JP2017026657A - 画像形成装置の補正方法 - Google Patents

画像形成装置の補正方法 Download PDF

Info

Publication number
JP2017026657A
JP2017026657A JP2015141780A JP2015141780A JP2017026657A JP 2017026657 A JP2017026657 A JP 2017026657A JP 2015141780 A JP2015141780 A JP 2015141780A JP 2015141780 A JP2015141780 A JP 2015141780A JP 2017026657 A JP2017026657 A JP 2017026657A
Authority
JP
Japan
Prior art keywords
pixel
scanning
image
correction method
input image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141780A
Other languages
English (en)
Other versions
JP6532330B2 (ja
Inventor
隆一 荒木
Ryuichi Araki
隆一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015141780A priority Critical patent/JP6532330B2/ja
Publication of JP2017026657A publication Critical patent/JP2017026657A/ja
Application granted granted Critical
Publication of JP6532330B2 publication Critical patent/JP6532330B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

【課題】主走査方向の位置毎に異なる位置ずれ量に起因する画像の歪みや濃度むらを補正して、良好な画質を得ること。
【解決手段】走査線の主走査方向に応じた副走査方向の位置ずれに関する情報をメモリ302に記憶する記憶工程と、メモリ302に記憶された情報に基づいて、感光ドラム102上の走査線の間隔が所定の間隔となるような座標変換を行うことにより、入力画像の画素の位置を変換する変換工程(位置ずれ量算出(4))と、座標変換後の入力画像の画素の位置に基づいて、入力画像の画素の画素値に畳み込み演算を行い、出力画像の画素の画素値を求めるフィルタ処理工程と(フィルタ演算前画像データ(5)、フィルタ演算後画像データ(6))、を備える。
【選択図】図6

Description

ディジタル複写機、複合機、レーザプリンタなど、二次元画像の画像形成における歪みや濃度むらの画像形成装置の補正方法に関する。
レーザプリンタや複写機等の電子写真方式の画像形成装置では、レーザ光を走査する光走査装置を用いて、感光体上に潜像形成を行う方式が一般に知られている。レーザ走査方式の光走査装置では、コリメータレンズを用いて平行光にされたレーザ光を、回転多面鏡によって偏向し、偏向されたレーザ光を長尺のfθレンズを用いて感光体上に結像させる。また、1つのパッケージ内に複数の発光素子を有するマルチビーム光源を有し、複数のレーザ光を同時に走査するマルチビーム走査方式がある。
一方、濃度むらやバンディングのない良好な画像を形成するためには、各レーザ光の走査ライン間のピッチは感光体上で等間隔であることが望ましい。しかし、以下の複数の要因によって、走査ライン間のピッチの変動が発生する。例えば、走査ライン間のピッチの変動は、感光体の表面速度の速度変動や、回転多面鏡の回転速度変動等によって生じる。また、走査ライン間のピッチの変動は、回転多面鏡の回転軸に対する回転多面鏡のミラー面の角度のばらつきや、マルチビームレーザチップに配列された発光点の間隔のばらつきによっても生じる。このような要因により発生する濃度むらやバンディングに対して、光走査装置の露光量を制御することでバンディングを補正する技術が提案されている。例えば特許文献1では、感光体近傍に副走査方向のビーム位置検出手段を設け、検出されたビーム位置から得られた走査ピッチ情報に基づき、光走査装置の露光量を調整してバンディングを目立たなくする構成が記載されている。
特開2012−098622号公報
回転多面鏡によりレーザ光を走査する走査光学系では、光学系部品の配置精度によって、レーザ光の主走査方向の位置毎に回転多面鏡のミラー面の倒れ(以下、回転多面鏡の面倒れという)の量が異なる結果となる。図16に、回転多面鏡のミラー面1によって走査された画像先頭から2000ライン目の走査位置、ミラー面2によって走査された画像先頭から4000ライン目の走査位置、のそれぞれのずれの様子を示す。また、回転多面鏡のミラー面3によって走査された画像先頭から6000ライン目の走査位置、ミラー面4によって走査された画像先頭から8000ライン目の走査位置、のそれぞれのずれの様子を示す。更に、回転多面鏡のミラー面5によって走査された画像先頭から10000ライン目の走査位置のずれの様子を示す。図16では、主走査方向の位置によって、破線で示す理想位置に対して実線で示す走査ラインの走査位置が先頭方向にずれたり、先頭方向とは逆の方向にずれたりしている。また、理想位置に対する走査ラインの走査位置のずれ量も、副走査方向の各走査ラインによってばらついている。このように、レーザ光の副走査方向の走査ライン毎、且つ、主走査方向の位置毎に、回転多面鏡の面倒れの影響が異なり、走査ラインと隣り合う走査ラインの間隔(以下、ピッチ間隔という)は主走査方向の位置毎に異なる。光走査装置では、光走査装置自体の組み付け誤差や、光学部品の製造誤差によって、主走査方向の位置毎にレーザ光の光路が異なる。主走査方向の位置毎にレーザ光の光路が異なることによって、例えばfθレンズ等では結像特性も異なってしまう。このため、回転多面鏡の面倒れの影響が、主走査方向の位置毎に異なるずれ量(以下、単に面倒れ量という)として発生する。
従来技術では、このような主走査方向の位置毎に走査ラインのピッチ間隔が異なる課題については、解決手段が開示されていない。画像領域全体でバンディングのない均一な画像を形成するためには、主走査方向の位置毎に異なる位置ずれ量に対する補正が必要となる。
本発明は、このような状況のもとでなされたもので、主走査方向の位置毎に異なる位置ずれ量に起因する画像の歪みや濃度むらを補正して、良好な画質を得ることを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)複数の発光素子を有する光源と、第1の方向に回転し、前記光源から出射された光ビームにより潜像が形成される感光体と、前記光源から出射された光ビームを偏向し、前記感光体に照射された光ビームのスポットを前記第1の方向に直交する第2の方向に移動させ走査線を形成する偏向手段と、を備える画像形成装置の補正方法であって、走査線の前記第2の方向に応じた前記第1の方向の位置ずれに関する情報を記憶手段に記憶する記憶工程と、前記記憶手段に記憶された前記情報に基づいて、前記感光体上の走査線の間隔が所定の間隔となるような座標変換を行うことにより、入力画像の画素の位置を変換する変換工程と、前記座標変換後の入力画像の画素の位置に基づいて、入力画像の画素の画素値に畳み込み演算を行い、出力画像の画素の画素値を求めるフィルタ処理工程と、を備えることを特徴とする補正方法。
本発明によれば、主走査方向の位置毎に異なる位置ずれ量に起因する画像の歪みや濃度むらを補正して、良好な画質を得ることができる。
実施例の画像形成装置全体を示す図、感光ドラムと光走査装置周辺の構成を示す図 実施例の画像形成装置のブロック図 実施例の走査ラインの位置ずれを示す図 実施例のメモリに情報を記憶する工程を説明するブロック図 実施例の主走査方向の補間演算を示す図 実施例の1走査期間のタイムチャート 実施例の画像形成処理を示すフローチャート 実施例の補正処理を示すフローチャート 実施例の画素の位置ずれを分類毎に示す図 実施例の副走査方向の画素位置の座標変換を示す図 実施例の副走査方向の画素位置の座標変換を示す図 実施例の副走査方向の画素位置の座標変換を示す図 実施例のフィルタ処理に用いる畳み込み関数を示す図、補正値と係数を説明する図 実施例の位置ずれの分類毎のフィルタ処理を示す図 実施例のフィルタ処理を示すフローチャート 従来例の走査ラインの位置ずれを示す図
以下、図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。尚、レーザ光が走査される方向であって感光ドラムの回転軸方向を第2の方向である主走査方向、主走査方向に略直交する方向であって感光ドラムの回転方向を第1の方向である副走査方向とする。
<画像形成装置全体の構成>
図1(a)は、複数色のトナーを用いて画像形成を行うデジタルフルカラープリンタ(カラー画像形成装置)の概略断面図である。図1(a)を用いて実施例の画像形成装置100について説明する。画像形成装置100には色別に画像を形成する4つの画像形成部(画像形成手段)101Y、101M、101C、101Bk(破線部)が備えられている。画像形成部101Y、101M、101C、101Bkはそれぞれ、イエロー、マゼンタ、シアン、ブラックのトナーを用いて画像形成を行う。Y、M、C、Bkは、それぞれイエロー、マゼンタ、シアン、ブラックを表しており、以下、特定の色について説明する場合を除き、添え字Y、M、C、Bkを省略する。
画像形成部101には感光体である感光ドラム102が備えられている。感光ドラム102の周りには、帯電装置103、光走査装置104、現像装置105がそれぞれ設けられている。また、感光ドラム102の周りには、クリーニング装置106が配置されている。感光ドラム102の下方には無端ベルト状の中間転写ベルト107が配置されている。中間転写ベルト107は、駆動ローラ108と従動ローラ109、110とに張架され、画像形成中は図中の矢印B方向(時計回り方向)に回転する。また、中間転写ベルト107(中間転写体)を介して、感光ドラム102に対向する位置には、一次転写装置111が設けられている。また、本実施例の画像形成装置100は、中間転写ベルト107上のトナー像を記録媒体である用紙Sに転写するための二次転写装置112、用紙S上のトナー像を定着するための定着装置113を備える。
画像形成装置100の帯電工程から現像工程までの画像形成プロセスを説明する。各画像形成部101における画像形成プロセスは同一であるため、画像形成部101Yを例にして画像形成プロセスを説明し、画像形成部101M、101C、101Bkにおける画像形成プロセスについては説明を省略する。画像形成部101Yの帯電装置103Yにより、図中矢印方向(反時計回り方向)に回転駆動される感光ドラム102Yを帯電する。帯電された感光ドラム102Yは、光走査装置104Yから出射される一点鎖線で示すレーザ光によって露光される。これにより、回転する感光ドラム102Y上(感光体上)に静電潜像が形成される。感光ドラム102Y上に形成された静電潜像は、現像装置105Yによってイエローのトナー像として現像される。画像形成部101M、101C、101Bkでも、同様の工程が行われる。
転写工程以降の画像形成プロセスについて説明する。転写電圧が印加された一次転写装置111は、画像形成部101の感光ドラム102上に形成されたイエロー、マゼンタ、シアン、ブラックのトナー像を、中間転写ベルト107に転写する。これにより、中間転写ベルト107上で各色のトナー像が重ね合わされる。即ち、中間転写ベルト107に4色のトナー像が転写される(一次転写)。中間転写ベルト107上に転写された4色のトナー像は、二次転写装置112により、手差し給送カセット114又は給紙カセット115から二次転写部に搬送されてきた用紙S上に転写される(二次転写)。そして、用紙S上の未定着のトナー像は定着装置113で加熱定着され、用紙S上にフルカラー画像が得られる。画像が形成された用紙Sは排紙部116に排紙される。
<感光ドラムと光走査装置>
図1(b)に、感光ドラム102、光走査装置104、及び、光走査装置104の制御部の構成を示す。光走査装置104は、マルチビームレーザ光源(以下、レーザ光源)201と、コリメータレンズ202と、シリンドリカルレンズ203と、回転多面鏡204とを備える。レーザ光源201は、複数の発光素子によりレーザ光(光ビーム)を発生するマルチビームレーザ光源である。コリメータレンズ202は、レーザ光を平行光に整形する。シリンドリカルレンズ203は、コリメータレンズ202を通過したレーザ光を副走査方向へ集光する。尚、本実施例ではレーザ光源201は複数のビームを配列したマルチビーム光源を例にして記載するが、単一の光源を用いた場合も同様に動作させるものとする。レーザ光源201は、マルチビームレーザ駆動回路(以下、単にレーザ駆動回路)304によって駆動される。回転多面鏡204は、回転動作するモータ部とモータ軸に取り付けられた反射ミラーからなる。以下、回転多面鏡204の反射ミラーの面を、ミラー面という。回転多面鏡204は、回転多面鏡駆動部305によって駆動される。光走査装置104は、回転多面鏡204によって偏向されたレーザ光(走査光)が入射するfθレンズ205、206を備える。また、光走査装置104は、種々の情報が格納された記憶手段であるメモリ302を有する。
更に、光走査装置104は、回転多面鏡204によって偏向されたレーザ光を検知し、レーザ光を検知したことに応じて水平同期信号(以下、BD信号)を出力する信号生成手段であるBeam Detector207(以下、BD207)を備える。光走査装置104から出射したレーザ光は、感光ドラム102上を走査する。レーザ光が感光ドラム102の回転軸に対して平行に走査されるように、光走査装置104と感光ドラム102の位置決めがなされている。光走査装置104は、回転多面鏡204のミラー面が感光ドラム102上を一回走査する度に、マルチビームレーザの光ビームのスポットを主走査方向に走査させ、レーザ素子数分の走査ラインを同時に形成する。本実施例では、回転多面鏡204のミラー面数は5面であり、レーザ光源201は8つのレーザ素子を有する構成を例にして説明する。即ち、本実施例では、1回の走査で8ライン分の画像形成を行うため、回転多面鏡204は1回転あたり5回走査して、全部で40ライン分の画像形成を行う。
感光ドラム102は、回転軸にロータリーエンコーダ301を備えており、ロータリーエンコーダ301を用いて感光ドラム102の回転速度の検出が行われる。ロータリーエンコーダ301は、感光ドラム102が1回転する度に1000発のパルスを発生し、内蔵のタイマを用いて発生したパルスの時間間隔を測定した結果に基づく感光ドラム102の回転速度の情報(回転速度データ)をCPU303に出力する。尚、感光ドラム102の回転速度が検出できる構成であれば、前述したロータリーエンコーダ以外の公知の速度検出技術を用いてもよい。エンコーダ以外の方法としては、例えば、レーザドップラー等で感光ドラム102の表面速度を検出する等の方式がある。
<CPUのブロック図>
次に、図2を用いて、光走査装置104の制御を行うCPU303について説明する。図2は、後述する画像の歪みや濃度むらを補正する補正処理を実行するCPU303の機能をブロック図として示した図である。CPU303は、フィルタ処理部501と、誤差拡散処理部502と、PWM信号生成部503とを有する。フィルタ処理部501は、入力された画像データに畳み込み演算を行うことでフィルタ処理を行う。誤差拡散処理部502は、フィルタ処理後の画像データに誤差拡散処理を行う。PWM信号生成部503は、誤差拡散処理後の画像データにPWM変換を行い、光走査装置104のレーザ駆動回路304にPWM信号を出力する。
また、CPU303は、フィルタ係数設定部504と、フィルタ関数出力部505と、補正値設定部506とを有する。フィルタ関数出力部505は、畳み込み演算に用いられる関数のデータ(例えば、テーブルのデータ)をフィルタ係数設定部504に出力するもので、畳み込み演算に用いられる関数には、例えば線形補間やバイキュービック補間がある。補正値設定部506は、光走査装置104のメモリ302から読み込んだ位置ずれ量の情報と、面特定部507から入力された面同期信号とに基づいて、走査ラインの位置ずれ量を算出する。補正値設定部506は、走査ラインの位置ずれ量に基づいて補正値を算出し、算出した補正値をフィルタ係数設定部504に出力する。フィルタ係数設定部504は、フィルタ関数出力部505から入力された畳み込み関数の情報と、補正値設定部506から入力された走査ラインの補正値とに基づいて、フィルタ処理部501によるフィルタ処理に用いられるフィルタ係数を算出する。フィルタ係数設定部504は、算出したフィルタ係数をフィルタ処理部501に設定する。
更に、CPU303は、面特定部507を有する。面特定部507は、光走査装置104のホームポジションセンサ(以下、HPセンサとする)307から入力されたHP信号と、BD207から入力されたBD信号とに基づいて、回転多面鏡204のミラー面を特定する。面特定部507は、特定したミラー面の情報を面同期信号として補正値設定部506に出力する。
図1(b)に示すように、CPU303には、画像データを生成する不図示の画像コントローラから画像データが入力される。また、CPU303は、ロータリーエンコーダ301、BD207、メモリ302、レーザ駆動回路304、回転多面鏡駆動部(以下、ミラー駆動部)305と接続されている。CPU303は、BD207から入力されたBD信号に基づいて走査ラインの書き出し位置を検知し、BD信号の時間間隔をカウントすることで回転多面鏡204の回転速度を検知する。更に、CPU303は、回転多面鏡204が所定の速度となるように、ミラー駆動部305に加速減速を指示するための加速減速信号を出力する。ミラー駆動部305は、CPU303から入力された加速減速信号に応じて、回転多面鏡204のモータ部に駆動電流を供給し、モータ306を駆動する。
図2に示すように、回転多面鏡204にはHPセンサ307が搭載されており、HPセンサ307は回転多面鏡204が回転動作中に所定角度になったタイミングで、CPU303に対してHP信号を出力する。CPU303の面特定部507は、HPセンサ307からのHP信号を検知したタイミングで、回転多面鏡204の5つのミラー面のうち、どのミラー面でレーザ光を走査しているか、即ち走査中のミラー面を特定する。面特定部507は、一度、ミラー面が特定されると、それ以降はBD207から出力されるBD信号に基づいてミラー面を特定し続ける。回転多面鏡204の任意のミラー面がレーザ光を1回走査する度に、BD207はBD信号1パルスを出力するため、CPU303はBD信号をカウントすることで回転多面鏡204のミラー面を特定し続けることが可能となる。
メモリ302には、回転多面鏡204のミラー面毎の位置情報と、マルチビームレーザの位置情報が各々格納されており、CPU303によって各情報が読み出される。CPU303は、メモリ302から読み出した情報に基づいて、各走査ラインの位置の算出を行い、算出された各走査ラインの位置と入力された画像データから、各走査ラインの位置を補正する情報を加味した画像データを算出する。CPU303は、各走査ラインの位置が補正された情報が加味された画像データに基づいて、レーザ駆動回路304に発光光量データを出力する。尚、本実施例では、レーザ駆動回路304は、CPU303から入力された発光光量データに基づき、PWM(パルス幅変調)制御により画素毎の点灯時間を制御することで光量制御を行う。尚、光量制御を行う際には、必ずしもPWM制御を用いる必要はなく、画素毎にピーク光量を制御するAM(振幅変調)制御により光量制御を行ってもよい。
<走査位置情報>
次に、図3、表1を用いて、メモリ302に格納された走査位置情報について説明する。図3は、各走査ラインの理想位置からの位置ずれの様子を示す。8つの発光点を有するマルチビームレーザの各レーザが走査する走査ラインを、LD1、LD2、LD3、LD4、LD5、LD6、LD7、LD8とする。ここで、各走査ラインの理想的な間隔は、解像度によって決定される。例えば解像度1200dpiの画像形成装置の場合、各走査ラインの理想的な間隔は、21.16μmとなる。LD1を基準位置とした場合、走査ラインLD1からの走査ラインLD2〜LD8の理想距離D2〜D8は式(1)で算出される。
Dn=(n−1)×21.16μm (n=2〜8)・・・式(1)
例えば、走査ラインLD1から走査ラインLD4までの理想距離D4は、63.48μm(=(4−1)×21.16μm)となる。
ここで、マルチビームレーザの素子間隔の誤差やレンズの倍率ばらつきによって、走査ラインの間隔は誤差を持つ。理想距離D2〜D8によって決まる理想位置に対する走査ラインLD2〜LD8の位置ずれ量を、X1〜X7とする。回転多面鏡204のA面目について、例えば、走査ラインLD2の位置ずれ量X1は、走査ラインLD2の理想位置(以下、ライン2、他の走査ラインについても同様とする)と実際の走査ラインとの差とする。また、例えば、走査ラインLD4の位置ずれ量X3は、ライン4と実際の走査ラインとの差とする。
回転多面鏡204は、回転多面鏡204の各ミラー面の製造ばらつきにより、回転軸に対するミラー面の角度が完全に平行にはならず、ミラー面毎に角度のばらつきを有する。また各ミラー面におけるレーザ光の走査では、主走査方向の位置に応じてずれ量が異なる。本実施例では、主走査方向の画像領域を所定数のブロック、例えば5つのブロックに分割して、メモリ302にミラー面毎に5つのブロックの各々に対応した位置ずれ量を格納する。このように、ブロック単位で位置情報をメモリ302に格納しておくことで、画素ごとに位置情報を保持しておく場合に比べて、容量の削減が可能となる。
回転多面鏡204の各ミラー面における理想位置に対する位置ずれ量は、回転多面鏡204のミラー面数が5面、主走査方向におけるブロック数が5つの場合、Y1A〜Y5Eで表わされる。ここで、A〜Eは回転多面鏡204の5つの面を表し、1〜5は主走査方向の5つのブロックを表している。例えば、回転多面鏡204のA面目のLD1の走査ライン(ライン1)の1〜5ブロック目の理想位置からのずれ量を、Y1A、Y2A、Y3A、Y4A、Y5Aと表す。同様に、回転多面鏡204のB面目のLD1の走査ライン(ライン9)の1〜5ブロック目の理想位置からのずれ量を、Y1B、Y2B、Y3B、Y4B、Y5Bと表す。回転多面鏡204のm面目のミラー面、マルチビームのn番目のレーザ光の主走査方向におけるbブロック目の位置ずれ量をZnbmとする。そうすると、位置ずれ量Znbmは、各走査ラインの副走査方向の位置ずれ量X1〜X7と、各ミラー面の位置ずれ量YA〜YEとを用いて式(2)で表わされる。
Znbm=Ybm+X(n−1)(n=1〜8、b=1〜5、m=A〜E)…式(2)
(ただし、X(0)=0とする)
例えば、回転多面鏡204のA面目の走査ラインLD4の3ブロック目についての位置ずれ量Z43Aは、式(2)からZ43A=Y3A+X3と求められる。また、回転多面鏡204のB面目の走査ラインLD1の5ブロック目についての位置ずれ量Z15Bは、式(2)からZ15B=Y5Bと求められる。
式(2)の演算で位置ずれ量Znbmを算出する場合、位置ずれ量Znbmの算出に用いられるデータは、回転多面鏡204のミラー面の数とマルチビームレーザの素子数、主走査方向のブロック数に対応したデータ数を有していればよい。ここで、表1にメモリ302に格納される位置ずれデータのアドレスマップを示す。
Figure 2017026657
表1に示すように、メモリ302のアドレス1からアドレス7までには、走査ラインLD2から走査ラインLD8までの位置ずれ量(位置情報と記す)X1〜X7の情報が格納されている。また、メモリ302のアドレス8からアドレス12までには、回転多面鏡204のミラー面のA面目のブロック1からブロック5までの位置ずれ量Y1A〜Y5Aの情報が格納されている。また、メモリ302のアドレス13からアドレス17までには、回転多面鏡204のミラー面のB面目のブロック1からブロック5までの位置ずれ量Y1B〜Y5Bの情報が格納されている。また、メモリ302のアドレス18からアドレス22までには、回転多面鏡204のミラー面のC面目のブロック1からブロック5までの位置ずれ量Y1C〜Y5Cの情報が格納されている。また、メモリ302のアドレス23からアドレス27までには、回転多面鏡204のミラー面のD面目のブロック1からブロック5までの位置ずれ量Y1D〜Y5Dの情報が格納されている。更に、メモリ302のアドレス28からアドレス32までには、回転多面鏡204のミラー面のE面目のブロック1からブロック5までの位置ずれ量Y1E〜Y5Eの情報が格納されている。
(メモリ格納動作)
メモリ302に格納される位置ずれ量の情報は、例えば工場等での光走査装置104の調整工程で測定されたデータを格納するものとする。また、画像形成装置内部にレーザ光源201から出射されたレーザ光により走査される走査ラインの位置を検知する手段を備え、メモリ302に格納されている情報をリアルタイムに更新する構成としてもよい。走査光の副走査方向の位置検出手段としては、公知の技術を用いてよい。例えば、光走査装置内部や感光ドラム近傍に配置したCMOSセンサやPSD(Position Sensitive Detector)によって位置検出を行う方法でもよい。また、光走査装置内部や感光ドラム近傍に配置したPD(photo diode)面上に三角スリットを配置してPDの出力パルス幅から位置検出を行う方法でもよい。
図4は、一例として、工場等で光走査装置104のメモリ302に情報を格納する際のブロック図を示す。尚、図2と同じ構成には同じ符号を付し、説明を省略する。光走査装置104の調整工程において、光走査装置104が画像形成装置に搭載されたときの感光ドラムの位置に相当する位置に、測定工具400を配置する。測定工具400は、測定部410と演算部402を備えており、演算部402は、図2のCPU303の面特定部507から面同期信号が入力されるように構成されている。尚、図4のCPU303には、面特定部507のみ描画している。まず、光走査装置104から測定部410にレーザ光を照射させる。測定部410は、三角スリット411とPD412を有しており、図中、一点鎖線矢印で示す光走査装置104から走査された光ビームが三角スリット411上を走査する。測定部410は、三角スリット411を介してPD412に入力された光ビームの情報に基づき、走査ラインの副走査方向の位置を測定する。測定部410は、測定した回転多面鏡204のミラー面毎の走査ラインの、主走査方向に依存する副走査方向の位置の情報(以下、面毎データという)を、演算部402に出力する。
一方、面特定部507には、光走査装置104のHPセンサ307からHP信号が入力され、BD207からBD信号が入力されている。これにより、面特定部507は、回転多面鏡204のミラー面を特定し、特定したミラー面の情報を、面同期信号として演算部402に出力する。演算部402は、面特定部507から入力された回転多面鏡204のミラー面の情報に応じた光走査装置104のメモリ302上のアドレスに、測定部410により測定した走査ラインの、主走査方向に依存する副走査方向の位置の情報を書き込む。このように、レーザ光源201の8つの素子のばらつきにより生じる走査ラインの位置ずれ量の情報(X1〜X7)がメモリ302に格納される。また、回転多面鏡204のミラー面の面倒れにより生じる走査ラインのブロック毎の位置ずれ量の情報(Y1A〜Y5E)も、メモリ302に格納される。
(主走査方向の補間演算処理の説明)
本実施例では、表1で説明したように、主走査方向の画像領域を5つのブロックに分けて、メモリ302に各面毎に各ブロックに対応した位置ずれ量を保持している。このため、所定のブロックのレーザ光の走査が終了して、次のブロックのレーザ光の走査が開始されると、位置ずれ量に段差が生じる。このような、各ブロック間の位置ずれ量の段差を緩和するため、例えば図5に示すように、各ブロックの位置ずれ量に対して線形補間を用いた補間処理を行い、主走査方向の位置ずれ量として用いてもよい。
図5は、横軸に主走査方向の位置、縦軸に副走査方向の位置ずれ量(μm)を示すグラフである。図5には、主走査方向の1走査ラインの画像領域の1ブロック目から5ブロック目について、ブロック毎の位置ずれ量が記載されている。例えば、3ブロック目(b=3)では位置ずれ量が3μmである。ブロック毎の位置ずれ量は、図5に実線で示すように階段状に変化する。本実施例では、ブロック毎の位置ずれ量(補間処理前(メモリ内データ))に補間処理、例えば線形補間を行うことで、破線で示すように(補間処理後(例えば線形補間))、ブロックを切り替える際の位置ずれ量の段差が解消される。このため、ブロックを切り替える際の画像ずれを防ぐ効果が得られる。
<位置ずれ量算出方法>
図6は、本実施例の副走査方向におけるn番目のレーザ光の1走査期間内の制御タイミングを示す。(1)は1画素あたりの画素周期に対応したCLK信号を示しており、(2)はCPU303に対するBD207からのBD信号の入力タイミングを示している。(3)、(5)は、CPU303に対する、フィルタ演算前の画像データDATAN(N=1,2,・・・)の入力タイミングを示している。(4)は各画素に対応した位置ずれ量CnN(N=1,2,・・・)が算出されるタイミングを示している。(6)は、フィルタ演算処理が施された画像データDATAN’(N=1,2,・・・)がレーザ駆動回路304に出力されるタイミングを示している。尚、DATAN、DATAN’の末尾のNは、主走査方向の1走査ライン中の画素の番号を表している。
BD207から出力されるBD信号を基準としたときに、BD信号が出力されたタイミングから、レーザ光が感光ドラム102の主走査方向における画像領域の先端に到達するタイミングまでの時間をT1とする。また、BD信号が出力されたタイミングから、レーザ光が感光ドラム102の主走査方向における画像領域の終端に到達するタイミングまでの時間をT2とする。画像形成装置は、CPU303によりBD信号を検知した後、所定時間T1が経過するまで待機した後、画像形成を開始し、BD信号を検知してから所定時間T2が経過した後に、1走査ラインの画像形成を終了する。CPU303は、走査毎に、所定時間T1が経過してから所定時間T2が経過するまでの間、即ち、画像領域で、走査ラインの位置ずれ量を算出し、フィルタ処理部501によるフィルタ処理後の画像データをレーザ駆動回路304に送信し、画像形成を行う。ここで、(1)のCLK信号の1周期分の時間で、注目画素に対する位置ずれ量を算出する。また、(1)のCLK信号の1周期分の時間で、注目画素に対するフィルタ処理がフィルタ処理部501によって行われる。そして、フィルタ演算前の画像データが入力されて1クロック後に、フィルタ演算後の画像データがレーザ駆動回路304に出力される(図6破線枠部)。ΔTは、BD207から出力されるBD信号の時間間隔であり、1走査あたりの時間である。
本実施例では、図6の(4)に示す各画素の位置ずれ量(CnN)は、主走査方向に分割された5つのブロック(b=1〜5)の位置ずれ量を用いて算出される。各画素の位置ずれ量は、図5で説明したように、各ブロックの位置ずれ量を線形補間し、各画素の位置ずれ量に振り分けた値を用いてもよい。このように、主走査方向の1つの画素に1つの位置ずれ量が対応するようにしてもよいし、複数の画素に1つの位置ずれ量が対応するようにしてもよい。以上の動作により、CPU303は時間T1から時間T2の間で、位置ずれ量の算出、フィルタ処理及びレーザ駆動回路304への画像データの送信を行って、1走査分の画像形成を行う。
(N画素目の位置ずれ量の算出)
図7は、CPU303が実行する、主走査方向のN番目の画素(N画素目ともいう)の位置ずれ量を算出しながら画像形成を行う処理を示すフローチャートである。CPU303は、画像形成時に走査ライン毎に位置ずれ量の算出を行い、画像形成を行う。ステップ(以下、Sとする)7001でCPU303は、副走査方向の位置n=1とする。S7002でCPU303は、BD207からBD信号が入力されたか否かを判断する。S7002でCPU303は、BD信号が入力されたと判断した場合は、BD信号の周期である時間間隔を計測している不図示のタイマを停止し、タイマ値を読み出し、内部レジスタに保存する。そして、CPU303は、次のBD信号を受信するまでの時間間隔を計測するため、不図示のタイマをリセットしてスタートさせ、S7003の処理に進む。尚、CPU303が不図示のタイマを2つ以上有している場合には、BD信号を受信する度に異なるタイマを交互に使用して、時間測定を行うようにしてもよい。また、ここでは、計測されたBD信号の時間間隔をCPU303の内部レジスタに保存しているが、例えばCPU303の不図示のRAMメモリに保存するようにしてもよい。S7002でCPU303は、BD信号が入力されていないと判断した場合は、BD信号が入力されるのを待つために、S7002の処理を繰り返す。
S7003でCPU303は、タイマを参照することにより、BD信号を検知してから時間T1が経過したか否かを判断する。S7003でCPU303は、時間T1が経過したと判断した場合は、主走査方向における画像領域に入ったと判断し、S7004の処理に進む。S7003でCPU303は、時間T1が経過していないと判断した場合は、まだ主走査方向における非画像領域であると判断し、S7003の処理を繰り返す。S7004でCPU303は、変数N=1と設定する。ここで変数Nは、主走査方向における画像書き出し先頭の画素からの画素番号に対応した変数である。S7005でCPU303は、主走査方向におけるN画素目の位置ずれ量(CnN)を算出し(図6(4))、位置ずれ量に基づいて画像データに対してフィルタ処理を行う(図6(5)、(6))。S7006でCPU303は、N=14000であるか否かを判断し、N=14000であると判断した場合は、S7008の処理に進む。S7006でCPU303は、N=14000ではないと判断した場合、S7007の処理に進む。S7007でCPU303は、Nに1を加算し(N=N+1)、主走査方向における次の画素についての演算を行うために、S7005の処理に戻る。ここで、例えば、A4サイズの記録紙(主走査方向の長さを297mmとする)に1200dpiの解像度で画像形成を行う場合、画素数は約14000となる。このため、主走査方向において、画素番号NをN=1〜14000まで変化させて各画素の位置ずれ量を算出することで、1走査分の位置ずれ量の演算を行うものとする。尚、解像度が変更されると、S7006の閾値も解像度に応じた値となる。
S7008でCPU303は、副走査方向の位置nに1を加算し(n=n+1)、S7009の処理に進む。S7009でCPU303は、副走査方向の位置nに基づいて1ページ分の処理が終了したか否かを判断し、終了したと判断した場合は処理を終了し、終了していないと判断した場合は、S7002の処理に戻る。
(位置ずれ量の算出)
S7005でCPU303が算出する位置ずれ量CnNの計算式について詳しく説明する。n番目の走査ラインの主走査方向の画素番号Nに対する位置ずれ量CnNは、次のようにして求められる。即ち、感光ドラム102や回転多面鏡204の回転速度の変動による位置ずれ量Aと走査ライン毎の主走査方向に依存する位置ずれ量Bを加算して、位置ずれ量の総和を算出することにより求められる。感光ドラム102の回転速度をVd、回転多面鏡204の回転速度をVp、1走査時間をΔT(図6参照)とすると、感光ドラム102の回転速度Vdと回転多面鏡204の回転速度Vpの速度差から生じる位置ずれ量Aは以下の式(3)から算出される。
A=(Vd−Vp)×ΔT・・・式(3)
ここで、ΔTはBD信号の出力タイミングの間隔に対応した時間であり、位置ずれ量Aは、感光ドラム102の回転速度Vdと回転多面鏡204の回転速度Vpとの差によって、1走査期間の間に移動する走査ラインの位置ずれ量を示す。ここで、上述したように、回転多面鏡204の回転速度Vpは、印字速度Vprに基づき求められる。そして、印字速度Vprは、1走査時間ΔTと、マルチビーム数(本実施例では8ビーム)の関係から、式(4)、式(5)によって決まる。
Vp=ビーム数×21.16÷ΔT・・・式(4)
ΔT=1÷(回転多面鏡204のミラー面数×回転多面鏡204の1秒間あたりの回転数)・・・式(5)
一方、位置ずれ量Bは、上述した式(2)から算出された値を用いる。
B=Znbm・・・式(6)
CPU303は、式(3)から算出した位置ずれ量Aと式(6)から算出した位置ずれ量Bとを加算し、位置ずれ量の総和(合計値=A+B)を算出する。CPU303は、S7005で算出した合計の位置ずれ量をCPU303の内部レジスタに保持する。ここで、レジスタに保持された位置ずれ量(=A+B)は、後述するフィルタ処理時に読み出されて演算に用いられる。
尚、本実施例では、複数の走査ラインの画像データと位置ずれ量に基づいて、フィルタ演算を行う。例えば、フィルタ演算の範囲をL=3とした場合、注目ラインから上下3画素の画像データを参照し、注目ラインと上下3画素の範囲における各走査ラインの位置ずれ量を算出し、フィルタ演算を行うものとする。
ここで、注目ラインに対応した走査ラインの位置ずれ量は、画像形成直前の期間において算出される。また、注目ラインより前に走査された走査ラインに対しては、前に走査された走査ラインについて算出された位置ずれ量の算出結果を用いるものとする。注目ラインより後のタイミングで走査される走査ラインについては、後で走査される走査ラインに対応する回転多面鏡204のミラー面の情報とマルチビームの位置情報に基づいて位置ずれ量Bが求められる。また、回転多面鏡204の回転速度Vp、感光ドラム102の回転速度Vdについては、次のようにして求めるものとする。即ち、前にレーザ光を走査したタイミングで検出された値と、注目ライン(現在の走査ライン)が走査したタイミングで検出された値に基づいて、次に走査される走査ラインにおける回転速度Vp、Vdを各々予測して求めるものとする。
(入力画像の画素の副走査方向の位置の補正)
本実施例では、CPU303は、レーザ光による走査ラインの副走査方向の位置ずれ量に基づいて、画像データに対して補正を行い、補正した画像データをレーザ駆動回路304に出力する。以下、図8のフローチャートについて説明する。図8は、副走査方向の位置ずれに起因して発生する濃度むらやバンディングを補正するための補正処理を説明するフローチャートである。S3602でCPU303は、メモリ302に格納された副走査方向の位置ずれ量を読み出す。具体的には、CPU303は、表1で説明したLD2〜LD8の位置情報X1〜X7と、回転多面鏡204のA〜E面目の各部ブロックに応じた位置情報Y1A〜Y5Eをメモリ302から読み出す。本実施例では、副走査方向の位置ずれ量に基づいて、入力された画像データの副走査方向の画素位置に対して補正を行った後、フィルタ処理を行うことによって画素データ、即ち濃度を出力する。
(走査ラインの位置ずれの状態)
走査ラインの位置ずれの状態は略4つに分類できる。まず、位置ずれの状態には、(a)感光ドラム102上の走査ラインの位置(以下、走査位置)が理想の走査位置に対して進み方向にシフトする場合、(b)感光ドラム102上の走査位置が理想の走査位置に対して戻り方向にシフトする場合がある。また、位置ずれの状態には、(c)感光ドラム102上の走査位置の間隔が理想の走査位置の間隔に対して密になる場合、逆に、(d)感光ドラム102上の走査位置の間隔が理想の走査位置の間隔に対して疎になる場合がある。これらの副走査方向の位置ずれの状態の具体例を図9に示す。図中、破線は走査位置を示し、図中(1)〜(5)は走査の順番を示す。本実施例では8ビームを同時に走査するが、副走査方向に順に並ぶ1ビームずつに順番を振ったものとして説明する。図9の左側の列が理想の走査位置、右側の列が感光ドラム102上の走査位置を示す。走査番号(1)〜(5)に対して、S1〜S5は理想の走査位置からの位置ずれ量を示す。位置ずれ量の単位は、理想のビーム間隔(1200dpiで21.16μm)を1としたときを基準に表し、副走査方向における光ビームの進み方向(以下、単に進み方向という)を正の値としている。また、副走査方向における光ビームの戻り方向(以下、単に戻り方向という)を負の値としている。更に、画像の様子を説明するために副走査方向に並ぶ1画素を走査線上に丸で示す。丸の色は濃度を表す。
図9(a)は、感光ドラム102上の走査位置が、理想の走査位置から進み方向に一律に0.2ずつシフトしている例を示している。以降、図9(a)のような位置ずれ量を、+0.2のシフト量という。図9(b)は、感光ドラム102上の走査位置が、理想の走査位置から戻り方向に一律に0.2ずつシフトしている例を示している。以降、図9(b)のような位置ずれ量を、−0.2ラインのシフト量という。図9(a)、図9(b)は、走査位置が一律にシフトしているため、感光ドラム102上の走査位置の間隔はいずれも1となっている。
図9(c)は、感光ドラム102上の所定の走査位置では、位置ずれ量が0である。しかし、位置ずれ量0の走査位置から走査位置が前に戻るほど進み方向への位置ずれ量が大きくなり、位置ずれ量0の走査位置から走査位置が後に進むほど戻り方向への位置ずれ量が大きくなる。例えば、走査番号(3)ではS3=+0であるが、走査番号(2)ではS2=+0.2、走査番号(1)ではS1=+0.4となり、走査番号(4)ではS4=−0.2、走査番号(5)ではS5=−0.4となる。図9(c)では、走査位置の間隔が1よりも小さい0.8となっている。以降、図9(c)のような位置ずれの状態を、(1−0.2)ラインの間隔で密、という。
図9(d)は、感光ドラム102上の所定の走査位置では、位置ずれ量が0である。しかし、位置ずれ量0の走査位置から走査位置が前に戻るほど戻り方向への位置ずれ量が大きくなり、位置ずれ量0の走査位置から走査位置が後に進むほど進み方向への位置ずれ量が大きくなる。例えば、走査番号(3)ではS3=+0であるが、走査番号(2)ではS2=−0.2、走査番号(1)ではS1=−0.4となり、走査番号(4)ではS4=+0.2、走査番号(5)ではS5=+0.4となる。図9(d)では、走査位置の間隔が1よりも大きい1.2となっている。以降、図9(d)のような位置ずれの状態を、(1+0.2)ラインの間隔で疎、という。
図9(c)のような密の状態では、位置ずれが生じているだけでなく、走査位置の間隔が密になることによって感光ドラム102上で画素が密集し、所定面積あたりの画素値が増えることで濃度が濃くなる。逆に図9(d)のような疎の状態では、位置ずれが生じているだけでなく、走査位置の間隔が疎になることによって感光ドラム102上で画素が疎となって、所定面積あたりの画素値が減って濃度が薄くなる。電子写真プロセスにおいては、潜像電位の深さと現像特性の関係により濃淡差が更に強調されることがある。また、図9(c)、図9(d)のような疎密が交互に発生すれば周期的な濃淡がモアレとなり、空間周波数によっては同じ量でも視覚的に検知されやすくなる。
図8のフローチャートの説明に戻る。S3603でCPU303は、補正値設定部506により入力画像の各画素に対する補正用属性情報を生成する。本実施例では、入力画像の副走査方向の画素位置を予め座標変換してから、補間することにより、位置ずれの補正と共に、入力画像の濃度を保存しながら局所的な濃淡の補正も同時に行うことを可能にする。ここで、補正用属性情報とは、具体的には、後述する補正値CnNのことである。尚、nは副走査方向における走査ライン(又は画素)の番号を示し、Nは主走査方向における画素の番号を示す。補正値CnNとは、副走査方向のn番目の走査ラインにおける主走査方向のN番目の画素の補正値を意味する。以降の説明では、各走査ラインの主走査方向のN番目の画素について説明することとし、補正値CnNを、単にCとしたりCnとしたりする。
(座標変換)
本実施例の座標変換の方法を、図10〜図12を用いて説明する。図10〜図12のグラフは、横軸を画素番号n、縦軸を副走査方向の画素位置(走査位置でもある)y(座標変換後はy’)としており、単位はラインとしている。また、図10、図12は、それぞれ図9(a)〜図9(d)に対応している。図10、図12の左側のグラフは座標変換を行う前を、右側のグラフはy軸の座標変換を行った後を、それぞれ示している。グラフにプロットした四角のドットは感光ドラム102上の走査位置、丸のドットは理想の走査位置を表す。
(進み方向及び戻り方向にシフトしている場合)
図10(a)左のグラフから順に説明する。座標変換を行う前のグラフでは、丸でプロットした理想の走査位置は、例えば画素番号2に対して副走査方向の画素位置yが2となっており、画素番号nとy座標が等しく、傾き1の直線(一点鎖線で示す)である。一点鎖線の直線は、以下の式(7)で表される。
y=n・・・式(7)
丸でプロットした理想の走査位置に対して、四角でプロットした走査位置は、図9(a)で説明したように、進み方向(y軸+方向)にS(=0.2)ラインだけシフトしている。このため、四角でプロットした走査位置は、傾きは1のまま、オフセットした次の式(8)で表される直線(実線で示す)となる。
y=n+S・・・式(8)
本実施例では、実際の走査位置が理想の走査位置に変換されるように座標変換を行うため、図10(a)に示す例の場合、以下の式を用いて座標変換を行えばよい。尚、式(9)のCが補正量となる。
y’=y+C・・・式(9)
従って、補正量Cはシフト量Sと以下の式(10)で表される。
C=−S・・・式(10)
座標変換の式(9)と補正量Cを求める式(10)により、式(7)、式(8)はそれぞれ以下の式(11)、式(12)のように変換される。
y’=y+C=n+(−S)=n−S・・・式(11)
y’=y+C=(n+S)+C=(n+S)+(−S)=n・・・式(12)
図10(b)について、シフト量をS=−0.2とすれば、式(7)から式(12)が同様に成立して、図10(a)と同様に説明できる。尚、図10(a)、図10(b)に示すように、走査ライン間に疎密が発生しておらず進み方向又は戻り方向にシフトしている走査ラインの場合には、変換前後で直線が一定の傾きとなっている。
(疎密が発生している場合)
ここで、走査位置の疎密が発生する図12、及びシフトと疎密、図10、図12の組み合わせのケースにも適用できる座標変換について説明する。図11(a)は画素番号と走査位置の関係を示し、横軸は画素番号n、縦軸yは副走査方向の走査位置で、四角ドットは感光ドラム102上の走査位置をプロットしたものである。図11(a)では、画素番号n≦2の範囲では感光ドラム102上の走査ラインが密、画素番号n≧2の範囲では感光ドラム102上の走査ラインが疎の場合について説明する。
図11(a)に示すように、画素番号n≦2では密、画素番号n≧2では疎、となっている場合、画素番号n≦2での直線の傾きと、画素番号n≧2での直線の傾きは異なり、画素番号n=2において屈曲した形状となっている。図11(a)では、四角ドットを通る走査位置の変化を表す関数をft(n)とし、実線で表す。走査位置を表す関数ft(n)は、次の式(13)で表される。
y=ft(n)・・・式(13)
次に、副走査方向の走査位置であるy軸の座標変換を行った後の関数をft’(n)で表すと、座標変換後の走査位置を表す関数ft’(n)は、次の式(14)で表される。
y’=ft’(n)・・・式(14)
本実施例では、座標変換後の走査位置が均等になるように、y軸を伸縮したり、シフトしたりして、座標変換を行う。このため、座標変換後の走査位置を表す関数ft’(n)は、以下の式(15)で表される条件を満たす。
ft’(n)=n・・・式(15)
式(15)は、例えば、画素番号2に対して、座標変換後の副走査方向の画素位置y’(=ft’(2))が2となることを意味する。
図11(a)、図11(b)間を結ぶ破線は左から右へ、y軸の元の座標位置から座標変換後のy’軸の座標位置との対応を示し、座標変換前後でy軸の下半分(n≦2に対応)が伸長、上半分(n≧2に対応)は縮小している様子を示す。図11(a)から図11(b)の座標変換によって、入力された画像データの各画素の座標変換後の座標を求める手順を図11(c)、図11(d)で説明する。図11(c)、図11(d)は、図11(a)、図11(b)と同様に、横軸は画素番号n、縦軸y(又はy’)は副走査方向の走査位置を示し、図11(c)は座標変換前、図11(d)は座標変換後を示す。入力された画像データの画素番号nと座標位置yの関係を以下に示す。まず、図11(c)に示す破線は、座標変換前の理想の走査位置を表す関数fs(n)であり、以下の式(16)で表される。
y=fs(n)・・・式(16)
また、本実施例において、入力された画像データの副走査方向の画素の間隔は均等なので、関数fs(n)は以下の式で表される。
fs(n)=n・・・式(17)
入力された画像データの注目する画素番号nsに座標変換を行った後のy’座標の走査位置を、次の3つのステップにより求める。まず、1つめのステップでは、入力された画像データの画素番号nsに対応する理想の走査位置のy座標をysとすると、ysは、以下の式(18)により求めることができる。
ys=fs(ns)・・・式(18)
感光ドラム102上(実線)で座標変換を行う前の走査位置が等しい画素番号ntを求める(図11(c)の(1))。ここで、感光ドラム102上の走査位置は関数y=ft(n)で表され、ys=ft(nt)という関係が成り立つ。関数ft(n)の逆関数をft−1(y)とすると、画素番号ntは、以下の式(19)で表される。
nt=ft−1(ys)・・・式(19)
2つめのステップでは、感光ドラム102上の走査位置の画素番号ntに対応する座標変換後のy’座標(ytとする)を、座標変換後の関数ft’(n)を用いて次の式(20)により求める(図11(d)の(2))。
yt=ft’(nt)・・・式(20)
画素番号nsは任意に選んでも成立するので、画素番号nsから座標変換後のy’座標の位置ytを求める式が、入力された画像データの画素番号nから演算上のy’座標を求める関数fs’(n)に相当する。従って、式(18)〜式(20)から、以下のように式(17)で表される一般式が導かれる。尚、座標変換後の破線で示す理想の走査位置を示す関数は、y’=fs’(n)で表される(図11(d)の(3))。
yt=fs’(ns)=ft’(nt)=ft’(ft−1(ys))
=ft’(ft−1(fs(ns)))
nsをnに一般化して、
fs’(n)=ft’(ft−1(fs(n)))・・・式(21)
また、入力された画像データの画素間隔、及び座標変換後の走査位置の間隔を均等で、距離1とした式(17)、式(15)を式(21)に代入する。そうすると、式(21)は、画素番号nから走査位置を導く関数ft(n)の逆関数ft−1(n)を用いて、式(22)のように表される。
fs’(n)=ft−1(n)・・・式(22)
図10(a)、図10(b)に示した走査位置が進み方向、戻り方向に一律にシフトした式(8)と、入力された画像データの座標変換後の位置を求める式(11)も逆関数の関係にあり、式(22)の成立を確認できる。また、図12(a)、図12(b)に示すような走査位置に疎密が発生する場合に適用すると、座標変換前の走査位置を表す関数yは、(n0、y0)を通過する傾きkの直線とする場合、以下の式(23)で表せる。
fs(n)=y=k×(n−n0)+y0・・・式(23)
入力された画像データのy軸の座標変換後の画素位置を求めるために、式(21)、式(22)から、逆関数((1/k)×(y−y0)+n0)を求めて、逆関数に画素番号nを代入すればよいので、以下の式(24)が導かれる。
y’=(1/k)×(n−y0)+n0・・・式(24)
図12(a)に示す走査ラインの間隔が密な状態、図12(b)に示す走査ラインの間隔が疎な場合、いずれも座標変換後の感光ドラム102上の走査ラインの位置は、式(24)で表すことができる。また、副走査方向の画素番号nの補正値Cnは、Cn=fs’(n)−fs(n)から求められる。
具体的には、図12(a)では、n0=y0=3、k=0.8であり、
fs’(n)=(1/0.8)×(n−3)+3・・・式(25)
となる。例えば、画素番号3では、fs’(3)=3.00となり、補正値C3は0.00(=3.00−3.00)となる。また、画素番号5では、fs’(5)=5.50となり、補正値C5は+0.50(=+5.50−5.00)となる。走査位置が密である場合の補正値C1〜C5の値を図14(c)に示す。
また、図12(b)では、n0=y0=3、k=1.2であり、
fs’(n)=(1/1.2)×(n−3)+3・・・式(26)
となる。例えば、画素番号3では、fs’(3)=3.000となり、補正値C3は0.000(=3.000−3.000)となる。また、画素番号5では、fs’(5)=4.667となり、補正値C5は−0.333(=4.667−5.000)となる。走査位置が疎である場合の補正値C1〜C5の値を図14(d)に示す。
また、走査ラインに疎密やシフトが混在していても、式(21)又は式(22)を用いることにより、座標変換後の理想の走査位置を求めることができる。補正値設定部506は、位置ずれ量に基づき理想の走査位置を座標変換して補正値CnNを求めて、補正値CnNの情報をフィルタ係数設定部504に出力する。
(フィルタ処理)
本実施例では、補正データを生成するためにフィルタ処理を実行する。ただし、本実施例では、フィルタ処理部501は、次のようなフィルタ関数による畳み込み演算でフィルタ処理を行う。即ち、フィルタ処理部501は、入力された画像データの画素の副走査方向の走査位置の補正による画素の副走査方向の画素位置と、座標変換によって走査ラインの間隔が均等に変換された画素の副走査位置との位置関係に基づいて、フィルタ処理を行う。尚、フィルタ処理前の画素を入力画素、フィルタ処理後の画素を出力画素ともいう。また、フィルタ処理前の画素は、上述した座標変換が行われた画素である。
本実施例の畳み込み関数は、図13(a)に示す線形補間、図13(b)、図13(c)に示すバイキュービック補間から選択できる。フィルタ関数出力部505は、フィルタ処理に用いられる畳み込み関数の情報を、例えばテーブルの情報としてフィルタ係数設定部504に出力する。図13は、縦軸yが副走査方向の位置を示し、単位を画素で示していて、横軸kは係数の大きさを示す。尚、縦軸yの単位を画素としているが、副走査方向を示しているため、ラインを単位としてもよい。
図13(a)の式は以下で表される。
Figure 2017026657
図13(b)、図13(c)の式は以下の2つの式で表される。
Figure 2017026657
本実施例では、a=−1、図13(b)はw=1、図13(c)はw=1.5としているが、各画像形成装置の電子写真的な特性に応じて、a、wを調整してもよい。フィルタ係数設定部504は、フィルタ関数出力部505から得たフィルタ関数の情報と、補正値設定部506から出力された補正値Cの情報と、に基づいて、フィルタ処理に用いられる係数(後述するk)をフィルタ処理部501に出力する。
ここで、図13(d)を用いて説明する。図13(d)は横軸にフィルタ処理に用いられる係数k、縦軸に副走査方向の位置yを示す。フィルタ処理部501は、補正値設定部506から補正値CnNを入力されると、フィルタ関数出力部505から入力されたフィルタ関数を用いて、補正値CnNに対応する係数knを求める。尚、図13(d)中の白丸は座標変換前の係数を示す。また、図13(d)では、補正値C1Nに対して係数k1が、補正値C2Nに対して係数k2が、それぞれフィルタ処理に用いられる係数knとして設定されたことを示す(黒丸)。本実施例では、入力された画像データの粗密の状態によらず、同じ畳み込み関数を適用し、理想の走査位置によってサンプリングすることで、入力された画像データの所定面積あたりの濃度が保存されるようにしている。
(フィルタ処理の具体例)
本実施例の座標変換を行った後の座標位置に基づいて、式(27)の線形補間によるフィルタ関数で畳み込み演算を用いたフィルタ処理を行う具体例を、図14を用いて説明する。尚、畳み込み演算を用いたフィルタ処理は、フィルタ処理部501により実行される。図14は、図9に対応している。図14の左側の列は、上述した座標変換後の入力画素を示している。また、図14の右側の列は、上述した座標変換後の感光ドラム102上の走査位置を示している。即ち、図14の右側の列の走査位置が、均等な間隔で、且つ、距離1となるように座標変換されている。
より詳細には、座標変換後の入力画素の副走査方向の走査位置は、図10、図12の右側に示す座標変換後のグラフの一点鎖線で示す直線(y’=fs’(n))で表される。座標変換後の感光ドラム102上の走査位置は、図10、図12の右側に示す座標変換後のグラフの実線で示す直線(y’=ft’(n))で表される。例えば、図10(a)では、シフト量が+0.2(=S)であるため、座標変換後は、fs’(n)=y−0.2=n−0.2で表される。
また、図14では、画素値、即ち濃度値の大きさを丸の濃淡で示している。また、括弧内の数字は走査ラインの番号であり、図9に記載した画素番号と同じである。図14の中央のグラフは、横軸に濃度、縦軸に副走査方向の位置を示している。畳み込み演算は、入力画素の各座標位置を中心としたフィルタ関数(図13(a))に画素値を乗算した波形W(画素(1)〜(5)に対するW1〜W5)を展開し、重ね合わせて加算したものである。
図14(a)から順に説明する。白丸で示す画素(1)、(5)は濃度0、即ち画素値0である。このため、フィルタ関数に画素値を乗じたWは、それぞれW1=0、W5=0である。黒丸で示す画素(2)、(3)、(4)の濃度は等しく、W2、W3、W4の波形の最大値は等しくなり、入力画素の画素位置を中心にフィルタ関数を展開した波形となる。畳み込み演算の結果は、全ての波形の総和(ΣWn、n=1〜5)である。
出力画素の画素値は、走査位置を座標変換した後の感光ドラム102上の走査位置でサンプルする。このため、例えば感光ドラム102上の走査位置に対応する画素値(1)は、波形W2と点P0で交わるので、濃度D1と演算される。また、画素値(2)は、波形W2と点P2で、波形W3と点P1でそれぞれ交わるので、濃度D1+D2と演算される。以下、同様に画素値(3)〜(5)を求める。尚、画素値(5)は、どの波形とも交わらないので、画素値を0とする。また、図14(b)〜図14(d)の(1)〜(5)の画素値を演算した結果を、各右側の列の画素の濃淡で示している。
入力画素の位置ずれは、図14の縦軸の各画素に対応して示している。図14の縦軸に示す位置ずれ量は、上述した入力画像の画素の副走査方向の走査位置の座標変換に従い、逆関数で求めた位置ずれ量の情報である。例えば、図14(a)の場合、図10(a)で説明したように、走査ラインの位置ずれ量Sの補正量Cは、−0.2である。また、例えば、図14(c)は式(25)、図14(d)の場合は式(26)をそれぞれ用いて算出した補正量Cである。
図14(a)は、副走査方向の進み方向に走査ラインの走査位置がずれているが、画素値は逆の遅れ方向に重心がずれることとなるので、画素値の重心の位置が補正されている様子を示している。図14(b)は、副走査方向の戻り方向に走査ラインの走査位置がずれているが、画素値は逆の進み方向に重心がずれることとなるので、画素値の重心の位置が補正されている様子を示している。図14(c)は、走査位置の間隔が密な場合で、座標変換後の畳み込み演算によって濃度の分布が拡がり、濃度の局所的な集中をキャンセルして局所的な濃度変化を補正している様子を示している。また、図14(d)は、逆に走査位置の間隔が疎な場合で、座標変換後の畳み込み演算によって濃度の分布が縮まり、濃度の分散をキャンセルして局所的な濃度変化を補正している様子を示している。特に、図14(d)の(3)の画素値は、100%より濃い(100+α)%の濃度となっている。
(フィルタ処理)
図8の説明に戻る。図8のS3604でCPU303は、S3603で生成した補正用属性情報に基づき、フィルタ処理部501によりフィルタ処理を行う。詳細には、CPU303は、上述した入力画像への畳み込み演算と再サンプリングを行う。ここで、CPU303が実行するS3604の処理を示した図15のフローチャートを用いて詳細に説明する。CPU303は、フィルタ処理部501により畳み込み演算によるフィルタ処理をスタートすると、S3703以降の処理を実行する。S3703でCPU303は、畳み込み関数の拡がりをLとしたとき、注目する出力画像のラインyn(位置yn)の副走査位置の前後±L、即ち幅2Lの範囲((yn−L)〜(yn+L)の範囲)に含まれる入力画像のラインを抽出する。ここで、Lは畳み込み関数の+L〜−Lの範囲外は畳み込み関数の値が0になる最小の値と定義する。例えば、図13(a)の線形補間では、L=1、図13(b)のバイキュービック補間はL=2、図13(c)のバイキュービック補間はL=3である。式(22)を用い、対応する入力画像の範囲ymin〜ymaxのymin、ymaxは以下の条件を満たす。
ft−1(ymin)=yn−L、ft−1(ymax)=yn+L・・・式(30)
式(30)を変形することにより、ymin、ymaxは、以下の式(31)から求められる。
ymin=ft(yn−L)、ymax=ft(yn+L)・・・式(31)
従って、注目する出力画像のラインynに対して抽出される入力画像のラインは、ymin〜ymaxの範囲の全ての整数のラインとなる。
注目する出力画像のラインynと畳み込み演算の対象になる入力画像のラインをymとしたとき、距離dnmは、以下の式(32)で表される。
dnm=yn−ft−1(ym)・・・式(32)
従って、S3704でCPU303は、フィルタ係数設定部504により、畳み込み関数g(y)として係数knmを、以下の式で求める。
knm=g(dnm)・・・式(33)
S3707でCPU303は、S3703で抽出した入力画像の副走査方向の位置nと、注目する主走査方向の位置Nの画素データを取得する。ここで、画素データを入力画素データPinとする。S3708でCPU303は、フィルタ処理部501により畳み込み演算を行い、処理を終了する。より詳細には、フィルタ処理部501は、S3704で求めた対応する係数knmと、S3707で取得した入力画素データPinを積和演算して、注目画素の値Poutを求める。尚、入力画素データPinは、フィルタ処理前の注目画素の濃度、注目画素の値Poutは、出力画素データであり、フィルタ処理後の注目画素の濃度である。
Figure 2017026657
ここで、式(34)は、図14に対応しており、図14の左側の丸の濃さ(濃度)は、入力画素データPinに対応し、図14(a)のD1やD2は、knm×Pinに対応し、図14の右側の丸の濃さ(濃度)は、Poutに対応している。
このように、本実施例では、マルチビームの位置のばらつきや回転多面鏡204のミラー面の面倒れなどによる照射位置のずれによる画像の歪みや濃度むらを、次のようにして補正する。まず、入力画像の副走査方向の位置ずれのプロファイルに基づき入力画像の画素位置を座標変換する。その後、フィルタ処理、及びサンプリングすることで、各入力画素の濃度を保存しながら、位置ずれ、及びバンディングなどの局所的な濃度の偏りをキャンセルすることができ、良好な画像を得ることができる。本実施例では、主走査方向において異なる回転多面鏡204の面倒れを考慮して、副走査方向の位置ずれ量を算出することができる。
以上、本実施例によれば、主走査方向の位置毎に異なる位置ずれ量に起因する画像の歪みや濃度むらを補正して、良好な画質を得ることができる。
102 感光ドラム
104 光走査装置
201 レーザ光源
204 回転多面鏡
302 メモリ
303 CPU

Claims (10)

  1. 複数の発光素子を有する光源と、第1の方向に回転し、前記光源から出射された光ビームにより潜像が形成される感光体と、前記光源から出射された光ビームを偏向し、前記感光体に照射された光ビームのスポットを前記第1の方向に直交する第2の方向に移動させ走査線を形成する偏向手段と、を備える画像形成装置の補正方法であって、
    走査線の前記第2の方向に応じた前記第1の方向の位置ずれに関する情報を記憶手段に記憶する記憶工程と、
    前記記憶手段に記憶された前記情報に基づいて、前記感光体上の走査線の間隔が所定の間隔となるような座標変換を行うことにより、入力画像の画素の位置を変換する変換工程と、
    前記座標変換後の入力画像の画素の位置に基づいて、入力画像の画素の画素値に畳み込み演算を行い、出力画像の画素の画素値を求めるフィルタ処理工程と、
    を備えることを特徴とする補正方法。
  2. 前記記憶工程では、前記第2の方向の前記光ビームが走査する領域を所定数のブロックに分割し、分割したブロックごとの前記第1の方向の位置ずれに関する情報を、前記記憶手段に記憶することを特徴とする請求項1に記載の補正方法。
  3. 前記変換工程では、前記記憶手段に記憶された前記ブロックごとの前記位置ずれに関する情報に前記第2の方向における線形補間を行った値を用いて、前記入力画像の画素の前記座標変換前の位置を求めることを特徴とする請求項2に記載の補正方法。
  4. 前記入力画像の前記第1の方向におけるn番目の画素の位置を示す関数をfs(n)とし、
    前記出力画像の前記第1の方向におけるn番目の画素の位置を示す関数をft(n)とし、
    前記座標変換後の前記入力画像の前記第1の方向におけるn番目の画素の位置を示す関数をfs’(n)とし、
    前記座標変換後の前記出力画像の前記第1の方向におけるn番目の画素の位置を示す関数をft’(n)としたとき、
    前記変換工程では、前記座標変換後の前記入力画像の画素の位置を、関数ft(n)の逆関数ft−1(n)を用いて、
    fs’(n)=ft’(ft−1(fs(n)))
    から求めることを特徴とする請求項1から請求項3のいずれか1項に記載の補正方法。
  5. 関数fs(n)がfs(n)=nを満たし、且つ、関数ft’(n)がft’(n)=nを満たすとき、
    前記変換工程では、前記座標変換後の前記入力画像の画素の位置を、
    fs’(n)=ft−1(n)
    から求めることを特徴とする請求項4に記載の補正方法。
  6. 前記フィルタ処理工程では、線形補間又はバイキュービック補間を用いて前記畳み込み演算を行うことを特徴とする請求項3から請求項5のいずれか1項に記載の補正方法。
  7. 前記画素値は濃度値であり、
    前記フィルタ処理工程では、前記畳み込み演算を行う前と行った後とで、所定面積あたりの濃度値が保存されることを特徴とする請求項3から請求項6のいずれか1項に記載の補正方法。
  8. 前記フィルタ処理工程では、前記畳み込み演算に用いる畳み込み関数の0でない範囲の前記第1の方向における幅を2Lとしたとき、前記出力画像の所定の画素の位置ynを中心とした前記2Lの幅の範囲に対応する前記入力画像の画素の範囲yminからymaxについて、
    ymin=ft(yn−L)、
    ymax=ft(yn+L)
    と定義することを特徴とする請求項4又は請求項5に記載の補正方法。
  9. 前記偏向手段は、所定の数の面を有する回転多面鏡であり、
    前記記憶手段に記憶される前記情報には、前記回転多面鏡の回転軸に対する前記面毎の角度のばらつきの情報が含まれていることを特徴とする請求項1から請求項8のいずれか1項に記載の補正方法。
  10. 前記所定の間隔は、前記画像形成装置による画像形成の解像度に応じて決定されることを特徴とする請求項1から請求項9のいずれか1項に記載の補正方法。
JP2015141780A 2015-07-16 2015-07-16 画像形成装置の補正方法 Active JP6532330B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141780A JP6532330B2 (ja) 2015-07-16 2015-07-16 画像形成装置の補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141780A JP6532330B2 (ja) 2015-07-16 2015-07-16 画像形成装置の補正方法

Publications (2)

Publication Number Publication Date
JP2017026657A true JP2017026657A (ja) 2017-02-02
JP6532330B2 JP6532330B2 (ja) 2019-06-19

Family

ID=57950487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141780A Active JP6532330B2 (ja) 2015-07-16 2015-07-16 画像形成装置の補正方法

Country Status (1)

Country Link
JP (1) JP6532330B2 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248013A (ja) * 1984-05-23 1985-12-07 Murata Mfg Co Ltd Lcフイルタ
JPH1016308A (ja) * 1996-07-02 1998-01-20 Ricoh Co Ltd 画像形成装置
JP2000015869A (ja) * 1998-07-03 2000-01-18 Minolta Co Ltd 画像処理装置
JP2006150772A (ja) * 2004-11-30 2006-06-15 Kyocera Mita Corp 画像形成装置
JP2006198896A (ja) * 2005-01-20 2006-08-03 Ricoh Co Ltd 多色画像形成装置
JP2008114426A (ja) * 2006-11-01 2008-05-22 Canon Inc 画像形成装置及びその制御方法
JP2008282099A (ja) * 2007-05-08 2008-11-20 Canon Inc 画像検索装置および画像検索方法ならびにそのプログラムおよび記憶媒体
US20080303887A1 (en) * 2007-06-06 2008-12-11 Hilton Richard L Laser jet bow/tilt correction
JP2012237772A (ja) * 2011-05-09 2012-12-06 Canon Inc 光走査装置および画像形成装置
US20130038671A1 (en) * 2011-08-11 2013-02-14 Kyocera Document Solutions Inc. Image forming apparatus configured to perform exposure control and exposure method
JP2013066153A (ja) * 2011-09-02 2013-04-11 Ricoh Co Ltd 画像形成装置
JP2013120985A (ja) * 2011-12-06 2013-06-17 Fuji Xerox Co Ltd アフィン変換装置及び画像形成装置
US20130229696A1 (en) * 2010-11-02 2013-09-05 Canon Kabushiki Kaisha Image processing apparatus, image processing method and program
JP2013218654A (ja) * 2012-03-16 2013-10-24 Panasonic Corp 画像処理装置
JP2015100920A (ja) * 2013-11-21 2015-06-04 コニカミノルタ株式会社 画像形成装置及び濃度ムラの補正方法
US20160219186A1 (en) * 2015-01-23 2016-07-28 Konica Minolta, Inc. Image processing device and image processing method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248013A (ja) * 1984-05-23 1985-12-07 Murata Mfg Co Ltd Lcフイルタ
JPH1016308A (ja) * 1996-07-02 1998-01-20 Ricoh Co Ltd 画像形成装置
JP2000015869A (ja) * 1998-07-03 2000-01-18 Minolta Co Ltd 画像処理装置
JP2006150772A (ja) * 2004-11-30 2006-06-15 Kyocera Mita Corp 画像形成装置
JP2006198896A (ja) * 2005-01-20 2006-08-03 Ricoh Co Ltd 多色画像形成装置
JP2008114426A (ja) * 2006-11-01 2008-05-22 Canon Inc 画像形成装置及びその制御方法
JP2008282099A (ja) * 2007-05-08 2008-11-20 Canon Inc 画像検索装置および画像検索方法ならびにそのプログラムおよび記憶媒体
US20080303887A1 (en) * 2007-06-06 2008-12-11 Hilton Richard L Laser jet bow/tilt correction
US20130229696A1 (en) * 2010-11-02 2013-09-05 Canon Kabushiki Kaisha Image processing apparatus, image processing method and program
JP2012237772A (ja) * 2011-05-09 2012-12-06 Canon Inc 光走査装置および画像形成装置
US20130038671A1 (en) * 2011-08-11 2013-02-14 Kyocera Document Solutions Inc. Image forming apparatus configured to perform exposure control and exposure method
JP2013066153A (ja) * 2011-09-02 2013-04-11 Ricoh Co Ltd 画像形成装置
JP2013120985A (ja) * 2011-12-06 2013-06-17 Fuji Xerox Co Ltd アフィン変換装置及び画像形成装置
JP2013218654A (ja) * 2012-03-16 2013-10-24 Panasonic Corp 画像処理装置
JP2015100920A (ja) * 2013-11-21 2015-06-04 コニカミノルタ株式会社 画像形成装置及び濃度ムラの補正方法
US20160219186A1 (en) * 2015-01-23 2016-07-28 Konica Minolta, Inc. Image processing device and image processing method

Also Published As

Publication number Publication date
JP6532330B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6821341B2 (ja) 画像形成装置
JP6532345B2 (ja) 画像形成装置
US9860422B2 (en) Correction method for image forming apparatus
JP6611510B2 (ja) 画像形成装置の補正方法
JP6821342B2 (ja) 画像形成装置
JP6723780B2 (ja) 画像形成装置
US10021271B2 (en) Correction method for image forming apparatus
JP6723848B2 (ja) 画像形成装置
JP4987115B2 (ja) 画像形成装置
JP6632346B2 (ja) 画像形成装置
JP6632393B2 (ja) 画像形成装置
JP6532330B2 (ja) 画像形成装置の補正方法
JP6821349B2 (ja) 画像形成装置
JP2017024184A (ja) 画像形成装置
JP6171654B2 (ja) 画像形成装置、画像形成制御装置および画像形成装置制御方法
JP2000292720A (ja) 画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R151 Written notification of patent or utility model registration

Ref document number: 6532330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151