JP2008114426A - 画像形成装置及びその制御方法 - Google Patents

画像形成装置及びその制御方法 Download PDF

Info

Publication number
JP2008114426A
JP2008114426A JP2006298216A JP2006298216A JP2008114426A JP 2008114426 A JP2008114426 A JP 2008114426A JP 2006298216 A JP2006298216 A JP 2006298216A JP 2006298216 A JP2006298216 A JP 2006298216A JP 2008114426 A JP2008114426 A JP 2008114426A
Authority
JP
Japan
Prior art keywords
image
pixel
information
laser
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298216A
Other languages
English (en)
Other versions
JP4942176B2 (ja
Inventor
Yasutomo Furuta
泰友 古田
Hidekazu Tominaga
英和 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006298216A priority Critical patent/JP4942176B2/ja
Publication of JP2008114426A publication Critical patent/JP2008114426A/ja
Application granted granted Critical
Publication of JP4942176B2 publication Critical patent/JP4942176B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 従来のポリゴンミラーの面倒れ補正方法では、生産性が上がらず、コストアップを招くことになる。
【解決手段】 レーザ光を偏向するポリゴンミラーの反射面を特定する特定部320と、画像信号をパルス幅変調したPWM信号を発生するPWM信号生成部303と、画像信号に含まれる像形成対象画素の周辺画素の配置状況を表す周辺画素情報を生成する画像処理装置301と、ポリゴンミラーの反射面と周辺画素情報に対応して、前記レーザ光の光量に関する情報を記憶するメモリ321とを有し、PWM信号、及びメモリ321から読み出した情報とに対応する電流値でレーザ315を駆動して像を形成する。
【選択図】 図3

Description

本発明は、レーザ光を走査して画像を形成する画像形成装置及びその制御方法に関するものである。
電子写真方式を採用した複写機等の画像形成装置では、画像信号に応じて変調したレーザ光をポリゴンミラーによって感光体ドラム上を偏向走査させて像形成を行っている。
図1は、レーザ光をポリゴンミラーで偏向走査する一般的なレーザプリンタの像形成を説明する図である。
半導体レーザ101の出力光(レーザ光)は、コリメータレンズ102、開口絞り103、シリンドリカルレンズ104を通過してポリゴンミラー105の反射面105aで反射される。こうして反射されたレーザ光は、トーリックレンズ106−a、回折光学素子106−bを通過して感光体ドラム108上に結像される。ここでコリメータレンズ102は、半導体レーザ101から出射された発散光束(光ビーム)を略平行光束に変換し、開口絞り103は、通過光束を制限している。またシリンドリカルレンズ104は、副走査方向にのみ所定の屈折力を有しており、開口絞り103を通過した光束を副走査断面内で、ポリゴンミラー105の反射面105aにほぼ線像として結像させている。ポリゴンミラー105は、モータにより図中矢印A方向に一定速度で回転駆動されており、反射面105aに結像したレーザ光を偏向走査させる。こうしてレーザ光は感光体ドラム108上を主走査方向に走査される。106はfθ特性を有する光学素子であり、屈折部と回折部とを有している。屈折部は主走査方向と副走査方向とで互いに異なるパワーを有するトーリックレンズ106−aを有し、このトーリックレンズ106−aの主走査方向の両レンズ面は非球面形状である。また回折部は、主走査方向と副走査方向とで互いに異なるパワーを有する長尺の回折光学素子106−bを備えている。107は、画像領域外に設置されたビーム検出センサ(BDセンサ)であり、このBDセンサ107のビーム検出タイミングを基に感光体ドラム108への露光タイミングが制御される。
このようなポリゴンミラーを用いた走査光学系では、ポリゴンミラーの面倒れ、軸倒れ等により光軸が変動すると、感光体ドラム上の走査ラインの位置が副走査方向へ変動する。これにより主走査方向に描画された走査ライン同士の間隔が変動し、画像の濃度むらが発生する。このポリゴンミラーに起因する走査ライン間隔の変動は、ポリゴンミラーの回転周期で繰り返される。このため画像の濃度むらが周期的に出現し、特に中間調画像において視覚的に目立ちやすくなる。また走査ラインの副走査方向での位置が変動することによる濃度むらへの影響は、画像の書き込み密度(解像度)が上がるにつれて大きくなるため、形成される画像の解像度が高くなるのに伴って、より高精度な面倒れ補正技術が必要となる。
このようなポリゴンミラーの面倒れ、軸倒れにより発生する画像の濃度むらを補正する従来技術には、光学系に面倒れ補正機能を持たせる方法と、走査ラインの粗密に対してレーザの露光量を微調整して、感光体ドラム上の潜像電位を均一化する方法がある。
前者の面倒れ補正機能として、光源からの光束を光偏向手段の反射面又は、其の近傍に線状に結像させる第1結像光学系と、その光偏向手段により偏向された光束を被走査面上に結像させる第2結像光学系とを備えるものがある。これによれば、副走査方向の断面に関して光偏向反射面と被走査面とが光学的に略共役となるように構成されている。
特許文献1には、コリメータレンズを電歪素子(ピエゾ素子)により微動させて光軸の変動を補正する方法が記載されている。また後者の技術に関連して特許文献2には、2個のレーザ光源により得られた2本のレーザビームで1ラインの走査ラインを形成し、2本のビームのパワーを各々変化させることで合成されるビームの重心を、走査ライン間隔の変動に応じて制御する技術が記載されている。更に特許文献3には、特定のポリゴンミラーの反射面の面倒れデータを記録し、そのデータに基づいてレーザ光量を微少に調整して濃度むらを補正する方法が記載されている。特許文献4には、光線照射位置の間隔を表す照射間隔データと入力画像データとからドット間隔を求め、このドット間隔データに基づいて光量補正を行い、特に2ドット以上の非発光データに挟まれた前記入力画像データに対応する発光素子以外の発光素子に限って、光量を補正する方法が記載されている。
特開昭63−313113号公報 特開昭61−212818号公報 特開平4−200065号公報 特開2006−150772号公報
しかしながら前述のポリゴンミラーの面倒れ補正方法には、以下のような問題があった。以下、詳しく説明する。
前者の面倒れ補正光学系による面倒れ補正の効果は、各光学部品の加工精度や取り付け精度により影響される。特に高解像度化を実現するためには、今まで以上に面倒れによる走査位置の変動を低減させる必要がある。更に補正効果を向上させるためには、光学系の精度規格を今まで以上に厳しく管理する必要がある。このため生産性が上がらず、コストアップを引き起こす。また、熱等により光学系に歪みが生じる場合は、走査ラインの位置ずれ、及び、面倒れ補正の効果が低下するため、定常的に安定した補正効果を出すのは困難となる。
特に特許文献1に記載の方法では、リアルタイムで光軸を補正することができるが、コリメータレンズに電歪素子を取り付けるため、装置が大型化しコストアップは免れない。更にコリメータレンズを走査ライン間で動かすためレンズの振動に配慮が必要となる。また、高速化によりポリゴンミラーの面数や回転速度が上昇した場合、走査ライン間での補正動作が間に合わなくなるおそれがある。
また後者の技術に関する特許文献2に記載の方法では、一つの走査ラインに対してレーザ素子が2つ必要となるため、一つの光学系で使用するレーザ素子数が倍になり、それぞれの素子間の調整も必要となるためコストアップを免れない。また、2つのレーザ素子に対して、各々駆動回路が必要となるため、装置が複雑化する等の問題がある。
更に特許文献3の方法では、中間調を多く含む画像のように副走査方向に連続した画像に対して走査ライン毎の露光量を変化させて濃度を均一化しているが、この方法では以下2点において問題がある。一つは、副走査方向に非連続な画像(孤立ドット、ラインなど)に対しては走査ライン毎に光量を変更する補正を行うと、逆にラインやドットが不安定になってしまう点である。もう一つは、露光量の変化に伴うスポット径の変動により、主走査方向に対してもドット径の変動が発生することが考えられる。
図2(A)〜(D)は、副走査方向のスポット位置と光量分布との関係を説明する図である。
図2(A)は、走査ラインの位置がポリゴンミラーの面周期で副走査方向に変動する光学系において、副走査方向に対して連続画像を描画する際の光量分布を示す図である。
また図2(B)は、副走査方向に対する孤立画像を描画する時(1ドット幅の主走査ライン等)の光量分布を示す図である。これより、ポリゴンミラーの面周期で副走査方向の走査ライン位置が変動する場合、副走査方向に連続する画像においてもポリゴンミラーの面周期で積算光量が変動することがわかる。
図2(C)は、副走査方向に対する連続画像を描画する際、走査ライン毎に連続画像での光量分布が均一となるようにポリゴンミラーの面毎に走査ラインの露光量を設定した場合の各走査ラインの光量と積算光量分布を示す図である。このように走査ライン毎に露光量を調整した場合、連続画像形成時において光量を均一化することができる。即ち、連続画像においては、ポリゴンミラーの面倒れ、軸倒れに対して発生するポリゴンミラーの面周期の濃度むらをなくすことができる。しかし同様の光量設定で副走査方向に孤立した画像を描画すると、走査ライン毎の光量が異なるため露光量が一定にならず、ポリゴンの反射面毎に露光量がばらついてしまう。
図2(D)は、副走査方向に対する孤立画像の描画時において、図2(C)に示す連続画像の形成時と同様の露光量設定を行った状態での光量分布を示す図である。
図2(D)の例では、副走査方向に孤立した画素を並べ、前述のポリゴンミラーの面毎に設定される光量で描画しているが、ポリゴンミラーの面毎に露光量を変動させるため、露光量が不安定となっていることがわかる。
このように副走査方向に連続する画像を均一化する処理を、副走査方向に孤立するドットや2ドット連続、3ドット連続画像、また、連続画像の画像端部(エッジ部)に同じように適用すると、その部分の露光量が不安定になってしまう。副走査方向に非連続な画像は、例えば主走査方向のライン画像、網点パターン画像、文字画像に多く含まれており、これらの画像では上記補正により画像劣化が発生してしまう。ここで、特許文献4の方法では、副走査方向に孤立するドットに対して補正を行わないことで、孤立ドットの露光量は常に一定とすることが可能であるが、副走査方向に2ドット連続、3ドット連続画像、また、連続画像の画像端部において光量が不安定になる問題を解決できない。
次に、露光量の変化による主走査方向へのドット径の変化について説明する。
前述の光量補正を行った場合、レーザの発光光量の変化により主走査方向に対してもスポットが拡大或は縮小する。このため、副走査方向の積算光量を考慮して設定した露光量の変化幅が大きいと、主走査方向に対してもドット径の変動が大きくなり画像の濃度むらが目立ちやすくなる。この場合は特に、副走査方向のラインや文字画像等に対してライン幅が一定とならず、画像不良となりやすい。
本発明の目的は上記従来の問題点を解決することにある。
本願発明の特徴は、ポリゴンミラーの面倒れ、軸倒れ等に起因する走査ラインの位置変動に起因して発生する光量むらを、大幅なコストアップをすることなく減少させることにある。
上記目的を達成するために本発明の一態様に係る画像形成装置は以下のような構成を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
注目画素が少なくとも、副走査方向に孤立する記録画素、副走査方向に連続する画像端部の記録画素、それ以外の記録画素のいずれかであるかを判別し、その判別結果を基に周辺画素情報を生成する周辺画素情報生成手段と、
前記周辺画素情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
を有することを特徴とする。
上記目的を達成するために本発明の一態様に係る画像形成装置は以下のような構成を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
注目画素が、少なくとも中間調画像中にあるかどうかを判別する像域分離手段と、
前記像域分離手段の判別結果より周辺画像情報を生成する周辺画像情報生成手段と、
前記周辺画像情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
を有することを特徴とする。
上記目的を達成するために本発明の一態様に係る画像形成装置は以下のような構成を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
注目画素が少なくとも、副走査方向に孤立する記録画素、副走査方向に連続する画像端部の記録画素、それ以外の記録画素のいずれかであるかを判別した判別結果と、前記像域分離手段により少なくとも中間調画像中にあるかどうかを判別した判別結果を基に周辺画素情報を生成する周辺画素情報生成手段と、
前記周辺画素情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
を有することを特徴とする。
上記目的を達成するために本発明の一態様に係る画像形成装置の制御方法は以下のような工程を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
前記レーザ光を偏向するポリゴンミラーの反射面を特定する特定工程と、
画像信号をパルス幅変調したPWM信号を発生するPWM工程と、
前記画像信号に含まれる像形成対象画素の周辺画素の配置状況を表す周辺画素情報を生成する生成工程と、
前記ポリゴンミラーの反射面と前記周辺画素情報に対応して、前記レーザ光の光量に関する情報を記憶するメモリから読み出した前記情報と、前記PWM信号とに基づいてレーザ発生素子を制御して前記像形成対象画素を形成する像形成制御工程と、
を有することを特徴とする。
上記目的を達成するために本発明の一態様に係る画像形成装置の制御方法は以下のような工程を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
前記レーザ光を偏向するポリゴンミラーの反射面を特定する特定工程と、
画像信号をパルス幅変調したPWM信号を発生するPWM工程と、
前記画像信号に含まれる像域を判定して各像域に対応する画像属性信号を発生する像域分離工程と、
前記ポリゴンミラーの反射面に対応して、前記レーザ光による前記感光体上の走査ライン同士の間隔のずれを補正するための前記レーザ光の光量に関する情報を記憶するメモリから読み出した前記情報と、前記PWM信号と前記画像属性信号とに基づいてレーザ発生素子を駆動して前記像形成対象画素を形成する像形成制御工程と、
を有することを特徴とする。
上記目的を達成するために本発明の一態様に係る画像形成装置の制御方法は以下のような工程を備える。即ち、
一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
画像信号に含まれる像形成対象画素の周辺画素の配置状況を表す周辺画素情報を生成する生成工程と、
前記周辺画素情報及び前記レーザ光により形成される主走査ラインの間隔の変位に対応して前記画素情報をパルス幅変調したPWM信号情報を記憶するテーブルを参照して、画像信号の画素情報、前記周辺画素情報及び前記変位に基づいて、前記画素情報をパルス幅変調したPWM信号を発生するPWM工程と、
前記PWM信号に応じてレーザ発生素子を駆動して前記像形成対象画素を形成する像形成制御工程と、を有することを特徴とする。
本発明によれば、ポリゴンミラーの面倒れ、軸倒れ等に起因する走査ラインの位置変動に起因して発生する光量むらを、大幅なコストアップをすることなく減少させることができる。
以下、添付図面を参照して本発明の好適な実施の形態を詳しく説明する。尚、以下の実施の形態は特許請求の範囲に係る本発明を限定するものでなく、また本実施の形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
[実施の形態1]
図3は、本発明の実施の形態1に係る半導体レーザ駆動回路305、露光量設定部319を中心としたレーザ光量の制御構成を説明する図である。
半導体レーザ駆動回路305は、後述する各条件に応じて半導体レーザ315の駆動条件を変更するためのセレクタ306、スイッチ311〜314、電流源307〜310を有している。スイッチ311〜314のそれぞれは、セレクタ306により選択的にPWM信号が入力されると、その入力されたPWM信号に対応する時間だけ、そのスイッチに接続された電流源からの電流を半導体レーザ315に流すように制御される。316はレーザ光の強度を検出するためのフォトダイオード、317は電流電圧変換部である。APC回路318は、この電流電圧変換器317により変換された電圧値が基準電圧と一致するように電流源310の出力電流値を設定する。また露光量設定部319は、レーザ光を反射するポリゴン面を特定するポリゴン面特定部320と、メモリ321、増幅器322〜324を有している。以下、詳しく説明する。
ここでは画像の濃度情報に応じてパルス幅変調(PWM)により1画素内で露光量の多値制御を行うとともに、走査ラインの粗密と副走査方向の上下隣接画素の有無に応じてレーザ光の光量を制御している。尚、本実施の形態に係る半導体レーザからのレーザ光による感光体ドラムへの像形成のための構成は前述の図1で説明したのと同様な構成とし、以下の説明では、必要に応じて図1の参照記号を用いて説明する。
画像処理装置301では、各画素の画像濃度情報(多値データ)を含む画像情報を生成し、この画像情報は信号ライン302を介してPWM信号生成部303に入力される。PWM信号生成部303は、この入力した画像情報に応じて半導体レーザ315(図1の半導体レーザ101に相当)の発光タイミングを制御するPWM信号を生成する。ここで半導体レーザ315は、半導体レーザ駆動回路305に設けられた、出力電流の異なる4つの電流源307,308,309,310と、スイッチ311,312,313,314を介して接続されている。そしてこれらスイッチにより各電流源の出力電流を選択的にオン/オフすることにより半導体レーザ315の発光光量を制御している。次に各電流源のオン/オフ動作に関して詳しく説明する。
各スイッチ311,312,313,314は、前述のPWM信号と、PWM信号を各スイッチへ伝達するように制御するセレクタ306により制御されて、各電流源の出力電流をレーザ315に供給するか、しないかを決定している。セレクタ306は、画像処理装置301から供給される2ビットのセレクト信号304に応じてスイッチ311〜314のいずれかを選択し、その選択したスイッチに対してPWM信号を伝達する。即ち、画像処理装置301は、各対象画素(注目画素)に対する上下隣接画素の有無に応じてセレクト信号304を生成し、PWM信号に同期してセレクタ306による切り換えを、画素毎に実施するように動作している。
図4は、本実施の形態に係るセレクタ306の切り換りタイミングとPWM信号、及び半導体レーザ315の駆動タイミングを説明する図である。
セレクタ306の切り換えは各画素の境界で行われ、このセレクタ306が選択したスイッチにPWM信号が伝達される。これにより各スイッチは、PWM信号により設定されたパルス幅で、各対応する電流源からの電流を半導体レーザ315にパルス電流として供給する。このパルス電流により半導体レーザ315が発光駆動される。各電流源の電流値はそれぞれ異なった値に設定されており、各電流源からの電流値に応じて半導体レーザ315から出力されるレーザ光量(発光輝度)が切り換えられる。
図5は、本実施の形態に係るセレクト信号304の設定を示す図である。
画像処理装置301では、描画対象画素(注目画素)に対して、上下に隣接画素有り、上にのみ隣接画素あり、下にのみ隣接画素あり、上下に隣接画素なしの4パターンのそれぞれに対応して2ビットのセレクタ信号304を生成している。ここで、電流源307〜310の各々の出力電流値は、前述の4パターンに対応して設定されている。そして、セレクタ306によるスイッチの選択とPWM信号によるスイッチの駆動タイミング制御により、画像情報に基づいたPWM駆動と、上下隣接画素情報に応じたレーザ光量の制御が行われる。
尚、本実施の形態では、セレクト信号304が(ビット1、ビット0)=(00)の場合はスイッチ314が、(01)の場合はスイッチ313が、(10)の場合はスイッチ312が、そして(11)の場合はスイッチ311がそれぞれ選択されるものとする。
次に電流源307〜310の出力電流の設定方法について述べる。
電流源310は、対象画素の上下に隣接画素がない時(セレクト信号304=(00))に選択される電流源であり、この電流源310により半導体レーザ315を駆動した際の発光光量が基準光量となるように電流値が制御される。ここで基準光量とは、走査ラインの粗密に応じて発光光量を制御する、本実施の形態に係る各走査ラインの発光光量の平均値である。電流源310の電流値は、走査ライン間等の非画像領域において制御(APC)される。このAPC期間では、半導体レーザ315は電流源310の出力電流により発光駆動される。この時の発光光量はフォトダイオード316により検出され、フォトダイオード316の出力電流は電流電圧変換器317により電圧値に変換される。APC回路318は、この電流電圧変換器317により変換された電圧値が基準電圧と一致するように電流源310の出力電流値を設定する。
以上の動作により、画像形成時の非画像領域において電流源310からの電流によりレーザ315を発光させた時、そのレーザ光量が常に基準光量となるように電流源310の電流値が設定される。
電流源307〜309のそれぞれの出力電流値は、APC回路318から出力した電流源310への設定電圧値に応じて、増幅器322〜324のそれぞれにより増減された値に設定される。これによって各電流源からの電流値に基づくレーザ315の発光光量は、基準光量と、各増幅器の増幅率により決まる。各増幅器の増幅率は、メモリ321から読み出されたデータにより設定される。このデータにより増幅率が設定されるタイミングは、各走査ライン間の非画像領域である。尚、このメモリ321は、各増幅器における基準光量に対する増幅率を示すデータを、隣接画素の有無とポリゴンミラー105の反射面に対応したデータとして格納している。電流源307〜309の電流値はそれぞれ、上下に隣接画素あり、上にのみ隣接画素あり、下にのみ隣接画素ありの場合のレーザ光量に対応して設定されている。
図6は、本実施の形態に係るメモリに格納されたデータを説明する図である。図では、10面を有するポリゴン面1〜10のそれぞれに対して、上下に隣接画素あり、上にのみ隣接画素あり、下にのみ隣接画素ありの3パターンのそれぞれに対応してデータ(data1〜data30)が記憶されている。
上述したように、このメモリ321には、前述した隣接画素の有無に関する3パターンに対して、ポリゴンミラー105の反射面数分のデータが格納されている。走査ライン同士の間の時間で、次の光走査を行う反射面に対応したデータの読み出しと、対応する増幅器の増幅率を設定することで、ポリゴンミラー105の各面に対応した半導体レーザ315の駆動電流を設定している。
本実施の形態1では、工場出荷時に、ポリゴン面周期の走査ラインの変動量を測定し、上下隣接画素の有無と各ポリゴンミラー105の反射面に対応した設定光量を定める。こうして得られたデータは、ポリゴン面特定部320により特定される反射面に対応付けてメモリ321に格納される。ここでポリゴン面特定部320は、ポリゴンミラー105の各面に対応してメモリ321からデータ読み出すように、次にレーザ光による走査を行うポリゴンミラー105の反射面を特定する。
また本実施の形態では、ポリゴン面特定部320として、ポリゴンミラー105の各反射面に対応したBD信号の周期を検出し、その周期差からポリゴンミラー105の反射面を特定する方法を用いている。
図7は、例えば10の反射面を有するポリゴンミラーの各反射面毎のBD信号の周期をグラフ化して表した図で、縦軸はBD信号の一周期付近の時間軸を拡大して表記している。
本実施の形態において、BDセンサ107へのレーザ光の入力は、ポリゴンミラー105の回転時に、各反射面に対して必ず1回発生する。そしてBD信号の発生タイミングに基づいて、画像の主走査方向の描画位置の制御と、ポリゴンミラー105の回転制御を行っている。
図7に示すようなBD信号の周期(BD周期)のばらつき要因としては、ポリゴンミラー105の角度分割誤差等の面精度によるものが考えられる。これはポリゴンミラー105の製造工程で発生し、ポリゴンミラー105のそれぞれが固有の周期ばらつきを有することに起因している。また、このBD周期のばらつきは、ポリゴンミラー105の形状に由来するものである。このため、このばらつきはポリゴンミラー105の回転周期で繰り返され、それぞれのBD周期同士の差分を比較することによりポリゴン面を特定することができる。このBD周期のばらつき要因としては、その他にBDセンサ107でのレーザ光の取り込み時に発生するジッタと、ポリゴンモータの回転むらが考えられる。しかし、このBDセンサ107によるジッタは周期性がなく変動量は微量であり、また、ポリゴンモータの回転むらは長周期の変動となる。よって、ポリゴンミラーの面毎で変動するBD周期の差分を比較する方式では、これらBDセンサ107によるジッタとポリゴンモータの回転むらによるBD周期のばらつきに影響されずポリゴンミラー105の各面を特定できる。
尚、ポリゴンモータが高速で回転する場合や、面分割誤差が小さいポリゴンミラーではBD周期の差分が小さくなる。このため、BD周期の差分でポリゴン面を特定するのが困難となるが、ポリゴンミラーを低速で回転させることにより、その差分を拡大して面の検出精度を上げることが可能である。
またポリゴン面特定部320に、ポリゴン面の周期を計測するためのカウンタを設け、このカウンタによりBD信号の発生数を計数する。そして前述の方法で一度ポリゴンミラーの反射面を特定した後、このBD信号の発生数をカウントして光走査を行う反射面を特定することもできる。これにより、一旦モータの回転速度を低速にしてポリゴン面を特定した後、そのポリゴンモータの回転速度を上げても、BD信号をカウントすることによりポリゴン面を特定することが可能となる。
その他、ポリゴンミラーの反射面の特定精度を上げる方法としては、製造時においてポリゴンミラーが面分割差を持つように加工してもよい。但し、面分割差が大きいと主走査方向の描画位置がポリゴンミラーの面毎にずれることが懸念されるため、面分割差の大きさを決めるときは主走査方向の描画位置を考慮する必要がある。
このようにして図3に示す半導体レーザ駆動回路305、画像処理装置301、露光量設定部319によれば、画像情報に応じてパルス幅変調(PWM)により1画素内で露光量の多値制御を行うことが可能になる。またポリゴンミラーの反射面と、対象画素の上下隣接画素の有無に対応して、画素単位でレーザ光の発光光量を切り換えることができる。次に本実施の形態の効果について説明する。
図8(A)〜(C)は、シングルビームで10面のポリゴンミラーを用いた場合、面倒れ量が大きく走査ラインの変動が大きい条件で、副走査方向に孤立する1画素(記録画素)と、10画素が連続する画像を描画した時の副走査方向の光量分布を説明する図である。ここでは効果をより分かりやすくするため、面倒れによる走査ラインの変動が著しく悪い例を挙げている。図において、801は副走査方向に孤立する1画素の光量分布、802は10画素が連続する場合の光量分布を示している。
図8(A)において、実線で表される光量分布は、ポリゴンミラーの面周期で変動する系で、全ての走査ラインを同一光量で描画した場合の光量分布を示す。ここで点線で描かれた光量分布は、走査ラインの変動がない場合の理想値を表している。
このように面倒れによる走査ラインの変動が発生した場合は、点線で示す理想値に対して光量分布が異なってしまう。特に802で示すように、10画素連続で描画した場合の光量むらが大きいことが分かる。一方、孤立画素に対しては、走査ラインの変動により重心位置が副走査方向にずれているが、光量分布のピークや形状は理想値に略等しい。
図8(B)の実線は、連続して画素を描画(記録)したときの記録画素の光量分布が均一になるように、各走査ラインの露光量をポリゴンミラーの面周期で各ライン毎に設定した場合の光量分布を示している。このような補正を行うと、隣接画素がある場合の光量は略均一となっているが、孤立画素、及び、上下に隣接画素がない場合には、光量が不安定になっている。
図8(C)の実線は、本実施の形態に係る補正を行った場合の光量分布を示している。この場合、孤立画素は常に基準光量で露光されるため、ポリゴンミラーの反射面に拘わらず光量が変動しない。また10画素が連続する画像に対しては、上に隣接画素がない場合、上下に隣接画素がある場合、下に画素がない場合で、それぞれ最適となる光量設定が可能であり、略理想値に近い光量分布が得られる。
以上説明したように本実施の形態1によれば、隣接画素の有無とポリゴン面毎に変動する走査ラインの変動分を考慮してレーザの露光量を制御できる。
また装置の大型化や大幅なコストアップを招くことなく、連続画像における画像中の濃度むらをなくすとともに、副走査方向に孤立した画素、及び、連続画像の端部画素に対しても安定した光量で画像形成が可能となる。
また画素毎にレーザ光量を切り換えて露光量を制御しているため、PWM信号だけでレーザ光量を制御する構成と比較してスポットの主走査方向への変動量が少なく、主走査方向への影響を抑えることができる。
また本実施の形態1では、孤立画素、連続画素、連続画像端部の記録画素への効果について主に説明した。しかし、孤立画素(主走査方向孤立ライン)以外にも、副走査方向に2画素、3画素が連続する画像(2ドット、2ライン、3ドット、3ライン)に対しても、露光量の変動を抑えるようにレーザ光量を設定することで更に画像を安定化できる。その方法としては、例えば画像処理装置において、描画画素に対して上下隣接画素の有無を判別するとともに、対象画素の上下に連続するドット数を判別し、その連続するドット数が一定値以下の画像に対しては基準光量で露光する。このように露光量を設定した場合、孤立ドット以外の2ドット(2ライン)、3ドット(3ライン)において、孤立ドットの場合と同様に露光量を安定化することができる。また、電流源を更に多段にすることで、2ドット、3ドットの形成時における光量の最適設定も可能となる。
[実施の形態2]
図9は、本発明の実施の形態2に係る半導体レーザの駆動を説明するブロック図である。ここでは4つの半導体レーザにより一走査で同時に4本のレーザ光による露光走査を行っている。この場合のレーザ光は、画像情報に応じてパルス幅変調(PWM)により1画素内で多値制御が行われるとともに、走査ラインの粗密と上下隣接画素の有無に応じてレーザ光量が制御される。以下にその詳細を説明する。
半導体レーザ駆動回路906〜909のそれぞれは、前述の実施の形態1に係る半導体レーザ駆動回路305(図3)と同様の構成を有している。各半導体レーザ駆動回路は、それぞれ半導体レーザ910(LD1)、半導体レーザ911(LD2)、半導体レーザ912(LD3)、半導体レーザ913(LD4)と接続している。露光量設定部914は、前述の実施の形態1の露光量設定部319(図3)と同様の構成を有している。即ち、4つの半導体レーザ駆動回路の各々に対応して、メモリ321と、増幅器322〜324、及びポリゴン面特定部320を有している。4つの半導体レーザ駆動回路の各々に対応する電流源の電流値を設定する増幅器の出力は、信号線924〜927を介して各半導体レーザ駆動回路の3つの電流源(307〜309)に接続されている。即ち、信号線924〜927のそれぞれは、3本の信号線を有している。
画像処理装置901は、各画素の濃度を示す画像情報を4つのラインに分けて出力する。即ち、画像情報は、画像処理装置901からバスライン919を介してPWM信号生成部902〜905に入力される。これによりPWM信号生成部902〜905のそれぞれは、各ラインに対応して各レーザの発光タイミングを制御するPWM信号を生成する。こうして各PWM信号生成部で生成されたPWM信号は、各対応する信号線920〜923を介して半導体レーザ駆動回路906〜909に入力される。
各半導体レーザ駆動回路では、前述の実施の形態1と同様に、PWM信号をセレクタ306で切り替え、上下隣接画素有り、上のみ隣接画素有り、下のみ隣接画素有り、上下隣接画素なしの4パターンに1対1で対応して電流源を選択的に切り換える。画像処理装置901は、描画対象画素に対して、上下隣接画素有り、上のみ隣接画素有り、下のみ隣接画素有り、上下隣接画素なしの4パターンを判別指示する2ビットのセレクト信号304を出力している。このセレクト信号304は、各信号線915〜918を介して各半導体レーザ駆動回路のセレクタ306に供給されている。各電流源の出力設定(APC)は、ライン間の非画像領域において順次設定される。
以上説明した画像処理装置901、露光量設定部914、半導体レーザ駆動回路906〜909は、4つの半導体レーザ910〜913を用いて4本の主走査ラインを同時に描画する場合でのレーザ露光量の制御構成を示す。尚、この実施の形態2においても、ポリゴン面周期の走査ラインの位置変動と、上下隣接画素の有無に応じて露光量を設定している。よって、ビーム数(レーザ光の本数)に応じて回路規模が増えているが、各々の半導体レーザ駆動回路は前述の実施の形態1の構成と同様に動作する。但し、実施の形態1に係るシングルビームによる画像形成時と、複数ビームでの画像形成時とでは、走査ラインの位置変動の様子に違いがあるため露光量の設定値に違いがある。
図10(A)は、感光体ドラム上におけるレーザのスポットの並びを説明する図である。
各主走査ラインにおけるレーザ光によるスポットは、所定の間隔で均等に配置されることが好ましいが、光学系の組み立てや調整工程において副走査方向のピッチ間距離d1,d2,d3に誤差が発生する場合がある。特に、シングルビームの半導体レーザを機械的に4個配置した光学系や、ツインビームの半導体レーザを機械的に2個配置した光学系においては、副走査方向のピッチ間の調整時に誤差が生じやすい。
図10(B)は、ライン間隔が均一でない状態で4ビームによる描画を行った際の走査ラインを示す図である。尚、この図10では、各レーザ910〜913(LD1〜LD4)による走査ラインをLD1〜LD4で示している。
ここで走査ラインLD1とLD2、LD2とLD3、LD3とLD4の間隔をそれぞれd1,d2,d3とする。この場合、一回の走査で4ラインを同時に描画するため、ポリゴンミラーの面倒れ、軸倒れ等による走査位置変動が起こったとしても、4つのレーザで同時に形成された4走査ライン同士の相対的な間隔は変動しない。
一方、走査ラインLD4と、次の主走査により形成されるラインLD1との間隔は、ポリゴンミラーの面倒れ、軸倒れにより走査ラインの変動が発生する光学系では、ポリゴンミラーの面毎に変動する。
図11は、本発明の実施の形態2に係るメモリ321のデータ構成を説明する図である。
いま走査ラインLD1に注目すると、LD1とLD2との間隔は常に一定であるのに対して、LD1とLD4との間隔はポリゴンミラーの面毎に変動する。このため走査ラインLD1の上に隣接する画素がある場合(LD4の描画画素と隣接する場合)は、ポリゴンミラー面毎に光量設定が必要となる。しかし、LD1の上に隣接画素がない場合は、LD1とLD2とのピッチ間隔に応じた光量設定を行えばよい。
次に走査ラインLD2に注目すると、この走査ラインLD2では、上下隣接画素との走査ライン間隔はLD1,LD3とのピッチ間隔によって決まるため、ピッチ間隔に応じた光量設定を行えばよい。また走査ラインLD3も同様に、走査ラインLD2,LD4とのピッチ間隔に応じた光量設定を行えばよい。次に走査ラインLD4に注目すると、LD4とLD3との間隔は常に一定である。一方、走査ラインLD1との間隔は、前述のようにポリゴンミラーの面毎に変動する。このため走査ラインLD4の描画画素の下に隣接画素がある場合(LD1の描画画素と隣接する場合)は、ポリゴンミラー面毎に光量設定が必要となる。そうでない場合は、ポリゴンミラー面毎の走査ラインの間隔変動がないため、LD3とのピッチ間隔に応じた光量設定を行えばよい。
従って、図11に示すように、各レーザ(LD1〜LD4)において、レーザLD2,LD3は、それぞれ上下のLD1,LD3とのピッチ間隔、LD2,LD4とのピッチ間隔に対応したデータ(data2,data3)により制御できる。またレーザLD1,LD4においては、それぞれ上、或は下に隣接する画素がある場合に、ポリゴンミラーの面毎の光量を設定している。
このように本実施の形態2によれば、ポリゴン面倒れ、軸倒れに起因する走査ラインの間隔変動が引き起こす光量むらをなくすことができる。同時に、マルチビームによる画像形成を行う際に発生するレーザピッチ間の誤差による光量むらも補正することができる。これにより、マルチビーム露光系においても安定した画像形成を行うことができる。
[実施の形態3]
図12は、本発明の実施の形態3に係る半導体レーザ駆動回路1207、露光量設定部1202を中心としたレーザ光量の制御構成を説明する図である。
この実施の形態3では、画像情報(濃度)と周辺画素情報、走査ライン変動量に応じて、パルス幅変調(PWM)により1画素内でレーザ光量の多値制御を行い、階調制御と走査ライン位置変動に対するレーザ光量の設定を同時に行うことを特徴としている。
半導体レーザ駆動回路1207では、電流源1208と電流源1208の出力電流を半導体レーザ1201に供給するか、しないかをオン/オフするスイッチ1209により発光パルス幅が制御されている。この半導体レーザ1201は前述のレーザ315と同様のものである。APC回路318は、フォトダイオード316により検知された半導体レーザ1210の発光光量が常に一定となるように電流源1208の出力制御を行っている。半導体レーザ1210の駆動において、PWM信号生成部1206で生成されたPWM信号により1画素内でパルス幅が制御される。本実施の形態3に係る半導体レーザ駆動回路1207では、半導体レーザ1210の発光輝度は常に一定であり、PWM信号によるパルス幅の制御により画素内での露光量制御を行うものである。
次にPWM信号の設定方法について説明する。
本実施の形態3に係るPWM信号は、走査ライン位置の変動量、画像濃度情報、隣接画素情報に応じてパルス幅が設定される。走査ライン位置検出部1203は、レーザ光の走査ラインの副走査方向の走査位置を検出する。位置変動量算出部1204は、1回前の走査ラインの走査位置と、走査ライン位置検出部1203で検出した現ラインの走査位置とを比較する。この比較結果は、走査ラインの粗密を示している。
次に走査ライン位置検出部1203による走査ラインの位置検出方法について詳しく説明する。
走査ラインの副走査方向での位置検出方法としては、走査ライン上の非画像領域に位置検出素子を配置してレーザ光の走査位置を検出する方法がある。この位置検出素子には、受光素子の前に三角スリットを配置したものや、PSD(Position Sensitive Detector)等の光スポットの位置を検出する素子がある。
図14は、走査位置を検出するための三角スリットを配置した例を示す図である。
この場合、走査ラインの位置は、受光素子が検出した信号のパルス幅w1、w2に基づいて検出されるため、このパルス幅を測定することで走査ラインの副走査方向の位置を求めることができる。
次に、この位置検出素子の配置について説明する。
この位置検出素子の配置場所としては、画像領域に影響を与えない位置に配置する必要がある。従って、BDセンサ107付近に配置するか、もしくは、BDセンサ107と同一のセンサを用いて主及び副走査位置の検出を同時に行う方法が考えられる。例えば三角スリットを使用した検出方式では、主及び副走査方向の位置検出が可能である。
次にセンサに対する光学素子の配置について説明する。
図15(A)は、レーザから感光体ドラムまでのレーザ光の光路を示す図である。また図15(B)は、光学系内部に位置検出部を設けた時の検出部に入る光の光路を示す図である。尚、この図15において、図1と共通する部分は同じ記号で示し、それらの説明を省略する。
感光体ドラム108へのレーザ光の光路は、ポリゴン面の角度が変動することで変化するが、レンズの面倒れ補正効果により感光体ドラム108への副走査方向への変動を軽減できる。
図15(B)に示すように、ポリゴン面の直後でレンズ系を介さずに、位置検出素子に直接レーザ光を入光させる。これにより、実際の感光体ドラム108での走査ライン位置の変動に対して、その変動量を拡大して検出することが可能となり、走査ラインの副走査方向での位置検出の精度を向上できる。但し前述したように、同一のセンサで位置を検出する場合には、主走査方向に共役となるレンズをポリゴン面の後に配置する必要がある。以上、走査ラインの副走査方向の位置検出について説明した。
次に、画像情報と隣接画素情報について説明する。画像情報と隣接画素情報は、画像処理装置1201で生成される。画像情報は、各画素の濃度を多値階調で表現したものであり、隣接画素情報は、上下の記録画素の有無を示す2ビットの信号である。これら走査ラインの位置変動量と前述の画像情報、隣接画素情報は、ルックアップテーブル(LUT)1205に入力される。
図13は、本実施の形態3に係るルックアップテーブルを利用したPWM情報を得る構成を示す図である。
このLUT1205は、各画素の濃度情報、隣接画素の有無を示す隣接画素情報、及び走査ラインの粗密(位置変動量)を入力し、それらに対応するパルス幅情報を出力する。このパルス幅情報は、PWM信号生成部1206に送られる。PWM信号生成部1206は、このパルス幅情報に応じたパルス幅のPWM信号を出力する。
このように本実施の形態3では、PWM信号のパルス幅は、各画素における濃度、隣接画素の有無、走査ラインの粗密に対応して設定され、このPWM信号により半導体レーザの発光量を制御することで、各画素における露光量が設定される。
本実施の形態3では、PWM信号は各画素における濃度、隣接画素の有無、走査ラインの粗密に対応して設定され、このPWM信号により半導体レーザの発光パルス幅を制御することで、各画素における露光量が設定される。ここではPWM信号によりレーザ露光量を設定しているため、走査ラインの粗密によりスポットが主走査方向に変動することが懸念される。しかし、ポリゴン面周期の光量むらに対しては、輝度を変調した場合と同様の効果が得られることが確認されている。
また、輝度を変調した場合と比較して、単純な構成で実現可能であり、PWM信号生成部1206の時間分解能が十分あれば、より多くの画像パターンに対して、より細かいレーザ光量を設定する場合でも、簡単な構成で対応できる。
次に、より多くの画像パターンに対するレーザ光量設定が必要となる場合について説明する。
図16(A)(B)は、光スポットが多重に重なるように配置されている例を示し、(A)は、それらスポットの重なりを示し、(B)は副走査方向のスポットの重なりを表している。このように、スポット1に対して隣接するスポットと、更にその隣のスポットが重なっている。この場合、走査ラインの位置変動の影響は、隣接画素だけではなく2つ隣の画素にまで影響を与える。そのため隣接画素の有無と2つ隣の画素の有無を含む、16通りのパターンに対して光量設定を行うことが好ましい。
本実施の形態3では、LUT1205の入力情報として隣接画素情報が2ビットであったところを、4ビットの周辺画素情報を入力するようにLUT1205を対応させる。こうして、16通りの画像パターンに対するレーザ光量を設定することができる。尚、本実施の形態3では、位置検出部を設けた構成で説明している。しかし予め走査ライン位置情報が格納されたメモリからポリゴンミラーの反射面に対応したデータを読み出し、画像情報と周辺画素情報、走査ライン位置情報をLUT1205に入力してパルス幅情報を生成してもよい。但し、本実施の形態3に係る位置検出部を設けた構成では、画像形成装置内の昇温等により光学系に歪みが生じ、工場出荷時での走査ラインの変動特性に対して変動量が変化した場合においても、リアルタイムに補正できるという利点がある。
[実施の形態4]
図17は、本発明の実施の形態4に係る半導体レーザ駆動回路1713、露光量設定部1717を中心としたレーザ露光量の制御構成を説明する図である。尚、この図17において、前述の図3と共通する部分は同じ記号で示している。
この実施の形態4では、画像情報に対してパルス幅変調(PWM)により1画素内でレーザ光量の多値制御を行う。それと同時に、中間調画像に対しては走査ラインの粗密に応じてレーザ光の発光量を制御する。更に、それ以外の画素に対しては、一定のレーザ発光量で画像形成を行う。
露光量設定部1717、半導体レーザ駆動回路1713の構成とその動作は、前述の実施の形態1,2に係る露光量設定部、半導体レーザ駆動回路にほぼ等しい。但し、この実施の形態4では、画像形成時に選択される電流源が2段で構成されている。この2段の電流源は、連続画像に対してレーザ光量を均一にするためにポリゴン面毎に設定される電流源と、各走査ラインにおいて同一の発光輝度で発光する電流源と分かれている。電流源1708は、その出力電流により半導体レーザ315を発光させた時に、半導体レーザ315の発光光量が各走査ラインを平均した光量(基準光量)となるようにAPC回路1712により電流値が制御されている。
露光量設定部1717は、ポリゴンミラーの面毎に各面に対応した露光量設定データをメモリ1715より読み出して基準光量に対する増幅器1714の増幅率を決めている。こうして設定された増幅器1714の増幅率に従って電流源1707の出力電流値が設定される。またメモリ1715に格納される露光量設定データは、副走査方向に連続した画素の描画に際して、ポリゴンミラーの面毎に変動する走査ラインの位置変動を考慮し、光量むらが発生しないデータが設定される。
セレクタ1704は、画像処理装置1700からのフラグ情報1703により、スイッチ1705,1706のいずれかを選択して、電流源1707,1708のいずれかからの電流を半導体レーザ315に供給する。画像処理装置1700は像域分離処理部1701を有し、入力した画像情報の特徴から、各画素が中間調画像領域にあるかどうかを判別している。各画素の画像情報に、その判別結果を示すデータ(中間調判別フラグ:画像属性信号)を付与している。セレクタ1704は、この中間調判別フラグのフラグ情報1703により切り換えが制御されており、中間調画像領域ではスイッチ1705が選択されて電流源1707からの電流がレーザ315に供給される。また中間調画像領域でない場合は、スイッチ1706が選択されて電流源1708からの電流がレーザ315に供給される。これにより中間調画像においては走査ラインの変動に対してレーザ光量が均一になるように、ポリゴンミラーの面毎に露光量が設定される。一方、それ以外の画像では、常に一定のレーザ光量(基準光量)となるようにレーザの露光量が設定される。
本実施の形態4では、走査ラインの位置が副走査方向に変動する場合、最も強い影響を受ける中間調画像に対してポリゴンミラーの面毎のレーザ光量を設定する。これにより、中間調画像で問題となる光量むらをなくすことができる。
また中間調画像以外の画像では、一定のレーザ光量で画像を形成することにより、中間長画像以外の、例えばライン画像等で弊害が発生しないようにしている。
図18は、走査ライン毎にレーザ光量を設定する際に、副走査方向のライン画像で発生するライン幅の変動を説明する図である。
1800は、副走査方向にドットが連続する画像の理想的な像形成例を示している。これに対して1801は、走査ラインの副走査方向の位置(ライン間隔)変動により副走査方向にドット位置ずれが発生する例を示している。これに対して、1802で示すように、走査ライン間隔の粗密に応じてレーザ光量を変化させると、副走査方向に関してスポットの重心位置における光量分布は略均一になる。しかしこの場合は、主走査方向へのスポット変動も同時に発生するため、副走査方向のラインに関してライン幅が不安定になることがある。特に走査ライン間隔の変動量が大きく、レーザ光量の設定幅が大きいときはライン幅の変動が大きくなる。
これに対して本実施の形態4では、像域分離処理部1701により、描画される画素が中間調領域中にあるかどうかを判別している。これにより、走査ライン間隔の変動による光量むらが強く出る画像と、目立たない画像とを区別してレーザ光量を設定し、中間調とそれ以外の画像に対して各々安定したレーザ光量を設定している。
また本実施の形態4では、画像処理装置1700で像域分離を行って階調画像を識別しレーザ光量を設定する場合で説明した。ここでは例として、輝度による露光量の設定と、ポリゴン面検知部によるメモリからレーザ光量の設定データを読み出す露光量設定部を示している。しかし、画像情報、画像の特徴、走査ラインの変動量から、前述の実施の形態3のように、LUTによりパルス幅情報を生成し、PWMによるレーザ光量の制御を行ってもよい。
[実施の形態5]
前述の実施の形態4に係る構成では、像域分離処理部1701において中間調画像であるかどうかを判別してレーザ光量の補正の有無を選択している。
次に本実施の形態5では、レーザ光量の設定幅に上限及び下限を設けてレーザ光量の変動幅を制限する構成について説明する。
図19は、本発明の実施の形態5に係る半導体レーザ駆動回路305、露光量設定部1919を中心としたレーザ露光量の制御構成を説明する図である。尚、図3と共通する部分は同じ記号で示し、それらの説明を省略する。
この実施の形態5では、画像パターンに応じてレーザ光量の設定値に上限及び下限値を設けている。
半導体レーザ駆動回路305は、描画画素の画像情報に基づきPWMにより画素内での発光パルス幅を制御する。また描画画素の上下に隣接画素あり、上にのみ隣接画素あり、下にのみ隣接画素あり、上下隣接画素なしの4パターンに対応した電流源307〜309の出力電流値を画素毎に選択し、前述の4パターンに対応して輝度を制御している。また描画画素の画像情報、及び、上下の隣接画素の有無は、画像処理装置1901によって指示される。露光量設定部1919はポリゴン面特定部320でポリゴンミラーの反射面を特定し、反射面毎にメモリ321に記憶された補正データを読み出して、各増幅器1922〜1924の増幅率を設定する。こうしてAPC回路318によって基準光量に設定された電流源310の電流値に対する比率を決めることで、電流源307〜309のによるレーザ光量を決定している。
本実施の形態5では、像域分離処理部1701において中間調画像であるかどうかを判別し、その判別した画像の種類に応じて増幅器1922〜1924の増幅率の上限、下限値を設定する。即ち、本実施の形態5では、描画画素の露光量は、上下隣接画素の有無と、ポリゴンミラーの反射面、画像の特徴(中間調画像であるかどうか)によって決定され、画像の特徴に合わせて補正による光スポットの変動幅が制限される。尚、本実施の形態5では、増幅器に対して増幅率の上限、下限値を設定したが、電流源307〜309に対して上限、下限値を設定を行ってもよい。
図20は、画像に応じてレーザ光量の設定幅に上限、下限値を定めた場合の光スポットの一例を示す図である。
中間調画像では、画像エッジ部分の揺らぎよりも中間調の均一性が求められるため、レーザ光量の設定幅に制限を設けていない。一方、ライン画像(線画像)では、スポットのバラツキによりライン幅が不安定になるため、上述した制限値を設けることでライン幅の変動を一定値以下に抑えている。この場合、走査ライン間隔のずれによる副走査方向の光量むらは完全には解消されないが、文字やライン画像では中間調を含む階調画像に比べて光量むらによる画像劣化が少なくなる。これにより、光量むらを抑えつつ、スポットのばらつきが略一定値以下となるようにレーザ光量を設定することで、画像の劣化を低減できる。
以上、画像の特徴に応じてレーザ露光量の設定幅を設ける方法について説明したが、画像の属性に応じて、よりスポットのばらつきを抑える方法としては、前述した画像の特徴に基づく方法の他に、左右隣接画素の有無により判別する方法がある。この方法の場合は、左右隣接画素の有無を画像処理装置1901により判別し、左右どちらか一方の隣接画素がない場合に、増幅器1922〜1924の増幅率に上限値及び下限値を設定する。これにより、光スポットのばらつきを抑えることができる。
図21は、主走査方向に隣接する左右方向の画素の有無によりレーザ光量の設定幅に制限を加えた時の光スポットの一例を示す図である。
ここでは、画像のエッジ部分、及び、副走査方向に孤立するライン或はドットに対して、レーザ光量の設定幅に制限を加えている。これにより主走査方向、及び、副走査方向に連続する画素に対してレーザ光量を均一にできる。また主走査方向のラインに対しては基準光量で露光し、副走査方向のラインに対しては補正による光スポットのばらつきを抑えるようにレーザ光量を設定することができる。また像域分離処理部1701では、中間調画像以外に、文字画像、ライン画像、地図画像等の画像の特徴による像域分離を行い、各々の画像に対して適したレーザ光量を設定してもよい。
レーザ光をポリゴンミラーで偏向走査する一般的なレーザプリンタの像形成を説明する図である。 副走査方向の画像位置と光量分布との関係を説明する図である。 本発明の実施の形態1に係る半導体レーザ駆動回路、露光量設定部を中心としたレーザ露光量の制御構成を説明する図である。 本実施の形態1に係るセレクタの切り換りタイミングとPWM信号、及び半導体レーザの駆動タイミングを説明する図である。 本実施の形態に係るセレクト信号の設定を示す図である。 本実施の形態に係るメモリに格納されたデータを説明する図である。 10面を有するポリゴンミラーの各反射面毎のBD信号の周期をグラフ化して表した図である。 シングルビームで10面のポリゴンミラーを用いた場合、面倒れ量が大きく走査ラインの変動が大きい条件で、副走査方向に孤立する1画素と、10画素連続する画像を描画した時の副走査方向の光量分布を説明する図である。 本発明の実施の形態2に係る半導体レーザ駆動回路、露光量設定部を中心としたレーザ露光量の制御構成を説明する図である。 感光体ドラム上におけるレーザのスポットの並びを説明する図(A)と、ピッチ間隔が均一でない場合、4ビームによる描画を行った際の走査ラインを示す図(B)である。 本発明の実施の形態2に係るメモリのデータ例を説明する図である。 本発明の実施の形態3に係る半導体レーザ駆動回路、露光量設定部を中心としたレーザ露光量の制御構成を説明する図である。 本実施の形態3に係るルックアップテーブルを利用したPWM情報を得る構成を示す図である。 走査位置を検出するための三角スリットを配置した例を示す図である。 レーザから感光体ドラムまでのレーザ光の光路を示す図(A)と、光学系内部に位置検出部を設けた時の検出部に入る光の光路を示す図(B)である。 光スポットが多重に重なるように配置されている例を示す図で、(A)はそれらスポットの重なりを示し、(B)は副走査方向のスポットの重なりを表す。 本発明の実施の形態4に係る半導体レーザ駆動回路、露光量設定部を中心としたレーザ露光量の制御構成を説明する図である。 走査ライン毎にレーザ光量を設定する際に、副走査方向のライン画像で発生するライン幅の変動を説明する図である。 本発明の実施の形態5に係る半導体レーザ駆動回路、露光量設定部を中心としたレーザ露光量の制御構成を説明する図である。 画像に応じてレーザ光量の設定幅に上限、下限値を定めた場合の光スポットの一例を示す図である。 主走査方向に隣接する左右方向の画素の有無によりレーザ光量の設定幅に制限を加えた時の光スポットの一例を示す図である。

Claims (16)

  1. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
    前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
    注目画素が少なくとも、副走査方向に孤立する記録画素、副走査方向に連続する画像端部の記録画素、それ以外の記録画素のいずれかであるかを判別し、その判別結果を基に周辺画素情報を生成する周辺画素情報生成手段と、
    前記周辺画素情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
    を有することを特徴とする画像形成装置。
  2. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
    前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
    注目画素が、少なくとも中間調画像中にあるかどうかを判別する像域分離手段と、
    前記像域分離手段の判別結果より周辺画像情報を生成する周辺画像情報生成手段と、
    前記周辺画像情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
    を有することを特徴とする画像形成装置。
  3. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置であって、
    前記レーザ光を発生し感光体上での露光量を制御するレーザ発光手段と、
    注目画素が少なくとも、副走査方向に孤立する記録画素、副走査方向に連続する画像端部の記録画素、それ以外の記録画素のいずれかであるかを判別した判別結果と、前記像域分離手段により少なくとも中間調画像中にあるかどうかを判別した判別結果を基に周辺画素情報を生成する周辺画素情報生成手段と、
    前記周辺画素情報と、副走査方向の光走査ラインピッチ変位量と、記録画素の画像情報に対応して、前記レーザ発光手段に対して露光量の設定を行う露光量設定手段と、
    を有することを特徴とする画像形成装置。
  4. 前記露光量設定手段は、前記レーザ光が複数の場合、前記複数のレーザ光による前記感光体上の副走査方向のピッチ間隔のずれ量に対応して露光量の設定を行うことを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。
  5. 前記露光量設定手段は、
    ポリゴンミラーの反射面を特定する反射面特定手段と、
    ポリゴンミラーの反射面に対応して、前記レーザ光の光量に関する情報を記憶する記憶手段とを有し、
    前記記憶手段から読み出した情報に基づいて露光量の設定を行う請求項1乃至4のいずれか1項に記載の画像形成装置。
  6. 前記反射面特定手段は、前記レーザ光の走査時間変動を検出して前記反射面を特定することを特徴とする請求項5に記載の画像形成装置。
  7. 前記反射面特定手段は、基準となる基準反射面を特定し、前記基準反射面からの前記レーザ光の走査回数を計数することにより、前記レーザ光を偏向するポリゴンミラーの反射面を特定することを特徴とする請求項5又は6に記載の画像形成装置。
  8. 前記露光量設定手段は、
    光走査ラインの副走査方向の走査位置を検出する走査位置検出手段を有し、
    前記走査位置検出手段により検出された走査ラインの位置情報に応じて、露光量の設定を行う請求項1乃至4のいずれか1項に記載の画像形成装置。
  9. 前記レーザ発光手段は、
    前記露光量設定手段により、前記走査ライン間隔と前記周辺画像情報に対応してそれぞれ電流値が設定される複数の電流源と、
    前記複数の電流源のそれぞれに接続され、各対応する電流源から供給される電流を前記レーザ発生手段に供給する複数のスイッチング手段を有し、
    前記周辺画素情報に応じて前記複数のスイッチング手段のいずれかを選択し、記録画素の画像情報に応じて当該選択したスイッチング手段の駆動タイミングを制御し、前記記録画素におけるレーザ光輝度と発光時間を制御することを特徴とする請求項1乃至8のいずれか1項に記載の画像形成装置。
  10. 前記露光量設定手段は、
    記録画素の画像情報と、前記周辺画素情報と、前記レーザ光により形成される前記走査ライン間隔に対応して、記録画素内でのレーザ発光時間を指示するパルス幅変調信号を生成し、
    前記レーザ発生手段は、前記パルス幅変調信号により、発光タイミング制御されることを特徴とする請求項1乃至8のいずれか1項に記載の画像形成装置。
  11. 前記露光量設定手段において、露光量の設定値に上限値、或は下限値の少なくともいずれかを設定する上下限値設定手段を更に有することを特徴とする請求項1乃至10のいずれか1項に記載の画像形成装置。
  12. 前記上下限値設定手段は、前記記録画素の主走査方向に隣接する画素の有無に応じて前記上限値、下限値の設定を切り換えることを特徴とする請求項11に記載の画像形成装置。
  13. 前記周辺画素情報生成手段において、注目画素を含む画像に対して副走査方向へ連続する記録画素のドット数に基づいて前記周辺画素情報を生成することを特徴とする請求項1乃至12のいずれか1項に記載の画像形成装置。
  14. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
    前記レーザ光を偏向するポリゴンミラーの反射面を特定する特定工程と、
    画像信号をパルス幅変調したPWM信号を発生するPWM工程と、
    前記画像信号に含まれる像形成対象画素の周辺画素の配置状況を表す周辺画素情報を生成する生成工程と、
    前記ポリゴンミラーの反射面と前記周辺画素情報に対応して、前記レーザ光の光量に関する情報を記憶するメモリから読み出した前記情報と、前記PWM信号とに基づいてレーザ発生素子を制御して前記像形成対象画素を形成する像形成制御工程と、
    を有することを特徴とする画像形成装置の制御方法。
  15. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
    前記レーザ光を偏向するポリゴンミラーの反射面を特定する特定工程と、
    画像信号をパルス幅変調したPWM信号を発生するPWM工程と、
    前記画像信号に含まれる像域を判定して各像域に対応する画像属性信号を発生する像域分離工程と、
    前記ポリゴンミラーの反射面に対応して、前記レーザ光による前記感光体上の走査ライン同士の間隔のずれを補正するための前記レーザ光の光量に関する情報を記憶するメモリから読み出した前記情報と、前記PWM信号と前記画像属性信号とに基づいてレーザ発生素子を駆動して前記像形成対象画素を形成する像形成制御工程と、
    を有することを特徴とする画像形成装置の制御方法。
  16. 一つ又は複数のレーザ光をポリゴンミラーで偏向して感光体上を走査することにより像形成を行う画像形成装置の制御方法であって、
    画像信号に含まれる像形成対象画素の周辺画素の配置状況を表す周辺画素情報を生成する生成工程と、
    前記周辺画素情報及び前記レーザ光により形成される主走査ラインの間隔の変位に対応して前記画素情報をパルス幅変調したPWM信号情報を記憶するテーブルを参照して、画像信号の画素情報、前記周辺画素情報及び前記変位に基づいて、前記画素情報をパルス幅変調したPWM信号を発生するPWM工程と、
    前記PWM信号に応じてレーザ発生素子を駆動して前記像形成対象画素を形成する像形成制御工程と、
    を有することを特徴とする画像形成装置の制御方法。
JP2006298216A 2006-11-01 2006-11-01 画像形成装置及びその制御方法 Expired - Fee Related JP4942176B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298216A JP4942176B2 (ja) 2006-11-01 2006-11-01 画像形成装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298216A JP4942176B2 (ja) 2006-11-01 2006-11-01 画像形成装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2008114426A true JP2008114426A (ja) 2008-05-22
JP4942176B2 JP4942176B2 (ja) 2012-05-30

Family

ID=39500799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298216A Expired - Fee Related JP4942176B2 (ja) 2006-11-01 2006-11-01 画像形成装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP4942176B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110846A (ja) * 2009-11-27 2011-06-09 Canon Inc 画像形成装置
JP2011197320A (ja) * 2010-03-18 2011-10-06 Canon Inc 画像形成装置及びその制御方法
CN102269950A (zh) * 2010-06-03 2011-12-07 佳能株式会社 图像形成设备
JP2015147404A (ja) * 2014-01-10 2015-08-20 株式会社リコー 画像形成装置及び画像形成方法
JP2016114832A (ja) * 2014-12-16 2016-06-23 株式会社リコー 光ビーム露光装置、光ビーム露光装置を備えた電子機器、及び光ビーム露光装置の動作方法
JP2016147467A (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 画像形成装置及び画像形成制御方法並びに画像形成制御プログラム
JP2017026657A (ja) * 2015-07-16 2017-02-02 キヤノン株式会社 画像形成装置の補正方法
JP2018092064A (ja) * 2016-12-06 2018-06-14 コニカミノルタ株式会社 画像形成装置および画像形成制御プログラム
JP2018132537A (ja) * 2017-02-13 2018-08-23 コニカミノルタ株式会社 画像書込装置、画像形成装置及びピッチムラ抑制方法
US10078288B2 (en) 2015-06-10 2018-09-18 Canon Kabushiki Kaisha Image forming apparatus that scans photosensitive member by using rotating polygonal mirror
JP2019082538A (ja) * 2017-10-30 2019-05-30 コニカミノルタ株式会社 画像形成装置および画像形成制御プログラム

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212818A (ja) * 1985-03-18 1986-09-20 Canon Inc 画像情報記録方法
JPS63313113A (ja) * 1987-06-16 1988-12-21 Canon Inc 走査光学装置
JPH01105661A (ja) * 1987-10-19 1989-04-24 Hitachi Ltd 面倒れ補正装置
JPH02131956A (ja) * 1988-11-14 1990-05-21 Fuji Photo Film Co Ltd 画像露光方法およびその装置
JPH02201467A (ja) * 1989-01-31 1990-08-09 Seiko Epson Corp 画像形成方法
JPH04200065A (ja) * 1990-11-29 1992-07-21 Ricoh Co Ltd 画像記録装置
JPH08300729A (ja) * 1995-05-15 1996-11-19 Canon Inc 画像形成装置及びその制御方法
JPH10341330A (ja) * 1997-06-06 1998-12-22 Minolta Co Ltd 画像形成装置
JP2000238329A (ja) * 1999-02-24 2000-09-05 Fuji Xerox Co Ltd 画像形成装置
JP2004007584A (ja) * 2003-04-14 2004-01-08 Ricoh Co Ltd 画像形成装置及び画像形成方法
JP2006142716A (ja) * 2004-11-22 2006-06-08 Canon Inc 画像形成装置及び画像補正方法
JP2006150772A (ja) * 2004-11-30 2006-06-15 Kyocera Mita Corp 画像形成装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212818A (ja) * 1985-03-18 1986-09-20 Canon Inc 画像情報記録方法
JPS63313113A (ja) * 1987-06-16 1988-12-21 Canon Inc 走査光学装置
JPH01105661A (ja) * 1987-10-19 1989-04-24 Hitachi Ltd 面倒れ補正装置
JPH02131956A (ja) * 1988-11-14 1990-05-21 Fuji Photo Film Co Ltd 画像露光方法およびその装置
JPH02201467A (ja) * 1989-01-31 1990-08-09 Seiko Epson Corp 画像形成方法
JPH04200065A (ja) * 1990-11-29 1992-07-21 Ricoh Co Ltd 画像記録装置
JPH08300729A (ja) * 1995-05-15 1996-11-19 Canon Inc 画像形成装置及びその制御方法
JPH10341330A (ja) * 1997-06-06 1998-12-22 Minolta Co Ltd 画像形成装置
JP2000238329A (ja) * 1999-02-24 2000-09-05 Fuji Xerox Co Ltd 画像形成装置
JP2004007584A (ja) * 2003-04-14 2004-01-08 Ricoh Co Ltd 画像形成装置及び画像形成方法
JP2006142716A (ja) * 2004-11-22 2006-06-08 Canon Inc 画像形成装置及び画像補正方法
JP2006150772A (ja) * 2004-11-30 2006-06-15 Kyocera Mita Corp 画像形成装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110846A (ja) * 2009-11-27 2011-06-09 Canon Inc 画像形成装置
JP2011197320A (ja) * 2010-03-18 2011-10-06 Canon Inc 画像形成装置及びその制御方法
CN102269950A (zh) * 2010-06-03 2011-12-07 佳能株式会社 图像形成设备
JP2015147404A (ja) * 2014-01-10 2015-08-20 株式会社リコー 画像形成装置及び画像形成方法
JP2016114832A (ja) * 2014-12-16 2016-06-23 株式会社リコー 光ビーム露光装置、光ビーム露光装置を備えた電子機器、及び光ビーム露光装置の動作方法
JP2016147467A (ja) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 画像形成装置及び画像形成制御方法並びに画像形成制御プログラム
US10078288B2 (en) 2015-06-10 2018-09-18 Canon Kabushiki Kaisha Image forming apparatus that scans photosensitive member by using rotating polygonal mirror
JP2017026657A (ja) * 2015-07-16 2017-02-02 キヤノン株式会社 画像形成装置の補正方法
JP2018092064A (ja) * 2016-12-06 2018-06-14 コニカミノルタ株式会社 画像形成装置および画像形成制御プログラム
JP2018132537A (ja) * 2017-02-13 2018-08-23 コニカミノルタ株式会社 画像書込装置、画像形成装置及びピッチムラ抑制方法
JP2019082538A (ja) * 2017-10-30 2019-05-30 コニカミノルタ株式会社 画像形成装置および画像形成制御プログラム

Also Published As

Publication number Publication date
JP4942176B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4942176B2 (ja) 画像形成装置及びその制御方法
US6038051A (en) Light scanning device, optical device, and scanning method of optical device
US6376837B1 (en) Optical scanning apparatus and image forming apparatus having defective light source detection
US7826110B2 (en) Light scanning apparatus, light scanning method, image forming apparatus, and color image forming apparatus
US5966395A (en) Semiconductor laser drive device and image recording device
US7719559B2 (en) Image forming apparatus, optical scanning apparatus, and auto light power control method
EP1844943B1 (en) Image forming apparatus and control method thereof
US9665031B2 (en) Image forming apparatus that forms latent image by irradiating photosensitive member with light
JP2008040088A (ja) 光走査装置、光走査方法、画像形成装置、カラー画像形成装置、プログラム、記録媒体
JP4265186B2 (ja) 光源制御装置
JPH1039241A (ja) レーザ記録装置
JPH04200065A (ja) 画像記録装置
JP4313224B2 (ja) ドット位置補正方法及びそれを適用した画像形成装置
JP5791269B2 (ja) 画像形成装置
JP2011198918A (ja) 半導体レーザ駆動装置及びその半導体レーザ駆動装置を備えた画像形成装置
JP4541910B2 (ja) 画像形成装置
JP2002162586A (ja) マルチビーム画像形成装置
JP4042339B2 (ja) 光走査装置
JPH077150B2 (ja) 画像情報記録方法
KR20050036564A (ko) 레이저 스캐닝 유닛의 광파워 밸런스 조정방법
JPH11160636A (ja) 水平同期信号検出回路及びそれを使用する走査光学装置 及び画像形成装置
JP5397723B2 (ja) 光走査装置
JP2009090525A (ja) 画像形成装置及びその調整方法
JP4558464B2 (ja) 画像形成装置及び画像形成方法
JP3239752B2 (ja) 画像形成装置及び画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees