JP2008101268A - 無電解銅およびレドックス対 - Google Patents

無電解銅およびレドックス対 Download PDF

Info

Publication number
JP2008101268A
JP2008101268A JP2007178544A JP2007178544A JP2008101268A JP 2008101268 A JP2008101268 A JP 2008101268A JP 2007178544 A JP2007178544 A JP 2007178544A JP 2007178544 A JP2007178544 A JP 2007178544A JP 2008101268 A JP2008101268 A JP 2008101268A
Authority
JP
Japan
Prior art keywords
copper
composition
hydantoin
electroless
electroless copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007178544A
Other languages
English (en)
Other versions
JP5507800B2 (ja
Inventor
Mark A Poole
マーク・エイ・プール
Andrew J Cobley
アンドルー・ジェイ・コブレイ
Amrik Singh
アムリク・シン
Deborah V Hirst
デボラ・ブイ・ハースト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials LLC
Publication of JP2008101268A publication Critical patent/JP2008101268A/ja
Application granted granted Critical
Publication of JP5507800B2 publication Critical patent/JP5507800B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

【課題】ホルムアルデヒドを含んでおらず、且つ安定であり、許容可能な銅堆積物をもたらし、且つ環境にも優しい、無電解銅浴の提供する。
【解決手段】一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む組成物で、そのヒダントイン誘導体は、1−メチルヒダントイン、1,3−ジメチルヒダントインおよび5,5−ジメチルヒダントインから選択される。
【選択図】なし

Description

本発明は、レドックス対(redox couple)を有する無電解銅組成物を対象とする。さらに詳細には、本発明は環境に優しい、レドックス対を有する無電解銅組成物を対象とする。
浴としても知られている無電解銅メッキ組成物は、様々な種類の基体に銅を堆積させるため、メタライゼーション産業において広範に使用されている。例えば、プリント配線板の製造においては、無電解銅浴は、その後に行われる電解銅メッキの基礎としてスルーホールおよび回路パス中に銅を堆積させるために使用されている。また、無電解メッキは、装飾プラスチック産業において、必要に応じて更に銅、ニッケル、金、銀および他の金属をメッキするための基礎として、非導電性の表面上に銅を堆積させるためにも使用されている。今日商業的に使用されている典型的な浴は、二価銅化合物、それらの二価銅イオンに対するキレート化剤または錯化剤、ホルムアルデヒド還元剤、ならびに浴をより安定化させ、メッキ速度を調節し、および銅堆積物に光沢性を持たせるための様々な添加剤を含んでいる。このような多くの浴は首尾よく広範に使用されているが、メタライゼーション産業は、ホルムアルデヒドが本質的に有する毒性のため、ホルムアルデヒドを含んでいない代替的な無電解銅メッキ浴を探し求めている。
ホルムアルデヒドは、目、鼻および上気道に対する刺激物質であることが知られている。動物実験は、ホルムアルデヒドがインビトロ突然変異誘発であることを示している。監視委員会の報告(WATCH/2005/06−化学品管理作業のワーキンググループ−UK健康および安全委員会の副委員会(Working group on Action to Control Chemicals−sub comittee with UK Health and Safety Commission))によれば、2000年以前に実施された50件以上もの疫学的研究は、ホルムアルデヒドと鼻咽腔/鼻腔癌との関連性を示唆したが、決定的ではなかった。しかし、米国のIARC(国際癌研究機関(International Agency for Research on Cancer))により実施されたより最近の研究は、ホルムアルデヒドがヒトにおける鼻咽腔癌の原因であることを示す充分な疫学的証拠が存在したことを示した。その結果として、INRS(フランスの機関)は、ホルムアルデヒドをカテゴリー3からカテゴリー1の発癌性物質へ再分類すべく、分類・表示欧州委員会の作業グループ(European Community Classification and Labelling Work Group)に提案書を提出した。これは、無電解銅配合物における使用および取り扱いを含め、ホルムアルデヒドの使用および取り扱いを一層制限する。従って、メタライゼーション産業においては、ホルムアルデヒドに取って代わる同等または改善された還元剤に対するニーズが存在する。そのような還元剤は、現存する無電解銅プロセスと適合するものでなければならず、望ましい能力および信頼性をもたらし、原価目標に見合ったものでなければならない。
次亜リン酸塩がホルムアルデヒドに対する代替物として提案されている。しかし、この化合物を含有する浴のメッキ速度は一般的に遅すぎる。
米国特許第5,897,692号は、ホルムアルデヒドを含有しない無電解メッキ溶液を開示している。例えば水素化ホウ素塩およびジメチルアミンボラン(DMAB)などの化合物が還元剤として含められている。しかし、そのようなホウ素含有化合物の試みの成功率は様々であった。更に、これらの化合物はホルムアルデヒドよりも高価であり、また、健康上および安全上の問題も有している。DMABは有毒である。その上、結果として生じるホウ酸塩は、環境に放出されると農作物への悪影響を与える。
米国特許第5,897,692号明細書
従って、ホルムアルデヒドを含んでおらず、且つ安定であり、許容可能な銅堆積物をもたらし、且つ環境にも優しい無電解銅浴に対するニーズが尚も存在する。
一つの態様においては、組成物は、一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む。
別の態様においては、方法は、a)基体を提供し;b)一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む無電解銅組成物を用いて、前記基体上に銅を無電解的に堆積させること;を含む。
更なる態様においては、方法は、a)複数のスルーホールを有するプリント配線板を提供し;b)前述のスルーホールをデスミア処理し;c)一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む無電解銅組成物を用いて、前記スルーホールの壁上に銅を堆積させること;を含む。
本無電解銅組成物は、ホルムアルデヒドを含んでおらず、従って、環境に優しく、かつ非発癌性である。この環境に優しい無電解銅メッキ組成物は、保管中、並びに銅の堆積中に安定している。その上、この環境に優しい無電解銅組成物は、均一な銅堆積物をもたらし、それらの銅堆積物は、均一なピンク色の滑らかな外観を有しており、且つ一般的に、商業的に許容可能な無電解銅浴に対して要求される産業基準を満たす。また、本無電解銅組成物は、商業的に許容可能な速度で銅をメッキする。
この明細書全体を通じ、使用されている場合、以下で与えられている省略記号は、文脈が他を明確に示していない限り、以下の意味を有している:g=グラム;mg=ミリグラム;ml=ミリリットル;L=リットル;cm=センチメートル;m=メートル;mm=ミリメートル;μm=ミクロン;min.=分;ppm=100万分の1;℃=摂氏温度;M=モル;g/L=1リットル当たりのグラム数;wt%=重量百分率;T=ガラス転移温度;およびダイン=1g−cm/秒=(10−3Kg)(10−2m)/秒=10−5ニュートン。
「プリント回路基板」および「プリント配線板」という用語は、この明細書全体を通じ、互換可能に使用される。「メッキ」および「堆積」という用語は、この明細書全体を通じ、互換可能に使用される。ダインは力の単位である。すべての量は、他に注記されていない限り、重量百分率である。すべての数値範囲は、境界値を含み、且つかかる数字範囲が合計して100%に制限されることが論理的である場合を除き、任意の順序で組合せ可能である。
無電解銅組成物は、ホルムアルデヒドを含んでおらず、環境に優しい。また、それらは、保管中、及び無電解銅堆積中に安定している。本組成物は、均一なサーモンピンクの外観を有する銅堆積物をもたらす。本組成物は、一以上の銅イオン源;ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤;ならびに一以上のレドックス対;を含んでいる。また、通常の添加剤も本組成物に含められ得る。
銅イオン源には、これらに限定するものではないが、水溶性のハロゲン化物、硝酸塩、酢酸塩、硫酸塩、ならびに他の有機および無機の銅の塩が包含される。一以上のかかる銅塩の混合物を、銅イオンをもたらすために用いてもよい。例としては、硫酸銅、例えば硫酸銅五水和物など、塩化銅、硝酸銅、水酸化銅およびスルファミン酸銅が挙げられる。通常の量の銅塩が本組成物において用いられ得る。本組成物における銅イオン濃度は、0.5g/L〜30g/Lの範囲であってよく、または例えば1g/L〜20g/Lなど、もしくは例えば5g/L〜10g/Lなどの範囲であってよい。
キレート化剤は、一以上のヒダントインおよびヒダントイン誘導体から選択される。ヒダントイン誘導体としては、これらに限定するものではないが、1−メチルヒダントイン、1,3−ジメチルヒダントインおよび5,5−ジメチルヒダントインが挙げられる。典型的には、キレート化剤はヒダントインおよび5,5−ジメチルヒダントインから選択される。より典型的には、キレート化剤は5,5−ジメチルヒダントインである。かかるキレート化剤は組成物に含まれてアルカリ性pH範囲で還元剤を安定化する。かかるキレート化剤は、20g/L〜150g/Lの量で本組成物に含まれ、または例えば30g/L〜100g/Lなどの量、もしくは40g/L〜80g/Lなどの量で本組成物に含まれる。
レドックス対は還元剤として機能し、環境に優しくないホルムアルデヒドに取って代わる。それらは触媒付与された基体上で酸化され、銅の堆積を推進する。レドックス対の金属イオンの低酸化状態から高酸化状態へのサイクルは、基体上で銅を還元するための電子を提供する。外部エネルギーが適用されることなしに、堆積工程が推進する。金属塩還元剤には、これらに限定されないが、元素周期律表のIVA族、IVB族、VB族、VIB族、VIIB族、VIII族およびIB族の金属からの金属塩が包含される。銅イオンをその金属状態に還元するための十分強い還元剤である金属イオンの酸化状態は、これらに限定されないが、Fe2+/Fe3+、Co2+/Co3+、Ag/Ag2+、Mn2+/Mn3+、Ni2+/Ni3+、V2+/V3+、Cr2+/Cr3+、Ti2+/Ti3+、およびSn2+/Sn4+が包含される。典型的に、金属はFe2+/Fe3+、Ni2+/Ni3+、Co2+/Co3+、およびAg/Ag2+である。さらに典型的に、金属イオンはFe2+/Fe3+である。かかる金属イオンに結び付けられるアニオンには、これらに限定されるわけではないが、有機および無機アニオン、例えばハライド(halide)、スルフェート(sulfate)、ニトレート(nitrate)、ホルメート(formate)、グルコネート(gluconate)、アセテート(acetate)、ラクテート(lactate)、オキサレート(oxalate)、タータレート(tartrate)、アスコルベート(ascorbabte)、およびアセチルアセトネート(acetylacetonate)などの有機および無機アニオンが包含される。典型的な塩には、アセチルアセトン酸鉄(II)、L−アスコルビン酸鉄(II)、乳酸鉄(II)水和物、無水シュウ酸鉄(II)、グルコン酸鉄(II)、硫酸鉄(II)、塩化ニッケル(II)、塩化コバルト(II)、および硝酸銀(I)が包含される。レドックス対は、10g/L〜100g/L、または例えば20g/L〜80g/L、または30g/L〜60g/Lなどの量で含まれる。
また、組成物中には界面活性剤も含むことができる。組成物中には通常の界面活性剤を含むことができる。かかる界面活性剤には、イオン性、例えばカチオン性およびアニオン性界面活性剤など、非イオン性、および両性界面活性剤が包含される。界面活性剤の混合物を用いてもよい。界面活性剤は、組成物中に0.001g/L〜50g/L、または例えば0.01g/L〜50g/Lなどの量で含まれ得る。
カチオン性界面活性剤には、これらに限定されないが、テトラアルキルアンモニウムハライド、アルキルトリメチルアンモニウムハライド、ヒドロキシエチルアルキルイミダゾリン、アルキルベンズアルコニウムハライド、アルキルアミンアセテート、アルキルアミンオレエート、およびアルキルアミノエチルグリシンが包含される。
アニオン性界面活性剤には、これらに限定されないが、アルキルベンゼンスルホネート、アルキルまたはアルコキシナフタレンスルホネート、アルキルジフェニルエーテルスルホネート、アルキルエーテルスルホネート、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、ポリオキシエチレンアルキルフェノールエーテル硫酸エステル、高級アルコールリン酸モノエステル、ポリオキシアルキレンアルキルエーテルリン酸(リン酸塩)およびアルキルスルホコハク酸塩が包含される。
両性界面活性剤には、これらに限定されないが、2−アルキル−N−カルボキシメチルまたはエチル−N−ヒドロキシエチルまたはメチルイミダゾリウムベタイン、2−アルキル−N−カルボキシメチルまたはエチル−N−カルボキシメチルオキシエチルイミダゾリウムベタイン、ジメチルアルキルベタイン、N−アルキル−β−アミノプロピオン酸またはその塩、および脂肪酸アミドプロピルジメチルアミノ酢酸ベタインが包含される。
典型的に界面活性剤は非イオン性である。非イオン性界面活性剤の例は、アルキルフェノキシポリエトキシエタノール、20〜150繰り返し単位を有するポリオキシエチレンポリマー、およびポリオキシエチレンとポリオキシプロピレンのブロックコポリマーである。界面活性剤は通常の量で用いることができる。
酸化防止剤には、これらに限定されないが、1つまたは複数の水素原子が、−COOH、−SOH、低級アルキルまたは低級アルコキシ基で置換されていても、されていなくてもよい、1水酸基の、2水酸基の及び3水酸基のフェノール、ハドロキノン、カテコール、レゾルシノール、キノール、ピロガロール、ヒドロキシキノール、フロログルシノール、グアヤコール、没食子酸、3,4−ジヒドロキシ安息香酸、フェノールスホン酸、クレゾールスルホン酸、ヒドロキノンスルホン酸、カテコールスルホン酸、チロン、およびそれらの塩が包含される。酸化防止剤は組成物中に通常の量で含まれる。
pHを9およびそれ以上に高く維持するため、アルカリ性化合物が無電解銅メッキ組成物に含められる。pHが高くなると還元剤についての酸化電位がより負方向の値へシフトされ、これにより、銅堆積が熱力学的に好ましいものになるため、高いpHが望ましい。典型的には、無電解銅メッキ組成物は10〜14のpHを有している。より典型的には、無電解銅メッキ組成物は11.5〜13.5のpHを有している。
望ましいpH範囲内のアルカリ性組成物をもたらす一以上の化合物が使用され得る。アルカリ性化合物には、これらに限定するものではないが、一以上のアルカリ性水酸化物、例えば水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムなどが包含される。典型的には、水酸化ナトリウム、水酸化カリウムまたはそれらの混合物が使用される。より典型的には、水酸化ナトリウムが使用される。このような化合物は5g/L〜100g/Lの量で使用されてよく、または例えば10g/L〜80g/Lなどの量で使用されてよい。
組成物を最適な性能に調整するために、無電解銅組成物中に、他の添加剤を含ませることができる。かかる添加剤の多くは無電解銅堆積について通常のものであり、かつ当分野においてよく知られている。
任意選択的な従来の添加剤には、イオウ含有化合物、例えばメルカプトコハク酸、ジチオジコハク酸、メルカプトピリジン、メルカプトベンゾチアゾール、チオ尿素など;種々の化合物、例えばピリジン、プリン、キノリン、インドール、インダゾール、イミダゾール、ピラジンおよびそれら誘導体など;アルコール、例えばアルキンアルコール、アリルアルコール、アリールアルコールおよび環状フェノールなど;ヒドロキシ置換芳香族化合物、例えばメチル−3,4,5−トリヒドロキシベンゾエート、2,5−ジヒドロキシ−1,4−ベンゾキノンおよび2,6−ジヒドロキシナフタレンなど;カルボン酸、例えばクエン酸、酒石酸、コハク酸、リンゴ酸、マロン酸、乳酸、酢酸およびそれらの塩など;アミン;アミノ酸;水可溶性金属化合物、例えば金属の塩化物および硫酸塩など;ケイ素化合物、例えばシラン、シロキサンおよび低分子量から中間的な分子量までのポリシロキサンなど;ゲルマニウム、ならびにゲルマニウムの酸化物および水素化物;ならびにポリアルキレングリコール、セルロース化合物、アルキルフェニルエトキシレートおよびポリオキシエチレン化合物;ならびに安定剤、例えばピリダジン、メチルピペリジン、1,2−ジ−(2−ピリジル)エチレン、1,2−ジ−(ピリジル)エチレン、2,2’−ジピリジルアミン、2,2’−ビピリジル、2,2’−ビピリミジン、6,6’−ジメチル−2,2’−ジピリジル、ジ−2−ピリルケトン、N,N,N’,N’−テトラエチレンジアミン、ナフタレン、1,8−ナフチリジン、1,6−ナフチリジン、テトラチアフルバレン、テルピリジン、フトル酸、イソフタル酸および2,2’−二安息香酸など、が包含される。このような添加剤は、無電解銅組成物に0.01ppm〜1000ppmの量で含めることができ、または例えば0.05ppm〜10ppmなどの量で含められ得る。
他の任意の添加剤には、これらに限定するものではないが、ロッシェル塩、エチレンジアミン四酢酸のナトリウム塩、ニトリロ酢酸およびニトリロ酢酸のアルカリ金属塩、トリエタノールアミン、修飾されたエチレンジアミン四酢酸、例えばN−ヒドロキシエチレンジアミン三酢酸など、ヒドロキシアルキル置換ジアルカリトリアミン、例えばペンタヒドロキシプロピルジエチレントリアミンなど、および種々の化合物、例えばN,N−ジカルボキシメチルL−グルタミン酸四ナトリウム塩などが包含され得る。また、s,s−エチレンジアミン二コハク酸およびN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン(エチレンジニトリロ)テトラ−2−プロパノールも包含され得る。かかる添加剤は典型的に溶液中に銅(II)イオンを保つためのキレート化剤として機能する。かかる錯化剤は組成物中に通常の量において含まれ得る。典型的には、かかる錯化剤は1g/L〜50g/L、または例えば10g/L〜40g/Lなどの量で含まれる。
無電解銅組成物は、導電性基体および非導電性基体のどちら上にも銅を堆積させるために用いることができる。無電解組成物は、当技術分野において知られている多くの通常の方法で使用することができる。典型的には、銅堆積は、20℃〜60℃の温度で行われる。より典型的には、無電解組成物は、30℃〜50℃の温度で銅または銅合金を堆積する。銅でメッキされるべき基体が無電解組成物中に浸漬され、または無電解組成物が基体上に噴霧される。基体上に銅または銅合金を堆積させるために通常のメッキ時間が用いられ得る。堆積は5秒間から30分間までの時間で行われ得る。しかし、メッキ時間は、その基体上で望まれている銅または銅合金の厚みに依存して変わり得る。銅メッキ速度は0.01μm/20分〜1μm/20分、または例えば0.05μm/20分〜0.5μm/20分などの範囲とすることができる。
基体には、これらに限定するものではないが、無機および有機の基体を含む種々の材料、例えばガラス、セラミックス、磁器、樹脂、紙、布およびそれらの材料の組合せなどが包含される。メタルクラッドおよびアンクラッド材料(metal−clad and unclad materials)も、無電解銅組成物でメッキされ得る基体である。
また、基体には、プリント回路基板も包含される。かかるプリント回路基板には、繊維、例えば繊維ガラスなどをはじめとして、熱硬化性樹脂、熱可塑性樹脂およびそれらの組合せを伴うメタルクラッドおよびアンクラッド、ならびに前述の材料の含浸された実施形態を伴うメタルクラッドおよびアンクラッドが包含される。
熱可塑性樹脂には、これらに限定するものではないが、アセタール樹脂、アクリル系、例えばアクリル酸メチルなど、セルロース樹脂、例えば酢酸エチル、プロピオン酸セルロース、酢酸酪酸セルロースおよび硝酸セルロースなど、ポリエーテル、ナイロン、ポリエチレン、ポリスチレン、スチレンブレンド、例えばアクリロニトリルスチレンおよびコポリマー、ならびにアクリロニトリル−ブタジエンスチレンコポリマーなど、ポリカーボネート、ポリクロロトリフルオロエチレン、ならびにビニルポリマーおよびコポリマー、例えば酢酸ビニル、ビニルアルコール、ビニルブチラール、塩化ビニル、ビニルクロライドアセテートコポリマー、塩化ビニリデンおよびビニルホルマールなどが包含される。
熱硬化性樹脂は、アリルフタラート、フラン、メラミン−ホルムアルデヒド、フェノール−ホルムアルデヒド、フェノールフルフラール単独またはブタジエンアクリロニトリルコポリマーまたはアクリロニトリル−ブタジエン−スチレンコポリマーと混合されたフェノールフルフラールコポリマー、ポリアクリル酸エステル、シリコーン、ウレアホルムアルデヒド、エポキシ樹脂、アリル樹脂、グリセリルフタラート、およびポリエステルを含むが制限されない。
多孔質材料には、これらに限定するものではないが、紙、木材、繊維ガラス、布および繊維、例えば天然繊維および合成繊維など、例えば綿繊維およびポリエステル繊維などが包含される。
無電解銅組成物は、低T樹脂および高T樹脂の両方をメッキするために使用することができる。低T樹脂は160℃より低いTを有しており、高T樹脂は160℃およびそれ以上のTを有している。典型的には、高T樹脂は160℃〜280℃のTを有しており、または例えば170℃〜240℃などのTを有している。高Tポリマー樹脂には、これらに限定するものではないが、ポリテトラフルオロエチレン(PTFE)およびポリテトラフルオロエチレンブレンドが包含される。そのようなブレンドには、例えばポリエチレンオキシドおよびシアン酸エステルを伴うPTFEが包含される。高いTを有する樹脂を含む他の種類のポリマー樹脂には、これらに限定するものではないが、エポキシ樹脂、例えば二官能性および多官能性エポキシ樹脂、ビマレイミド/トリアジンおよびエポキシ樹脂(BTエポキシ)、エポキシ/ポリフェニレンオキシド樹脂など、アクリロニトリルブタジエンスチレン、ポリカーボネート(PC)、ポリフェニレンオキシド(PPO)、ポリフェニレンエーテル(PPE)、ポリフェニレンスルフィド(PPS)、ポリスルホン(PS)、ポリアミド、ポリエステル、例えばポリエチレンテレフタレート(PET)およびポリブチレンテレフタレート(PBT)など、ポリエーテルケトン(PEEK)、液晶ポリマー、ポリウレタン、ポリエーテルイミド、エポキシ、並びにそれらの複合物が包含される。
ある実施態様において、無電解組成物は、プリント回路基板のスルーホールまたはビアの壁に銅を堆積させるために使用することができる。無電解組成物は、プリント回路基板の製造における水平プロセスと垂直プロセスとのどちらにおいても使用することができる。
ある実施態様において、スルーホールは、ドリル穿孔もしくは打ち抜き、または当技術分野において知られている任意の他の方法によりプリント回路基板に形成される。スルーホールの形成後、それらの基板は、清浄しかつ基板を脱脂するため、水および通常の有機溶液ですすぎ洗いされ、続いて、スルーホール壁のデスミア処理が行われる。典型的には、スルーホールのデスミア処理は溶媒膨潤剤の適用から始まる。
任意の通常の溶媒膨潤剤を用いてスルーホールのデスミア処理が行われ得る。溶媒膨潤剤には、これらに限定するものではないが、グリコールエーテルおよびそれらの関連する酢酸エーテルが包含される。通常の量のグリコールエーテルおよびそれらの関連する酢酸エーテルが使用され得る。そのような溶媒膨潤剤は当技術分野において広く知られている。商業的に入手可能な溶媒膨潤剤としては、これらに限定するものではないが、CIRCUPOSIT CONDITIONER(商標)3302、CIRCUPOSIT HOLE PREP(商標)3303およびCIRCUPOSIT HOLE PREP(商標)4120(マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができる)が挙げられる。
任意に、スルーホールは水ですすぎ洗いされる。その後、プロモーター(promoter)がスルーホールに適用される。通常のプロモーターを使用することができる。かかるプロモーターには、硫酸、クロム酸、アルカリ性過マンガン酸塩またはプラズマエッチングが包含される。典型的には、アルカリ性過マンガン酸塩がプロモーターとして使用される。商業的に入手可能なプロモーターの一例は、マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT PROMOTER(商標)4130である。
任意に、スルーホールは再び水ですすぎ洗いされる。その後、プロモーターによって残されたあらゆる残留物を中和するため、中和剤がスルーホールに適用される。通常の中和剤を使用することができる。典型的には、中和剤は、一以上のアミンを含有するアルカリ性水溶液、または3重量%の過酸化物および3重量%の硫酸の溶液である。任意に、スルーホールが水ですすぎ洗いされ、その後、それらのプリント回路基板が乾かされる。
デスミア処理の後、酸性またはアルカリ性のコンディショナーがそれらのスルーホールに適用されてもよい。通常のコンディショナーを使用することができる。かかるコンディショナーは、一以上のカチオン界面活性剤、非イオン性界面活性剤、錯化剤およびpH調節剤または緩衝剤を含んでいてよい。商業的に入手可能な酸性コンディショナーには、これらに限定するものではないが、マサチューセッツ州マールボロのローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CONDITIONER(商標)3320およびCIRCUPOSIT CONDITIONER(商標)3327が包含される。好適なアルカリ性コンディショナーには、これらに限定するものではないが、一以上の第四級アミンおよびポリアミンを含有するアルカリ性界面活性剤水溶液が包含される。商業的に入手可能なアルカリ性界面活性剤には、これらに限定するものではないが、ローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CONDITIONER(商標)231、3325、813および860が包含される。任意に、それらのスルーホールは、コンディショニング後、水ですすぎ洗いされる。
コンディショニングに続いて、スルーホールのマイクロエッチングが行われる。通常のマイクロエッチング組成物を使用することができる。マイクロエッチングは、堆積される無電解メッキおよび電気メッキのその後の付着力を高めるため、露出された銅に微細に粗面化された銅表面(例えば内層および表面エッチ)をもたらすべく設計されている。マイクロエッチには、これらに限定するものではないが、60g/L〜120g/Lの過硫酸ナトリウムまたはペルオキシ一硫酸カリウムもしくはナトリウムおよび硫酸(2%)混合物、または一般的な硫酸/過酸化水素が含まれる。商業的に入手可能なマイクロエッチング組成物の一例としては、ローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT MICROETCH(商標)3330が包含される。任意に、これらのスルーホールは水ですすぎ洗いされる。
その後、マイクロエッチされたスルーホールにプレディップが適用される。プレディップの例としては、2%〜5%の塩酸、または25g/L〜75g/Lの塩化ナトリウムの酸性溶液が挙げられる。任意に、これらのスルーホールは冷水ですすぎ洗いされる。
その後、これらのスルーホールに触媒が適用される。任意の通常の触媒を使用することができる。触媒の選択は、スルーホールの壁に堆積させるべき金属の種類に依存する。典型的には、触媒は貴金属および非貴金属のコロイドである。かかる触媒は当技術分野において広く知られており、多くのものが商業的に入手可能であり、または文献から調製することができる。非貴金属触媒の例としては、銅、アルミニウム、コバルト、ニッケル、スズおよび鉄が挙げられる。典型的には貴金属触媒が使用される。好適な貴金属コロイド触媒としては、例えば金、銀、白金、パラジウム、イリジウム、ロジウム、ルテニウムおよびオスミウムが挙げられる。より典型的には、銀、白金、金およびパラジウムの貴金属触媒が使用される。最も典型的には、銀およびパラジウムが使用される。商業的に入手可能な好適な触媒には、例えばローム・アンド・ハース・エレクトロニック・マテリアルズから入手することができるCIRCUPOSIT CATALYST(商標)3340およびCATAPOSIT(商標)44が包含される。場合によって、これらのスルーホールは、触媒の適用後、水ですすぎ洗いされてもよい。
その後、スルーホールの壁は、上記の如き無電解組成物を用いて銅でメッキされる。典型的には、銅がスルーホールの壁にメッキされる。また、メッキ時間およびメッキ温度についても、上記で説明されている。
スルーホールの壁に銅が堆積された後、これらのスルーホールは、任意に、水ですすぎ洗いされる。場合によっては、スルーホールの壁に堆積された金属に変色防止(anti−tarnish)組成物を適用してもよい。通常の変色防止組成物を使用することができる。変色防止組成物の例としては、ANTI TARNISH(商標)7130およびCUPRATEC(商標)3(ローム・アンド・ハース・エレクトロニック・マテリアルズから入手可能)が挙げられる。これらのスルーホールは、場合によって、30℃を超える温度の熱水洗浄液ですすがれ、その後、それらの基板を乾かしてもよい。
代替的な実施態様においては、スルーホールは、それらのスルーホールの銅の無電解堆積の準備のため、デスミア処理後、アルカリ性水酸化物溶液で処理されてもよい。スルーホールまたはビアをメッキするためのこの代替的な実施態様は、典型的には、高T基板のメッキの準備をするときに使用される。このアルカリ性水酸化物溶液はスルーホールと30秒間〜120秒間の時間接触させられ、または例えば60秒間〜90秒間などの時間接触させられる。スルーホールをデスミア処理する工程とスルーホールをメッキする工程との間で行われるアルカリ性水酸化物組成物の適用は、銅で壁を覆うことができるように、触媒によるスルーホール壁の良好な被覆率をもたらす。このアルカリ性水酸化物溶液は、水酸化ナトリウム、水酸化カリウムまたはそれらの混合物の水溶液である。これらの水酸化物は0.1g/L〜100g/Lの量で含められ、または例えば5g/L〜25g/Lなどの量で含められる。典型的には、これらの水酸化物は、その溶液中に15g/L〜20g/Lの量で含められる。典型的には、このアルカリ性水酸化物は水酸化ナトリウムである。アルカリ性水酸化物溶液が水酸化ナトリウムと水酸化カリウムとの混合物である場合には、水酸化ナトリウムおよび水酸化カリウムは4:1〜1:1の重量比であり、または例えば3:1〜2:1などの重量比である。
場合によっては、一以上の界面活性剤がこのアルカリ性水酸化物溶液に添加されてもよい。典型的には、それらの界面活性剤は非イオン性界面活性剤である。これらの界面活性剤は、表面張力を低減し、スルーホールの適切な濡れを可能にする。スルーホールに界面活性剤を適用した後の表面張力は25ダイン/cm〜50ダイン/cmの範囲であり、または例えば30ダイン/cm〜40ダイン/cmなどの範囲である。典型的には、界面活性剤は、押し広げを防止すべく、アルカリ性水酸化物溶液が小さなスルーホールを処理するために使用されるときに配合物に含められる。小さなスルーホールは、典型的には、直径が0.2mm〜0.5mmまでの範囲である。その一方、大きなスルーホールは、典型的には、直径が0.5mm〜1mmである。スルーホールのアスペクト比は1:1〜20:1であり得る。
界面活性剤は、アルカリ性水酸化物溶液中に0.05重量%〜5重量%の量で含められ、または例えば0.25重量%〜1重量%などの量で含められる。好適な非イオン性界面活性剤としては、例えば脂肪族アルコール、例えばアルコキシレートなどが挙げられる。そのような脂肪族アルコールは、エチレンオキシド、プロピレンオキシドまたはそれらの組合せを有し、分子内にポリオキシエチレン鎖またはポリオキシプロピレン鎖、即ち、反復する(−O−CH−CH−)基からなる鎖もしくは反復する(−O−CH−CH−CH)基からなる鎖、またはそれらの基の組合せからなる鎖を有する化合物を形成している。典型的には、かかるアルコールアルコキシレートは、7個〜15個の炭素の炭素鎖を有する直鎖状または分枝鎖状の4モル〜20モルのエトキシレート、典型的には5モル〜40モルのエトキシレート、より典型的には5モル〜15モルのエトキシレートを有するアルコールエトキシレートである。
かかるアルコールアルコキシレートの多くは商業的に入手可能である。商業的に入手可能なアルコールアルコキシレートの例としては、例えば直鎖状の第一級アルコールエトキシレート、例えばNEODOL 91−6、NEODOL 91−9(1モルの直鎖アルコールエトキシレート当たり平均で6モルから9モルまでのエチレンオキシドを有するC−C11アルコール)およびNEODOL 1−73B(1モルの直鎖第一級アルコールエトキシレート当たり7モルの平均ブレンドのエチレンオキシドを有するC11アルコール)などが挙げられる。どちらもテキサス州ヒューストンのShell Oil Companyから入手可能である。
スルーホールをアルカリ性水酸化物溶液で処理した後、それらは、酸性またはアルカリ性のコンディショナーで処理され得る。その後、スルーホールはマイクロエッチされ、プレディップが適用され、続いて、触媒が適用される。この後、スルーホールは銅で無電解的にメッキされる。
スルーホールに銅がメッキされた後、それらの基体は更なる処理を受けることができる。更なる処理には、光画像形成および基体への更なる金属の堆積、例えば電解的な堆積、例えば銅、銅合金、スズおよびスズ合金の電解的な堆積などによる通常の処理が包含され得る。
理論に拘束される訳ではないが、ヒダントインおよびヒダントイン誘導体は、アルカリ性pHでレドックス対を用いて基体上に銅の制御された自動触媒堆積を可能にする。これらのヒダントインとヒダントイン誘導体は、溶液中の銅イオンを安定化し、並びにレドックス対の存在下におけるアルカリ性pHで典型的に形成する銅沈殿物、すなわち銅酸化物および水酸化物の形成を防止する。かかる銅沈殿物の形成は、無電解銅組成物を安定性を低下させ、かつ基体上の銅の堆積に欠陥を生じさせる。銅沈殿物形成の抑制が、銅堆積が熱動力学的に好ましい高いpH範囲でのプロセス稼動を可能にする。
無電解銅組成物は、ホルムアルデヒドを含まず、環境に優しい。それらは保管中および無電解堆積中において安定である。それらは基体上に均一な銅層を堆積し、均一なサーモンピンクの外観を呈する。均一なサーモンピンクの外観は、典型的に銅堆積物が平滑で微細粒子であることを示唆する。微細粒子は、良好な機械的特性および被覆率のために望ましい。暗色の堆積物は、メタライゼーション産業に許容されない粗悪性、粗さおよびこぶ状の形態を示唆し得る。
以下の実施例は、本発明の範囲を限定することを意図したものではなく、本発明を更に例証することを意図したものである。
実施例1
3種類の水性無電解銅組成物は、グルコン酸鉄(II)および5,5−ジメチルヒダントインを含んでいた。無電解銅組成物は、ホルムアルデヒドを含まず、かつ環境に優しかった。それらは、それらの安定性とそれらの銅堆積物の品質について試験された。各水性無電解組成物は少なくとも7g/Lの塩化銅(CuCl2HO)、63g/Lのグルコン酸鉄(II)および64g/Lの5,5−ジメチルヒダントインを含んでいた。
無電解銅組成物2および3は錯化剤を含んでいた。組成物1は錯化剤を含んでいなかった。組成物2は36g/Lのエチレンジアミン四酢酸を含んでいた。組成物3は錯化剤N,N−ジカルボキシメチルL−グルタミン酸四ナトリウム塩を82ml/L含んでいた。
無電解銅堆積の間、これらの組成物の温度は55℃に維持され、pHは13.2に維持された。銅は、20分間、基体上に堆積された。使用した基体は、寸法が1.5インチ×1.5インチ(2.54cm/インチ)のアンクラッドFR4エポキシ/ガラス積層板であった。プリント回路基板はウィスコンシン州ラ・クロッセのIsola Laminate Systems Corp.から入手した。プロセスは以下の通りであった。
1.各積層板の表面を、5%の水性酸性コンディショナーCIRCUPOSIT CONDITIONER(商標)3327を含有する水性浴中に50℃で6分間浸漬した。
2.その後、各積層板を冷水で6分間すすぎ洗いした。
3.この後、各積層板に、室温で1分間、プレディップを適用した。このプレディップは、ローム・アンド・ハース・エレクトロニック・マテリアルズから入手したPre−dip(商標)3340であった。
4.その後、これらの積層板を、40℃において6分間、無電解銅メタライゼーションのための触媒で下塗りした。積層板は、それらの積層板を前述の触媒中に浸漬することにより下塗りされた。触媒は以下の配合を有していた。
Figure 2008101268
5.その後、これらの積層板を冷水で5分間すすぎ洗いした。
6.この後、各積層板を、銅金属堆積のための上記無電解銅メッキ組成物のうちの一つに浸漬した。銅金属の堆積は20分間にわたって行われた。銅メッキが行われている間、不溶性銅塩は沈殿しなかった。したがって、組成物は安定であった。
7.この後、銅メッキされた積層板を冷水で2分間すすぎ洗いした。
8.その後、銅メッキされた各積層板を脱イオン水で1分間すすぎ洗いした。
9.次いで、銅メッキされた各積層板を通常の対流式オーブンに入れ、105℃で20分間乾燥させた。
10.乾燥後、銅メッキされた各積層板を、20分間、すなわち積層板が室温に冷却されるまで、通常の実験用デシケーターに入れた。
11.乾燥の後、銅メッキされた各積層板を銅堆積の品質について観察した。無電解銅組成物2および3でメッキされた積層板は良好な概観を有していた。無電解銅組成物1は黒褐色の外観を有した(以下の表参照)。
12.その後、銅メッキされた各積層板の重量を通常の秤で計量し、記録した。
13.各積層板の重量を計量し、記録した後、積層板を3%硫酸/3%過酸化水素溶液に浸漬することにより、各積層板から銅堆積物がエッチングされた。
14.その後、各積層板を冷水で3分間すすぎ洗いした。
15.この後、各積層板を105℃のオーブンに20分間戻した。
16.次いで、これらの積層板を、20分間、すなわち積層板が室温になるまで、デシケーターに入れた。
17.その後、これらの積層板の重量を計量し、エッチング前とエッチング後との重量差を決定した。重量差はメッキ速度の決定に用いた。それぞれの積層板での重量差が以下の表に示されている。
Figure 2008101268
1つを除いてすべての銅堆積物はサーモンピンクの外観を呈し、これはそれらの銅堆積物が、微細粒子状で均一であり、かつ産業用途に好適であることを示唆していた。組成物1からの堆積物の黒褐色の外観は、銅堆積物の不動態化/酸化によりもたらされたものと思われる。
実施例2
2つの水性無電解銅組成物はグルコン酸鉄(II)とヒダントインを含んでいた。それらは、それらの安定性とそれらの銅堆積物の品質について試験された。各水性無電解組成物は、少なくとも7g/Lの塩化銅(CuCl2HO)、63g/Lのグルコン酸鉄(II)および50g/Lのヒダントインを含んでいた。また、組成物1は82ml/LのN,N−ジカルボキシメチルL−グルタミン酸四ナトリウム塩も含んでいた。無電解銅組成物はホルムアルデヒドを含まず、かつ環境に優しかった。
無電解銅堆積の過程において、組成物の温度は55℃、pHは13.2に維持された。銅は基板上に20分間堆積された。基体は、寸法1.5インチ×1.5インチ(2.54cm/インチ)の2つのアンクラッドFR4エポキシ/ガラス積層板であった。これらの積層板は、ウィスコンシン州ラ・クロッセのIsola Laminate System Corp.から入手した。プロセスは上述の実施例1で説明されているのと同じであった。試験結果は以下のとおりであった。
Figure 2008101268
組成物1は銅堆積の過程において安定であり、微細粒子状の均一な銅層をFR4エポキシガラス積層板上に堆積した。したがって、組成物1は積層板上に産業的に許容可能な銅層を堆積した。
組成物2は無電解組成物中の赤色沈殿によって明らかなように不安定であった。さらに、銅メッキは観察されなかった。

Claims (7)

  1. 一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む組成物。
  2. ヒダントイン誘導体が、1−メチルヒダントイン、1,3−ジメチルヒダントインおよび5,5−ジメチルヒダントインから選択される、請求項1記載の組成物。
  3. レドックス対が、元素周期律表のIVA族、IVB族、VB族、VIB族、VIIB族、VIII族およびIB族から選択される金属イオンを含む、請求項1記載の組成物。
  4. 金属イオンに結び付けられるアニオンが、有機および無機イオンから選択される、請求項3記載の組成物。
  5. アニオンが、ハライド、ニトレート、スルフェート、ホルメート、グルコネート、アセテート、ラクテート、オキサレート、タータレート、アスコルベート、およびアセチルアセトネートから選択される、請求項4記載の組成物。
  6. (a)基体を提供し、
    (b)一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む無電解銅組成物を用いて、前記基体上に銅を無電解的に堆積すること、を含む方法。
  7. (a)複数のスルーホールを含むプリント配線板を提供し、
    (b)スルーホールをデスミア処理し、
    (c)一以上の銅イオン源と、ヒダントインおよびヒダントイン誘導体から選択される一以上のキレート化剤と、一以上のレドックス対とを含む無電解銅組成物を用いて、スルーホールの壁上に銅を堆積すること、を含む方法。
JP2007178544A 2006-07-07 2007-07-06 無電解銅およびレドックス対 Active JP5507800B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81925006P 2006-07-07 2006-07-07
US60/819250 2006-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013103977A Division JP5671095B2 (ja) 2006-07-07 2013-05-16 基体上に銅を無電解的に堆積する方法

Publications (2)

Publication Number Publication Date
JP2008101268A true JP2008101268A (ja) 2008-05-01
JP5507800B2 JP5507800B2 (ja) 2014-05-28

Family

ID=38596130

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007178544A Active JP5507800B2 (ja) 2006-07-07 2007-07-06 無電解銅およびレドックス対
JP2013103977A Expired - Fee Related JP5671095B2 (ja) 2006-07-07 2013-05-16 基体上に銅を無電解的に堆積する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013103977A Expired - Fee Related JP5671095B2 (ja) 2006-07-07 2013-05-16 基体上に銅を無電解的に堆積する方法

Country Status (6)

Country Link
US (1) US7527681B2 (ja)
EP (1) EP1876261B1 (ja)
JP (2) JP5507800B2 (ja)
KR (1) KR101410676B1 (ja)
CN (1) CN101104927B (ja)
TW (1) TWI348499B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185113A (ja) * 2009-02-12 2010-08-26 Kansai Univ 無電解銅めっき液、無電解銅めっき方法、及び埋め込み配線の形成方法
JP2011528406A (ja) * 2008-07-15 2011-11-17 エントン インコーポレイテッド 銅層のガルバニック堆積のための無シアン化物電解質組成物
WO2013073277A1 (ja) * 2011-11-14 2013-05-23 石原薬品株式会社 無電解銅メッキ用前処理液、及び無電解銅メッキ方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347373B (en) * 2006-07-07 2011-08-21 Rohm & Haas Elect Mat Formaldehyde free electroless copper compositions
TWI348499B (en) * 2006-07-07 2011-09-11 Rohm & Haas Elect Mat Electroless copper and redox couples
TWI347982B (en) * 2006-07-07 2011-09-01 Rohm & Haas Elect Mat Improved electroless copper compositions
EP1876262A1 (en) * 2006-07-07 2008-01-09 Rohm and Haas Electronic Materials, L.L.C. Environmentally friendly electroless copper compositions
EP2449148B1 (en) * 2009-07-03 2019-01-02 MacDermid Enthone Inc. Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
EP2551375A1 (en) * 2011-07-26 2013-01-30 Atotech Deutschland GmbH Electroless nickel plating bath composition
US9611550B2 (en) 2012-12-26 2017-04-04 Rohm And Haas Electronic Materials Llc Formaldehyde free electroless copper plating compositions and methods
US9364822B2 (en) 2013-06-28 2016-06-14 Rohm And Haas Electronic Materials Llc Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds
CN104711648B (zh) * 2013-12-17 2019-08-16 Ykk株式会社 闪镀铜镀敷液
US9869026B2 (en) * 2014-07-15 2018-01-16 Rohm And Haas Electronic Materials Llc Electroless copper plating compositions
EP3184667B1 (en) * 2015-12-23 2019-10-30 Uniwersytet Warszawski Means for carrying out electroless metal deposition with atomic sub-monolayer precision
CN107385422A (zh) * 2017-09-22 2017-11-24 河南省中原华工激光工程有限公司 一种环保型气缸套镀铜液及气缸套表面处理方法
CN108754555B (zh) * 2018-08-29 2020-04-28 广东天承科技有限公司 一种电镀液及其电镀方法
FR3119172A1 (fr) * 2021-01-28 2022-07-29 Swissto12 Sa Composition stable pour dépôt catalytique d’argent

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119726A (ja) * 1974-02-22 1975-09-19
JPS50119727A (ja) * 1974-02-22 1975-09-19
JPH05148662A (ja) * 1991-11-28 1993-06-15 Hitachi Chem Co Ltd 無電解銅めつき液
WO1998045505A1 (fr) * 1997-04-07 1998-10-15 Okuno Chemical Industries Co., Ltd. Procede d'electrodeposition de produit moule en plastique, non conducteur
JPH11510219A (ja) * 1995-12-19 1999-09-07 エフエスアイ インターナショナル インコーポレイテッド スプレー・プロセッサを用いる金属膜の無電解めっき
JP2001152353A (ja) * 1999-11-26 2001-06-05 Okuno Chem Ind Co Ltd 非導電性プラスチックへの電気めっき方法
JP2001214278A (ja) * 1999-11-22 2001-08-07 Learonal Japan Inc ダイレクトプレーティング用アクセレレータ浴液およびダイレクトプレーティング方法
JP2001220691A (ja) * 2000-02-03 2001-08-14 Okuno Chem Ind Co Ltd 導電性微粒子
JP2001262372A (ja) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザー孔あけに適した両面処理銅箔。
JP2002348673A (ja) * 2001-05-24 2002-12-04 Learonal Japan Inc ホルムアルデヒドを使用しない無電解銅めっき方法および該方法に使用される無電解銅めっき液
JP2003064480A (ja) * 2001-08-21 2003-03-05 Learonal Japan Inc 銅−樹脂複合材料の形成方法
EP1411147A1 (en) * 2002-10-18 2004-04-21 Shipley Co. L.L.C. Formaldehyde-free electroless copper plating process and solution for use in the process
JP2005294700A (ja) * 2004-04-02 2005-10-20 Tokai Rubber Ind Ltd フレキシブルプリント基板の製法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002786A (en) 1967-10-16 1977-01-11 Matsushita Electric Industrial Co., Ltd. Method for electroless copper plating
CA968908A (en) 1971-07-29 1975-06-10 Photocircuits Division Of Kollmorgen Corporation Sensitized substrates for chemical metallization
US4009087A (en) 1974-11-21 1977-02-22 M&T Chemicals Inc. Electrodeposition of copper
JPS5627594B2 (ja) 1975-03-14 1981-06-25
US4192764A (en) 1977-11-03 1980-03-11 Western Electric Company, Inc. Stabilizing composition for a metal deposition process
US4133908A (en) 1977-11-03 1979-01-09 Western Electric Company, Inc. Method for depositing a metal on a surface
US4211564A (en) 1978-05-09 1980-07-08 Hitachi, Ltd. Chemical copper plating solution
US4303443A (en) 1979-06-15 1981-12-01 Hitachi, Ltd. Electroless copper plating solution
JPS56156749A (en) 1980-05-08 1981-12-03 Toshiba Corp Chemical copper plating solution
US4548644A (en) 1982-09-28 1985-10-22 Hitachi Chemical Company, Ltd. Electroless copper deposition solution
EP0132594B1 (en) 1983-07-25 1988-09-07 Hitachi, Ltd. Electroless copper plating solution
JPS6033358A (ja) 1983-08-04 1985-02-20 Hitachi Chem Co Ltd 無電解銅めっき液
DE3466118D1 (en) 1983-11-30 1987-10-15 Nissan Chemical Ind Ltd Electrically conductive composition
US4617205A (en) * 1984-12-21 1986-10-14 Omi International Corporation Formaldehyde-free autocatalytic electroless copper plating
US4695505A (en) 1985-10-25 1987-09-22 Shipley Company Inc. Ductile electroless copper
JPH079069B2 (ja) 1986-03-12 1995-02-01 ブラザー工業株式会社 機械的性質の優れた銅被膜の形成方法
JPH0723539B2 (ja) 1986-11-06 1995-03-15 日本電装株式会社 化学銅めっき液及びそれを用いた銅めっき皮膜の形成方法
JP2595319B2 (ja) 1988-07-20 1997-04-02 日本電装株式会社 化学銅めっき液及びそれを用いた銅めっき皮膜の形成方法
JP2794741B2 (ja) 1989-01-13 1998-09-10 日立化成工業株式会社 無電解銅めっき液
US5021135A (en) 1989-10-17 1991-06-04 Ppg Industries, Inc. Method for treatment of electrodeposition bath
US5965211A (en) 1989-12-29 1999-10-12 Nippondenso Co., Ltd. Electroless copper plating solution and process for formation of copper film
US5358992A (en) 1993-02-26 1994-10-25 Quantum Materials, Inc. Die-attach composition comprising polycyanate ester monomer
US5569443A (en) * 1994-11-18 1996-10-29 The Dow Chemical Company Method for removing hydrogen sulfide from a gas using polyamino disuccinic acid
US5419926A (en) 1993-11-22 1995-05-30 Lilly London, Inc. Ammonia-free deposition of copper by disproportionation
US5425873A (en) 1994-04-11 1995-06-20 Shipley Company Llc Electroplating process
US5620961A (en) 1994-04-25 1997-04-15 Markovic; Nenad S. Fructose ester-β-cyclodextrin complexes and processes for making and using same
JPH08104993A (ja) * 1994-10-04 1996-04-23 Electroplating Eng Of Japan Co 銀めっき浴及びその銀めっき方法
JP3547517B2 (ja) 1995-03-15 2004-07-28 三洋化成工業株式会社 吸水性樹脂の製造法
JPH09316649A (ja) 1996-05-27 1997-12-09 Matsushita Electric Ind Co Ltd 無電解めっき液
JPH1072677A (ja) 1996-08-29 1998-03-17 Ibiden Co Ltd 一次めっき用無電解めっき液
US5897692A (en) 1996-09-10 1999-04-27 Denso Corporation Electroless plating solution
US5750018A (en) * 1997-03-18 1998-05-12 Learonal, Inc. Cyanide-free monovalent copper electroplating solutions
JP3799136B2 (ja) 1997-06-11 2006-07-19 日本合成化学工業株式会社 分散安定剤
JP3816241B2 (ja) 1998-07-14 2006-08-30 株式会社大和化成研究所 金属を還元析出させるための水溶液
KR20010072835A (ko) 1998-08-21 2001-07-31 추후제출 전기 회로 및 구성요소의 프린팅
JP2001148561A (ja) 1999-11-19 2001-05-29 Kyocera Corp 配線基板の製造方法
US20020152955A1 (en) 1999-12-30 2002-10-24 Yezdi Dordi Apparatus and method for depositing an electroless solution
JP3444276B2 (ja) 2000-06-19 2003-09-08 株式会社村田製作所 無電解銅めっき浴、無電解銅めっき方法および電子部品
US6416812B1 (en) 2000-06-29 2002-07-09 International Business Machines Corporation Method for depositing copper onto a barrier layer
JP4482744B2 (ja) 2001-02-23 2010-06-16 株式会社日立製作所 無電解銅めっき液、無電解銅めっき方法、配線板の製造方法
JP2002348680A (ja) 2001-05-22 2002-12-04 Sharp Corp 金属膜パターンおよびその製造方法
US20040253450A1 (en) * 2001-05-24 2004-12-16 Shipley Company, L.L.C. Formaldehyde-free electroless copper plating process and solution for use in the process
US6664122B1 (en) 2001-10-19 2003-12-16 Novellus Systems, Inc. Electroless copper deposition method for preparing copper seed layers
JP2003147541A (ja) 2001-11-15 2003-05-21 Hitachi Ltd 無電解銅めっき液、無電解銅めっき用補給液及び配線板の製造方法
CA2472069C (en) * 2002-01-04 2010-03-09 University Of Dayton Non-toxic corrosion protection pigments based on cobalt
US6926922B2 (en) * 2002-04-09 2005-08-09 Shipley Company, L.L.C. PWB manufacture
CN1867697B (zh) 2003-10-17 2010-06-16 日矿金属株式会社 无电镀铜溶液和无电镀铜方法
WO2005038086A1 (ja) 2003-10-17 2005-04-28 Nikko Materials Co., Ltd. 無電解銅めっき液
JPWO2005038088A1 (ja) 2003-10-20 2006-12-28 関西ティー・エル・オー株式会社 無電解銅めっき液及びそれを用いた配線基板の製造方法
TWI347982B (en) * 2006-07-07 2011-09-01 Rohm & Haas Elect Mat Improved electroless copper compositions
TWI347373B (en) * 2006-07-07 2011-08-21 Rohm & Haas Elect Mat Formaldehyde free electroless copper compositions
TWI348499B (en) * 2006-07-07 2011-09-11 Rohm & Haas Elect Mat Electroless copper and redox couples
EP1876262A1 (en) * 2006-07-07 2008-01-09 Rohm and Haas Electronic Materials, L.L.C. Environmentally friendly electroless copper compositions

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119726A (ja) * 1974-02-22 1975-09-19
JPS50119727A (ja) * 1974-02-22 1975-09-19
JPH05148662A (ja) * 1991-11-28 1993-06-15 Hitachi Chem Co Ltd 無電解銅めつき液
JPH11510219A (ja) * 1995-12-19 1999-09-07 エフエスアイ インターナショナル インコーポレイテッド スプレー・プロセッサを用いる金属膜の無電解めっき
WO1998045505A1 (fr) * 1997-04-07 1998-10-15 Okuno Chemical Industries Co., Ltd. Procede d'electrodeposition de produit moule en plastique, non conducteur
JP2001214278A (ja) * 1999-11-22 2001-08-07 Learonal Japan Inc ダイレクトプレーティング用アクセレレータ浴液およびダイレクトプレーティング方法
JP2001152353A (ja) * 1999-11-26 2001-06-05 Okuno Chem Ind Co Ltd 非導電性プラスチックへの電気めっき方法
JP2001220691A (ja) * 2000-02-03 2001-08-14 Okuno Chem Ind Co Ltd 導電性微粒子
JP2001262372A (ja) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc 炭酸ガスレーザー孔あけに適した両面処理銅箔。
JP2002348673A (ja) * 2001-05-24 2002-12-04 Learonal Japan Inc ホルムアルデヒドを使用しない無電解銅めっき方法および該方法に使用される無電解銅めっき液
JP2003064480A (ja) * 2001-08-21 2003-03-05 Learonal Japan Inc 銅−樹脂複合材料の形成方法
EP1411147A1 (en) * 2002-10-18 2004-04-21 Shipley Co. L.L.C. Formaldehyde-free electroless copper plating process and solution for use in the process
JP2005294700A (ja) * 2004-04-02 2005-10-20 Tokai Rubber Ind Ltd フレキシブルプリント基板の製法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528406A (ja) * 2008-07-15 2011-11-17 エントン インコーポレイテッド 銅層のガルバニック堆積のための無シアン化物電解質組成物
JP2010185113A (ja) * 2009-02-12 2010-08-26 Kansai Univ 無電解銅めっき液、無電解銅めっき方法、及び埋め込み配線の形成方法
WO2013073277A1 (ja) * 2011-11-14 2013-05-23 石原薬品株式会社 無電解銅メッキ用前処理液、及び無電解銅メッキ方法

Also Published As

Publication number Publication date
CN101104927A (zh) 2008-01-16
US7527681B2 (en) 2009-05-05
KR101410676B1 (ko) 2014-06-24
JP5671095B2 (ja) 2015-02-18
JP5507800B2 (ja) 2014-05-28
EP1876261B1 (en) 2012-08-22
TWI348499B (en) 2011-09-11
KR20080005126A (ko) 2008-01-10
EP1876261A1 (en) 2008-01-09
JP2013163867A (ja) 2013-08-22
CN101104927B (zh) 2010-12-29
US20080038449A1 (en) 2008-02-14
TW200813253A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
JP5671095B2 (ja) 基体上に銅を無電解的に堆積する方法
JP5655099B2 (ja) ホルムアルデヒドを含有しない無電解銅組成物、および当該無電解銅組成物を用いて銅を無電解的にメッキする方法
JP5317438B2 (ja) 無電解的に銅を堆積する方法
JP6124955B2 (ja) 無電解銅めっき組成物
JP2008169465A (ja) 環境に優しい無電解銅組成物
KR101789143B1 (ko) 도금 촉매 및 방법
JP6307266B2 (ja) ホルムアルデヒドを含まない無電解銅めっき組成物および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5507800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250