020012499W WO2020196339A1 WO 2020196339 A1 WO2020196339 A1 WO 2020196339A1 JP 2020012499 W JP2020012499 W JP 2020012499W WO 2020196339 A1 WO2020196339 A1 WO 2020196339A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
embedded
molded body
connecting member
powder
Prior art date
Application number
PCT/JP2020/012499
Other languages
English (en)
French (fr)
Inventor
優棋 薮花
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to KR1020217023398A priority Critical patent/KR102527439B1/ko
Priority to US17/416,127 priority patent/US11869796B2/en
Priority to CN202080007096.8A priority patent/CN113196870B/zh
Priority to JP2020537785A priority patent/JP6966651B2/ja
Priority to TW109109926A priority patent/TWI772767B/zh
Publication of WO2020196339A1 publication Critical patent/WO2020196339A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrode embedded member in which an electrode is embedded inside a ceramic substrate and a method for manufacturing the electrode embedded member.
  • the electrode-embedded member is used, for example, as a ceramic heater or an electrostatic chuck incorporated in a semiconductor manufacturing apparatus.
  • an electrode-embedded member formed by embedding a metal electrode (internal electrode) inside a plate-shaped substrate made of ceramics such as aluminum nitride (AlN) is known.
  • a hole (terminal hole) is formed in a ceramic substrate by machining, a metal electrode inside the substrate is exposed in this hole, and a cylindrical metal terminal is inserted into the hole to metal. The tip surface of the terminal is brazed to the metal electrode inside the substrate.
  • the electrode-embedded member is incorporated in, for example, a semiconductor manufacturing apparatus (etching apparatus, CVD apparatus, etc.) and used for electrostatic chucking and heating of a semiconductor wafer, and is repeatedly exposed to a high temperature in a usage environment. There is.
  • a semiconductor manufacturing apparatus etching apparatus, CVD apparatus, etc.
  • Japanese Patent No. 3776499 proposes a technique of reducing the stress remaining on the substrate during the manufacture of the electrode-embedded member and suppressing the cracks generated on the substrate.
  • the conventional electrode-embedded member 100 includes an internal electrode 102 embedded in a substrate 101 made of ceramics such as aluminum nitride (AlN), and the back surface side of the internal electrode 102 (FIG. 7).
  • a connecting member 103 is provided on the upper middle side).
  • the connecting member 103 is made of a metal such as tungsten (W).
  • the substrate 101 is provided with a terminal hole 104 extending from the back surface side (upper side in the drawing) of the substrate 101 to the back surface of the connecting member 103.
  • a part of the terminal 105 (external metal terminal) is inserted into the terminal hole 104, and the end portion of the terminal 105 and the connecting member 103 are connected by a brazing portion 106.
  • the terminal 105 is made of, for example, nickel (Ni). With the above configuration, the terminal 105 and the internal electrode 102 are electrically connected.
  • the surface side (lower side in the drawing) of the ceramic substrate 101 of the electrode embedded member 100 is placed on the electrode embedded member 100 incorporated in, for example, a semiconductor manufacturing apparatus (etching apparatus, CVD apparatus, etc.).
  • An insulating layer for electrically insulating between the semiconductor wafer to be formed and the internal electrode 102 of the electrode embedded member 100 is formed.
  • a crack 107 is generated inside the substrate 101 starting from the vicinity of the edge portion on the back side (upper side in the drawing) of the connecting member 103.
  • the crack 107 may pass through the internal electrode 102 and reach the surface of the substrate 101 (the surface on which the semiconductor wafer or the like is placed).
  • Cracks 107 are likely to occur starting from the vicinity of the edge on the back side (upper side in the figure) of the connecting member 103 because the progress of oxidation inside the electrode embedded member 100 is mainly on the surface side of the connecting member 103 (lower in the figure). It is considered that this is caused by proceeding from the back side (upper side in the figure) instead of the side).
  • the surface side portion of the substrate 101 of the electrode embedded member 100 is between the substrate to be processed such as a semiconductor wafer placed on the electrode embedded member 100 and the internal electrode 102 of the electrode embedded member 100. Since an insulating layer is formed to electrically insulate the electrode, it is possible to prevent the occurrence of cracks inside the base 101 of the electrode embedding member 100, and in particular, the cracks penetrate the insulating layer and the mounting surface of the substrate to be treated. Must be prevented from reaching.
  • a terminal (external connection terminal) 105 made of nickel (Ni) and a connecting member 103 made of tungsten (W) embedded in a substrate 101 made of aluminum nitride (AlN) are used. It was thought that the difference in linear expansion coefficient (coefficient of thermal expansion) between them was large, but especially when used for a long period of time, the connecting member 103 made of buried tungsten (W) and the surrounding AlN It was found that the effect due to the difference in the coefficient of linear expansion of was greater.
  • the present invention is an electrode-embedded member in which an electrode is embedded inside a ceramic substrate, and an electrode-embedded member capable of suppressing or preventing cracks from occurring inside the substrate and manufacturing thereof.
  • the purpose is to provide a method.
  • the electrode-embedded member according to the present invention is Ceramic substrate and The electrodes embedded in the substrate and At least one of tungsten or molybdenum embedded in the substrate having one main surface and the other main surface, with the one main surface facing the electrode side and electrically connected to the electrode.
  • the cushioning member comprises at least a ceramic material and at least one of tungsten and molybdenum.
  • the cushioning member is characterized in that it covers at least a part of the edge portion of the connecting member.
  • the coefficient of linear expansion (coefficient of thermal expansion) of the mixed structure constituting the buffer member is the coefficient of linear expansion of the material of the connecting member and the material of the substrate, respectively. Taking an intermediate value, the change (magnitude of difference) in the coefficient of linear expansion (coefficient of thermal expansion) between the members is alleviated. As a result, the stress concentrated on the edge of the connecting member can be relaxed, and as a result, the occurrence of cracks extending from the connecting member to the substrate can be suppressed or prevented.
  • the cushioning member contains at least a ceramic material constituting the substrate and a conductive material containing at least one of tungsten and molybdenum as a constituent element.
  • the electrode-embedded member of the present invention includes an external metal terminal connected to the connecting member with a part inserted into the hole.
  • the internal electrode embedded inside the substrate can be electrically connected to the outside via the external metal terminal and the connecting member.
  • the connecting member has an edge formed by a side surface connecting the one main surface and the other main surface, and the one main surface and the side surface. It is preferable that the cushioning member further includes a portion and covers the edge portion over the entire circumference. Thereby, cracks generated starting from the edge of the connecting member can be reliably suppressed or prevented.
  • the method for manufacturing an electrode embedded member according to the present invention is: A method for manufacturing any of the above electrode embedded members.
  • the cushioning member step of covering with the cushioning member A second molded body mounting step of mounting the second molded body on the first molded body, the electrode, the connecting member, and the cushioning member.
  • the coefficient of linear expansion of the mixed structure constituting the buffer member takes an intermediate value between the coefficient of linear expansion of the material of the connecting member and the material of the substrate, and the change in the coefficient of linear expansion between the members (large difference).
  • the coefficient is relaxed.
  • the stress concentrated on the edge of the connecting member can be relaxed, and as a result, the occurrence of cracks extending from the connecting member to the substrate can be suppressed or prevented.
  • the method for manufacturing an electrode embedded member according to the present invention is: A method for manufacturing any of the above electrode embedded members.
  • a first pressure powder forming step in which a bottomed tubular shape having an opening is filled with a raw material powder made of ceramics and pressed to form a first pressure powder.
  • an electrode mounting step of arranging the electrode and the connecting member on the opening side of the bottomed tubular mold of the first green powder.
  • the first pressure powder, the electrode, and the opening side of the buffer member in the bottomed tubular mold are filled with the raw material powder and pressed to contain the first pressure powder.
  • the second pressure powder forming step of forming powder and A sintering step in which the second green compact in which the electrode, the connecting member, and the cushioning member are embedded is pressure-fired. To be equipped.
  • the coefficient of linear expansion of the mixed structure constituting the buffer member takes an intermediate value between the coefficient of linear expansion of the material of the connecting member and the material of the substrate, and the change in the coefficient of linear expansion between the members (large difference).
  • the coefficient is relaxed.
  • the stress concentrated on the edge of the connecting member can be relaxed, and as a result, the occurrence of cracks extending from the connecting member to the substrate can be suppressed or prevented.
  • FIG. 1A is an explanatory view schematically showing a main part of an electrode embedded member as an embodiment of the present invention.
  • FIG. 1B is an explanatory view schematically showing a main part of an electrode embedded member as an embodiment of the present invention.
  • FIG. 2 is an enlarged explanatory view showing a connecting member and a cushioning member of the electrode-embedded member shown in FIGS. 1A and 1B in a state of being separated from each other.
  • FIG. 3A is an explanatory view showing a method of manufacturing an electrode embedded member as an embodiment of the present invention.
  • FIG. 3B is an explanatory diagram showing a method of manufacturing an electrode embedded member as an embodiment of the present invention.
  • FIG. 1A is an explanatory view schematically showing a main part of an electrode embedded member as an embodiment of the present invention.
  • FIG. 1B is an explanatory view schematically showing a main part of an electrode embedded member as an embodiment of the present invention.
  • FIG. 2 is an enlarged explanatory view showing
  • FIG. 4A is another explanatory view showing a method of manufacturing an electrode embedded member as an embodiment of the present invention.
  • FIG. 4B is another explanatory view showing a method of manufacturing an electrode embedded member as an embodiment of the present invention.
  • FIG. 5A is an explanatory view schematically showing a main part of an electrode embedded member as another embodiment of the present invention.
  • FIG. 5B is an explanatory view schematically showing a main part of an electrode embedded member as another embodiment of the present invention.
  • FIG. 6 is an explanatory view schematically showing a main part of an electrode embedded member as another embodiment of the present invention.
  • FIG. 7 is an explanatory view schematically showing a main part of a conventional electrode embedded member.
  • FIG. 5A is an explanatory view schematically showing a main part of an electrode embedded member as another embodiment of the present invention.
  • FIG. 5B is an explanatory view schematically showing a main part of an electrode embedded member as another embodiment of the present invention.
  • FIG. 6 is an explanatory view
  • FIG. 8 is a perspective view schematically showing the external configuration of the electrostatic chuck 1000 according to the present embodiment.
  • FIG. 9 is an explanatory view schematically showing the XZ cross-sectional configuration of the electrostatic chuck 1000 according to the present embodiment.
  • FIG. 10 is a plan view of the ceramic structure.
  • FIG. 11 is a cross-sectional view taken along the line AA of FIG.
  • the electrode embedded member and the manufacturing method thereof as one embodiment of the present invention will be described with reference to the drawings.
  • the drawing schematically shows the main part of the electrode-embedded member, particularly the connection point between the internal electrode and the external metal terminal.
  • the electrode-embedded member of the present embodiment is used, for example, as a ceramic heater incorporated in a semiconductor manufacturing apparatus and heating a semiconductor manufacturing wafer, or as an electrostatic chuck that attracts a semiconductor manufacturing wafer by a Johnsen-Labeck force or a Coulomb force. ..
  • the electrode-embedded member 1 has a front surface 2a and a back surface 2b, and includes a plate-shaped substrate 2 made of ceramics. Inside the substrate 2, an internal electrode 3 made of a metal material is embedded so as to extend parallel to the surface 2a of the substrate 2.
  • the ceramic material constituting the substrate 2 include aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ).
  • the metal material constituting the internal electrode 3 is typically molybdenum (Mo), and there are other alloys containing tungsten (W), tungsten and / or molybdenum as a main component.
  • a disk-shaped connecting member 4 extending along the surface 2a of the substrate 2 is arranged.
  • the connecting member 4 has one main surface 4a facing the side of the internal electrode 3 and the other main surface 4b facing the one main surface 4a.
  • the connecting member 4 is electrically connected to the internal electrode 3.
  • the material constituting the connecting member 4 the same material as the metal material constituting the internal electrode 3 described above can be used, but the material does not necessarily have to be the same as the internal electrode 3. That is, the material constituting the connecting member 4 may contain at least one of tungsten and molybdenum.
  • the base body 2 is provided with a terminal hole (hole) 5 extending from the back surface (outer surface) 2b to reach the other main surface 4b of the connecting member 4 inside the base body 2.
  • a part of the columnar terminal 6 is inserted into the terminal hole 5, and the end portion of the terminal 6 and the connecting member 4 are connected by a brazing portion 7.
  • the brazing portion 7 is located between the intermediate member 7a of tungsten (W) embedded in the brazing material such as gold brazing represented by Au—Ni system and silver brazing represented by Ag—Cu system and Kovar.
  • a member 7b is included.
  • the diameter of the terminal hole 5 is, for example, 5 mm.
  • the terminal 6 has, for example, a diameter of 4.8 mm and a length of 20 mm.
  • a gap 9 is formed between the terminal 6 and the inner side surface 8 of the substrate 2 that defines the terminal hole 5.
  • the width of the gap 9 is, for example, 0.1 mm.
  • Nickel is typically mentioned as a metal material constituting the terminal (external metal terminal) 6, and there are other low thermal expansion metal alloys such as Kovar and / or titanium, copper or an alloy containing these as a main component. ..
  • the columnar terminal 6 and the disk-shaped connecting member 4 are arranged and connected concentrically with each other, but the terminal 6 and the connecting member 4 are not necessarily arranged concentrically. It is not necessary and may deviate from the concentric position.
  • the shape of the terminal 6 may be a rod shape other than a columnar shape.
  • the brazing portion 7 may be in contact with a member around the brazing portion 7 (for example, a cushioning member 10).
  • the terminal (external metal terminal) 6 and the internal electrode 3 embedded inside the substrate 2 are electrically connected.
  • the shape of the connecting member 4 is not necessarily limited to a disk shape, and a suitable shape for electrically connecting the internal electrode 3 and the terminal 6 can be appropriately selected. Further, as a form for ensuring an electrical connection state between the internal electrode 3 and the connecting member 4, a form in which the two are in direct contact with each other, a form in which the two are adhered to each other using a conductive paste, or the like is used. Can be adopted.
  • a cushioning member 10 that covers at least a part of the edge portion of the connecting member 4 is embedded inside the substrate 2.
  • the buffer member 10 contains at least a ceramic material constituting the substrate 2 and a conductive material containing at least one of tungsten and molybdenum as a constituent element.
  • the conductive material constituting the cushioning member 10 does not necessarily have to be the same as the material constituting the connecting member 4.
  • the connecting member 4 is made of molybdenum
  • the conductive material constituting the cushioning member 10 may be molybdenum or tungsten.
  • the conductive material constituting the buffer member 10 may be a carbide of tungsten or a carbide of molybdenum, and in short, a material containing at least one of tungsten or molybdenum as a constituent element may be used.
  • the connecting member 4 in the present embodiment has an edge formed by a side surface 4c connecting one main surface 4a and the other main surface 4b, and the main surfaces 4a and 4b and the side surface 4c. It has parts 4d and 4e.
  • the cushioning member 10 covers the edge 4e on the other main surface 4b side of the disc-shaped connecting member 4 over the entire circumference thereof.
  • the method for manufacturing the electrode embedded member 1 is roughly classified into a method using a molded body pressing method and a method using a powder hot pressing method.
  • the molded body processed by this molded body pressing method also includes a degreased body and a calcined body.
  • This manufacturing method includes a molded body forming step of forming a first molded body and a second molded body made of ceramics, and an electrode mounting step of mounting an internal electrode 3 and a connecting member 4 on the first molded body.
  • the cushioning member step of covering at least a part of the edges 4d and 4e of the connecting member 4 with the cushioning member 10, and placing the second molded body on the first molded body, the internal electrode 3, the connecting member 4 and the cushioning member 10. It includes a second molded body mounting step and a sintering step in which the electrode 3, the connecting member 4, and the buffer member 10 are pressure-fired while being sandwiched between the first molded body and the second molded body. ..
  • the cushioning member 10 in the buffering member step is formed by mixing at least a ceramic material constituting the first molded product and the second molded product and a conductive material containing at least one of tungsten and molybdenum as a constituent element.
  • Cushioning member 10 can be, for example, tungsten (or molybdenum) and mainly of aluminum nitride (AlN), is formed by mixing a material obtained by adding a sintering aid such as Y 2 O 3 as required.
  • More specific combinations of materials (composition ratio, etc.) of the mixed materials forming the buffer member 10 are as follows. (1) 50 vol% of mixed powder obtained by mixing 5 wt% Y 2 O 3 with AlN, and 50 vol% of tungsten powder. (2) 30 vol% of mixed powder obtained by mixing 5 wt% Y 2 O 3 with AlN, and 70 vol% of tungsten powder. (3) 90 vol% of mixed powder obtained by mixing 5 wt% Y 2 O 3 with AlN, and 10 vol% of tungsten powder. (4) 70 vol% of mixed powder obtained by mixing 5 wt% Y 2 O 3 with AlN, and 30 vol% of molybdenum powder.
  • Step of preparing a plurality of AlN compacts A step of cutting out from a CIP body or the like by a conventional method and processing it into a predetermined shape In this step, i) First molded product (plate that becomes an insulating layer after firing) ii) Second molded body (plate that serves as a base after firing) To make.
  • a step of placing the second degreasing body 21 on the degreasing body 21 and performing uniaxial pressure firing (hot pressing) (FIG. 3A).
  • the first degreased body 20 and the second degreased body 21 are sintered, and the internal electrode 3, the connecting member 4, and the buffer member 10 are sintered and integrated.
  • the diameter of the terminal hole 5 is smaller than the representative size (for example, diameter) of the connecting member 4.
  • the electrode embedded member 1 shown in FIGS. 1A and 1B is manufactured by the series of steps (1) to (7) above.
  • the number of internal electrodes 3 embedded in the substrate 2 of the electrode burying member 1 is not limited to one, and a plurality of internal electrodes 3 may be embedded in the substrate 2. In that case, a plurality of internal electrodes 3 can be embedded at different positions in the thickness direction of the substrate 2.
  • the internal electrode 3 is further placed on the second degreasing body 21 in the step (5) above, and the connecting member 4 is placed at a predetermined position of the internal electrode 3. It can be manufactured by arranging the buffer member 10 and placing a degreased body of an AlN molded product separately prepared on the buffer member 10 and then performing uniaxial pressure firing (hot pressing).
  • This manufacturing method includes a first pressure powder forming step in which a bottomed tubular mold having an opening is filled with a raw material powder made of ceramics and pressed to form a first pressure powder, and a bottomed tubular mold. , An electrode mounting step of arranging the internal electrode 3 and the connecting member 4 on the opening side of the bottomed tubular shape of the first green compact, and cushioning member at least a part of the edges 4d and 4e of the connecting member 4.
  • the buffer member step covered with 10 and the first green compact, the internal electrode 3, and the opening side of the buffer member 10 in the bottomed tubular mold are filled with the raw material powder and pressed to contain the first green compact.
  • the second green compact forming step of forming the second green compact and the sintering step of pressurizing and firing the second green compact in which the internal electrode 3, the connecting member 4, and the buffer member 10 are embedded are performed. Be prepared.
  • the ceramic material constituting the first molded product and the second molded product and the conductive material having at least one of tungsten and molybdenum as a constituent element are mixed. It is formed.
  • the internal electrodes 3 are embedded at different positions in the thickness direction of the substrate 2 by using the powder hot press method, the internal electrodes 3 are further placed on the second green compact, and the internal electrodes 3 are placed.
  • the connecting member 4 and the buffering member 10 are arranged at the predetermined positions of 3 and filling the opening side of the bottomed tubular mold with the raw material powder and pressurizing it, the second powder and the internal electrode 3
  • a third green compact in which the connecting member 4 and the buffer member 10 are embedded can be produced, and a sintering step can be performed in which the third green powder is pressure-fired.
  • the electrode-embedded member and the method for manufacturing the electrode-embedded member as an embodiment of the present invention have been described above, but according to the above-described embodiment, the peculiar action and effect described below can be obtained.
  • the cushioning member 10 is arranged around the connecting member 4, particularly over the entire circumference of the edge portion 4e on the other main surface 4b side.
  • the buffer member 10 is composed of a mixed structure containing at least a ceramic material constituting the substrate 2 and a conductive material containing at least one of tungsten and molybdenum as a constituent element. Therefore, the mixed structure constituting the buffer member 10 has a coefficient of linear expansion that is intermediate between the coefficient of linear expansion of the material of the connecting member 4 and the material of the substrate 2 (ceramics such as AlN). Changes in the coefficient of linear expansion (magnitude of difference) between them are alleviated. As a result, the stress concentrated on the edge portion of the connecting member 4 can be relaxed, and as a result, the occurrence of cracks extending from the edge portion of the connecting member 4 to the substrate 2 can be suppressed or prevented.
  • the cushioning member 10 arranged around the connecting member 4 is a conductive material (for example, tungsten (W)) in which at least one of the ceramic material constituting the substrate 2 and tungsten and molybdenum is a constituent element. ) -Since it has a mixed structure of AlN), the amount of minute irregularities generated at the interface between the buffer member 10 and the substrate 2 during the firing process or the like increases. As a result, a good bonding state is ensured between the buffer member 10 and the substrate 2, and the progress of oxidation inside the electrode embedded member 1 can be suppressed.
  • tungsten for example, tungsten (W)
  • FIGS. 5A and 5B The parts having the same configuration as the above-described embodiment shown in FIG. 1A and the like are designated by the same reference numerals in FIGS. 5A and 5B, and the parts different from the above-described embodiment will be described below.
  • the end surface (the surface electrically connected to the internal electrode 3) on the internal electrode 3 side of the cushioning member 10 forms an annular shape extending around the connecting member 4.
  • the entire annular end face of the cushioning member 10 is electrically connected to the back surface of the internal electrode 3.
  • the end surface (the surface electrically connected to the internal electrode 3) of the cushioning member 10A on the internal electrode 3 side is a circle around the connecting member 4. It does not extend in a ring shape (continuously), but is formed intermittently (discontinuously) in the circumferential direction. That is, the electrical connection state between the buffer member 10A and the internal electrode 3 is intermittent (discontinuous) in the circumferential direction.
  • a part of the ceramic substrate 2A is locally interposed between the buffer member 10A and the internal electrode 3.
  • the edge 4e on the other main surface 4b side of the connecting member 4 can be covered over the entire circumference. In the vicinity of the edge portion 4e of the connecting member 4, the concentration of stress can be relaxed to suppress or prevent the occurrence of cracks.
  • the other main surface 4b side of the connecting member 4 is arranged.
  • the cushioning member may be arranged not only around the edge portion 4e of the connection member 4 but also around the edge portion 4d on the one main surface 4a side of the connecting member 4. By doing so, it is possible to suppress or prevent the occurrence of cracks in the vicinity of both edge portions 4d and 4e of the connecting member 4.
  • the present invention is suitable for an electrode-embedded member 1 in which a high-frequency electrode, a ground electrode, and an internal electrode 3 as an electrode for electrostatic adsorption are embedded at a position close to the surface 2a of the substrate 2. Further, it is suitable for the electrode embedded member 1 in which the internal electrode 3 as a heater electrode is embedded separately from the internal electrode 3 embedded at a position close to the surface 2a of the substrate so that the electrode embedded member 1 can self-heat.
  • an electrode is embedded in which two internal electrodes 3 as a high-frequency electrode and a heater electrode are embedded in the substrate 2 for the purpose of suppressing the generation of cracks inside the substrate 2 when used at a high temperature.
  • the member 1 will be disclosed.
  • Example 1A to 4B explain the process and structure of burying the internal electrode 3, the connecting member 4, and the cushioning member 10 as high-frequency electrodes to be embedded at a position close to the surface 2a of the substrate.
  • the burying process and structure of the internal electrode 3 as the heater electrode and the connecting member 4 and the buffer member 10 provided corresponding thereto are the same as the burying process and structure of the internal electrode 3 as the high frequency electrode, and thus the illustration is omitted.
  • various examples relating to the manufacturing method of the electrode embedded member 1 in which the two internal electrodes 3 as the high frequency electrode and the heater electrode are embedded will be described.
  • the degreasing, firing, and brazing conditions described in the following examples shall be in accordance with the conventional method for producing a ceramic sintered body, and include changes in appropriate conditions.
  • Example 1 First, as Example 1, an example in which the electrode embedded member 1 is manufactured by using the molded body pressing method will be described.
  • a binder was added to a powder mixture consisting of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder, and after granulation, CIP molding (pressure 1 ton / cm 2 ) was performed to obtain an ingot of the molded product.
  • the following molded product was produced by machining.
  • Disc-shaped molded body A (plate that becomes an insulating layer after firing) Diameter 340 mm, thickness 5 mm
  • Disc-shaped molded body B (plate that serves as an intermediate base after firing) Diameter 340 mm, thickness 10 mm
  • a recess having a diameter of 300 mm and a depth of 0.1 mm is provided on one surface of the disk-shaped molded body B so as to share the center of the molded body and accommodate the first internal electrode 3 (high frequency electrode). Further, a recess having a diameter of 12 mm and a depth of 1.5 mm for accommodating the connecting member 4 and the cushioning member 10 is provided at a predetermined position where the terminal is formed.
  • Disc-shaped molded body C (plate that serves as a base after firing) Diameter 340 mm, thickness 20 mm
  • a recess having a diameter of 300 mm and a depth of 0.1 mm for accommodating the second internal electrode 3 (heater electrode) is provided so as to share the center of the molded body.
  • a recess having a diameter of 12 mm and a depth of 1.5 mm for accommodating the connecting member 4 and the cushioning member 10 is provided at a predetermined position where the terminal is formed.
  • Disc-shaped degreased bodies A, B, and C are degreased to prepare disc-shaped degreased bodies A, B, and C. Degreasing is performed at 500 ° C. or higher in an air atmosphere.
  • the disc-shaped degreasing body B is provided with the first internal electrode 3, the connecting member 4 and the cushioning member 10, and the disc-shaped degreasing body C is provided with the second internal electrode 3, the connecting member 4 and the cushioning member 10. It was decorated.
  • Heater electrode and high-frequency electrode Molybdenum wire mesh (wire diameter 0.1 mm, plain weave, mesh size # 50) This is cut into a predetermined shape to form a heater electrode. The outermost diameter is 294 mm. A mesh made of the same molybdenum wire is cut into a circular shape to form a high-frequency electrode. The outermost diameter is 298 mm.
  • Buffer member AlN raw material powder and W powder are mixed at a volume ratio of 50%: 50% and then molded, and counterbore processing with a diameter of 8 mm and a depth of 0.5 mm on a disk with a diameter of 12 mm and a thickness of 1.5 mm.
  • a cushioning member is arranged in a recess of the disk-shaped degreasing body C having a diameter of 12 mm so that the counterbore hole faces upward.
  • the connecting member is stored in the counterbore hole of the cushioning member.
  • a heater electrode as a second internal electrode is housed therein in a recess having a diameter of 300 mm.
  • a cushioning member is arranged in a recess of the disk-shaped degreasing body B having a diameter of 12 mm so that the counterbore hole faces upward.
  • the connecting member is stored in the counterbore hole of the cushioning member.
  • a high-frequency electrode as a first internal electrode is housed therein in a recess having a diameter of 300 mm.
  • a disk-shaped degreasing body A is laminated on the disc-shaped degreasing body A to complete the laminated body (defatting body).
  • the degreased body was transferred into a carbon mold, placed in a hot press furnace, and fired by hot press firing.
  • Hot press firing was performed at a pressure of 10 MPa at a firing temperature of 1800 ° C. and a firing time of 2 hours.
  • External metal terminal connection A vacuum furnace is provided with an intermediate member made of tungsten and Kovar with a diameter of 5 mm and a thickness of 1 mm and a cylindrical Ni power supply terminal with a diameter of 5 mm and a length of 30 mm installed on the bottom surface of the exposed connection member via a brazing material.
  • the electrode-embedded member was completed by brazing with an Au—Ni brazing material at 1050 ° C.
  • Example 2 Next, as Example 2, an example in which the same electrode embedded member 1 as in Example 1 is manufactured by using the powder hot press method will be described.
  • a powder mixed raw material powder composed of 95% by mass of aluminum nitride powder and 5% by mass of yttrium oxide powder is filled in a bottomed carbon mold and uniaxially pressed to prepare a disc-shaped green compact 1.
  • Disc-shaped green compact A plate that becomes an insulating layer after firing
  • the same high-frequency electrode as in Example 1 is placed at a predetermined position on the disc-shaped green compact 1.
  • Connecting member The same connecting member as in the first embodiment is arranged at a predetermined position on the high frequency electrode.
  • Cushioning member The same cushioning member as in Example 1 is placed over the connecting member on the high frequency electrode.
  • Hot press firing was performed at a pressure of 10 MPa at a firing temperature of 1800 ° C. and a firing time of 2 hours.
  • External metal terminal connection A vacuum furnace is provided with an intermediate member made of tungsten and Kovar with a diameter of 5 mm and a thickness of 1 mm and a cylindrical Ni power supply terminal with a diameter of 5 mm and a length of 30 mm installed on the bottom surface of the exposed connection member via a brazing material.
  • the electrode-embedded member was completed by brazing with an Au—Ni brazing material at 1050 ° C.
  • Example 3 As Example 3, another example in which the electrode-embedded member 1 is manufactured by using the molded body pressing method will be described.
  • the buffer member is formed by mixing AlN raw material powder and tungsten (W) powder at a volume ratio of 70%: 30%, and then forming a disk having a diameter of 12 mm and a thickness of 1.5 mm from one side to a diameter of 8 mm and a depth of 0.5 mm.
  • the process was the same as in Example 1 except that a recessed member subjected to counterbore processing was prepared.
  • Example 4 As Example 4, another example in which the electrode-embedded member 1 is manufactured by using the molded body pressing method will be described.
  • the buffer member is formed by mixing AlN raw material powder and tungsten (W) powder at a volume ratio of 90%: 10%, and then forming a disk having a diameter of 12 mm and a thickness of 1.5 mm from one side to a diameter of 8 mm and a depth of 0.5 mm.
  • the process was the same as in Example 1 except that a recessed member subjected to counterbore processing was prepared.
  • Example 5 As Example 5, another example in which the electrode-embedded member 1 is manufactured by using the molded body pressing method will be described.
  • the connecting member is a bulk body of molybdenum having a diameter of 8 mm and a thickness of 0.5 mm
  • the buffer member is formed by mixing AlN raw material powder and molybdenum (Mo) powder at a volume ratio of 70%: 30% and then molding to have a diameter of 12 mm.
  • the process was the same as in Example 1 except that a concave member having a diameter of 8 mm and a depth of 0.5 mm was subjected to counterbore processing on a disk having a thickness of 1.5 mm from one side.
  • Example 1 the electrode-embedded member was produced by a conventional manufacturing method in which the cushioning member was not arranged around the connecting member and the cushioning member was not included.
  • FIG. 8 is a perspective view schematically showing the external configuration of the electrostatic chuck 1000 in the present embodiment
  • FIG. 9 is an explanatory view schematically showing the XZ cross-sectional configuration of the electrostatic chuck 1000 in the present embodiment.
  • .. 8 and 9 show XYZ axes that are orthogonal to each other to identify the direction.
  • the Z-axis positive direction is referred to as an upward direction
  • the Z-axis negative direction is referred to as a downward direction
  • the electrostatic chuck 1000 is actually installed in a direction different from such a direction. May be done.
  • the electrostatic chuck 1000 is a device that attracts and holds an object (for example, a wafer 1500) by electrostatic attraction, and is used, for example, for fixing a wafer 1500 in a vacuum chamber of a semiconductor manufacturing apparatus.
  • the electrostatic chuck 1000 includes ceramic plates 1010 and base plates 1020 arranged side by side in a predetermined arrangement direction (vertical direction (Z-axis direction in this embodiment)).
  • the lower surface of the ceramic plate 1010 hereinafter referred to as "ceramic side adhesive surface S2"
  • base side adhesive surface S3 the upper surface of the base plate 1020
  • the electrostatic chuck 1000 further includes an adhesive layer 1030 arranged between the ceramic-side adhesive surface S2 of the ceramic plate 1010 and the base-side adhesive surface S3 of the base plate 1020.
  • the ceramic plate 1010 is, for example, a circular flat plate-shaped member, and is made of ceramics.
  • the diameter of the ceramic plate 1010 is, for example, about 50 mm to 500 mm (usually about 200 mm to 350 mm), and the thickness of the ceramic plate 1010 is, for example, about 2 mm to 10 mm.
  • Various ceramics can be used as the forming material of the ceramic plate 1010. From the viewpoints of strength, abrasion resistance, plasma resistance, and the relationship with the forming material of the base plate 1020 described later, for example, aluminum oxide (alumina) is used. , Al 2 O 3 ) or aluminum nitride (AlN) as a main component is preferably used.
  • the main component referred to here means the component having the highest content ratio (weight ratio).
  • a pair of internal electrodes 1040 formed of a conductive material for example, tungsten, molybdenum, etc.
  • a voltage is applied to the pair of internal electrodes 1040 from a power source (not shown)
  • an electrostatic attraction is generated, and the wafer 1500 is transferred to the upper surface of the ceramic plate 1010 (hereinafter referred to as “adsorption surface S1”) by this electrostatic attraction. It is adsorbed and fixed to.
  • a heater 1050 composed of a resistance heating element formed of a conductive material (for example, tungsten, molybdenum, etc.) is provided inside the ceramic plate 1010.
  • a voltage is applied to the heater 1050 from a power source (not shown)
  • the heater 1050 generates heat to heat the ceramic plate 1010, and the wafer 1500 held on the suction surface S1 of the ceramic plate 1010 is heated.
  • the heater 1050 is arranged substantially concentrically in the Z direction, for example, in order to heat the suction surface S1 of the ceramic plate 1010 as evenly as possible.
  • the base plate 1020 is, for example, a circular flat plate-shaped member having the same diameter as the ceramic plate 1010 or having a diameter larger than that of the ceramic plate 1010, and is formed of a composite material composed of ceramics and an aluminum alloy.
  • the diameter of the base plate 1020 is, for example, about 220 mm to 550 mm (usually about 220 mm to 350 mm), and the thickness of the base plate 1020 is, for example, about 20 mm to 40 mm.
  • a metal or various composite materials can be used as a material for forming the base plate 1020.
  • the metal Al (aluminum) or Ti (titanium) is preferably used.
  • the composite material it is preferable to use a composite material in which an aluminum alloy containing aluminum as a main component is melted and pressure-permeated into a porous ceramic containing silicon carbide (SiC) as a main component.
  • the aluminum alloy contained in the composite material may contain Si (silicon) or Mg (magnesium), or may contain other elements as long as the properties are not affected.
  • a refrigerant flow path 1021 is formed inside the base plate 1020.
  • a refrigerant for example, a fluorine-based inert liquid, water, etc.
  • the base plate 1020 is cooled, and heat is transferred between the base plate 1020 and the ceramic plate 1010 via the adhesive layer 1030.
  • the ceramic plate 1010 is cooled, and the wafer 1500 held on the suction surface S1 of the ceramic plate 1010 is cooled. As a result, temperature control of the wafer 1500 is realized.
  • the adhesive layer 1030 adheres the ceramic plate 1010 and the base plate 1020.
  • the thickness of the adhesive layer 1030 is, for example, about 0.03 mm to 1 mm.
  • FIG. 10 is a plan view of the ceramic heater 2000 of the embodiment.
  • FIG. 11 is a cross-sectional view taken along the line AA of FIG.
  • the base material 2020 has a disk shape.
  • One surface of the base material 2020 is a substrate mounting surface 2020S.
  • As the material of the ceramic sintered body forming the base material 2020 in addition to the above-mentioned aluminum nitride, silicon nitride, sialon, silicon carbide, boron nitride, alumina and the like can also be used.
  • the substrate SB (indicated by a broken line in FIG. 11) is placed in contact with the substrate mounting surface 2020S.
  • a board mounting area SR is provided inside a circle centered on the center point C of the board mounting surface 2020S.
  • the shaft 2011 as a support is a cylindrical hollow shaft member.
  • the shaft 2011 is made of, for example, a ceramic sintered body such as alumina (Al 2 O 3 ), aluminum nitride (Al N) or silicon nitride (Si 3 N 4 ).
  • the shaft 2011 is provided with a flange portion 2011F at one end in the axial direction.
  • the shaft 2011 is attached to the lower surface 2021 which is the main surface of the base material 2020 at one end where the flange portion 2011F is formed.
  • the shaft 2011 is attached to the base material 2020 by solid-phase bonding between the lower surface 2021 of the base material 2020 and the surface of the flange portion 2011F.
  • the electrode 2030 as a metal electrode layer is a heat generating resistor embedded in the base material 2020.
  • the power feeding rod 2040 as a metal terminal is electrically connected to the electrode 2030 at one end thereof. Further, the power feeding rod 2040 is connected to a power source (not shown) at the other end. That is, electric power from the power source is supplied to the electrode 2030 via the feeding rod 2040.
  • the electrode 2030 is a heating element that generates heat by supplying this electric power, thereby heating the entire base material 2020.
  • a plurality of feeding rods 2040 are electrically connected to the electrode 2030.
  • the electrode 2030 is embedded so as to extend over the substrate mounting area SR when viewed from a direction perpendicular to the substrate mounting surface 2020S. Further, the electrode 2030 has, for example, a mesh shape when viewed from a direction perpendicular to the substrate mounting surface 2020S.
  • the electrode 2030 is made of a metal material such as molybdenum.
  • the power feeding rod 2040 is formed in a columnar shape in which the hollow portion of the shaft 2011 extends in the axial direction of the shaft 2011 and one end portion extends into the base material 2020.
  • Nickel (Ni) or the like can be used as the material of the power feeding rod 2040.
  • the shape of the feeding rod 2040 may be, for example, a polygonal column or a truncated cone as long as it is columnar.
  • Electrode embedded member 2 2A Base body 3 Internal electrode 4 Connecting member 4a, 4b Main surface of connecting member 4d, 4e Edge of connecting member 5 Terminal hole 6 Terminal (external metal terminal) 7 Brazing parts 7a, 7b Intermediate members 10, 10A Buffer member 20 First degreasing body 21 Second degreasing body

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

電極埋設部材1は、セラミックス製の基体2と、電極3と、一方の主面4aが電極3側を向き、且つ電極3と電気的に接続された状態で基体2に埋設されたタングステン又はモリブデンの少なくとも一方を含む接続部材4と、基体2の外面から接続部材4の他方の主面4bまで延びる穴部5と、を備える。基体2に埋設された緩衝部材10は、少なくとも基体2を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを含み、且つ緩衝部材10は、接続部材4の縁部の少なくとも一部を覆う。

Description

電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
 本発明は、セラミックス製の基体の内部に電極が埋設された電極埋設部材及びその製造方法に関する。ここで、電極埋設部材は、例えば、半導体製造装置に組み込まれるセラミックス製ヒーターまたは静電チャックとして用いられる。
 従来、窒化アルミニウム(AlN)等のセラミックスからなる板状の基体の内部に金属電極(内部電極)を埋設して構成された電極埋設部材が知られている。この電極埋設部材においては、セラミックス製の基体に機械加工によって穴(端子穴)を形成し、この穴に基体内部の金属電極を露出させ、当該穴に円柱状の金属端子を挿入して、金属端子の先端面を基体内部の金属電極にロウ付けしている。
 電極埋設部材は、例えば半導体製造装置(エッチング装置、CVD装置等)に組み込まれて、半導体ウェハの静電チャックや加熱のために使用されるものであり、使用環境下で高温に繰り返しさらされることがある。
 日本国特許第3776499号公報によれば、従来の電極埋設部材に対して、室温と600℃との間での熱サイクル試験、及び600℃での長期間の保持試験を行ったところ、金属端子用の穴を画定する基体の内側面にクラックが発生することがあった。そのようなクラック発生への対策として、日本国特許第3776499号公報では、電極埋設部材の製造時に基体に残留する応力を減少させ、基体に発生するクラックを抑える技術が提案されている。
特許第3776499号公報
 電極埋設部材において発生する上述のクラックについて更に詳細に調べると、端子穴の底部にその一部が露出した接続部材の縁部から、その周囲の、窒化アルミニウム(AlN)等からなる基体の内部においてクラックが発生していることが確認された。
 この点について、従来の電極埋設部材の接続部材及びその周辺の部分を拡大して示した図7を参照して説明する。
 図7に示したように、従来の電極埋設部材100は、窒化アルミニウム(AlN)等のセラミックスで形成された基体101に埋設された内部電極102を備えており、内部電極102の裏面側(図中上側)に接続部材103が設けられている。接続部材103は、例えばタングステン(W)等の金属で形成されている。基体101には、基体101の裏面側(図中上側)から接続部材103の裏面まで延在する端子穴104が穿設されている。端子穴104には端子105(外部金属端子)の一部が挿入されており、端子105の端部と接続部材103とがロウ付け部106によって接続されている。端子105は、例えばニッケル(Ni)で形成されている。上記の構成によって、端子105と内部電極102とが電気的に接続されている。
 なお、電極埋設部材100のセラミックス製の基体101の表面側(図中下側)の部分は、例えば半導体製造装置(エッチング装置、CVD装置等)に組み込まれた電極埋設部材100の上に載置される半導体ウェハと、電極埋設部材100の内部電極102との間を電気的に絶縁するための絶縁層を形成している。
 そして、従来の電極埋設部材100においては、電極埋設部材100の製造過程において、或いは半導体製造装置等に組み込まれて繰り返し高温下で使用される際に、セラミックス製の基体101の内部にクラックが発生するという問題があった。
 図7に示したように、典型的には、接続部材103の裏側(図中上側)の縁部付近を起点として、基体101の内部にクラック107が発生している。このクラック107は、内部電極102を通過して基体101の表面(半導体ウェハ等の載置面)まで達する場合もあった。クラック107が接続部材103の裏側(図中上側)の縁部付近を起点として発生しやすいのは、電極埋設部材100の内部における酸化の進行が、主として、接続部材103の表面側(図中下側)ではなく裏面側(図中上側)から進むことに起因するものと考えられる。
 なお、上述したように電極埋設部材100の基体101の表面側の部分は、電極埋設部材100の上に載置される半導体ウェハ等の被処理基板と電極埋設部材100の内部電極102との間を電気的に絶縁するための絶縁層を形成しているので、電極埋設部材100の基体101の内部におけるクラックの発生を防止し、特にクラックが絶縁層を貫通して被処理基板の載置面まで達することは防止しなければならない。
 上述のクラックの発生原因については、従来、ニッケル(Ni)からなる端子(外部接続端子)105と、窒化アルミニウム(AlN)から成る基体101に埋設されたタングステン(W)からなる接続部材103との間の線膨張係数差(熱膨張係数差)の影響が大きいと考えられていたが、特に長期間使用される場合には、埋設しているタングステン(W)からなる接続部材103と周囲のAlNの線膨張係数差に起因する影響がより大きいことが分かった。
 本発明は、以上の点に鑑み、セラミックス製の基体の内部に電極が埋設された電極埋設部材において、基体の内部でクラックが発生することを抑制または防止することができる電極埋設部材及びその製造方法を提供することを目的とする。
 [1]上記目的を達成するため、本発明による電極埋設部材は、
 セラミックス製の基体と、
 前記基体に埋設された電極と、
 一方の主面及び他方の主面を有し、前記一方の主面が前記電極側を向き、且つ前記電極と電気的に接続された状態で前記基体に埋設されたタングステン又はモリブデンの少なくとも一方を含む接続部材と、
 前記基体の外面から前記接続部材の他方の主面まで延びる穴部と、
 を備える電極埋設部材であって、
 前記基体には緩衝部材が埋設され、
 前記緩衝部材は、少なくともセラミックス材料とタングステン及びモリブデンの少なくとも一方とを含み、
 且つ前記緩衝部材は、前記接続部材の縁部の少なくとも一部を覆うことを特徴とする。
 上記特徴を備えた本発明の電極埋設部材によれば、緩衝部材を構成している混合組織の線膨張係数(熱膨張係数)が、接続部材の材料と基体の材料のそれぞれの線膨張係数の中間の値をとり、部材間における線膨張係数(熱膨張係数)の変化(差異の大きさ)が緩和される。これにより、接続部材の縁部に集中する応力を緩和することができ、その結果、接続部材から基体に進展するクラックの発生を抑制または防止することができる。
 [2]また、本発明の電極埋設部材において、前記緩衝部材は、少なくとも前記基体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを含むことが好ましい。
 [3]また、本発明の電極埋設部材において、前記穴部に一部が挿入された状態で前記接続部材に接続された外部金属端子を備えることが好ましい。
 これにより、基体内部に埋設された内部電極を、外部金属端子及び接続部材を介して外部と電気的に接続することができる。
 [4]また、本発明の電極埋設部材において、前記接続部材は、前記一方の主面と前記他方の主面とを接続する側面と、前記一方の主面と前記側面とによって形成される縁部とをさらに備え、前記緩衝部材は、前記縁部を全周に亘って覆うことが好ましい。
 これにより、接続部材の縁部を起点として発生するクラックを確実に抑制し又は防止することができる。
 [5]上記目的を達成するため、本発明による電極埋設部材の製造方法は、
 上記何れかの電極埋設部材の製造方法であって、
 セラミックス製の第1成形体及び第2成形体を形成する成形体形成工程と、
 前記第1成形体の上に前記電極と前記接続部材とを載置する電極載置工程と、
 前記接続部材の縁部の少なくとも一部を、少なくとも前記第1成形体及び前記第2成形体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
 前記第1成形体、前記電極、前記接続部材及び前記緩衝部材の上に前記第2成形体を載せる第2成形体載置工程と、
 前記電極、前記接続部材、及び前記緩衝部材、を前記第1成形体と前記第2成形体とで挟んだ状態で加圧焼成する焼結工程と、
 を備える。
 上記特徴を備えた本発明の電極埋設部材の製造方法によれば、接続部材から基体に進展するクラックの発生を抑制または防止できる電極埋設部材を製造することができる。すなわち、緩衝部材を構成している混合組織の線膨張係数が、接続部材の材料と基体の材料のそれぞれの線膨張係数の中間の値をとり、部材間における線膨張係数の変化(差異の大きさ)が緩和される。これにより、接続部材の縁部に集中する応力を緩和することができ、その結果、接続部材から基体に進展するクラックの発生を抑制または防止することができる。
 [6]上記目的を達成するため、本発明による電極埋設部材の製造方法は、
 上記何れかの電極埋設部材の製造方法であって、
 開口を有する有底筒状型にセラミックス製の原料粉を充填して加圧し第1圧粉体を形成する第1圧粉体形成工程と、
 前記有底筒状型の中で、前記第1圧粉体の前記有底筒状型の開口側に、前記電極と前記接続部材とを配置する電極載置工程と、
 前記接続部材の縁部の少なくとも一部を、少なくとも前記原料粉を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
 前記有底筒状型の中の、前記第1圧粉体、前記電極、及び前記緩衝部材の前記開口側に前記原料粉を充填して加圧し前記第1圧粉体を含んだ第2圧粉体を形成する第2圧粉体形成工程と、
 前記電極、前記接続部材、及び前記緩衝部材、を埋設した前記第2圧粉体を加圧焼成する焼結工程と、
 を備える。
 上記特徴を備えた本発明の電極埋設部材の製造方法によれば、接続部材から基体に進展するクラックの発生を抑制または防止できる電極埋設部材を製造することができる。すなわち、緩衝部材を構成している混合組織の線膨張係数が、接続部材の材料と基体の材料のそれぞれの線膨張係数の中間の値をとり、部材間における線膨張係数の変化(差異の大きさ)が緩和される。これにより、接続部材の縁部に集中する応力を緩和することができ、その結果、接続部材から基体に進展するクラックの発生を抑制または防止することができる。
図1Aは、本発明の一実施形態としての電極埋設部材の主要部を模式的に示す説明図である。 図1Bは、本発明の一実施形態としての電極埋設部材の主要部を模式的に示す説明図である。 図2は、図1A、図1Bに示した電極埋設部材の接続部材及び緩衝部材を互いに分離した状態で拡大して示した説明図である。 図3Aは、本発明の一実施形態としての電極埋設部材の製造方法を示す説明図である。 図3Bは、本発明の一実施形態としての電極埋設部材の製造方法を示す説明図である。 図4Aは、本発明の一実施形態としての電極埋設部材の製造方法を示す他の説明図である。 図4Bは、本発明の一実施形態としての電極埋設部材の製造方法を示す他の説明図である。 図5Aは、本発明の他の実施形態としての電極埋設部材の主要部を模式的に示す説明図である。 図5Bは、本発明の他の実施形態としての電極埋設部材の主要部を模式的に示す説明図である。 図6は、本発明の他の実施形態としての電極埋設部材の主要部を模式的に示す説明図である。 図7は、従来の電極埋設部材の主要部を模式的に示す説明図である。 図8は、本実施形態における静電チャック1000の外観構成を概略的に示す斜視図である。 図9は、本実施形態における静電チャック1000のXZ断面構成を概略的に示す説明図である。 図10は、セラミックス構造体の平面図である。 図11は、図10のA-A線断面図である。
 以下、本発明の一実施形態としての電極埋設部材及びその製造方法について、図面を参照して説明する。なお、図面は、電極埋設部材の主要部、特に内部電極と外部金属端子との接続箇所を、模式的(概念的)に示すものである。本実施形態の電極埋設部材は、例えば、半導体製造装置に組み込まれ、半導体製造用ウエハを加熱するセラミックス製ヒーター、または半導体製造用ウエハをジョンセン-ラーベック力又はクーロン力により引き付ける静電チャックとして用いられる。
 図1A及び図1Bに示したように、本実施形態による電極埋設部材1は、表面2a及び裏面2bを有し、セラミックスからなる板状の基体2を備えている。基体2の内部には、基体2の表面2aと平行に延在し、金属材料からなる内部電極3が埋設されている。基体2を構成するセラミックス材料としては、典型的には窒化アルミニウム(AlN)があげられ、その他、酸化アルミニウム(Al)がある。内部電極3を構成する金属材料としては、典型的にはモリブデン(Mo)があげられ、その他、タングステン(W)、タングステン及び/又はモリブデンを主成分とする合金がある。
 内部電極3の裏面側には、基体2の表面2aに沿って延在する円板状の接続部材4が配置されている。接続部材4は、内部電極3の側を向く一方の主面4aと、一方の主面4aに対向する他方の主面4bとを有する。接続部材4は、内部電極3に対して電気的に接続されている。接続部材4を構成する材料としては、上述した内部電極3を構成する金属材料と同じ材料を用いることができるが、内部電極3と同じ材料である必要は必ずしもない。すなわち、接続部材4を構成する材料は、タングステン又はモリブデンの少なくとも一方を含んでいれば良い。
 基体2には、その裏面(外面)2bから基体2内部の接続部材4の他方の主面4bに到達するまで延在する端子穴(穴部)5が穿設されている。端子穴5には円柱状の端子6の一部が挿入されており、端子6の端部と接続部材4とがロウ付け部7によって接続されている。ロウ付け部7には、Au-Ni系に代表される金ロウやAg-Cu系に代表される銀ロウ等のロウ材の中に埋設されたタングステン(W)の中間部材7aとコバールの中間部材7bとが含まれている。端子穴5の径は、例えば5mmである。端子6は、例えば、直径が4.8mmであり、長さが20mmである。端子6と、端子穴5を画定する基体2の内側面8との間には、隙間9が形成されている。隙間9の幅は、例えば0.1mmである。端子(外部金属端子)6を構成する金属材料としては、典型的にはニッケルがあげられ、その他、コバール等の低熱膨張金属合金、及び/又はチタン、銅又はこれらを主成分とする合金がある。
 なお、本実施形態においては、円柱状の端子6と円板状の接続部材4とが互いに同心的に配置されて接続されているが、端子6と接続部材4とは必ずしも同心的に配置する必要はなく、同心位置からずれていても良い。また、端子6の形状は、円柱状以外の棒状の形状でも良い。また、ロウ付け部7は、その周囲の部材(例えば緩衝部材10)と接触していても良い。
 上述した構成によって、端子(外部金属端子)6と、基体2の内部に埋設された内部電極3とが電気的に接続される。なお、接続部材4の形状は、必ずしも円板状に限定されるものではなく、内部電極3と端子6とを電気的に接続する上で好適な形状を適宜選択することができる。また、内部電極3と接続部材4との間の電気的な接続状態を確保するための形態としては、両者を直接的に接触させる形態、または導電性ペーストを使って両者を接着する形態等を採用することができる。
 そして、本実施形態による電極埋設部材1は、接続部材4の縁部の少なくとも一部を覆う緩衝部材10が、基体2の内部に埋設されている。緩衝部材10は、少なくとも、基体2を構成するセラミックス材料と、タングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを含んでいる。
 緩衝部材10を構成する導電性材料は、必ずしも接続部材4を構成する材料と同じものである必要はない。例えば、接続部材4がモリブデン製の場合、緩衝部材10を構成する導電性材料は、モリブデンでも良いが、タングステンでも良い。
 また、緩衝部材10を構成する導電性材料は、タングステンの炭化物またはモリブデンの炭化物でも良く、要するにタングステン又はモリブデンの少なくとも一方を構成元素とする材料であれば良い。
 図2に示したように、本実施形態における接続部材4は、一方の主面4aと他方の主面4bとを接続する側面4cと、主面4a、4bと側面4cとによって形成される縁部4d、4eとを有する。本実施形態においては、緩衝部材10は、円板状の接続部材4の他方の主面4b側の縁部4eを、その全周にわたって覆っている。
 次に、図1A及び図1Bに示した電極埋設部材1の製造方法について、図面を参照して説明する。なお、電極埋設部材1の製造方法には、大別して、成形体プレス法を用いる方法と、粉末ホットプレス法を用いる方法とがある。
 まず、成形体プレス法を用いて電極埋設部材1を製造する方法について説明する。なお、この成形体プレス法で処理される成形体には、脱脂体、仮焼体も含まれるものとする。
 この製造方法は、セラミックス製の第1成形体及び第2成形体を形成する成形体形成工程と、第1成形体の上に内部電極3と接続部材4とを載置する電極載置工程と、接続部材4の縁部4d、4eの少なくとも一部を緩衝部材10によって覆う緩衝部材工程と、第1成形体、内部電極3、接続部材4及び緩衝部材10の上に第2成形体を載せる第2成形体載置工程と、電極3、接続部材4、及び緩衝部材10、を第1成形体と第2成形体とで挟んだ状態で加圧焼成する焼結工程と、を備えている。
 緩衝部材工程における緩衝部材10は、少なくとも第1成形体及び第2成形体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成される。緩衝部材10は、例えば、タングステン(またはモリブデン)と窒化アルミニウム(AlN)とを主成分とし、必要に応じてY等の焼結助剤を加えた混合材料で形成することができる。
 緩衝部材10を形成する混合材料について、より具体的な材料の組み合わせ(組成の割合等)は、以下の通りである。
(1)AlNに5wt%Yを混合した混合粉末が50vol%、タングステン粉末が50vol%
(2)AlNに5wt%Yを混合した混合粉末が30vol%、タングステン粉末が70vol%
(3)AlNに5wt%Yを混合した混合粉末が90vol%、タングステン粉末が10vol%
(4)AlNに5wt%Yを混合した混合粉末が70vol%、モリブデン粉末が30vol%
 ここで、AlNが90vol%を超えると、緩衝部材10の線膨張係数が、基体2の材料の線膨張係数に近づきすぎるため、接続部材4と基体2との間における線膨張係数の変化(差異の大きさ)が十分に緩和されなくなる。これにより、接続部材4の縁部に集中する応力を緩和することができず、接続部材4から基体2に進展するクラックの発生を抑制または防止することができなくなる可能性がある。
 また、AlNが30vol%未満であると、緩衝部材10の線膨張係数が、接続部材4の材料の線膨張係数に近づきすぎるため、接続部材4と基体2との間における線膨張係数の変化(差異の大きさ)が十分に緩和されなくなる。これにより、接続部材4の縁部に集中する応力を緩和することができず、接続部材4から基体2に進展するクラックの発生を抑制または防止することができなくなる可能性がある。
 以下、より具体的な電極埋設部材1の製造方法について、図3A乃至図4Bを参照して説明する。
(1)AlN成形体を複数準備する工程
 従前の方法でCIP体などから切り出して、所定の形状に加工する工程
 この工程において、
 i)第1成形体(焼成後絶縁層となるプレート)
 ii)第2成形体(焼成後に基台となるプレート)
を作製する。
(2)第1及び第2AlN成形体を脱脂して、第1脱脂体20及び第2脱脂体21を作製する工程
(3)第1脱脂体20に内部電極3及びその上に接続部材4を載置する工程
(4)AlN原料粉と接続部材4を構成する金属の粉末の混合成形体を作製し、接続部材4を覆う形状の緩衝部材10に加工し、接続部材4に被せる工程
(5)第2脱脂体21をその上に載置して、一軸加圧焼成(ホットプレス)する工程(図3A)
 ここで、第1脱脂体20及び第2脱脂体21が焼結し、内部電極3、接続部材4及び緩衝部材10が焼結一体化する。
(6)焼結体の一方の面(裏面2b)より穴加工を行い、端子穴5を穿設して、埋設した接続部材4を露出させる工程(図3B)
 ここで、端子穴5の直径は、接続部材4の代表寸法(例えば直径)より小さいことがより望ましい。
(7)端子(外部接続端子)6と接続部材4をロウ材(ロウ付け部)でロウ接合する工程(図4A、図4B)
 上記(1)~(7)の一連の工程により、図1A及び図1Bに示した電極埋設部材1が製造される。
 また、電極埋設部材1の基体2に埋設される内部電極3の数は1つに限らず、複数の内部電極3を基体2に埋設してもよい。その場合、基体2の厚み方向の異なる位置に複数の内部電極3を埋設することができる。例えば、2つの内部電極3を埋設した基体2は、上記(5)工程において、第2脱脂体21の上にさらに内部電極3を載置し、この内部電極3の所定の位置に接続部材4と緩衝部材10を配置し、その上に別に準備したAlN成形体の脱脂体を載置した後に一軸加圧焼成(ホットプレス)を行うことにより製造することができる。
 次に、粉末ホットプレス法を用いて電極埋設部材1を製造する方法について説明する。
 この製造方法は、開口を有する有底筒状型にセラミックス製の原料粉を充填して加圧し第1圧粉体を形成する第1圧粉体形成工程と、有底筒状型の中で、第1圧粉体の有底筒状型の開口側に、内部電極3と接続部材4とを配置する電極載置工程と、接続部材4の縁部4d、4eの少なくとも一部を緩衝部材10によって覆う緩衝部材工程と、有底筒状型の中の、第1圧粉体、内部電極3、及び緩衝部材10の開口側に原料粉を充填して加圧し第1圧粉体を含んだ第2圧粉体を形成する第2圧粉体形成工程と、内部電極3、接続部材4、及び緩衝部材10、を埋設した第2圧粉体を加圧焼成する焼結工程と、を備える。
 この製造方法においても、緩衝部材工程における緩衝部材10は、少なくとも第1成形体及び第2成形体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成される。
 また、粉末ホットプレス法を用いて2つの内部電極3を基体2の厚み方向の異なる位置に埋設する場合は、第2圧粉体の上に更に、内部電極3を載置し、この内部電極3の所定の位置に接続部材4、緩衝部材10を配置し、有底筒状型の中の開口側に原料粉を充填して加圧することによって、第2圧粉体と、内部電極3、接続部材4、及び緩衝部材10、を埋設した第3圧粉体を作製し、これを加圧焼成する焼結工程を行うことができる。
 以上、本発明の実施形態としての電極埋設部材及びその製造方法について説明したが、上記実施形態によれば、以下に述べるような特有の作用効果を奏することができる。
 すなわち、上記実施形態においては、接続部材4の周囲、特に他方の主面4b側の縁部4eの全周にわたって、緩衝部材10が配置されている。そして、この緩衝部材10は、少なくとも基体2を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを含んだ混合組織からなる。そのため、緩衝部材10を構成している混合組織は、その線膨張係数が、接続部材4の材料と基体2の材料(AlN等のセラミックス)のそれぞれの線膨張係数の中間の値をとり、部材間における線膨張係数の変化(差異の大きさ)が緩和される。これにより、接続部材4の縁部に集中する応力を緩和することができ、その結果、接続部材4の縁部から基体2に進展するクラックの発生を抑制または防止することができる。
 また、本実施形態においては、接続部材4の周囲に配置された緩衝部材10が、少なくとも基体2を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料(例えばタングステン(W)-AlNの混合組織)を備えているので、焼成処理等の際に緩衝部材10と基体2との間の界面において発生する微小な凹凸の発生量が増加する。その結果、緩衝部材10と基体2との間で良好な接合状態が確保され、電極埋設部材1の内部における酸化の進行を抑制することができる。
 次に、本発明の他の実施形態による電極埋設部材について、図5A及び図5Bを参照して説明する。なお、図1A等に示した上記実施形態と構成を共通にする部分については、図5A、図5Bにおいて共通の符号を付すと共に、以下では、特に上記実施形態と相違する部分について説明する。
 図1A等に示した実施形態においては、緩衝部材10の、内部電極3側の端面(内部電極3に電気的に接続される面)が、接続部材4の周囲に延在する円環状をなしており、この緩衝部材10の円環状の端面の全体が、内部電極3の裏面に電気的に接続されている。
 これに対して、図5A及び図5Bに示した実施形態においては、緩衝部材10Aの内部電極3側の端面(内部電極3に電気的に接続される面)が、接続部材4の周囲に円環状(連続的)に延在するのではなく、周方向において断続的(不連続)に形成されている。すなわち、緩衝部材10Aと内部電極3との電気的な接続状態が、周方向において断続的(不連続)となっている。換言すれば、図5A及び図5Bに示した実施形態においては、緩衝部材10Aと内部電極3との間に、セラミックス製の基体2Aの一部が局所的に介在している。
 図5A及び図5Bに示した実施形態においても、図1A等に示した上記実施形態と同様に、接続部材4の他方の主面4b側の縁部4eを全周にわたって覆うことができるので、接続部材4の縁部4eの付近において、応力の集中を緩和してクラックの発生を抑制または防止することができる。
 さらに他の実施形態としては、第1脱脂体又は第1圧粉体の所定の位置に別の緩衝部材を配置することにより、図6に示すように、接続部材4の他方の主面4b側の縁部4eの周囲のみならず、接続部材4の一方の主面4a側の縁部4dの周囲にも緩衝部材を配置するようにしても良い。このようにすれば、接続部材4の両方の縁部4d、4eの付近においてクラックの発生を抑制または防止することができる。
 本発明は、高周波電極、接地電極や静電吸着用電極としての内部電極3が基体2の表面2aに近い位置に埋設される電極埋設部材1に好適である。更には電極埋設部材1が自己発熱できるように、基体の表面2aに近い位置に埋設される内部電極3とは別にヒーター電極としての内部電極3が埋設された電極埋設部材1に好適である。以下の実施例では、高温下での使用時に基体2の内部でクラックが発生することを抑制することを目的とし、基体2に高周波電極とヒーター電極としての2つの内部電極3を埋設した電極埋設部材1について開示する。
(実施例)
 図1A乃至図4Bは、基体の表面2aに近い位置に埋設される高周波電極としての内部電極3、接続部材4、及び緩衝部材10の埋設工程及び構造を説明したものである。ヒーター電極としての内部電極3とこれに対応して設けられる接続部材4及び緩衝部材10の埋設工程及び構造は、高周波電極としての内部電極3の埋設工程及び構造に準じるため図示は省略するが、以下には高周波電極及びヒーター電極としての2つの内部電極3が埋設された電極埋設部材1の製造方法に関する各種の実施例について説明する。
 また、下記の実施例に記載の脱脂、焼成、ロウ付けの条件は従前のセラミックス焼結体の製造方法に準拠し、適切な条件の変更を含むものとする。
[実施例1]
 まず、実施例1として、成形体プレス法を用いて電極埋設部材1を製造した例について説明する。
(1)窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合物にバインダーを添加して造粒後に、CIP成形(圧力1ton/cm)し、成形体のインゴットを得て、これを機械加工により以下の成形体を作製した。
 (i)円板状成形体A(焼成後絶縁層となるプレート)
     直径340mm、厚み5mm
 (ii)円板状成形体B(焼成後に中間基台となるプレート)
     直径340mm、厚み10mm
 円板状成形体Bの一方の面に、成形体の中心を共有し、第1の内部電極3(高周波電極)を収納するための直径300mm、深さ0.1mmの凹部を設ける。
 更に、端子を形成する所定の位置に、接続部材4及び緩衝部材10を収納するための直径12mm、深さ1.5mmの凹部を設ける。
 (iii)円板状成形体C(焼成後に基台となるプレート)
     直径340mm、厚み20mm
 円板状成形体Cの一方の面に、成形体の中心を共有し、第2の内部電極3(ヒーター電極)を収納するための直径300mm、深さ0.1mmの凹部を設ける。
 更に、端子を形成する所定の位置に、接続部材4及び緩衝部材10を収納するための直径12mm、深さ1.5mmの凹部を設ける。
(2)円板状成形体A、B、Cを脱脂して円板状脱脂体A、B、Cを作製する。
 脱脂は500℃以上、大気雰囲気で行う。
(3)円板状脱脂体Bに第1の内部電極3、接続部材4及び緩衝部材10を内装し、円板状脱脂体Cに第2の内部電極3、接続部材4及び緩衝部材10を内装した。
 (iii)ヒーター電極及び高周波電極
 モリブデンワイヤーによるメッシュ(線径0.1mm、平織り、メッシュサイズ#50)
 これを所定の形状に裁断しヒーター電極とする。最外径294mm。
 同じモリブデンワイヤーによるメッシュから円形形状に裁断し高周波電極とする。最
外径298mm。
 (iv)接続部材
     直径8mm厚み0.5mmのタングステンのバルク体とする。
 (iv)緩衝部材
 AlN原料粉とWの粉末を体積比50%:50%で混合した後に成形し、直径12mm厚み1.5mmの円板に片面から直径8mm、深さ0.5mmのザグリ加工を施した凹部状部材を準備する。
 (v)ヒーター電極等の配置
 円板状脱脂体Cの直径12mmの凹部に緩衝部材をザグリ穴が上方になる向きに配置する。
 緩衝部材のザグリ穴に接続部材を収納する。
 その上に、直径300mmの凹部に第2の内部電極としてのヒーター電極を収納する。
 (vi)円板状脱脂体Bの積層
 円板状脱脂体Cのヒーター電極が埋設された側に、円板状脱脂体2を積層する。
 (vii)高周波電極等の配置
 円板状脱脂体Bの直径12mmの凹部に緩衝部材をザグリ穴が上方になる向きに配置する。
 緩衝部材のザグリ穴に接続部材を収納する。
 その上に、直径300mmの凹部に第1の内部電極としての高周波電極を収納する。
 その上に円板状脱脂体Aを積層し、積層体(脱脂体)を完成させる。
(4)脱脂体をカーボン型内に移設しホットプレス炉に載置してホットプレス焼成した。
 10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行った。
(5)焼成後加工
 その後、全面に研削、研磨加工を行い、総厚25mm、絶縁層厚さ1.0mm、表面粗さをRa0.4μmのウェハ載置面を形成した。
 セラミック基体裏面側より端子位置に接続部材に到達するまで穴径φ5.5mmの平底穴加工を行う。
(6)外部金属端子接続
 露出した接続部材底面にロウ材を介して直径5mm、厚み1mmのタングステンとコバール製の中間部材と直径5mm長さ30mmの円柱状Ni製給電端子を設置し、真空炉により1050℃でAu-Ni系ロウ材によるロウ付けを行い電極埋設部材を完成させた。
[実施例2]
 次に、実施例2として、粉末ホットプレス法を用いて実施例1と同様の電極埋設部材1を製造した例について説明する。
(1)窒化アルミニウム粉末95質量%、酸化イットリウム粉末5質量%からなる粉末混合原料粉を有底のカーボン型に充填して一軸加圧し円板状圧粉体1を作製する。
 (i)円板状圧粉体A(焼成後絶縁層となるプレート)
     直径340mm、厚み5mm。
 (ii)実施例1と同じ高周波電極を円板状圧粉体1上の所定位置に載置する。
 (iii)接続部材
 実施例1と同じ接続部材を高周波電極上の所定の位置に配置する。
 (iv)緩衝部材
 実施例1と同じ緩衝部材を高周波電極上の接続部材に被せて配置する。
(2)同一の粉末混合原料粉を有底のカーボン型に更に充填して一軸加圧して円板状圧粉体Bを作製する。
     直径340mm、厚み10mm
 (v)ヒーター電極を円板状圧粉体B上に載せる。
 (vi)接続部材
 実施例1と同じ接続部材をヒーター電極上の所定の位置に配置する。
 (vii)緩衝部材
 実施例1と同じ緩衝部材をヒーター電極上の接続部材に被せる。
(3)同一の粉末混合原料粉を有底のカーボン型に更に充填して一軸加圧して円板状圧粉体Cを作製する。
 (viii)円板状圧粉体C(焼成後に基台となるプレート)
     直径340mm、厚み20mm
(4)ホットプレス焼成
 10MPaの圧力で、焼成温度1800℃、焼成時間2時間でホットプレス焼成を行った。
(5)焼成後加工
 その後、全面に研削、研磨加工を行い、総厚25mm、絶縁層厚さ1.0mm、表面粗さをRa0.4μmのウェハ載置面を形成した。
 セラミック基体裏面側より端子位置に接続部材に到達するまで穴径φ5.5mmの平底穴加工を行う。
(6)外部金属端子接続
 露出した接続部材底面にロウ材を介して直径5mm、厚み1mmのタングステンとコバール製の中間部材と直径5mm長さ30mmの円柱状Ni製給電端子を設置し、真空炉により1050℃でAu-Ni系ロウ材によるロウ付けを行い電極埋設部材を完成させた。
[実施例3]
 次に、実施例3として、成形体プレス法を用いて電極埋設部材1を製造した別の例について説明する。
 緩衝部材をAlN原料粉とタングステン(W)の粉末を体積比70%:30%で混合した後に成形し、直径12mm、厚み1.5mmの円板に片面から直径8mm、深さ0.5mmのザグリ加工を施した凹部状部材を準備することとしたこと以外は実施例1と同じ工程とした。
[実施例4]
 次に、実施例4として、成形体プレス法を用いて電極埋設部材1を製造した別の例について説明する。
 緩衝部材をAlN原料粉とタングステン(W)の粉末を体積比90%:10%で混合した後に成形し、直径12mm、厚み1.5mmの円板に片面から直径8mm、深さ0.5mmのザグリ加工を施した凹部状部材を準備することとしたこと以外は実施例1と同じ工程とした。
[実施例5]
 次に、実施例5として、成形体プレス法を用いて電極埋設部材1を製造した別の例について説明する。
 接続部材が直径8mm、厚み0.5mmのモリブデンのバルク体とすること、及び緩衝部材をAlN原料粉とモリブデン(Mo)の粉末を体積比70%:30%で混合した後に成形し、直径12mm、厚み1.5mmの円板に片面から直径8mm、深さ0.5mmのザグリ加工を施した凹部状部材を準備することとしたこと以外は実施例1と同じ工程とした。
[比較例]
 次に、上記実施例に対する比較例について説明する。
 本比較例においては、上述の実施例1において、緩衝部材を接続部材の周囲に配置せず、緩衝部材を含まない従来の製法による電極埋設部材を作製した。
(評価)
 実施例1~5及び比較例で作製した電極埋設部材を用いて、プロセス温度が600℃である半導体製造プロセスに使用した。
 使用開始後3か月経過後に端子部の断面をSEM観察したところ、実施例1~5ともクラックは確認されなかったが、比較例においては、接続部材の縁部から電極埋設部材の表面に向かうクラックの進展が確認された。
A.実施形態:
A-1.静電チャック1000の構成:
 図8は、本実施形態における静電チャック1000の外観構成を概略的に示す斜視図であり、図9は、本実施形態における静電チャック1000のXZ断面構成を概略的に示す説明図である。図8及び図9には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック1000は実際にはそのような向きとは異なる向きで設置されてもよい。
 静電チャック1000は、対象物(例えばウエハ1500)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウエハ1500を固定するために使用される。静電チャック1000は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置されたセラミックス板1010およびベース板1020を備える。セラミックス板1010とベース板1020とは、セラミックス板1010の下面(以下、「セラミックス側接着面S2」という)とベース板1020の上面(以下、「ベース側接着面S3」という)とが上記配列方向に対向するように配置されている。静電チャック1000は、さらに、セラミックス板1010のセラミックス側接着面S2とベース板1020のベース側接着面S3との間に配置された接着層1030を備える。
 セラミックス板1010は、例えば円形平面の板状部材であり、セラミックスにより形成されている。セラミックス板1010の直径は、例えば50mm~500mm程度(通常は200mm~350mm程度)であり、セラミックス板1010の厚さは、例えば2mm~10mm程度である。
 セラミックス板1010の形成材料としては、種々のセラミックスが用いられ得るが、強度や耐摩耗性、耐プラズマ性、後述するベース板1020の形成材料との関係等の観点から、例えば、酸化アルミニウム(アルミナ、Al)または窒化アルミニウム(AlN)を主成分とするセラミックスが用いられることが好ましい。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。
 セラミックス板1010の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された一対の内部電極1040が設けられている。一対の内部電極1040に電源(図示せず)から電圧が印加されると、静電引力が発生し、この静電引力によってウエハ1500がセラミックス板1010の上面(以下、「吸着面S1」という)に吸着固定される。
 また、セラミックス板1010の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された抵抗発熱体で構成されたヒータ1050が設けられている。ヒータ1050に電源(図示せず)から電圧が印加されると、ヒータ1050が発熱することによってセラミックス板1010が温められ、セラミックス板1010の吸着面S1に保持されたウエハ1500が温められる。これにより、ウエハ1500の温度制御が実現される。なお、ヒータ1050は、セラミックス板1010の吸着面S1をできるだけ満遍なく温めるため、例えばZ方向視で略同心円状に配置されている。
 ベース板1020は、例えばセラミックス板1010と同径の、または、セラミックス板1010より径が大きい円形平面の板状部材であり、セラミックスとアルミニウム合金とから構成された複合材料により形成されている。ベース板1020の直径は、例えば220mm~550mm程度(通常は220mm~350mm程度)であり、ベース板1020の厚さは、例えば20mm~40mm程度である。
 ベース板1020の形成材料としては、金属や種々の複合材料が用いられ得る。金属としては、Al(アルミニウム)やTi(チタン)が用いられることが好ましい。複合材料としては、炭化ケイ素(SiC)を主成分とする多孔質セラミックスに、アルミニウムを主成分とするアルミニウム合金を溶融して加圧浸透させた複合材料が用いられることが好ましい。複合材料に含まれるアルミニウム合金は、Si(ケイ素)やMg(マグネシウム)を含んでいてもよいし、性質等に影響の無い範囲でその他の元素を含んでいてもよい。
 ベース板1020の内部には冷媒流路1021が形成されている。冷媒流路1021に冷媒(例えば、フッ素系不活性液体や水等)が流されると、ベース板1020が冷却され、接着層1030を介したベース板1020とセラミックス板1010との間の伝熱によりセラミックス板1010が冷却され、セラミックス板1010の吸着面S1に保持されたウエハ1500が冷却される。これにより、ウエハ1500の温度制御が実現される。
 接着層1030は、セラミックス板1010とベース板1020とを接着している。接着層1030の厚さは、例えば0.03mm~1mm程度である。
A-2.セラミックスヒータ2000の構成:
 図10は、実施例のセラミックスヒータ2000の平面図である。図11は、図10のA-A線に沿った断面図である。
 本実施例のセラミックス構造体としてのセラミックスヒータ2000は、図10に示すように、例えば、Yを含むAINのセラミックス焼結体からなる板状のセラミックス基材としての基材2020を有している。
 基材2020は、円板形状を有している。基材2020は、一方の面が基板載置面2020Sとなっている。基材2020を形成するセラミックス焼結体の材料としては、上記した窒化アルミニウムの他、窒化珪素、サイアロン、炭化珪素、窒化ホウ素、アルミナ等を使用することも可能である。
 図11に示すように、基板SB(図11において破線で示す)は、基板載置面2020S上に接して載置される。
 基板載置面2020Sの中心点Cを中心とする円の内部には、基板載置領域SRが設けられている。
 支持体としてのシャフト2011は、円筒状の中空シャフト部材である。シャフト2011は、例えば、アルミナ(Al)、窒化アルミニウム(AlN)または窒化ケイ素(Si)等のセラミックス焼結体からなっている。
 シャフト2011には、軸方向の一方の端部においてフランジ部2011Fが設けられている。シャフト2011は、当該フランジ部2011Fが形成されている一端において、基材2020の主面である下面2021に取り付けられている。例えば、シャフト2011の基材2020への取付けは、基材2020の下面2021とフランジ部2011Fの表面とを固相接合することによって行われる。
 金属電極層としての電極2030は、基材2020内に埋設されている発熱抵抗体である。金属端子としての給電ロッド2040は、当該一端部において電極2030と電気的に接続している。また、給電ロッド2040は、他端部において、電源(図示せず)に接続されている。すなわち、電極2030には、給電ロッド2040を介して電源からの電力が供給される。電極2030は、この電力の供給により発熱する発熱体であり、それによって基材2020全体が加熱される。図示しないが、電極2030には、複数の給電ロッド2040が電気的に接続されている。
 電極2030は、基板載置面2020Sと垂直な方向から見て、基板載置領域SRに亘って延在するように埋設されている。また、電極2030は、例えば、基板載置面2020Sと垂直な方向から見てメッシュ形状を有している。電極2030は、例えば、モリブデン等の金属材料からなっている。
 給電ロッド2040は、シャフト2011の中空部分においてシャフト2011の軸方向に伸長し、かつ一端部が基材2020内まで伸長する柱状に形成されている。
 給電ロッド2040の材料としては、ニッケル(Ni)等を使用することができる。尚、給電ロッド2040の形状は、柱状のものであれば、例えば、多角柱や円錐台等の形状にすることもできる。
1 電極埋設部材
2、2A 基体
3 内部電極
4 接続部材
4a、4b 接続部材の主面
4d、4e 接続部材の縁部
5 端子穴
6 端子(外部金属端子)
7 ロウ付け部
7a、7b 中間部材
10、10A 緩衝部材
20 第1脱脂体
21 第2脱脂体

Claims (11)

  1.  セラミックス製の基体と、
     前記基体に埋設された電極と、
     一方の主面及び他方の主面を有し、前記一方の主面が前記電極側を向き、且つ前記電極と電気的に接続された状態で前記基体に埋設されたタングステン又はモリブデンの少なくとも一方を含む接続部材と、
     前記基体の外面から前記接続部材の他方の主面まで延びる穴部と、
     を備える電極埋設部材であって、
     前記基体には緩衝部材が埋設され、
     前記緩衝部材は、少なくともセラミックス材料とタングステン及びモリブデンの少なくとも一方とを含み、
     且つ前記緩衝部材は、前記接続部材の縁部の少なくとも一部を覆うことを特徴とする電極埋設部材。
  2.  請求項1記載の電極埋設部材であって、
     前記緩衝部材は、少なくとも前記基体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを含むことを特徴とする電極埋設部材。
  3.  請求項1記載の電極埋設部材であって、
     前記穴部に一部が挿入された状態で前記接続部材に接続された外部金属端子を備えることを特徴とする電極埋設部材。
  4.  請求項3記載の電極埋設部材であって、
     前記接続部材は、前記一方の主面と前記他方の主面とを接続する側面と、前記一方の主面と前記側面とによって形成される縁部とをさらに備え、
     前記緩衝部材は、前記縁部を全周に亘って覆うことを特徴とする電極埋設部材。
  5.  請求項1記載の電極埋設部材であって、
     前記接続部材は、前記一方の主面と前記他方の主面とを接続する側面と、前記一方の主面と前記側面とによって形成される縁部とをさらに備え、
     前記緩衝部材は、前記縁部を全周に亘って覆うことを特徴とする電極埋設部材。
  6.  請求項4に記載の電極埋設部材の製造方法であって、
     セラミックス製の第1成形体及び第2成形体を形成する成形体形成工程と、
     前記第1成形体の上に前記電極と前記接続部材とを載置する電極載置工程と、
     前記接続部材の縁部の少なくとも一部を、少なくとも前記第1成形体及び前記第2成形体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
     前記第1成形体、前記電極、前記接続部材及び前記緩衝部材の上に前記第2成形体を載せる第2成形体載置工程と、
     前記電極、前記接続部材、及び前記緩衝部材、を前記第1成形体と前記第2成形体とで挟んだ状態で加圧焼成する焼結工程と、
     を備える電極埋設部材の製造方法。
  7.  請求項1に記載の電極埋設部材の製造方法であって、
     セラミックス製の第1成形体及び第2成形体を形成する成形体形成工程と、
     前記第1成形体の上に前記電極と前記接続部材とを載置する電極載置工程と、
     前記接続部材の縁部の少なくとも一部を、少なくとも前記第1成形体及び前記第2成形体を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
     前記第1成形体、前記電極、前記接続部材及び前記緩衝部材の上に前記第2成形体を載せる第2成形体載置工程と、
     前記電極、前記接続部材、及び前記緩衝部材、を前記第1成形体と前記第2成形体とで挟んだ状態で加圧焼成する焼結工程と、
     を備える電極埋設部材の製造方法。
  8.  請求項4に記載の電極埋設部材の製造方法であって、
     開口を有する有底筒状型にセラミックス製の原料粉を充填して加圧し第1圧粉体を形成する第1圧粉体形成工程と、
     前記有底筒状型の中で、前記第1圧粉体の前記有底筒状型の開口側に、前記電極と前記接続部材とを配置する電極載置工程と、
     前記接続部材の縁部の少なくとも一部を、少なくとも前記原料粉を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
     前記有底筒状型の中の、前記第1圧粉体、前記電極、及び前記緩衝部材の前記開口側に前記原料粉を充填して加圧し前記第1圧粉体を含んだ第2圧粉体を形成する第2圧粉体形成工程と、
     前記電極、前記接続部材、及び前記緩衝部材、を埋設した前記第2圧粉体を加圧焼成する焼結工程と、
     を備える電極埋設部材の製造方法。
  9.  請求項1に記載の電極埋設部材の製造方法であって、
     開口を有する有底筒状型にセラミックス製の原料粉を充填して加圧し第1圧粉体を形成する第1圧粉体形成工程と、
     前記有底筒状型の中で、前記第1圧粉体の前記有底筒状型の開口側に、前記電極と前記接続部材とを配置する電極載置工程と、
     前記接続部材の縁部の少なくとも一部を、少なくとも前記原料粉を構成するセラミックス材料とタングステン及びモリブデンの少なくとも一方を構成元素とする導電性材料とを混合させて形成された前記緩衝部材によって覆う緩衝部材工程と、
     前記有底筒状型の中の、前記第1圧粉体、前記電極、及び前記緩衝部材の前記開口側に前記原料粉を充填して加圧し前記第1圧粉体を含んだ第2圧粉体を形成する第2圧粉体形成工程と、
     前記電極、前記接続部材、及び前記緩衝部材、を埋設した前記第2圧粉体を加圧焼成する焼結工程と、
     を備える電極埋設部材の製造方法。
  10.  請求項1に記載の電極埋設部材は静電チャックであることを特徴とする静電チャック。
  11.  請求項1に記載の電極埋設部材はセラミックス製ヒーターであることを特徴とするセラミックス製ヒーター。
PCT/JP2020/012499 2019-03-26 2020-03-19 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター WO2020196339A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217023398A KR102527439B1 (ko) 2019-03-26 2020-03-19 전극 매설 부재 및 그 제조 방법, 정전 척, 세라믹스제 히터
US17/416,127 US11869796B2 (en) 2019-03-26 2020-03-19 Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
CN202080007096.8A CN113196870B (zh) 2019-03-26 2020-03-19 电极埋设构件和其制造方法、静电卡盘、陶瓷制加热器
JP2020537785A JP6966651B2 (ja) 2019-03-26 2020-03-19 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
TW109109926A TWI772767B (zh) 2019-03-26 2020-03-25 電極埋設構件及其製造方法、靜電夾、陶瓷製加熱器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059113 2019-03-26
JP2019-059113 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196339A1 true WO2020196339A1 (ja) 2020-10-01

Family

ID=72611959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012499 WO2020196339A1 (ja) 2019-03-26 2020-03-19 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター

Country Status (6)

Country Link
US (1) US11869796B2 (ja)
JP (1) JP6966651B2 (ja)
KR (1) KR102527439B1 (ja)
CN (1) CN113196870B (ja)
TW (1) TWI772767B (ja)
WO (1) WO2020196339A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112053A (ja) * 1997-06-20 1999-01-19 Ngk Insulators Ltd セラミックスの接合構造およびその製造方法
JP2001010873A (ja) * 1999-06-25 2001-01-16 Ngk Insulators Ltd 異種部材の接合方法、および同接合方法により接合された複合部材
JP2003124299A (ja) * 2001-10-17 2003-04-25 Sumitomo Osaka Cement Co Ltd 電極内蔵型サセプタ及びその製造方法
JP2008130609A (ja) * 2006-11-16 2008-06-05 Ngk Insulators Ltd 加熱装置
JP2018016536A (ja) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 セラミックス部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776499B2 (ja) 1996-02-29 2006-05-17 日本碍子株式会社 金属部材とセラミックス部材との接合構造およびその製造方法
JP2001253777A (ja) * 2000-03-13 2001-09-18 Ibiden Co Ltd セラミック基板
JP3618640B2 (ja) * 2000-06-15 2005-02-09 イビデン株式会社 半導体製造・検査装置用ホットプレート
JP4467453B2 (ja) * 2004-09-30 2010-05-26 日本碍子株式会社 セラミックス部材及びその製造方法
US7696455B2 (en) * 2006-05-03 2010-04-13 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
JP2008012053A (ja) 2006-07-05 2008-01-24 Juki Corp ミシン
US8908349B2 (en) * 2011-03-31 2014-12-09 Ngk Insulators, Ltd. Member for semiconductor manufacturing apparatus
JP6428456B2 (ja) 2014-04-09 2018-11-28 住友大阪セメント株式会社 静電チャック装置
KR101861469B1 (ko) * 2014-04-30 2018-05-28 엔지케이 인슐레이터 엘티디 세라믹스 부재와 금속 부재의 접합체 및 그 제법
JP6475031B2 (ja) 2015-02-03 2019-02-27 日本特殊陶業株式会社 静電チャック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112053A (ja) * 1997-06-20 1999-01-19 Ngk Insulators Ltd セラミックスの接合構造およびその製造方法
JP2001010873A (ja) * 1999-06-25 2001-01-16 Ngk Insulators Ltd 異種部材の接合方法、および同接合方法により接合された複合部材
JP2003124299A (ja) * 2001-10-17 2003-04-25 Sumitomo Osaka Cement Co Ltd 電極内蔵型サセプタ及びその製造方法
JP2008130609A (ja) * 2006-11-16 2008-06-05 Ngk Insulators Ltd 加熱装置
JP2018016536A (ja) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 セラミックス部材

Also Published As

Publication number Publication date
TW202106105A (zh) 2021-02-01
JPWO2020196339A1 (ja) 2021-04-08
US11869796B2 (en) 2024-01-09
KR102527439B1 (ko) 2023-04-28
CN113196870B (zh) 2023-09-29
US20220102180A1 (en) 2022-03-31
CN113196870A (zh) 2021-07-30
TWI772767B (zh) 2022-08-01
JP6966651B2 (ja) 2021-11-17
KR20210107085A (ko) 2021-08-31

Similar Documents

Publication Publication Date Title
JP4467453B2 (ja) セラミックス部材及びその製造方法
JP4040284B2 (ja) プラズマ発生用電極内蔵型サセプタ及びその製造方法
KR101099891B1 (ko) 접합 구조체 및 그 제조 방법
TW201616915A (zh) 接合構造體
JP4005268B2 (ja) セラミックスと金属との接合構造およびこれに使用する中間挿入材
US20220230905A1 (en) Wafer placement table and method of manufacturing the same
JP2004253786A (ja) セラミックスの接合構造
WO2020196339A1 (ja) 電極埋設部材及びその製造方法、静電チャック、セラミックス製ヒーター
US7252872B2 (en) Joined structures of ceramics
JP7014651B2 (ja) セラミックス基板構造体及びその製造方法
JP7265930B2 (ja) 加熱装置および加熱装置の製造方法
JP2020126913A (ja) セラミックス部材
JP7240232B2 (ja) 保持装置
JP7400854B2 (ja) 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
JP2020177735A (ja) 電極埋設部材の製造方法
JP7227806B2 (ja) 保持装置
JP2005166821A (ja) ウェーハ保持用静電チャック及びその製造方法
KR102386581B1 (ko) 웨이퍼 적재대 및 그 제법
JP7507019B2 (ja) 窒化アルミニウム焼結体、その製造方法、および窒化アルミニウム焼結体を用いた半導体製造装置用部品
JP6898792B2 (ja) セラミックス部材及びその製造方法
JP7208801B2 (ja) 保持装置
JP2023116214A (ja) 電極埋設部材、およびその製造方法
JP4088515B2 (ja) 静電チャック
JP2023138085A (ja) 静電チャック部材、および静電チャック装置
JP2021170567A (ja) 保持装置及び保持装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020537785

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217023398

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779048

Country of ref document: EP

Kind code of ref document: A1