JP2007517067A - スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤 - Google Patents

スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤 Download PDF

Info

Publication number
JP2007517067A
JP2007517067A JP2006547613A JP2006547613A JP2007517067A JP 2007517067 A JP2007517067 A JP 2007517067A JP 2006547613 A JP2006547613 A JP 2006547613A JP 2006547613 A JP2006547613 A JP 2006547613A JP 2007517067 A JP2007517067 A JP 2007517067A
Authority
JP
Japan
Prior art keywords
formulation
sae
corticosteroid
solution
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006547613A
Other languages
English (en)
Other versions
JP2007517067A5 (ja
Inventor
ジェイムズ・ディー・ピプキン
ルーパート・オー・ツィマーラー
ダイアン・オー・トムプソン
ジェロルド・エル・モーシャー
Original Assignee
サイデックス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイデックス・インコーポレイテッド filed Critical サイデックス・インコーポレイテッド
Publication of JP2007517067A publication Critical patent/JP2007517067A/ja
Publication of JP2007517067A5 publication Critical patent/JP2007517067A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/468-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, cocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Nanotechnology (AREA)
  • Otolaryngology (AREA)
  • Emergency Medicine (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

SAE−CDおよびコルチコステロイドを含む吸入可能な製剤が提供される。製剤は、公知のネブライザーにより被験者に噴霧投与するように適合される。製剤は、キットに含めることができる。製剤は、水溶液として投与される。しかしながら、乾燥粉末、すぐに使用できる溶液、または濃縮組成物として貯蔵することができる。製剤は、コルチコステロイドの吸入投与を行う改善された噴霧システムで使用される。製剤内に存在するSAE−CDは、ブデソニドの化学的安定性を著しく高める。製剤を吸入投与する方法が提供される。製剤は、従来の経鼻送達装置により投与することもできる。
【選択図】図8

Description

本発明は、スルホアルキルエーテルシクロデキストリン(sulfoalkyl ether cyclodextrin)およびブデソニドなどのコルチコステロイドの吸入投与の方法、およびその吸入投与のための製剤に関する。本発明は、さらに、肺の疾病および疾患を治療する方法にも関する。
吸入による薬剤の送達により、呼吸管のさまざまな部位、例えば、咽喉、気管、気管支、および肺胞への薬剤の沈着が可能になる。一般に、粒径が小さいほど、粒子は空中に浮遊している時間が長くなり、薬剤は呼吸管の奥深くまで到達できる。コルチコステロイドは、ネブライザー、定量式吸入器、または乾燥粉末式吸入器を使用して、吸入により送達される。肺への導入の他の方法に比べて勝るネブライザーの主な利点は、患者の協力を必要とせず、高用量の薬物を容易に送達できる点である。しかし、ネブライザーに関する主な問題点は、コストが高いこと、携帯性に劣ること、予め薬物を調製する必要があり不便であること、治療を行うのに長い時間を要することである。コルチコステロイドなどの薬剤の噴霧投与を改善する方法が望まれる。
ブデソニド(ブチルアルデヒドを付加した(R,S)−11β,16α,17,21−テトラヒドロキシプレグナ−1,4−ジエン−3,20−ジオン環状16,17−アセタール、
25346、Mw:430.5)はよく知られている。これは、2つの異性体(22Rおよび22S)の混合物として市販されている。ブデソニドは、強力な糖質コルチコイド作用を示す抗炎症性コルチコステロイドである。ブデソニドの投与は、小児の喘息の維持治療のため、また予防治療として指示される。
ブデソニドの市販製剤は、AstraZeneca LP(デラウェア州ウィルミントン)により、ENTOCORT(商標) EC、PULMICORT RESPULES(登録商標)、Rhinocort Aqua(登録商標)、Rhinocort(登録商標)Nasal Inhaler、およびPulmicort Turbuhaler(登録商標)という商標で、またそのジェネリック名で販売されている。微粉末化ブデソニドの滅菌水性懸濁液である、PULMICORT RESPULES(登録商標)は、ネブライザー、特に公称投入量に含まれる薬剤質量2から18%を送達する圧縮空気駆動ジェット式ネブライザーで吸入投与される。RHINOCORT(登録商標)NASAL INHALER(商標)は、推進剤の混合物中に微粉末化ブデソニドの懸濁液を含む加圧式定量噴霧式エアロゾルユニットである。RHINOCORT(登録商標)AQUA(商標)は、水性媒体に微粉末化ブデソニドを混ぜた懸濁液を含む無香定量手動ポンプ式噴霧製剤である。この懸濁液は、超音波ネブライザーで投与すべきではない。
噴霧用薬液の所望の特性は、一般に、1)低粘度、2)無菌媒体、3)低表面張力、4)ネブライザーのメカニズムに対する安定性、5)約4〜10の中程度のpH、6)MMADが5μm未満、または好ましくは3μm未満である液滴を形成する能力、7)刺激性の保存剤および安定剤を含まないこと、8)好適な張度を含む。一方で、懸濁液は、いくつかの利点を有するが、他方で、溶液は、他のいくつかの利点を有する。
Smaldoneら(J.Aerosol Med.(1998年)、11、113〜125頁)は、ブデソニド懸濁液の吸入質量および粒子分布のインビトロ測定に関する研究結果を開示している。Smaldoneらは、ブデソニドのネブライザー投入量の2%〜18%が、懸濁液から送達された、すなわち、ブデソニド送達は不完全であり、その結果、薬剤の著しい無駄が生じたと結論付けている。13の最も効率的なシステムでは、懸濁液は、下気道送達に対し十分うまく噴霧できる。
他の研究では、さらに、ネブライザー毎に噴霧効率がかなりばらつくことが実証されている。Barryら(J.Allergy Clin.Immunol.(1998年)、320〜321頁)は、霧状ブデソニドで患者を治療する際に、このようなばらつきを考慮しなければならないと主張している。Bergら(J.Aerosol Sci.(1998年)、19(7)、1101〜1104頁)は、さらに、ネブライザー毎にPULMICORT(商標) 懸濁液の噴霧効率が非常にばらつくことを報告している。さらに、噴霧される液滴の質量平均空気動力学的直径(MMAD)は、ネブライザー毎に非常にばらつく。一般に、懸濁液は、溶液に比べて噴霧効率があまりよくない(O’Riordan(Respiratory Care、(2002)、1305〜1313頁)。吸入コルチコステロイドは、喘息の治療で使用され、作用部位、すなわち肺に直接送達されるため著しく有益である。吸入コルチコステロイドの目標は、肺の局部療法で即効性薬剤作用を利用できるようにすることである。吸入コルチコステロイドは、肺からよく吸収される。実際、肺の受容体部位で使用できる薬剤はすべて、全身的に吸収されると仮定できる。しかし、現行の方法および製剤を使用するのでは、吸入コルチコステロイド投薬量の大部分が嚥下され、経口吸収に利用されることになり、望ましくない全身的影響が生じることがよく知られている。吸入コルチコステロイドでは、肺は標的器官であるため、高い肺利用率(high pulmonary availability)は、経口による高い生物学的利用率(high oral bioavailability)よりも重要である。肺利用率の高い製品は、肺に陽性効果をもたらす可能性が高い。理想的な吸入コルチコステロイド製剤であれば、経口送達を最小限に抑え、全身への悪影響が生じる可能性を低減する。
肺に送達されるコルチコステロイド投薬量の大半は、全身的に吸収され、利用可能である。経口送達される吸入コルチコステロイド投薬量の部分について、利用率は、胃腸管からの吸収および肝臓における初回通過代謝の程度に左右される。コルチコステロイド薬剤送達投薬量のこの経口成分は薬効をもたらさないが、全身的副作用を高める可能性があるため、吸入コルチコステロイドの経口利用率を比較的低く抑えることが望ましい。
粒径と処方は両方とも、吸入コルチコステロイドの効能に影響を及ぼす。薬剤の処方は、その薬剤を肺に送達することに対して、したがってその効能に対して重大な影響を及ぼす。肺に薬剤を送達する上で最も重要なのは、エアロゾルビヒクルと送達される粒子のサイズである。さらに、肺への沈着度が低いことから、口腔咽頭への沈着度が高いことが示唆される。採用される特定の処方により、いくつかのコルチコステロイドは、口および喉に沈着する可能性が比較的高く、局所的悪影響を引き起こす可能性がある。
受容体分布が、気管支拡張薬の効能の主要な決定因子であるが、粒径は、吸入コルチコステロイド(corticodsteroid)の効能を決定する際により重要であるように見える。最小気道の内周は、2ミクロン(mcm)以下である。そのため、平均空気動力学的直径が1mcmである粒子を使用する吸入器は、平均直径が3.5から4mcm
である粒子を使用する吸入器よりも大きな呼吸性画分を持つべきである。閉塞性肺疾患の患者の場合、すべての粒子は、2から3mcm以下であるのが理想的である。小さな(5mcm未満の)粒子は、肺のより小さな気道内に吸入される可能性が高く、そのため、効能が改善される。対照的に、5mcmよりも大きな粒子は、口および喉に沈着する可能性があり、両方とも、肺に到達する粒子の割合を減らし、口腔カンジダ症および嗄声(発声困難)などの局所的悪影響を引き起こす可能性がある。質量平均空気動力学的直径(MMAD)が1mcmに近い粒子は、3.5mcm以上の直径を有する粒子よりも用量当たり
の呼吸性画分が大きいと考えられる。
ブデソニド懸濁液の噴霧の他の欠点は、MMADが約3μm未満と非常に小さな液滴を発生させる必要がある点である。噴霧される液滴は非常に小さいため、微粉末化されたブデソニドは、なおいっそう小さくなければならないか、または0.5〜2.0μmの範囲内になければならず、粒子は、狭い粒径分布を持つべきである。このような粒子の生成は、困難である。
そうであっても、1ミクロン未満の粒子を使用することにより超音波ネブライザーによるブデソニド懸濁液の噴霧を改善する努力が行われている(Kellerら、Respiratory Drug Delivery VIII(2002年)、197〜206頁)。コルチコステロイドのナノ粒子(0.1〜1.0μm)の懸濁液を使用して、PULMICORT(商標)懸濁液の場合のようなより粗い懸濁液と比較して呼吸性粒子の割合を増やすことが可能である。PULMICORT(商標)懸濁液(懸濁液中約4.4μm
のブデソニド粒径)に対する改善は観察されなかった。さらに、ナノ粒子懸濁液の使用に関して、小さな粒子(0.05μm未満)は被験者にアレルギー性反応を誘発する可能性
があるという点で問題が存在する。Sheffield Pharmaceuticals,Inc.(ミズーリ州セントルイス、Kraftら「The Pharmacoki
netics of Nebulized Nanocrystal Budesonide Suspension in Healthy Volunteers」J.Clin.Pharmacol.、(2004年)、44:67〜72頁)は、液体媒体中に分散されたブデソニドのナノ粒子を含む懸濁液ベースの製剤である、UDB(単位用量ブデソニド)の調製および評価を開示している。この製品は、MAP Pharmaceuticals,Inc.(カリフォルニア州マウンテンビュー)により開発されている。
溶解薬剤とは反対に薬剤粒子の吸入は、不利であることが知られている。Brainら(Bronchial Asthma、2nd Ed.)(Ed.E.B.Weisら、Little Brown & Co.(1985年)、594〜603頁)は、肺気道および鼻腔を覆う粘液の層に沈着する低溶解性粒子は、線毛により咽頭の方へ送られることを報告している。このような粒子は、上気道内に沈着したより大きな薬剤粒子を含む。鼻腔および肺に由来する粘液、細胞、および残屑は、咽頭に集まり、唾液と混ざり、嚥下された後、胃腸管に入る。このメカニズムにより、粒子は、数分から数時間のハーフタイムで肺から取り出されることが報告されている。したがって、ブデソニドなどのゆっくり溶解する薬剤を可溶化するにはほとんど時間がない。対照的に、肺胞などの非線毛性区画内に沈着した粒子は、滞留時間がかなり長い。深い肺沈着のためのブデソニドの非常に小さな粒子を生成することは困難であるため、吸入懸濁液の大半は、上から中までの気道に見られる可能性が高い。しかし、溶液から小さな液滴を生成するのは、固形物の懸濁液から小さな液滴を生成するよりもかなり簡単である。これらの理由から、ブデソニド含有溶液の噴霧は、懸濁液の噴霧よりも好ましい。
O’Riordan(Respiratory Care(2002年11月)、47(11)、1305〜1313頁)では、溶液または懸濁液のいずれかの噴霧により薬剤を送達できるが、一般に、溶液の噴霧は、懸濁液の噴霧よりも好ましいと主張している。O’Riordanは、超音波ネブライザーは、懸濁液では使用すべきではなく、溶液でのみ使用すべきであると主張している。
O’Callaghan(Thorax、(1990年)、45、109〜111頁)、Storrら(Arch.Dis.Child(1986年)、61、270〜273頁)、およびWebbら(Arch.Dis.Child(1986年)、61、1108〜1110頁)は、コルチコステロイド(特に、ベクロメタゾン)溶液の噴霧は、懸濁液の噴霧よりも好ましい場合があるが、それは、後者が、噴霧粒子が大きすぎて治療有効量が肺に入りきらない場合に不効率であるためであることを示唆している。しかし、フルニソリド溶液対懸濁液の噴霧に関してO’Callaghan(J.Pharm.Pharmacol.(2002年)、54、565〜569頁)によって提示されているデータは、両者とも同様の効能を示していた。したがって、溶液の噴霧は、懸濁液の噴霧よりも好ましいということは一般化できない。
したがって、噴霧による投与用のコルチコステロイドを含む非懸濁液製剤が必要であることは広く認識されている。しかし、PULMICORT(登録商標)懸濁液単位用量製
剤は、吸入療法の分野では広く利用されて、そして受け入れられている。PULMICORT(登録商標)懸濁液単位用量製剤、またはより一般的には、コルチコステロイドを含
む懸濁液単位用量製剤の投与を改善する方法を提供することは、この治療分野には非常に有益であろう。
しかし、ネブライザー療法で現在重視しているのは、より高い濃度の薬剤を投与し、溶液、可能ならば好ましくは非水性もしくはアルコール性もしくは非水性アルコール性の溶液または懸濁液よりもむしろ主に水溶液を使用し、治療時間を最短にし、噴霧と吸入との同期をとり、薬剤のより深い肺沈着のため、より小さな液滴を投与することである。
噴霧用のコルチコステロイド含有溶液は公知である。噴霧用の溶液を調製する方法は多数あり、さまざまである。これらは、一般に、共溶媒、界面活性剤、または緩衝液を添加することにより製造されている。しかし、エタノール、ポリエチレングリコール、およびプロピレングリコールなどの共溶媒は、気道の炎症のため吸入投与される場合に低量でしか許容されない。吸入製品におけるこれらの共溶媒の許容レベルには限界がある。典型的には、共溶媒は、噴霧組成物の約35質量%未満を占めるが、これは共溶媒の全用量であると共に、これらの限界を決定する濃度でもある。これらの限界は、これらの溶媒の肺組織の局部炎症を引き起こす、流体を肺に導き入れる高浸透圧溶液を形成する、および/または患者を酩酊させる傾向により定められる。さらに、最も有望な疎水性治療薬は、これらの共溶媒混合液に必ずしも十分に溶解するわけではない。
Saidiら(米国特許第6,241,969号)は、経鼻および経肺送達用のコルチコステロイド含有溶液の調製を開示している。溶解されたコルチコステロイドは、貯蔵用として濃縮された本質的に非水性の形態で、または投与用として希釈された水性ベース形態で提供される。
Lintzら(AAPS Annual Meeting and Exposition、2004年)は、ブデソニド、水、クエン酸塩、塩化ナトリウム、およびアルコール、プロピレングリコール、ならびに/またはTween、Pluronic、もしくはHLB値が10から20までのリン脂質などの界面活性剤を含む液体製剤の調製を開示している。
PULMICORT(商標)懸濁液を投与する代替えアプローチは、リポソーム製剤の投与である。Waldrepら(J.Aerosol Med.(1994年)、7(2)、135〜145頁)は、ブデソニドおよびホスファチジルコリン誘導体のリポソーム製剤を調製することに成功したことを報告した。
上記のいずれの製剤も、コルチコステロイドを含む懸濁液ベースの単位用量製剤の投与を改善する方法を提供してはいない。むしろ、当該技術分野の一般的な焦点は、液体製剤を最初に調製することによって懸濁液の製剤化を完全に回避することにあり、この液体製剤は次に複数の単位用量に分割され、この単位用量は販売用にパッケージングされ、使用のために販売される。
シクロデキストリンおよびその誘導体による薬剤の可溶化はよく知られている。シクロデキストリンは、デンプンから誘導される環状糖質である。未修飾のシクロデキストリンは、円柱構造に結合しているグルコピラノース単位の数の点で異なる。親シクロデキストリンは、6、7、または8個のグルコピラノース単位を含み、これらは、それぞれα−、β−、およびγ−シクロデキストリンと呼ばれる。それぞれのシクロデキストリンサブユニットは、2−位および3−位に第二ヒドロキシル基を、6−位に第一ヒドロキシル基を持つ。シクロデキストリンは、親水性の外面と疎水性の内部空洞を持つ中空の円錐台として描くことができる。水溶液では、これらの疎水性空洞は、疎水性有機化合物の構造の全部または一部をそれらの空洞に納めることができるその疎水性有機化合物のおさまり場所となる。この方法は、包接錯体化として知られ、錯体化された薬剤に対する見かけの水溶解度および安定度を高めることができる。錯体は、疎水性相互作用により安定化され、共有結合の形成を伴わない。
この動的で可逆的な平衡過程は、式1および2により記述することができ、錯体化された形態の量は、薬剤およびシクロデキストリンの濃度、ならびに平衡または結合定数Kbの関数である。シクロデキストリン製剤が、血流への注入により投与されると、錯体は、希釈の効果、および血液および組織成分への薬剤の非特異的結合により急速に解離する。
Figure 2007517067
シクロデキストリンおよび活性物質の結合定数は、平衡溶解度法により決定することができる(T.Higuchiら「Advances in Analytical Chemistry and Instrumentation Vol.4」、C.N.Reilly ed.、John Wiley & Sons,Inc、1965年、117〜212頁)。一般に、シクロデキストリンの濃度が高いほど、式1および2の平衡過程はより錯体の形成に移行する、すなわち、遊離薬剤濃度は、一般に、溶液中のシクロデキストリンの濃度を高めることにより減少する。
未誘導体化親シクロデキストリンは、ヒトの組織と相互作用し、コレステロールやその他の膜成分を、特に腎臓尿細管細胞において蓄積する際に、抽出することが知られており、そのことが有毒で、ときに致死的な腎臓への影響をもたらすことが知られている。
親シクロデキストリンは、与えられた基質に対する異なる親和性を示すことが多い。例えば、γ−シクロデキストリンは、限定された溶解度の錯体を形成することが多く、得られる溶解度曲線はBs型である。この挙動は、液体調製物においてγ−CDの使用に対し重大な制限を課す多数のステロイドについて知られている。一方、β−CDは、多数の異なるクラスのホスト化合物とうまく錯体を形成しない。β−CDおよびγ−CDについては、誘導体化、例えば、アルキル化を行うと、親CDに比べて誘導体の水溶解度がよくなるだけでなく、溶解度曲線の型も制限のあるBs型からより直線性の高いA型曲線に変化することが示されている(Bernd W.MullerおよびUlrich Brauns「Change of Phase−Solubility Behavior by Gamma−Cyclodextrin Derivatization」Pharmaceutical Research(1985年)、309〜310頁)。
親シクロデキストリンの化学修飾(通常は、ヒドロキシル基において)の結果、錯化能力を保持または改善しつつ安全性を向上させた誘導体が得られている。今日まで製造された多数の誘導体化シクロデキストリンのうち2つ、すなわち、2−ヒドロキシプロピル誘導体(HP−CD、中性シクロデキストリンはJanssenおよび他により商業的に開発中である)、およびスルホブチルエーテルなどのスルホアルキルエーテル誘導体(SBE−CD、アニオン性シクロデキストリンはCyDex Inc.により開発中である)のみが商業的に実現可能であるように思われる。しかし、HP−β−CDは、それでも、SBE−CDが有しない毒性を有する。
Figure 2007517067
Stellaらの米国特許第5,376,645号および第5,134,127号、Parmerterらの米国特許第3,426,011号、Lammersら(Recl.Trav.Chim.Pays−Bas(1972年)、91(6)、733〜742頁)、Staerke(1971年)、23(5)、167〜171頁)、およびQuら(J.Inclusion Phenom.Macro.Chem.、(2002年)、43、213〜221頁)は、スルホアルキルエーテル誘導体化シクロデキストリンを開示している。これらの参考文献は、SAE−CDが、さまざまな異なる拡い範囲の化合物を可溶化するのに適していることを示唆している。
ベータシクロデキストリンのスルホブチルエーテル誘導体(SBE−β−CD)、特にシクロデキストリン分子1個当たり平均約7個の置換基を含む誘導体(SBE7−β−CD)は、CAPTISOL(登録商標)としてCyDex,Inc.により商品化されて
いる。アニオン性スルホブチルエーテル置換基は、親シクロデキストリンの水溶解度を劇的に改善する。さらに、電荷の存在は、ヒドロキシプロピル誘導体と比較して分子がコレステロールと錯体を形成する能力を低下させる。薬剤とCAPTISOL(登録商標)シ
クロデキストリンとの可逆非共有錯体により、水溶液中の薬剤の溶解性および安定性を増大させることができる。CAPTISOL(登録商標)は、比較的新しく知られているシクロデキストリンであるが、噴霧用のコルチコステロイド含有溶液の調製での使用は、まだ評価されていない。
溶血アッセイは、一般に、非経口製剤の分野で、特定の製剤が被験者の血流に注入するのに不適当である可能性があるかどうかを予測するために使用される。検査される製剤が著しい量の溶血を誘発する場合、その製剤は、一般に、被験者への投与に適しないものと考えられる。一般に、より高いオスモル濃度は、より高い溶血潜在性(hemolytic potential)に関連することが予想される。図1に示されているように(Thompson、D.O.、Critical Reviews in Therapeutic Drug Carrier Systems、(1997年)、14(1)、1〜104頁)、CAPTISOL(登録商標)の溶血挙動は、親β−シクロデキストリン、市販のヒドロキシプロピル誘導体、ENCAPSIN(商標)シクロデキストリン(置換度約3−4)、およびMOLECUSOL(登録商標)シクロデキストリン(置換度約7−8)、および他の2つのスルホブチルエーテル誘導体であるSBE1−β−CDおよびSBE4−β−CDに対する溶血挙動と比較される。他のシクロデキストリン誘導体とは異なり、スルホアルキルエーテル(SAE−CD)誘導体、特に、CAPTISOL(登録商標)(置換度約7)およびSBE4−β−CD(置換度約4)などの誘導体は、本質的に、溶血挙動をまったく示さず、医薬品製剤を可溶化するために典型的に使用される濃度の市販のヒドロキシプロピル誘導体よりも実質的に低い膜障害潜在性しか示さない。図に示されている濃度の範囲は、注入後血流内で最初に希釈されたときに医薬品製剤を可溶化するために典型的に使用される濃度を含む。経口投与後、SAE−CDは、著しい全身的吸収を受けない。
製剤のオスモル濃度は、一般に、溶血潜在性に関連し、オスモル濃度が高いほど(または高張度であるほど)、溶血潜在性は高まる。Zannouら(「Osmotic properties of sulfobutyl ether and hydroxypropyl cyclodextrins」、Pharma.Res.(2001年)、18(8)、1226〜1231頁)は、SBE−CDおよびHP−CDを含む溶液のオスモル濃度を比較した。図2に示されているように、SBE−CD含有溶液のオスモル濃度は、類似の濃度のシクロデキストリン誘導体を含むHP−CD含有溶液よりも高い。そのため、SAE−CDは、HP−CDが低いオスモル濃度を有するとしても、同等の濃度でHP−CDが示す場合よりも低い溶血しか示さなかったことは驚くべきことである。
メチル化シクロデキストリンが調製されており、ヒト赤血球に対する溶血効果が評価されている。これらのシクロデキストリンは、中等度から重度の溶血を引き起こすことが判明した(Jodalら、Proc.4th Int.Symp.Cyclodextrins、(1988年)、421〜425頁、Yoshidaら、Int.J.Pharm.、(1988年)、46(3)、217〜222頁)。
哺乳類の肺の中へのシクロデキストリンの投与は、許容されない場合がある。実際、天然のシクロデキストリンおよびシクロデキストリン誘導体の潜在的な、または観察された毒性に関する文献が存在する。NTP Chemical Repositoryは、α−シクロデキストリンは吸入により害を及ぼす可能性のあることを示している。Nimbalkarら(Biotechnol.Appl.Biochem.(2001年)、33、123〜125頁)は、肺細胞の細胞増殖を遅らせる初期効果のためHP−β−CD/ジアセチルダプソン錯体(diacetyldapsone complex)の肺における利用について警告している。
それでも、吸入に対するシクロデキストリンの利用に関する多数の研究が、何も商業化されていないが、報告されている。これらの研究は、特定の最適な、またはさらには有用な吸入または経鼻投与製剤には異なる薬剤−シクロデキストリンの組み合わせが必要であることを示唆している。これまで、経口腔、経肺、および/または経鼻送達用のシクロデキストリン含有粉末および溶液の開発が試みられてきた。
Otterbeckらの米国特許第5,914,122号では、噴霧用の安定したブデソニド含有溶液の調製を開示している。Otterbeckらは、安定剤としてのβ−CD、γ−CDもしくはHP−β−CD、および/またはEDTAなどの、シクロデキストリンの好ましい利用を実証した。シクロデキストリンは、さらに、溶液中のブデソニドの濃度を高めるための可溶化剤としても示唆されている。それぞれの場合に、活性物質の受け入れ可能な保持に関して、その製剤のいくつかについてOtterbeckらが報告している最大の貯蔵寿命は、わずか、3ヶ月から6ヶ月である。
McCoyらの米国特許付与前特許公開第20020055496号は、HP−β−CDを含む本質的に非水性の口腔内製剤を開示している。これらの製剤は、エアロゾル、噴霧器、または噴霧剤を使用して投与することができる。
Chuchalinのロシア特許第2180217号では、吸入用の安定したブデソニド含有溶液を開示している。溶液は、ブデソニド、プロピレングリコール、ポリ(エチレンオキシド)、コハク酸、トリロンB、ニパゾール、チオ尿素、水、および場合によってはHP−β−CDを含む。
Mullerら(Proceed.Int’l.Symp.Control.Rel.Bioact.Mater.(1997年)、24、69〜70頁)では、乾燥粉末式吸入器で使用するASES(エアロゾル溶媒抽出システム(Aerosol Solvent Extraction System))超臨界二酸化炭素過程によるブデソニド微粒子の調製に関する研究結果を開示している。HP−β−CDは、粉末の担体として提案されている。
Mullerら(米国特許第6,407,079号)は、HP−β−CDを含む薬剤組成物を開示している。Mullerらは、シクロデキストリンを含む溶液の経鼻投与が可能であることを示唆している。
当技術分野では、特定の種類のシクロデキストリン誘導体の構造上関係するバラツキの評価を、特定の化合物とその種類のシクロデキストリン誘導体との結合を最適化するために行う必要がある場合があることを認識している。しかし、特定の化合物と特定のシクロデキストリン誘導体の第1の実施形態との結合と、第2の実施形態との結合との間には極端な違いがない場合が多い。例えば、第1のシクロデキストリン誘導体に対する特定の治療薬の結合と、構造上関係のある第2のシクロデキストリン誘導体に対する特定の治療薬の結合との間に極端な違いがある場合は希である。このような状況がまさに存在する場合、そのような違いは予期できない。Worthら(24th International Symposium on Controlled Release of Bioactive Materials(1997年))は、経肺送達用のステロイド/シクロデキストリン錯体の効用を評価する研究の結果を開示している。並べた比較において、β−CD、SBE7−β−CD、およびHP−β−CDは、ジプロピオン酸ベクロメタゾン(BDP)およびその活性代謝産物モノプロピオン酸ベクロメタゾン(BMP)との包摂錯体を形成する能力に従って評価された。BMPは、シクロデキストリンでより容易に可溶化され、可溶化力(solubilizing power)の観察された順序は、HP−β−CD(最高)>β−CD>SBE7−β−CDであった。そのため、当業者であれば、SAE−CD誘導体は、BMPまたはBDPなどのコルチコステロイドの可溶化での使用に適しないと予想するであろう。吸入製剤における実際の効用に関する結果はいっさい開示されていないが、BDPよりはむしろBMPのほうが、ネブライザー溶液の開発の代替手段として優れていることを示唆している。
Kinnarinenら(11th International Cyclodextrin Symposium CD(2002年))は、乾燥粉末式吸入用のブデソニド/γ−CD包接錯体のインビトロの肺への沈着の研究結果を開示している。γ−CDとの錯化に利点は観察されなかった。Vozoneら(11th International Cyclodextrin Symposium CD(2002年))は、乾燥粉末式吸入で使用するブデソニドとγ−シクロデキストリンとの錯化に関する研究結果を開示している。シクロデキストリン錯体、またはブデソニドとCDの物理的混合物の放出用量に、違いは観察されなかった。しかし、両方の製剤の微粒子画分で観察される違いから、経肺薬剤送達にシクロデキストリン錯体を使用すると、乾燥粉末の呼吸性画分が増大しうることが示唆された。
Pintoら(S.T.P.Pharma.Sciences(1999年)、9(3)、253〜256頁)は、ベクロメタゾンの吸入可能乾燥粉末製剤でHP−β−CDを使用することに関する研究結果を開示している。HP−β−CDは、MICRO−HALER(商標)吸入装置から放出用量のインビトロ沈着の研究において、薬剤との錯体または物理的混合物として評価された。呼吸性薬剤画分の量は、錯体併用では最高であり、微粉末化薬剤単独では、最低であると報告された。
Rajewskiら(J.Pharm.Sci.(1996年)、85(11)、1142〜1169年)は、シクロデキストリンの薬剤としての適用についてレビューしている。そのレビューでは、乾燥粉末吸入システムにおけるシクロデキストリン錯体の使用を評価する研究を引用している。
Shaoら(Eur.J.Pharm.Biopharm.(1994年)、40、283〜288頁)は、肺吸収促進剤としてシクロデキストリンの有効性に関して報告した。肺インスリン吸収を増強するシクロデキストリンの相対的有効性は、薬力学により測定されたとおりであり、相対的薬効は、ジメチル−β−シクロデキストリン>α−シクロデキストリン>β−シクロデキストリン>γ−シクロデキストリン>ヒドロキシプロピル−β−シクロデキストリンのようにランク付けされた。この報告に鑑みて、当業者であれば、未誘導体化β−CDは未誘導体化γ−CDよりも適しているため、γ−CDの水溶性誘導体は、β−CDのそれぞれの誘導体に比べて吸入を介した化合物送達にはあまり適しないと予想するであろう。
Williamsら(Eur.J.Pharm.Biopharm.(1999年3月)、47(2)、145〜52頁)は、2−ヒドロキシプロピル−β−シクロデキストリン(HP−β−CD)の製剤手法がヒドロフルオロアルカン(HFA)噴霧剤を含む懸濁液ベースの加圧式定量噴霧式吸入器(pMDI)製剤中のアスピリンの安定性に及ぼす影響を調べた研究結果を報告した。HP−β−CDは、アスピリンとの凍結乾燥包接錯体または物理的混合物としてpMDI内に処方された。凍結乾燥包接錯体中のアスピリンは、6ヶ月間貯蔵したときに最も著しい分解度を示したが、pMDIの単独のアスピリンで示した分解度は中程度であった。物理的混合物中に処方されたアスピリンが示す分解度は最小であった。HP−β−CDを使用して、化学的に不安定な薬剤の安定性を高めることができるが、薬剤安定性は、製剤の調製方法の影響を受ける可能性があると報告されている。
Gudmundsdottirら(Pharmazie(2001年12月)、56(12)、963−6)は、ミダゾラムが水性スルホブチルエーテル−β−シクロデキストリン緩衝液で処方された研究結果を開示している。経鼻スプレーは、健常人ボランティアで試験し、オープンクロスオーバー臨床試験(open crossover trial)で静脈内注射ミダゾラムと比較した。経鼻製剤は、吸収、血清濃度、および臨床鎮静効果の速度の点で静脈内注射形態に近づいていると報告されている。重篤な副作用は観察されなかった。
Srichanaら(Respir.Med.(2001年6月)、95(6)、513−9)は、乾燥粉末エアロゾルの新しい担体を開発する研究結果を報告している。2種類のシクロデキストリン;ガンマシクロデキストリン(γ−CD)とジメチル−ベータ−シクロデキストリン(DMCD)が、乾燥粉末製剤の担体として選択された。サルブタモールを、モデル薬剤として使用し、また乳糖を含む対照製剤を使用し、その薬剤を含有させた。ツインステージインピンジャー(twin−stage impinger)(TSI)を使用して、それらの乾燥粉末製剤の送達効率を評価した。得られた結果から、γ−CD−増強薬剤を含む製剤は、DMCDを含む製剤(沈着=50%)および対照(沈着=40%)の両方よりもかなり大きくTSIの下側ステージに送達すること(沈着=60%)が判明した(P<0.05)。DMCD錯体でインキュベートされた赤血球の溶血は、γ−CD錯体で得られる溶血よりも高かった。γ−CDおよびDMCDを含む両方の製剤の薬剤放出は、高速であり(70%超が5分以内に放出された)、ほぼすべての薬剤が30分以内に放出された。
van der Kuyら(Eur.J.Clin.Pharmacol.(1999年11月)、55(9)、677−80)は、市販の経鼻調製物を使用し、メシル酸ジヒドロエルゴタミン(DHEM)含有製剤の2つの経鼻調製物の薬物動態学的特性の結果を報告している。これらの製剤は、さらに、無作為メチル化β−シクロデキストリン(RAMEB)を含んでいた。3つの経鼻調製物について最大血漿濃度(Cmax)、Cmax到達時間(tmax)、血漿濃度−時間曲線下面積(AUC0−8h)、Frel(t=8h)、およびCmax/AUC(t=8h)に統計的に有意な違いは見られなかった。これらの結果から、経鼻調製物の薬物動態学的特性は、市販の経鼻スプレーと著しく異なることはないことがわかる。
Merkusの米国特許第5,942,251号および第5,756,483号は、シクロデキストリンおよび/または二糖類および/または多糖類および/または糖アルコールと組み合わせたこれら薬理活性物質のうちの1つを含むジヒドロエルゴタミン、アポモルヒネ、およびモルヒネの経鼻投与用の医薬組成物を対象としている。
米国特許第5,955,454号では、プロゲストゲンおよび置換度が0.5〜3.0のメチル化β−シクロデキストリンを含む経鼻投与に適した医薬調製物を開示している。
Piazzaらの米国特許第5,977,070号では、有効量のPTHまたはPTHrpの生理的活性のある短縮類似体(trancated analog)、またはそれらの塩、およびジメチル−β−シクロデキストリンからなる群から選択される吸収促進剤を含む、骨粗鬆症の治療に役立つ化合物の経鼻送達用の医薬組成物を開示している。
Backstromらの米国特許第6,436,902号では、乾燥粉末の少なくとも50%が(a)直径最大10ミクロンまでの粒子、または(b)そのような粒子の凝集体からなる吸入に適している乾燥粉末の形態の副甲状腺ホルモンの経肺投与の組成物および方法を開示している。乾燥粉末式吸入装置は、(i)副甲状腺ホルモン(PTH)、および(ii)下気道内でのPTHの吸収を増強する物質を含む乾燥粉末からなる調製物を含み、(i)および(ii)の少なくとも50%は、直径最大10ミクロンまでの一次粒子からなり、物質は、脂肪酸の塩、胆汁塩またはそれらの誘導体、リン脂質、およびシクロデキストリンまたはそれらの誘導体からなる群から選択される。
Kuoらの米国特許第6,518,239号は、肺へのエアロゾル投与用の活性物質およびジペプチドまたはトリペプチドを含む分散性エアロゾル製剤を開示している。組成物は、さらに、ポリマー賦形剤/添加剤、例えば、ポリビニルピロリドン、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、およびヒドロキシプロピルメチルセルロースなどの誘導体化セルロース、フィコール(ポリマー糖)、ヒドロキシエチルでんぷん、デキストレート(例えば、2−ヒドロキシプロピル−β−シクロデキストリンおよびスルホブチルエーテル−β−シクロデキストリンなどのシクロデキストリン)、ポリエチレングリコール、およびペクチンも含むことができることが報告されている。
Nakateら(Eur.J.Pharm.Biopharm.(2003年3月)、55(2)、147−54)は、β−シクロデキストリンと共に処方することによりラットにおける環状ペプチドFK224(低水溶解度)の肺吸収の改善を調べる研究結果を開示している。この研究の目的は、他の投与経路と比較してFK224の全身的吸収に対する経肺送達の効果を調べ、さまざまな投薬形態を使用してラットにおける経肺投与の後のFK224の生体利用率(BA)を決定することであった。水性懸濁液の投与後、生体利用率は、溶液の16.8%と比べて、2.7%に下がった。しかし、β−シクロデキストリン(β−CD)は、FK224の溶解度を改善することに関する限り有効な添加剤であることがわかった。β−CDを含む水性懸濁液の生体利用効率は、19.2%に高められた
。FK224のC(max)とAUCは両方とも、β−CDの量が増えるにつれて増大することが観察された。血漿プロファイルは、持続性吸収を示した。これらは、β−CDが、FK224の肺吸収を改善することに関する限りきわめて有効な添加剤であることを示唆している。また、さまざまな水溶解度を有するβ−CDまたは誘導体は、経肺吸収を制御する有望な薬剤担体であることも示唆している。
Kobayashiら(Pharm.Res.(1996年1月)、13(1)、80−3)は、ラットにおいて吸収促進剤を含むサケカルシトニン(sCT)乾燥粉末を経肺送達することに関する研究結果を開示している。ラットにsCT乾燥粉末および液体(溶液)調製物を気管内投与した後、血漿sCTレベルおよびカルシウムレベルを測定した。乾燥粉末および液体中のsCTは、ほぼ同じ程度に吸収されたと報告されている。吸収促進剤(オレイン酸、レシチン、クエン酸、タウロコール酸、ジメチル−β−シクロデキストリン、オクチル−β−D−グルコシド)は、溶液よりも、乾燥粉末のほうがかなり効果的であった。
Adjeiら(Pharm.Res.(1992年2月)、9(2)、244−9)は、ラットおよび健康人への経鼻および吸入送達の後、酢酸ロイプロリドの生物学的利用率に関する研究結果を開示している。酢酸ロイプロリド、黄体形成ホルモン放出ホルモン(LHRH)アゴニストの全身的送達は、吸入(i.h.)および経鼻(i.n.)投与後に比較された。ラットのi.n.生体利用率は、α−シクロデキストリン(CD)、EDTA、および溶液体積により著しく増大した。吸収の範囲は、i.v.対照と比較して8〜46%であった。健康人男子について、噴霧による酢酸ロイプロリドi.n.、吸入エアロゾル(i.h.)、ならびに皮下(s.c.)および静脈内(i.v.)注入で研究が実施された。s.c.注入は、i.v.と比較して94%の生体利用率であった。i.n.生物学的利用率は平均2.4%であり、被験者間のバラツキが著しかった。吸入送達により、被験者間バラツキは少し低かった。溶液エアロゾル1mg投薬での平均Cmaxは0.97ng/mlであり、それに対してそれぞれ1および2mgのボーラス投与で与えられる懸濁液エアロゾルについては4.4および11.4ng/mlであった。懸濁液エアロゾルの平均生体利用率(s.c.投与に関して28%)は、溶液エアロゾル(6.6%)と比べて4倍大きかった。
CyDex(Cyclopedia(2002年)、5(1)、3)では、SBE−CDは、単独で存在する場合の吸入エアロゾル組成物においてラットに対し非毒性であることを開示している。これは、薬剤、特にコルチコステロイド、およびSBE−CDを含む噴霧可能な組成物を開示していない。
また懸濁液を投与するのか、溶液を投与するのかを決定する際に、使用するネブライザーの種類も考慮しなければならない。2つの最も一般的な種類のネブライザーは、超音波ネブライザーおよび空気駆動ジェット式ネブライザーである。この2つの型間には著しい違いがある。例えば、ジェット式ネブライザーは、リザーバ内の液体を加熱するのではなく冷却するが、超音波ネブライザーは、液体を加熱する。リザーバ内の溶液の加熱は溶液の粘度を下げ、液滴の形成を高めるが、過剰な加熱は、薬剤分解をもたらしかねない。超音波ネブライザーは、ジェット式ネブライザーに比べて、静粛であり、送達も高速であるが、超音波ネブライザーは、高価であり、噴霧療法に現在利用可能なステロイドの投与には勧められない。しかし、最も重要なことは、超音波ネブライザーは、一般に、ジェット式ネブライザーよりも投与速度が著しく高速であることである。
喘息の患者は、吸入される短時間作用型または長時間作用型のβ2−アゴニスト、吸入抗コリン剤、および単独の吸入コルチコステロイドを使用して、順に、または組み合わせて、治療されることが多い。吸入コルチコステロイドおよび長時間作用型β2−アゴニストの組み合わせが知られており、例えば、ブデソニドにホルモテロールを加えたものまたはフルチカゾンにサルメテロールを加えたものが、乾燥粉末式吸入器で利用可能である。しかし、噴霧用の溶液として利用可能なそのような組み合わせの実例はない。複数の薬物を組み合わせて1つの溶液にまとめると、薬物を別々に投与するのに要する時間が短縮される。
すなわち、当技術分野では、場合によっては、溶液の噴霧は、懸濁液の噴霧よりも好ましい場合があり、また場合によっては、超音波ネブライザー、振動メッシュ、エアロゾル化の電子または他のメカニズムによるエアロゾルは、比較対象の噴霧液体製剤に応じて空気駆動ジェット式ネブライザーよりも好ましい場合があることが示唆される。当技術分野では、コルチコステロイドおよびシクロデキストリンを含む吸入可能溶液製剤を開示しているとしても、当技術分野の結果は、予測不可能である。すなわち、1つのシクロデキストリンと1つの薬剤との組み合わせは、他のシクロデキストリンが適している可能性のあることを示唆しないということである。当技術分野は、1つのシクロデキストリン−コルチコステロイド吸入可能製剤が、他のシクロデキストリン−コルチコステロイド吸入可能製剤に勝る利点を有することも示唆しない。
当技術分野では、保存剤の添加を要しない、また他の安定化された水溶液ブデソニド含有吸入可能製剤よりも著しい利点をもたらす安定化された水溶液ブデソニド含有吸入可能製剤も依然として必要である。また、懸濁液を溶液に転換することによりブデソニド含有懸濁液製剤の噴霧投与を改善する方法も依然として必要である。
また、噴霧用の不水溶性薬剤を可溶化することができる改善されたシステムを開発し、これを実現するために必要な共溶媒のレベルを最小にする必要もある。理想的なシステムであれば、無毒の成分からなり、室温で長期間貯蔵しても安定であろう。噴霧化された場合、それは10ミクロン未満または5ミクロン未満または3ミクロン未満の吸入可能な液滴、および約1ミクロン未満のサイズ範囲の極微細エアロゾルの相当部分を生成するであろう。
懸濁液ベースの単位用量製剤の噴霧投与を改善する方法も引き続き必要である。このような方法であれば、投与時間全体が短縮され、投与される薬剤の総量が増加させ、ネブライザーのリザーバ内に残る薬剤の量が減らされ、コルチコステロイドの口腔咽頭沈着と比較して肺沈着の部分が増え、および/または懸濁液ベースの単位用量製剤の、改善がない場合の投与と比べて、コルチコステロイドの肺への深い浸透が増強されるであろう。
Smaldoneら、J.Aerosol Med.(1998年)、11、113〜125頁 Barryら、J.Allergy Clin.Immunol.(1998年)、320〜321頁 Bergら、J.Aerosol Sci.(1998年)、19(7)、1101〜1104頁 O’Riordan、(Respiratory Care、(2002)、1305〜1313頁 Kellerら、Respiratory Drug Delivery VIII(2002年)、197〜206頁 Kraftら、The Pharmacokinetics of Nebulized Nanocrystal Budesonide Suspension in Healthy Volunteers、J.Clin.Pharmacol.、(2004年)、44:67〜72頁 Brainら、Bronchial Asthma、2nd Ed. Ed.E.B.Weisら、Little Brown & Co.(1985年)、594〜603頁 O’Riordan、Respiratory Care(2002年11月)、47(11)、1305〜1313頁 O’Callaghan、Thorax、(1990年)、45、109〜111頁 Storrら、Arch.Dis.Child(1986年)、61、270〜273頁 Webbら、Arch.Dis.Child(1986年)、61、1108〜1110頁 O’Callaghan、J.Pharm.Pharmacol.(2002年)、54、565〜569頁 米国特許第6,241,969号 Lintzら、AAPS Annual Meeting and Exposition、2004年 Waldrepら、J.Aerosol Med.(1994年)、7(2)、135〜145頁 T.Higuchiら「Advances in Analytical Chemistry and Instrumentation Vol.4」、C.N.Reilly ed.、John Wiley & Sons,Inc、1965年、117〜212頁 Bernd W.MullerおよびUlrich Brauns「Change of Phase−Solubility Behavior by Gamma−Cyclodextrin Derivatization」Pharmaceutical Research(1985年)、309〜310頁 米国特許第5,376,645号 米国特許第5,134,127号 米国特許第3,426,011号 Lammersら、Recl.Trav.Chim.Pays−Bas(1972年)、91(6)、733〜742頁 Staerke(1971年)、23(5)、167〜171頁 Quら、J.Inclusion Phenom.Macro.Chem.、(2002年)、43、213〜221頁 Thompson、D.O.、Critical Reviews in Therapeutic Drug Carrier Systems、(1997年)、14(1)、1〜104頁 Zannouら、「Osmotic properties of sulfobutyl ether and hydroxypropyl cyclodextrins」、Pharma.Res.(2001年)、18(8)、1226〜1231頁 Jodalら、Proc.4th Int.Symp.Cyclodextrins、(1988年)、421〜425頁 Yoshidaら、Int.J.Pharm.、(1988年)、46(3)、217〜222頁 Nimbalkarら、Biotechnol.Appl.Biochem.(2001年)、33、123〜125頁 米国特許第5,914,122号 米国特許付与前特許公開第20020055496号 ロシア特許第2180217号 Mullerら、Proceed.Int’l.Symp.Control.Rel.Bioact.Mater.(1997年)、24、69〜70頁 米国特許第6,407,079号 Worthら、24th International Symposium on Controlled Release of Bioactive Materials(1997年) Kinnarinenら、11th International Cyclodextrin Symposium CD(2002年) Vozoneら、11th International Cyclodextrin Symposium CD(2002年) Pintoら、S.T.P.Pharma.Sciences(1999年)、9(3)、253〜256頁 Rajewskiら、J.Pharm.Sci.(1996年)、85(11)、1142〜1169年 Shaoら、Eur.J.Pharm.Biopharm.(1994年)、40、283〜288頁 Williamsら(Eur.J.Pharm.Biopharm.(1999年3月)、47(2)、145〜52頁) Gudmundsdottirら、Pharmazie(2001年12月)、56(12)、963−6 Srichanaら(Respir.Med.(2001年6月)、95(6)、513−9) van der Kuyら、Eur.J.Clin.Pharmacol.(1999年11月)、55(9)、677−80 米国特許第5,942,251号 米国特許第5,756,483号 米国特許第5,955,454号 米国特許第5,977,070号 米国特許第6,436,902号 米国特許第6,518,239号 Nakateら、Eur.J.Pharm.Biopharm.(2003年3月)、55(2)、147−54 Kobayashiら、Pharm.Res.(1996年1月)、13(1)、80−3 Adjeiら、Pharm.Res.(1992年2月)、9(2)、244−9 CyDex、Cyclopedia(2002年)、5(1)、3
本発明は、公知の製剤に存在する不利を克服することを追求する。そのようなものとして、誘導体化シクロデキストリンベースの、例えば、スルホアルキルエーテルシクロデキストリン(SAE−CD)ベースの、吸入可能製剤が提供される。本発明の製剤は、コルチコステロイドを主要な活性物質として含む。本発明の製剤は、製剤中の活性物質または他の成分の高められた溶解性ならびに/または高められた化学的、熱化学的、加水分解的および/もしくは光化学的安定性をもたらすことができる。さらに、本発明の製剤は、ブデゾニドなどのコルチコステロイドを含む他の吸入可能溶液または懸濁液製剤に勝る、他の利点、例えば、薬剤送達が増強されること、薬剤投与が高速化されること、治療時間が短縮されること、毒性が低減されること、製造が容易になること、殺菌が保証されること、安定性が改善されること、生体吸収性が強化されること、粒径の制御が不要であること、アウトプット率が高められること、総アウトプット量が増えること、固形粒子成長の問題がないこと、および/または懸濁液の形成を確認する必要がないこと、といった利点を有することができる。
本発明の発明者は、思いがけなく、吸入投与後、SAE−CDが全身に吸収されることを発見した。また、肺から排泄もされる。SAE−CDは、さらに、吸入可能水性液体製剤中のコルチコステロイドと錯体を形成する。コルチコステロイドとSAE−CDとを同時投与すると、SAE−CDを除外した対照と比べて、アウトプット率および全薬剤送達が高まる可能性がある。
SAE−CD含有製剤は、活性物質の市販製品としての十分な溶解度および安定性をもって調製することができる。必要ならば、SAE−CD含有製剤は、孔径が0.45μm以下のフィルターを通して細菌濾過できる、またさまざまな貯蔵条件の下で安定し、保存される澄明水溶液として調製することができる。
本発明の一態様では、ブデソニドなどの有効量のコルチコステロイドおよびSAE−CDを含み、SAE−CDは貯蔵時にコルチコステロイドを溶解し安定化するのに十分な量で存在する、液体製剤を提供する。
本発明の他の態様では、被験者へのコルチコステロイドの噴霧投与を改善する方法を提供し、この方法は、
水および水の中に懸濁されたコルチコステロイドを含む水性懸濁液製剤を単位用量で提供する工程と、
懸濁液と、コルチコステロイドを可溶化し溶液を形成するのに十分な量のSAE−CDを、そうするのに十分な時間、組み合わせる工程と、
その溶液を被験者に投与する工程とを含み、ここで治療用量のコルチコステロイドを溶液で投与するのに要する時間は、類似の、または他の何らかの形で匹敵する、噴霧条件の下で、懸濁液で同じ治療用量のコルチコステロイドを投与するのに要する時間よりも短い。
ネブライザーで投与する場合、噴霧用の懸濁液は、噴霧条件の第1のセットの下では、第1のコルチコステロイドアウトプット率をもたらす。しかし、SAE−CDを懸濁液に添加し、そこで混合した場合、十分な量のコルチコステロイドが溶解され、実質的に同じ条件の下で投与された場合にSAE−CDを除外した製剤に比べてコルチコステロイドのアウトプット率が大きい噴霧用の液体製剤が形成される。一実施形態では、製剤の薬剤アウトプット率は、噴霧化組成物の全体積、すなわちネブライザーにより放出される溶液の全体積が増えなかったとしても、懸濁液の場合よりも増大する。他の実施形態では、SAE−CDは、コルチコステロイドの少なくとも50%、少なくとも75%、少なくとも90%、少なくとも95%、または実質的にすべてを可溶化するのに十分な量で存在する。さらに他の実施形態では、SAE−CDは、懸濁液製剤中の未可溶化コルチコステロイドの量を減らし、懸濁液製剤の噴霧投与を改善するのに十分な量で存在する。さらに他の実施形態では、SAE−CDは、SAE−CDが加えられた懸濁液製剤が溶液、実質的に澄明溶液(5%未満の析出固体を含む)、または澄明溶液に転換されるように十分なコルチコステロイドを可溶化するのに十分な量で存在する。懸濁液製剤の他の成分は、SAE−CDを含む溶液製剤中に完全には溶解しないか、または分離することができるということがありえる。
他の実施形態によれば、コルチコステロイド/SAE−CD含有溶液を充填されたネブライザーは、他の何らかの形で類似の条件の下で操作されるコルチコステロイド/HP−β−CD−含有溶液を充填された同じネブライザーの場合よりも小さな液滴を生成するはずである。より小さな液滴を生成する結果、SAE−CDを含むシステムは、HP−β−CDを含む他の何らかの形で類似のシステムよりも改善されるが、それは、SAE−CDベースのシステムが、より大きな割合の吸入可能な液滴を生成し、より深い肺浸透を可能にするからである。
本発明の一態様では、噴霧可能単位用量液体製剤におけるSAE−CDの使用を提供する。一実施形態では、本発明は、噴霧可能なコルチコステロイド含有懸濁液ベースの単位用量製剤を噴霧可能コルチコステロイド含有液体単位用量製剤に転換するためのSAE−CDの使用を提供する。
本発明の特定の実施形態は、1)ブデソニド対SAE−CDのモル比は、0.5〜0.0001(1:2〜1:10,000)、1:1〜1:100、1:1〜1:10,000、または0.1〜0.03であり、2)SAE−CDは、スルホブチルエーテル4−β−CD、スルホブチルエーテル7−β−CDもしくはスルホブチルエーテル6−γ−CD、スルホブチルエーテル4−γ−CD、スルホブチルエーテル3から8−γ−CD、またはスルホブチルエーテル5−γ−CDであり、3)SAE−CDは、式1の化合物、またはその混合物であり、4)噴霧組成物は、さらに、従来の保存剤、酸化防止剤、緩衝剤、酸性化剤、可溶化剤、錯化促進剤、食塩水、電解質、他の治療薬、アルカリ化物質、等張化剤(tonicity modifier)、表面張力調整剤、粘度調整剤、密度調整剤、揮発度調整剤、またはそれらの組み合わせを含み、5)SAE−CDは、澄明溶液が得られる十分な量で存在し、6)噴霧組成物は、所定の期間内に自己保存製剤をもたらすようにSAE−CDを少なくとも4.8±0.5質量/体積%を含み、7)噴霧組成物は、製剤中に含まれる酸素の実質的にすべてを除去するために貯蔵前に不活性ガスでパージ済みであり、8)ブデソニドなどのコルチコステロイドは、SAE−CDとの結合が、製剤中に存在する従来の保存剤の場合よりも大きく、9)製剤は、貯蔵寿命が少なくとも6ヶ月間であり、10)噴霧組成物は、さらに、水以外の液体担体を含み、11)製剤は、5℃以上、25℃以上、35℃以上、45℃以上、または50℃以上の温度で調製されており、12)噴霧組成物は、SAE−CDの約21.5±2質量/質量%以下を含み、および/または13)噴霧組成物は、肉眼で見たときに澄明に見えるものである、実施形態を含む。
液体製剤を調製する方法の特定の実施形態は、1)この方法は、さらに、細孔の大きさが0.1ミクロン以上である濾過媒体を通じて製剤を滅菌濾過する工程を含み、2)液体製剤は、放射線滅菌または高圧蒸気滅菌され、3)噴霧溶液は、溶液内にし、および/または溶液と表面で接触している酸素の相当部分が除去されるように、貯蔵前に窒素またはアルゴンまたは他の不活性の薬剤として許容されるガスでパージされる、実施形態を含む。
本発明は、SAE−CDをSAE−CDを除外した対照試料と比べてコルチコステロイドの分解率を低減するのに十分な量で水性コルチコステロイド含有懸濁液または溶液製剤に加える工程を含む、水性コルチコステロイド含有製剤中のコルチコステロイドを安定化する方法を提供する。
本発明は、さらに、吸入可能水性コルチコステロイド含有懸濁液単位用量製剤の噴霧投与を改善する方法も提供し、この方法は、SAE−CDを、コルチコステロイドを可溶化し吸入可能な水性コルチコステロイド含有溶液単位用量製剤を形成するのに十分な量で水性コルチコステロイド懸濁液単位用量製剤に加える工程を含み、この改善は、アウトプット率および/または噴霧化コルチコステロイドの程度を高めることを含む。
本発明は、ネブライザーを使用するコルチコステロイド含有組成物の吸入により治療有効量のコルチコステロイドを被験者に供給するのに要する時間を短縮する方法を提供し、この方法は、SAE−CDを、コルチコステロイドを可溶化し、吸入可能な水性コルチコステロイド含有水溶液を形成するのに十分な量で組成物内に含める工程と、ネブライザーを使った吸入により溶液を被験者に投与する工程とを含み、溶液と共に治療有効量のコルチコステロイドを被験者に供給するのに要する時間は、懸濁液および溶液がその他の点では類似の噴霧条件の下で投与される場合に、同じ量、または濃度のコルチコステロイドを含むコルチコステロイド含有懸濁液と共に治療有効量のコルチコステロイドを被験者に供給するのに要する時間に比べて短縮される。
本発明は、さらに、水溶性γ−CD誘導体、コルチコステロイド(エステル化または未エステル化)、および水性液体媒体を含む吸入可能組成物をも提供する。本発明の他の実施形態は、さらに、水溶性β−CD誘導体、コルチコステロイド(未エステル化)、および水性液体媒体を含む吸入可能組成物をも提供する。
さらに、本発明は、コルチコステロイド含有吸入可能製剤の吸入投与を行うための改善されたシステムを実現し、この改善は、SAE−CDがSAE−CDを除外した、ただしその他の点ではほぼ同じ条件の下で投与される、対照吸入可能製剤の投与と比較してコルチコステロイド吸入速度を高めるのに十分な量で存在するように吸入可能製剤中にSAE−CDを入れることを含む。
本発明は、コルチコステロイドの吸入投与を行うシステムを提供するために使用することができ、このシステムは、ネブライザーなどの吸入装置を含み、医薬組成物は、治療有効量のコルチコステロイド、液体担体、および水性環境に存在するときにコルチコステロイドを安定化できる十分な量で存在するSAE−CDを含み、ここでコルチコステロイド対SAE−CDのモル比は約0.072から0.0001または0.063から0.003の範囲内である。操作中、システムは、MMADが約1〜8μまたは3〜8μの範囲内にある液滴を形成する。コルチコステロイドは、少なくとも約20〜50μg/minの速度で送達され、この範囲は、ネブライザーのリザーバ内の噴霧溶液中のコルチコステロイドの濃度に応じて増減できる。
SAE−CDコルチコステロイド療法を吸入可能噴霧溶液と共に使用した結果として、吸入可能噴霧懸濁液クロロフルオロカーボン(CFC)、またはヒドロフルオロアルカン(HFA)加圧式定量吸入器(pMDI)を使用する匹敵するコルチコステロイド療法と比較して、薬剤送達の増強、特に、細かなエアロゾル発生により容易になる周囲または小さな気道への送達の増強、夜間無症候喘息の治療および急性喘息発作からの回復の潜在的改善、薬剤投与速度の向上、治療時間の短縮、製剤安定性の改善および/または患者の薬剤服用順守の向上などの利点を期待できる。
本発明は、SAE−CD、水性担体、およびコルチコステロイドを含むキットで使用することができ、このキットは、噴霧溶液の調製に適合されている。キットの実施形態について以下で詳述する。本発明は、他の溶液投薬形態による懸濁液との不適合性を克服するために組み合わせ製品を提供する潜在性を有する。
本発明のこれらの態様および他の態様は、以下の詳細な説明、実施例、特許請求の範囲、および添付する図面を参照することで明らかになる。
添付する図面は、単に例示する目的で示されているのであり、そのため、本発明の範囲を限定することを意図していない。
本発明で請求される製剤は、他の公知の吸入可能水溶液または懸濁液コルチコステロイド含有製剤の望ましくない特性の多くを克服する。SAE−CDをコルチコステロイドを含む吸入可能液体製剤に入れることにより、コルチコステロイドは溶解される。意外にも、コルチコステロイドの噴霧は、空気駆動ジェット式ネブライザーと超音波ネブライザーの両方において改善される。さらに、コルチコステロイドは、SAE−CDが存在する場合のほうが存在しない場合よりも大きな安定性を示す。
コルチコステロイドは、単回投与または複数回投与に十分な量で存在することになる。SAE−CDは、コルチコステロイドと共に水性担体中に置かれたときにコルチコステロイドを可溶化するのに十分な量で存在することになる。水性担体は、コルチコステロイドの溶解を助ける十分な量で存在し、ネブライザーで単回投与または複数回投与を可能にする十分な体積と十分に低い粘度の噴霧溶液を形成することになる。SAE−CDは、水性担体中に固形として、または溶液として存在することになる。コルチコステロイドは、水性担体中に乾燥粉末/粒子形態で、または懸濁液で存在することになる。
市販の空気駆動ジェット式、超音波、または脈動膜型ネブライザーは、AERONEB(商標)(Aerogen、カリフォルニア州サンフランシスコ)、PARI LC PLUS(商標)、PARI BOY(商標)NおよびPARI DURANEB(商標)(PARI Respiratory Equipment,Inc.、カリフォルニア
州モンテレー)、MICROAIR(商標)(Omron Healthcare,Inc、イリノイ州ヴァーノンヒルズ)、HALOLITE(商標)(Profile Therapeutics Inc、マサチューセッツ州ボストン)、RESPIMAT(商標)(Boehringer Ingelheim Ingelheim、ドイツ)、AERODOSE(商標)(Aerogen,Inc、カリフォルニア州マウンテンビュー)、OMRON ELITE(商標)(Omron Healthcare,Inc、イリノイ州ヴァーノンヒルズ)、OMRON MICROAIR(商標)(Omron Healthcare,Inc、イリノイ州ヴァーノンヒルズ)、MABISMIST(商標)II(Mabis Healthcare,Inc.、イリノイ州レークフォレスト)、LUMISCOPE(商標)6610(The Lumiscope Company,Inc、ニュージャージー州イーストブランズウィック)、AIRSEP MYSTIQUE(商標)(AirSep Corporation、ニューヨーク州バッファロー)、ACORN−1およびACORN−II(Vital Signs,Inc、ニュージャージー州トトワ)、AQUATOWER(商標)(Medical Industries America、アイオワ州アデル)、AVA−NEB(Hudson Respiratory Care Incorporated、カリフォルニア州テメキュラ)、CIRRUS(Intersurgical Incorporated、ニューヨーク州リバプール)、DART(Professional Medical Products、サウスカロライナ州グリーンウッド)、DEVILBISS(商標)PULMO AIDE(DeVilbiss Corp、ペンシルバニア州サマセット)、DOWNDRAFT(商標)(Marquest、コロラド州エングルウッド)、FAN JET(Marquest、コロラド州エングルウッド)、MB−5(Mefar、イタリア、ボベッツオ)、MISTY NEB(商標)(Baxter、カリフォルニア州バレンシア)、SALTER 8900(Salter Labs、カリフォルニア州アービン)、SIDESTREAM(商標)(Medic−Aid、英国サセックス)、UPDRAFT−II(商標)(Hudson Respiratory Care、カリフォルニア州テメキュラ)、WHISPER JET(商標)(Marquest Medical Products、コロラド州エングルウッド)、AIOLOS(商標)(Aiolos Medicnnsk Teknik、スウェーデン、カルルスタード)、INSPIRON(商標)(Intertech Resources,Inc.、イリノイ州バノックバーン)、OPTIMIST(商標)(Unomedical Inc.、テキサス州マッカレン)、PRODOMO(商標)、SPIRA(商標)(Respiratory Care Center、フィンランド、ヘメーンリンナ)、AERx(商標)(Aradigm Corporation、カリフォルニア州ヘーワード)、SONIK(商標)LDI Nebulizer(Evit Labs、カリフォルニア州サクラメント)、およびSWIRLER(登録商標)Radioaerosol System(AMICI,Inc.、ペンシルバニア州スプリングシティー)を含む。これらおよび他の公知のネブライザーはどれも、本発明の製剤を送達するために使用することができ、これらは、限定はされないが以下を含む。噴霧剤を含まない液体製剤を噴霧化するネブライザーは、本明細書で規定している組成物と併用するのに適している。ネブライザーは、例えば、Pari GmbH(ドイツ、シュタルンベルク)、DeVilbiss Healthcare(英国ミドルセックス州ヘストン)、Healthdyne、Vital Signs、Baxter、Allied Health Care、Invacare、Hudson、Omron、Bremed、AirSep、Luminscope、Medisana、Siemens、Aerogen、Mountain Medical、Aerosol Medical Ltd.(英国エセックス州コルチェスター)、AFP Medical(英国ウォリックシャー州ラグビー)、Bard Ltd.(英国サンダーランド)、Carri−Med Ltd.(英国ドーキング)、Plaem Nuiva(イタリア、ブレシア)、Henleys Medical Supplies(英国ロンドン)、Intersurgical(英国バークシャー州)、Lifecare Hospital Supplies(英国リース)、Medic−Aid Ltd.(英国ウェストサセックス州)、Medix Ltd.(英国エセックス州)、Sinclair Medical Ltd.(英国サリー州)、およびその他から入手可能である。
本発明で使用するネブライザーは、限定はされないが、ジェット式ネブライザー(場合によってはコンプレッサ付きで売られている)、超音波ネブライザーなどを含む。本発明で使用する例示的なジェット式ネブライザーは、Pari LC plus/ProNeb、Pari LC plus/ProNeb Turbo、Pari LC Plus/Dura Neb 1000 & 2000 Pari LC plus/Walkhaler、Pari LC plus/Pari Master、Pari LC star、Omron CompAir XL Portable Nebulizer System(NE−C18およびJetAir Disposableネブライザー)、Omron compare Elite Compressor Nebulizer System(NE−C21およびElite Air Reusable Nebulizer)、Proneb Ultraコンプレッサ付きPari LC PlusまたはPari LC Starネブライザー、Pulomo−aide、Pulmo−aide LT、Pulmo−aide traveler、Invacare Passport、Inspiration Healthdyne 626、Pulmo−Neb Traverler、DeVilbiss 646、Whisper Jet、Acorn II、Misty−Neb、Allied aerosol、Schuco Home Care、Lexan Plasic Pocet Neb、SideStream Hand Held Neb、Mobil Mist、Up−Draft、Up−Draft II、T Up−Draft、ISO−NEB、Ava−Neb、Micro Mist、およびPulmoMateを含む。本発明で使用する例示的な超音波ネブライザーは、MicroAir、UltraAir、Siemens Ultra Nebulizer 145、CompAir、Pulmosonic、Scout、5003 Ultrasonic Neb、5110 Ultrasonic Neb、5004 Desk Ultrasonic Nebulizer、Mystique Ultrasonic、LumiscopeのUltrasonic Nebulizer、Medisana Ultrasonic Nebulizer、Microstat Ultrasonic Nebulizer、およびMabismist Hand Held Ultrasonic Nebulizerを含む。本発明で使用する他のネブライザーは、5000 Electromagnetic Neb、5001 Electromagnetic Neb 5002 Rotary Piston Neb、Lumineb I Piston Nebulizer 5500、Aeroneb Portable Nebulizer System、Aerodose(商標)Inhaler、およびAeroEclipse Breath Actuated Nebulizerを含む。
本発明は、SAE−CDベースの製剤を提供し、SAE−CDは、構造式1
Figure 2007517067
の化合物である
[式中、
nは、4、5、または6であり、
1、R2、R3、R4、R5、R6、R7、R8、およびR9は、それぞれ独立に−O−または−O−(C2−C6アルキレン)−SO3 -基であり、R1からR9の少なくとも1つは独立に−O−(C2−C6アルキレン)−SO3 -基、好ましくは−O−(CH2mSO3 -基であり、mは2から6、好ましくは2から4であり(例えば、−OCH2CH2CH2SO3 -または−OCH2CH2CH2CH2SO3 -)であり、
1、S2、S3、S4、S5、S6、S7、S8、およびS9はそれぞれ独立に例えば、H+、アルカリ金属(例えば、Li+、Na+、K+)、アルカリ土類金属(例えば、Ca+2、Mg+2)、アンモニウムイオン、および(C1−C6)−アルキルアミン、ピペリジン、ピラジン、(C1−C6)−アルカノールアミンおよび(C4−C8)−シクロアルカノールアミンのカチオンなどのアミンカチオンを含む、医薬として許容されるカチオンである]。
本発明のSAE−CD誘導体の例示的な実施形態は、以下のような、「x」を1から18までの範囲とする式II(SAEx−α−CD)の誘導体、「y」を1から21までの範囲とする式III(SAEy−β−CD)の誘導体、および「z」を1から24までの範囲とする式IV(SAEz−γ−CD)の誘導体を含む。
Figure 2007517067
「SAE」は、シクロデキストリンに結合されたスルホアルキルエーテル置換基を表す。値「x」、「y」、および「z」は、CD分子1つ当たりのスルホアルキルエーテル基の個数に関して本明細書で定義されているような平均置換度を表す。
使用されるSAE−CDは、Stellaらの米国特許第5,376,645号および第5,134,127号で説明されており、その開示全体は、参照により本明細書に組み込まれる。Parmerterらの米国特許第3,426,011号では、スルホアルキルエーテル置換基を有するアニオン性シクロデキストリン誘導体を開示している。Lammersら(Recl.Trav.Chim.Pays−Bas(1972年)、91(6)、733〜742頁、Staerke(1971年)、23(5)、167〜171頁)、およびQuら(J.Inclusion Phenom.Macro.Chem.、(2
002年)、43、213〜221頁)は、スルホアルキルエーテル誘導体化シクロデキストリンを開示している。Shahらの米国特許第6,153,746号では、スルホアルキルエーテルシクロデキストリン誘導体の調製の方法を開示している。SAE−CDは、Stellaら、Parmerterら、Lammersら、またはQuらの開示に従って作ることができ、未誘導体化親シクロデキストリンの大部分(>50%)を取り除くように処理すれば、本発明により使用することができる。SAE−CDは、未誘導体化親シクロデキストリンの0%から50重量%未満までを含むことができる。
「アルキレン」および「アルキル」という用語は、本明細書で使用されているように(例えば、−0−(C2−C6−アルキレン)SO3 -基またはアルキルアミン)、直鎖、環状、および分枝の飽和および不飽和(すなわち、1個の二重結合を含む)二価アルキレン基および一価アルキル基をそれぞれ含む。本明細書の「アルカノール」という用語は、同様に、アルキル部分構造上の任意の位置に水酸基を置くことができるアルカノール基の、直鎖、環状、および分枝の飽和および不飽和アルキル部分構造の双方を含む。「シクロアルカノール」という用語は、非置換または置換(例えば、メチルまたはエチルによる)環式アルコールを含む。
本発明の一実施形態は、構造が式(I)で記述されている、シクロデキストリン誘導体の混合物を含む組成物を提供し、組成物全体は、平均して、シクロデキストリン分子1個当たり少なくとも1つおよび最大3n+6個までのアルキルスルホン酸部分構造を含む。本発明は、さらに、単一種類のシクロデキストリン誘導体を含む、または単一種類のシクロデキストリン誘導体の少なくとも50%を含む組成物を提供する。本発明は、さらに、狭いまたは広い、および高いまたは低い置換度を有するシクロデキストリン誘導体を含む製剤も含む。これらの組み合わせは、必要に応じて、特定の特性を有するシクロデキストリンが得られるように最適化できる。
本発明は、さらに、2つまたはそれ以上の異なる種類のシクロデキストリン誘導体が組成物内に含まれるシクロデキストリン誘導体の混合物を含む組成物を提供する。異なる種類とは、異なる種類の官能基、例えば、ヒドロキシアルキルおよびスルホアルキルで誘導体化されたシクロデキストリンを意味し、異なる置換度により誘導体化されたシクロデキストリンの異質性を意味しない。それぞれの独立の異なる種類は、1つまたはそれ以上の官能基、例えば、シクロデキストリン環がスルホブチル官能基のみを有するSBE−CD、およびシクロデキストリン環がヒドロキシプロピル官能基とエチル官能基の両方を有するヒドロキシプロピル−エチル−β−CDを含むことができる。存在するそれぞれの種類のシクロデキストリン誘導体の量は、好きなように変えて、所望の特性を持つ混合物を作ることができる。
例示的なSAE−CD誘導体は、SBE4−β−CD、SBE7−β−CD、SBE11−β−CD、SBE3.4−γ−CD、SBE4.2−γ−CD、SBE4.9−γ−CD、SBE5.2−γ−CD、SBE6.1−γ−CD、SBE7.5−γ−CD、SBE7.8−γ−CD、およびSBE5−γ−CDを含み、これらは式IのSAE−CD誘導体に対応し、ただし、n=5、5、5、および6であり、mは、4であり、それぞれ、平均して、4、7、11、および5個のスルホアルキルエーテル置換基が存在する。これらのSAE−CD誘導体は、水に溶けにくい活性物質の溶解度をさまざまな程度まで高める。
SAE−CDは、多価アニオンシクロデキストリンであるため、異なる塩形態で提供することができる。好適な対イオンは、カチオン有機原子または分子およびカチオン無機原子または分子を含む。SAE−CDは、単一種類の対イオンまたは異なる対イオンの混合物を含むことができる。SAE−CDの特性は、存在する対イオンのアイデンティティを変えることにより改変することができる。例えば、SAE−CDの第1の塩形態は、SAE−CDの異なる第2の塩形態よりも大きなコルチコステロイド安定化および/または可溶化力を有することができる。同様に、第1の置換度を有するSAE−CDは、異なる置換度を有する第2のSAE−CDよりも大きなコルチコステロイド安定化および/または可溶化力を持つことができる。あるSAE−CDによる、他のそれとの対比におけるコルチコステロイドの可溶化の増強は、以下の表のデータにより示されており、これは、約0.03から0.12Mの濃度の異なるSAE−CDとのプロピオン酸フルチカゾンのモル溶解度を表しており、それによれば可溶化力がSAE−CDのこの濃度範囲で大体以下のランク順序:SBE5.2−γ−CD>SPE5.4−γ−CD>SBE6.1−γ−CD>SBE9.7−γ−CD>>SBE7−α−CD>SBE6.7−β−CD>SPE7−β−CDとなった。フランカルボン酸モメタゾンでは、可溶化力はSAE−CDのこの濃度範囲で、大体以下のランク順序:SBE9.7−γ−CD>SBE6.1−γ−CD>SBE5.2−γ−CD>>SPE5.4−γ−CD>SBE7−α−CD>SBE6.7−β−CD>SPE7−β−CDとなった。ブデソニドおよびトリアムシノロンとSAE−CDの特定の実施形態との結合について違いが観察された。本発明によれば、SAE−γ−CDは、SAE−β−CDに比べてコルチコステロイドとよく結合する。また、SAE−β−CDは、SAE−α−CDよりもよくブデソニドと結合する。データは、図13〜14にまとめられている。
Figure 2007517067
Figure 2007517067
Figure 2007517067
本発明者は、さらに、SAE−γ−CDは、同じコルチコステロイドとSAE−β−CDまたはSAE−α−CDとの錯体を形成することと比較して、特にエステル化および非エステル化コルチコステロイドの錯化に使用するのに適していることも発見した。上の表は、さらに、置換度が5から10の範囲内のさまざまな異なるSAE−γ−CD化学種とのフルチカゾンおよびプロピオン酸フルチカゾンについて図15に示されている相溶解度データをまとめたものである。
本発明者は、SAE−γ−CDは、さらに、SAE−β−CDまたはSAE−α−CDよりも、エステル化コルチコステロイドの特定の位置異性体との結合においてかなり有効であることも発見した。実施例18で説明されている手順では、SAE−γ−CDおよびSAE−β−CDと一連の構造的に関係のあるコルチコステロイド誘導体との結合の比較評価を詳しく述べている。以下の表は、SBEx−γ−CD(xは平均置換度を表す)、誘導体、およびSBE−β−CD誘導体と異なる形態のベクルメタゾン(beclmethasone)との結合を比較する研究結果をまとめたものである。
Figure 2007517067
調査研究から、SBE(3.4)γ−CD(0.04M)が存在している場合、すべての形態のベクロメタゾンはその最高溶解度であるか、またはその近くにあったことがわかる。B17P、すなわちBDPの活性代謝産物が、全ての誘導体化されたCDにおいて、エステル化されたベクロメタゾン形態の最高溶解度となっている。これらの結果から、SBE−γ−CDは、Captisolまたはγ−CD単独の場合よりも、ジプロピオン酸ベクロメタゾンとよく錯体を形成することがわかる。評価されたSAE−CD誘導体のうち、BDPの溶解度の最高の増強を与えるSBEγ−CDの最適な置換度は、DS=3.4であり、溶解度は、置換度が上昇すると共にほぼ直線的に低下する。これは、24時間および5日の両方の平衡時間についてあてはまる。したがって、SAE−CDによるBDP可溶化に関して、SBE(3.4)γ−CD>SBE(5.2)γ−CD>SBE(6.1)γ−CD>SBE(7.5)γ−CD>γ−CD>Captisol(SBE7−β−CD)となる。データは、図16にまとめられている。したがって、本発明者らは、SAE−γ−CDシクロデキストリン誘導体が思いがけなくSAE−β−CD誘導体よりもコルチコステロイドの可溶化に優れることを発見した。さらに、SAE−γ−CDベースの製剤は、SAE−CD誘導体がそうでないことを示唆する、Worthら(上記)の開示とは反対に、吸入可能製剤での使用に適している。
「錯化された」とは、「〜との包摂化合物または包接錯体の一部である」、すなわち、錯化された治療剤は、シクロデキストリン誘導体との包摂化合物または包接錯体の一部であるということである。「大部分」とは、少なくとも約50質量%を意味する。そのため、本発明による製剤は、約50質量%を超える量がシクロデキストリンと錯体を形成する活性物質を含むことができる。錯化された活性物質の実際の割合は、特定のシクロデキストリンと特定の活性物質との錯体形成を特徴付ける錯体生成平衡定数により異なる。本発明は、さらに、活性物質がシクロデキストリンと錯体を形成していない、または活性物質の小部分が誘導体化されたシクロデキストリンと錯体を形成する実施形態も含む。SAE−CD、または他の何らかのアニオン性誘導体化シクロデキストリンは、プラスに帯電した化合物と1つまたはそれ以上のイオン結合を形成できることに留意されたい。イオン会合は、プラスに帯電した化合物が空洞への包摂、または塩橋の形成のいずれかにより、シクロデキストリンと錯体を形成するかどうかに関係なく発生しうる。
薬剤の誘導体化シクロデキストリンへの結合は、酸または塩基を薬剤およびシクロデキストリンと共に含めることにより改善することができる。例えば、塩基性薬剤のシクロデキストリンへの結合は、酸をその塩基性薬剤およびシクロデキストリンと共に含めることにより改善することができる。同様に、酸性薬剤のシクロデキストリンへの結合は、塩基(アルカリ物質)を酸性薬剤およびシクロデキストリンと共に含めることにより改善することも可能である。中性薬剤の結合は、塩基性、酸性、または他の中性化合物を中性薬剤およびシクロデキストリンと共に含めることにより改善することができる。好適な酸化合物は、無機酸および有機酸を含む。無機酸の実例としては、塩化水素酸および臭化水素酸などの鉱酸がある。他の好適な酸は、硫酸、スルホン酸、スルフェン酸、およびリン酸を含む。有機酸の実例は、酢酸、アスコルビン酸、炭酸、クエン酸、酪酸、フマル酸、グルタル酸、グリコール酸、α−ケトグルタル酸、乳酸、リンゴ酸、メバロン酸、マレイン酸、マロン酸、シュウ酸、ピメリン酸、プロピオン酸、コハク酸、酒石酸、またはタルトロン酸などの脂肪族カルボン酸である。脂肪族鎖内に1つ以上の含酸素置換基を持つ脂肪族カルボン酸も有用である。複数の酸の組み合わせを使用することもできる。
好適な塩基化合物は、無機塩基および有機塩基を含む。好適な無機塩基は、アンモニア、金属酸化物、および金属水酸化物を含む。好適な有機塩基は、第一級アミン、第二級アミン、第三級アミン、イミダゾール、トリアゾール、テトラゾール、ピラゾール、インドール、ジエタノールアミン、トリエタノールアミン、ジエチルアミン、メチルアミン、トロメタミン(TRIS)、芳香族アミン、不飽和アミン、第一級チオール、および第二級チオールを含む。複数の塩基の組み合わせを使用することもできる。
アニオン性誘導体化シクロデキストリンは、酸イオン化剤と錯体を形成するか、または他の何らかの形で結合することができる。本明細書で使用されているように、酸イオン化剤という用語は、酸の存在下でイオン化状態になるか、またはイオン化される化合物を意味するものと解釈する。酸イオン化剤は、酸に曝されたとき、または酸性媒体中に置かれたときにイオン化状態になる少なくとも1つの酸イオン化官能基を含む。例示的な酸イオン化官能基は、第一級アミン、第二級アミン、第三級アミン、第四級アミン、芳香族アミン、不飽和アミン、第一級チオール、第二級チオール、スルホニウム、水酸基、エノール、および化学分野の当業者に公知の他の基を含む。
酸イオン化剤が、包摂錯体形成に対する非共有イオン結合により結合される程度を、例えば1HNMR、13CNMR、または円偏光二色性などの方法を使用する分光光度法によ
り、また酸イオン化剤およびアニオン性誘導体化シクロデキストリンの相溶解度データの分析により、決定することができる。当業者であれば、これらの従来の方法を使用して、化学種間の結合が、主に、非共有イオン結合または包接錯体形成により発生しているかどうかを判別するために溶液中に生じているそれぞれの種類の結合の量を近似することができる。両方の手段により誘導体化シクロデキストリンに結合する酸イオン化剤は、一般に、二相性相溶解度曲線を示す。非共有イオン結合が包接錯体形成よりも優位である条件の下では、包接錯体形成の量(NMRまたは円偏光二色性により測定される)は、これらの条件の下で相溶解度データが化学種間の有意な結合を示すとしても、低下し、さらに、酸イオン化剤の固有溶解度(相溶解度データから決定されるものとして)は、一般に、これらの条件の下で予想される以上に高くなる。
本明細書で使用されているように、非共有イオン結合という用語は、アニオン種とカチオン種との間に形成される結合を指す。この結合は、2つの化学種が一緒になって塩またはイオン対を形成するような非共有である。アニオン性誘導体化シクロデキストリンは、イオン対のアニオン種を与え、酸イオン化剤は、イオン対のカチオン種を与える。アニオン性誘導体化シクロデキストリンは多価であるため、SAE−CDは、1つ以上の酸イオン化剤とイオン対を形成することができる。
親シクロデキストリンは、SAE−CDおよびHPCDと比べて、限られた水溶解度を有する。未誘導体化α−CDの水溶解度は、飽和時に約14.5%w/vである。未誘導体化β−CDの水溶解度は、飽和時に約1.85%w/vである。未誘導体化γ−CDの水溶解度は、飽和時に約23.2%w/vである。ジメチル−β−シクロデキストリン(DMCD)は、飽和時に43%w/wの水溶液を形成する。SAE−CDを吸入可能溶液中で1つまたはそれ以上の他のシクロデキストリンまたはシクロデキストリン誘導体と組み合わせて、コルチコステロイドを可溶化することができる。
本発明に従って使用することができる他の水溶性シクロデキストリン誘導体は、ヒドロキシエチル、ヒドロキシプロピル(2−および3−ヒドロキシプロピルを含む)、およびジヒドロキシプロピルエーテル、その対応する混合エーテルおよびα−、β−、およびγ−シクロデキストリンのメチルヒドロキシエチル、エチル−ヒドロキシエチル、およびエチルヒドロキシプロピルエーテルなどのメチルまたはエチル基との他の混合エーテル;ならびに1つ以上の糖残基、例えば、グルコシルまたはジグルコシル、マルトシルまたはジマルトシル、さらにはそれらのさまざまな混合物、例えば、マルトシルおよびジマルトシル誘導体の混合物を含むことができる、α−、β−、およびγ−シクロデキストリンのマルトシル、グルコシル、およびマルトトリオシル誘導体を含む。本発明で使用する特定のシクロデキストリン誘導体は、ヒドロキシプロピル−β−シクロデキストリン、ヒドロキシエチル−β−シクロデキストリン、ヒドロキシプロピル−γ−シクロデキストリン、ヒドロキシエチル−γ−シクロデキストリン、ジヒドロキシプロピル−β−シクロデキストリン、グルコシル−α−シクロデキストリン、グルコシル−β−シクロデキストリン、ジグルコシル−β−シクロデキストリン、マルトシル−α−シクロデキストリン、マルトシル−β−シクロデキストリン、マルトシル−γ−シクロデキストリン、マルトトリオシル−β−シクロデキストリン、マルトトリオシル−γ−シクロデキストリンおよびジマルトシル−β−シクロデキストリン、ならびにマルトシル−β−シクロデキストリン/ジマルトシル−β−シクロデキストリン、さらにはメチル−β−シクロデキストリンなどのそれらの混合物を含む。そのようなシクロデキストリン誘導体を製造する手順は、よく知られており、例えば、1991年6月18日に発行されたBodorの米国特許第5,024,998号およびそこに引用されている文献に記載されている。本発明で使用するのに適している他のシクロデキストリンは、ORGANON(AKZO−NOBEL)により製造されているORG 26054およびORG 25969などのカルボキシアルキルチオエーテル誘導体、EASTMANにより製造されているヒドロキシブテニルエーテル誘導体、スルホアルキル−ヒドロキシアルキルエーテル誘導体、スルホアルキル−アルキルエーテル誘導体、ならびに米国特許付与前特許出願公開第2002/0128468号、第2004/0106575号、第2004/0109888号、および第2004/0063663号、または米国特許第6,610,671号、第6,479,467号、第6,660,804号、または第6,509,323号で説明されているような他の誘導体を含む。
HP−β−CDは、Research Diagnostics Inc.(ニュージャージー州フランダーズ)から入手できる。HP−β−CDは、異なる置換度のものを利用できる。例示的な製品は、ENCAPSIN(商標)(置換度約4、HP4−β−CD)およびMOLECUSOL(商標)(置換度約8、HP8−β−CD)を含むが、他の置換度を含む実施形態も利用可能である。HPCDは、非イオン性なので、塩形態のものは入手できない。
ジメチルシクロデキストリンは、FLUKA Chemie(Buchs,CH)またはWacker(アイオワ州)から入手できる。本発明に適している他の誘導体化シクロデキストリンは、水溶性誘導体化シクロデキストリンを含む。例示的な水溶性誘導体化シクロデキストリンは、カルボキシル化誘導体、硫酸化誘導体、アルキル化誘導体、ヒドロキシアルキル化誘導体、メチル化誘導体、およびカルボキシ−β−シクロデキストリン、例えば、スクシニル−β−シクロデキストリン(SCD)、および6A−アミノ−6A−デオキシ−N−(3−カルボキシプロピル)−β−シクロデキストリンを含む。これらの物質はすべて、従来技術で公知の方法に従って製造できる。好適な誘導体化シクロデキストリンは、「Modified Cyclodextrins:Scaffolds and Templates for Supramolecular Chemistry」(Eds.Christopher J.Easton、Stephen F.Lincoln、Imperial College Press、London、UK、1999年)および「New Trends in Cyclodextrins and Derivatives」(Ed.Dominique Duchene、Editions de Sante、Paris、France、1991年)で開示されている。
スルホブチルエーテルβ−シクロデキストリン(CAPTISOL、CyDex Inc.、置換度=6.6)、2−ヒドロキシプロピルβ−シクロデキストリン(HP−β−CD、CERESTAR、置換度=5.5)、コハク酸化−β−シクロデキストリン(S−
CD、Cyclolab)、および2,6,ジ−o−メチル−β−シクロデキストリン(DM−CD、Fluka)%w/w溶液は、その固有pHで調製されるか、または必要に応じて緩衝化される。スルホアルキルエーテルγ−CDおよびスルホアルキルエーテルα−CD誘導体は、CyDex,Inc.(カンザス州レネクサ)およびカンザス大学(カンザス州ロレンス)から入手した。
所望の効果を得るために必要な誘導体化シクロデキストリンの量は、製剤を含む物質に応じて異なる。
異なるシクロデキストリンは、異なる程度でコルチコステロイドを可溶化することができる。図3は、水と比較してHP−β−CD、SBE7−β−CD、およびγ−CDを含むブデソニドのモル相溶解度曲線を示している。本発明者らは、SAE−CDがブデソニドを可溶化することに対し、他のシクロデキストリンおよびシクロデキストリン誘導体よりも優れていることを発見した。モルに基づくと、SBE−β−CDは、HP−β−CDよりも優れた、ブデソニドの可溶化剤である。さらに、SAE−CD誘導体の間の可溶力は、0.04から0.1MのSAE−CD濃度範囲でブデソニドに対し大体以下のランク順序:SBE5.2−γ−CD≒SPE5.4−γ−CD>SBE6.1−γ−CD>SBE7−α−CD>SBE9.7−γ−CD≒SBE6.7−β−CD>SPE7−β−CDとなった。例えば、0.1Mの濃度のSBE7−β−CDは、γ−CDまたはHP−β−CDよりも多くの量のブデソニドを可溶化することができた。さらに、SAE−CD含有噴霧可能製剤では、他の類似条件の下で投与されたγ−CDまたはHP−β−CDと比べて噴霧によるコルチコステロイドのアウトプット率が高い。
Captisol溶液の噴霧には、他のシクロデキストリンに関していくつかの利点があることが思いがけなく発見された。ネブライザーから出た液滴は、より有利なサイズであり、Captisol溶液は、他のシクロデキストリンの類似の溶液よりも高速に噴霧化される。以下の表は、Captisol溶液の平均粒径(Dv50)は、HP−β−CDまたはγ−CDのと比べて小さいことを示している。より重要なのは、以下の表からわかるように、Dv90は、他のシクロデキストリンが著しい数の非常に大きな液滴を有していたことを示していることである。データ(Malvern粒径)は、それぞれの製剤がPARI PRONEB ULTRAエアコンプレッサを備えたPARI LC PLUSネブライザーから放出されるそれぞれの製剤について得られた。小さな液滴サイズならばコルチコステロイドなどの活性物質が肺の奥深く送達することができるのに、吸入可能組成物より小さな液滴サイズが好ましい。
Figure 2007517067
この利点は、さらに、これらの溶液のアウトプット率に示されている。以下の表は、Captisolがネブライザーからより高速に、また他のシクロデキストリンよりも大きな度合いで放出され、Captisolが噴霧されるときにネブライザーのアウトプット率がより大きいことを示している。
Figure 2007517067
Captisolの利点は、さらに、さまざまなシクロデキストリンに溶解されているブデソニドを含む溶液を調製し、噴霧の性能と市販の懸濁液ベースの単位用量製剤である市販のPULMICORT(登録商標)、RESPULES(登録商標)の性能とを比較することにより実証された。PULMICORT(商標)の複数の単位用量アンプルから得られる懸濁液をプールして、複数回使用する懸濁液ベースの単位用量製剤を形成し、SAE−CD(特に、CAPTISOL)、HP−β−またはγ−シクロデキストリン粉末を加えて、0.25mg/mlのブデソニド溶液濃度とした。これらのブデソニド含有溶
液は、Captisol(P5C)5%w/v、γ−CD(P1γCD)1%w/v、およびヒドロキシプロピル−β−シクロデキストリン(P5HPβCD)5%w/vを含んでいた。それぞれ、すべての試験の少なくとも30分前に調製された。3つの製剤はすべて、無色澄明な溶液であった。(注意:ブデソニドの250mg/mL溶液は、「B」型溶解性挙動を示すのでγ−シクロデキストリンの5%w/v溶液中に作ることはできない)。懸濁液または溶液2mlアリコートを同じPari LC Plusネブライザーセットアップに入れ、放出液滴内のブデソニドの量を決定するためにフィルター上に集め、HPLCを使用してブデソニドを測定した。以下の表に示されているように、全アウトプット率(μg回収ブデソニド/スパッター時間)は、それぞれの懸濁液または溶液に対するものである。
Figure 2007517067
アウトプット率は、Captisol溶液で最も高く、等しい量の薬剤をより短時間のうちに送達することができることを示している。使用された条件の下では、β−CDは、水に対するβ−CDの限られた溶解性のせいで等しい量のコルチコステロイドを可溶化することはできない。
本発明は、他の懸濁液ベースの水性製剤と併用することができ、その製剤は、経鼻送達または経肺送達に適合させることができる。例示的な懸濁液ベースの水性製剤は、UDB製剤(Sheffield Pharmaceuticals,Inc.)、VANCENASE(商標)AQ(ジプロピオン酸ベクロメタゾン水性懸濁液、Schering Corporation、ニュージャージー州ケニルワース)、ATOMASE(商標)(ジプロピオン酸ベクロメタゾン水性懸濁液、Douglas Pharmaceuticals Ltd.、オーストラリア、オークランド)、BECONASE(商標)(ジプロピオン酸ベクロメタゾン水性懸濁液、Glaxo Wellcome)、NASACORT AQ(商標)(トリアムシノロンアセトニド経鼻スプレー、Aventis Pharmaceuticals)、TRI−NASAL(商標)(トリアムシノロンアセトニド水性懸濁液、Muro Pharmacaceuticals Inc.)、およびAEROBID−M(商標)(フルニソリド吸入エアロゾル、Forest Pharmaceuticals)、NASALIDE(商標)およびNASAREL(商標)(フルニソリド経鼻スプレー、Ivax Corporation)、FLONASE(商標)(プロピオン酸フルチカゾン、GlaxoSmithKline)、およびNASONEX(商標)(フランカルボン酸モメタゾン、Schering−Plough Corporation)を含む。
懸濁液製剤は、粒子、微粒子、ナノ微粒子、またはナノ結晶形態で存在するコルチコステロイドを含むことができる。したがって、SAE−CDは、コルチコステロイド懸濁液ベースの単位用量製剤の投与を改善するために使用することができる。さらに、SAE−CDは、他のシクロデキストリン誘導体よりも性態が優れている。
一実施形態によれば、SAE−CD(固体または液体)およびコルチコステロイドを含む懸濁液ベースの単位用量製剤を混合する。SAE−CDは、可溶化されたコルチコステロイドの量を増やす、すなわち、その中の未可溶化コルチコステロイドの量を減らすのに十分な量で存在する。投与前に、液体を、場合により滅菌濾過または最終滅菌することができる。その後、ネブライザーを使用してこの液体を被験者に吸入投与する。その結果、被験者が服用する薬剤の量は、改変していない懸濁液製剤が投与された場合に被験者が服用していたはずの量よりも多い。
他の実施形態により、SAE−CD(液体形態で、すぐに使用できる液体として、または濃縮物として)およびコルチコステロイドを含む固体単位用量製剤を混合して、液体製剤を形成する。SAE−CDは、コルチコステロイドの相当部分を可溶化するのに十分な量で存在する。その後、ネブライザーを使用してこの液体を吸入投与する。
他の実施形態により、SAE−CD(固体)および、コルチコステロイドを含む固体単位用量製剤を混合し、固体混合物を形成し、これに、噴霧可能製剤を形成するのに十分な量で水性液体担体を加える。場合によっては、液体担体を加えた後、混合および/または加熱を使用して、製剤を形成する。SAE−CDは、コルチコステロイドの相当部分を可溶化するのに十分な量で存在する。その後、ネブライザーを使用してこの製剤を吸入投与する。
リザーバのサイズは、ネブライザーの種類毎に異なる。特定の種類またはブランドのネブライザーのリザーバに装填するのに必要な体積になるように、液体製剤の体積を必要に応じて調整することができる。追加液体担体またはSAE−CDを含む追加溶液を加えることにより、体積を調整することができる。
一般に、コルチコステロイドの単回使用の懸濁液ベースの単位用量製剤は、液体担体約50μlから10ml中に懸濁されたコルチコステロイド約0.125、0.25、0.5、1、2、または約0.125から約2mgを含む。それとは別に、コルチコステロイドは、懸濁液1ml当たりコルチコステロイド約20mcgから約30mgの濃度で存在する。その結果、SAE−CD約10から500mg、またはSAE−CD 10から250mg、またはSAE−CD 10から300mgを、固体形態であるにせよ、液体担体に溶解されているにせよ、懸濁液1mL毎に加え、それによってコルチコステロイドの相当部分を溶解し、噴霧可能単位用量液体製剤を形成し、その後これを被験者に投与する。
一般に、コルチコステロイドの複数回使用する懸濁液ベースの単位用量製剤は、液体担体1から100ml中に懸濁されたコルチコステロイド約0.125から約2mgを含む
。複数回使用する製剤は、実際には、コルチコステロイドの2つ以上の単位用量を含む。単回の単位用量アリコートを複数回使用する単位用量製剤から取り出し、その単回の単位用量を典型的には1ずつ被験者に投与する。その結果、SAE−CD約10から500mgを、固体形態であるにせよ、液体担体に溶解されているにせよ、懸濁液1ml毎に加え、それによってコルチコステロイドの相当部分を溶解し、複数回使用する単位用量液体製剤を形成し、その後これを単回の単位用量アリコートで被験者に投与する。
本発明の重要な態様は、懸濁液ベースの単位用量製剤が、被験者に(噴霧化されたミストで)経肺吸入投与する前に液体単位用量製剤に転換されることである。この転換は、懸濁液が用意される同じ容器内で、または異なる容器内で、またはネブライザーのリザーバ内で行うことができる。液体製剤を形成するために、コルチコステロイドの相当部分を溶解しなければならない。溶解されたコルチコステロイドの量に関連して使用されるように、「相当部分」は、コルチコステロイドの少なくとも20質量%、少なくとも30質量%、少なくとも40質量%、または少なくとも20質量%、および50質量%未満である。溶解されたコルチコステロイドの量に関連して使用されるように、「大部分」は、コルチコステロイドの少なくとも50質量%である。
調剤薬局に勤めている薬剤師は、コルチコステロイドを含む懸濁液ベースの単位用量製剤を調製することができ、また調製することはよく知られている。このような薬剤師は、本明細書で説明されている方法を採用することにより単回使用の、または複数回使用の液体単位用量製剤を調製することができる。それとは別に、コルチコステロイド治療を受ける被験者(患者)は、本明細書で説明されている方法を採用することにより懸濁液ベースの製剤を本発明の液体製剤に転換することができる。薬局で懸濁液から液体製剤を調製する代わりに、懸濁液製剤およびSAE−CDを含むキットを用意することができ
る。
溶液中のSAE−CDの濃度は、質量対質量または質量対体積に基づいて表すことができるが、これら2つの単位は、相互交換できる。公知の質量のシクロデキストリンが公知の質量の水の中に溶解された場合、%w/wシクロデキストリン濃度は、グラム単位のシクロデキストリンの質量を同様の単位の総質量(シクロデキストリン+水の質量)で除算し、100を掛けることにより決定される。公知の質量のシクロデキストリンが公知の全体積に溶解された場合、%w/vシクロデキストリン濃度は、グラム単位のシクロデキストリンの質量をミリリットル単位の全体積で除算し、100を掛けることにより決定される。2つのシクロデキストリン濃度百分率の間の相関関係は、さまざまな%w/wシクロデキストリン溶液を調製し、25℃で比重瓶を使ってそれぞれの密度を測定することにより実験的に決定された。それぞれの%w/w CAPTISOL溶液の密度(g/mL)は以下の表に示されている。
Figure 2007517067
その結果の直線的関係から、%w/wで表されているCAPTISOL濃度を、式
%w/v=[(%w/w×勾配)+y−切片]×%w/w
により%w/vで表された濃度に容易に変換することができるが、ただし、勾配および切片の値は、表の中の密度データの直線回帰から決定される。例えば、上記の式を使用することにより、40%w/wのCAPTISOL溶液は、約48.3%w/vのCAPTI
SOL溶液に相当する。
ネブライザーにおける本発明の吸入可能溶液の性能は、リザーバ内の溶液、噴霧溶液の粘度に左右される場合がある。SBE7−β−CDの水溶液の粘度は、上の表に近似的に示されているように濃度に関して変化する。吸入可能組成物の粘度は、ネブライザーから放出される噴霧組成物の割合、噴霧化コルチコステロイドのアウトプット率、および液滴サイズ分布に影響を及ぼす可能性がある。
ネブライザーのリザーバ内に残されている残留噴霧吸入可能組成物の量は、ブデソニド含有懸濁液の場合よりもSAE−CDを含む溶液の場合のほうが大きい場合がある。例えば、図4は、4つの異なる噴霧組成物(PULMICORT RESPULES懸濁液、5%w/w SBE7−β−CD溶液、10%w/w SBE7−β−CD溶液、および20%w/w SBE7−β−CD溶液)のそれぞれに対し3つの異なるネブライザー(PARI LC PLUS、HUDSON UPDRAFT II NEB−U−MIST、およびMYSTIQUE)から放出される噴霧組成物の推定パーセンテージのグラフである。PULMICORT RESPULES懸濁液は、対照として使用された。PARI LC PLUS、MYSTIQUE、およびHUDSONネブライザーは、この比較のために使用された。MYSTIQUEネブライザーは、懸濁液および濃縮SAE−CD溶液(20%w/w)を効率よく噴霧化することができず、そのネブライザーでは評価されなかった。これらの結果から、試験された条件の下で、PULMICORT RESPULES懸濁液を噴霧すると、噴霧化される組成物の割合が多くなる、すなわち懸濁液の場合、溶液の場合と比べて噴霧の完了後にネブライザーのリザーバに噴霧組成物はあまり残っていないことが示唆される。場合によっては、懸濁液を噴霧することで、ネブライザーにより放出される全組成物は最大質量%になった。すなわち、類似の噴霧条件の下で、PARI LC PLUSおよびHUDSONネブライザーは、噴霧溶液よりも効率的に噴霧懸濁液の体積を減らしているが、これは、ネブライザーにより放出される薬剤の総量に対応しなかったということである。
それぞれブデソニドを含む、SAE−CD噴霧溶液のアウトプット率と懸濁液のアウトプット率を比較した。実施例10の方法の修正バージョンに従って、アウトプット率を決定した。以下の表は、観察されたデータをまとめたものである。
Figure 2007517067
データは、PARI PRONEB ULTRAエアコンプレッサを備えるPARI LC PLUSネブライザーを使用して得られた。
Figure 2007517067
データは、MYSTIQUE超音波ネブライザーを使用して得られた。
上記の製剤はすべて、ブデソニド約250μg/mLを含む。「P5C」と示されている試料は、SBE7−β−CD 50mg/mL(または約5%)を含んでいる。
以下の表は、SAE−CDのさまざまなレベルを含む溶液に対するネブライザーアウトプット率を示している。
Figure 2007517067
驚いたことに、SAE−CD含有溶液の噴霧化により、ネブライザーが放出する懸濁液の総量が多かったとしてもブデソニドのアウトプット率は、PULMICORT RESPULES懸濁液の噴霧化よりも高かった。特定のメカニズムへの束縛を受けるものではないが、ネブライザーは懸濁液の粒子よりもむしろ懸濁液の水を噴霧化し、それにより、リザーバ内の懸濁液中のブデソニドのモル濃度が高まるものと考えられる。SAE−CD濃度が25%w/vを超えて高いほど、いったん粘度がほぼ上限を超えると、噴霧時間はわずかに長くなり、アウトプット率は低下した。
上のデータに基づき、21.5±5%w/wのSBE7−β−CD濃度は、試験された
ネブライザーの近似的な許容上限レベルであると同定されたが、ただし「許容」は、噴霧時間およびアウトプット率に悪影響を及ぼす可能性のある、過剰な粘度を発生することなく使用できるSBE7−β−CDの上限濃度と定義される。SAE−CDの濃度に対する実用上の上限は、ネブライザーの形式により変動する。ネブライザーで使用する液体製剤中のSAE−CDの許容上限濃度は、誘導体のDS、スルホアルキル官能基のアルキル鎖の長さ、および/またはSAE−CDのCD環の大きさによって変動する場合がある。
気道への投与、特に肺への投与では、ネブライザーを使用して、適切なサイズの液滴を生成させる。典型的には、ネブライザーにより吸入用に生成される液滴の粒径は、約0.
5から約5ミクロンまでの範囲である。液滴が気道の下側領域、すなわち肺胞および終末細気管支に到達するのが望まれる場合、好ましい粒径範囲は、約0.5から約2.5ミクロンである。液滴が上気道に到達するのが望まれる場合、好ましい粒径範囲は、2.5ミク
ロンから5ミクロンである。
上述のように、噴霧組成物の粘度は、液滴サイズおよび液滴サイズ分布に影響を及ぼす可能性がある。例えば、本発明の製剤は、ブデソニドが存在しない場合にSAE−CDのより低い濃度で、したがって、より低い粘度で、Dv50に関してより大きな液滴を形成する傾向がある。図5a〜5bは、PARI LC PLUSネブライザーでの吸入可能組成物の噴霧に対する液滴サイズデータを示している。図のそれぞれについて、MALVERNレーザー光散乱装置(Mastersizer S、Malvern Instruments Ltd.Malvern、英国ウスターシャー州)を使用して、MMADを測定した。図5aは、ブデソニドが存在しない場合のさまざまな濃度(5%w/v、10%w/v、および20%w/v)のγ−CD溶液を使用して得られた結果を示している。これらの結果から、γ−CDはそのままでは、ネブライザー内で許容できる挙動を示さないことがわかるが、それは、溶液の集まり(mass)のほとんどすべてが、許容できない液滴サイズ範囲にあるからである。ネブライザーにより大幅なリサイクルおよび液滴サイズ選択を行ったとしても、コルチコステロイドを含むγ−CDベースの噴霧溶液は、適切な液滴サイズ範囲にある集まりの割合が低いため、特に、γ−CDが試験される濃度でブデソニドの有効な可溶化剤でないので、きわめて長い投薬期間を要することになる。
対照的に、図5bは、PULMICORT RESPULES懸濁液または異なる濃度(5%w/v、10%w/v、および20%w/v)のSAE−CDを含む改変されたPULMICORT RESPULES溶液と共に同じネブライザーを使用して得られた結果を示している。これらの試料のそれぞれで、噴霧化された集まりの大半は、呼吸可能なサイズ範囲にある。さらに、SAE−CDを含む溶液は、明らかに、サイズの面で噴霧懸濁液に匹敵する液滴を形成する。
図6は、PULMICORT RESPULES懸濁液または異なる濃度(5%w/v、10%w/v、および20% w/v)のSAE−CDを含む溶液を充填したHUDSON UPDRAFT II NEBUMISTネブライザーを使った吸入可能組成物の噴霧に関する液滴サイズデータを示している。PARI LC PLUSネブライザーと比較して、NEB−U−MISTは、少し大きな粒径分布を形成し、噴霧集まりのかなりの部分がまだ適切なサイズ範囲にある。したがって、懸濁液から作られ、SAE−CDを含む噴霧溶液は、さまざまな異なる空気駆動ジェット式ネブライザーで使用するのに適している。
PULMICORT RESPULES懸濁液の説明書には、この懸濁液は超音波ネブライザーで噴霧してはならないと記載されている。図7は、MYSTIQUE超音波ネブライザーでの吸入可能組成物の噴霧についての液滴サイズデータを示している。これらの組成物は、3つの異なるSAE−CD含有溶液を含む。懸濁液とは異なり、SAE−CD含有溶液は、超音波ネブライザーで噴霧できる。そこで、本発明は、超音波ネブライザーから懸濁液ベースの単位用量製剤中のコルチコステロイドの経肺投与を改善する方法を提供し、この方法は、懸濁液ベースの単位用量製剤中の未溶解コルチコステロイドの量を減らすのに十分な量でSAE−CDを製剤に含める工程を含む。
ネブライザー全般に亘る噴霧組成物の性能は、典型的には、それぞれの組成物についての液滴サイズ分布のDv50を比較することにより比較される。図8は、上述の3つのネブライザーでの吸入可能組成物の噴霧についての比較Dv50液滴サイズデータを示している。それぞれの場合において、SAE−CD含有溶液は、濃度範囲に亘って噴霧投与に適している。さらに、液滴サイズ分布は、SAE−CDの濃度を調整することにより部分的に制御することができる。
図9は、特定のセットアップに異なる圧縮空気源を必要とするさまざまな異なるネブライザー、RAINDROP−Rat、RAINDROP−Dog、PARI LC STAR−UNC、PARI LC STAR−Rat PARI LC PLUS、およびDEVILBISS PULMO AIDE空気駆動ジェット式ネブライザーにおけるSAE−CDの濃度とSAE−CDのアウトプット率との関係を示すグラフである。これらのネブライザーは、独立式だけでなく動物曝露室(animal exposure chambers)および/または個人曝露マスク(individual exposure masks)を含むさまざまなセットアップで使用された。一般に、これらのデータから、SAE−CDのアウトプットは、SAE−CD濃度の増大と共に増大することがわかっている。使用されるネブライザー、ネブライザーの操作条件、および溶液中のSAE−CDの濃度に応じて、異なる最高アウトプット率が得られる。例えば、Raindrop−Dogセットアップの最大アウトプット率は、250mg/mL以上のCAPTISOL濃度である。
PULMICORT RESPULES懸濁液の超音波ネブライザー噴霧化が推奨されないとしても、行うことはできる。図10a〜10bは、PULMICORT RESPULES懸濁液および改変したPULMICORT RESPULESベースのSAE−CD溶液のPARI LC PLUSおよびMYSTIQUEネブライザーを使用する噴霧溶液に関する比較液滴サイズデータを示す図である。5%w/v SBE7−β−CDを含む場合と含まない場合のPULMICORT RESPULES懸濁液を試験試料として使用した。実施例12の手順に従った。図10aは、PARI LC PLUS空気駆動ジェット式ネブライザーで放出される溶液のDv10およびDv50データを示しており、図10bは、MYSTIQUE超音波ネブライザーで放出される溶液のDv10およびDv50データを示している。それぞれの場合において、2つの異なる溶液についての液滴サイズデータは比較可能である。しかし、2つの溶液についてのブデソニドアウトプット率は、著しく異なっていた。しかし、噴霧組成物にSAE−CDを使用すると、ネブライザーの形式に関係なくブデソニドのアウトプット率が増大する。そこで、本発明は、ネブライザーにより送達されるコルチコステロイド含有懸濁液ベースの単位用量製剤のアウトプット率を高める方法を提供し、この方法は、改変した製剤を形成するために製剤中に溶解されているコルチコステロイドの量を高めるのに十分な量でSAE−CDを製剤中に含める工程を含み、これにより、改変した製剤に対するコルチコステロイドのアウトプット率は、懸濁液製剤に対するコルチコステロイドのアウトプット率よりも高くなる。
本発明で有用なコルチコステロイドは、一般に、糖質コルチコイドおよび鉱質コルチコイドを含む副腎皮質により製造されるステロイド、および抗炎症性を有する天然に生ずるコルチコステロイドの合成類似化合物および誘導体を含む。好適な合成類似化合物は、プロドラッグ、エステル誘導体を含む。本発明の組成物中で使用できるコルチコステロイドの実例は、アルドステロン、ベクロメタゾン、ベタメゾン、ブデソニド、シクレソニド(Altana Pharma AG)、クロプレドノール、コルチゾン、コルチバゾール、デオキシコルトン(deoxycortone)、デソニド、デスオキシメタゾン、デキサメタゾン、ジフルオロコルトロン、フルクロロロン(fluclorolone)、フルメタゾン、フルニソリド、フルオシノロン、フルオシノニド、フルオコルチンブチル、フルオロコルチゾン、フルオロコルトロン、フルオロメトロン、フルランドレノロン(flurandrenolone)、フルチカゾン、ハルシノニド、ヒドロコルチゾン、イコメタゾン(icomethasone)、メプレドニゾン、メチルプレドニゾロン、モメタゾン、パラメタゾン、プレドニゾロン、プレドニゾン、ロフレポニド、RPR 106541、チクソコルトール(tixocortol)、トリアムシノロン、およびジプロピオン酸ベクロメタゾン(無水物または一水和物)、モノプロピオン酸ベクロメタゾン、21−イソニコチン酸デキサメタゾン、プロピオン酸フルチカゾン、イコメタゾンエンブテート(icomethasone enbutate)、21−ピバル酸チクソコルトール、およびトリアムシノロンアセトニドなどのそれらのそれぞれの薬剤として許容される誘導体を含む。特に好ましいのは、ジプロピオン酸ベクロメタゾン、ブデソニド、フルニソリド、プロピオン酸フルチカゾン、フランカルボン酸モメタゾン、およびトリアムシノロンアセトニドなどの化合物である。まだ商品化されていないが、本出願の出願移行に商品化される他のコルチコステロイドは、他の形で適当でないと実験により確立されない限り本発明において有用であると考えられる。
コルチコステロイド化合物は、約1μg/mlから約10mg/ml、約10μg/mlから約1mg/ml、または約20μg/mlから約500μg/mlの量の吸入用に設計された最終的な希釈コルチコステロイド組成物中に存在する。例えば、薬剤濃度は、投与される体積に応じて、トリアムシノロンアセトニドについては約30から1000μg/ml、ブデソニドについては約50から2000μg/mlである。本発明の好ましい方法に従って、水溶液の組成物内に比較的高い濃度のコルチコステロイドを得ることができる。
同様に、コルチコステロイド化合物は、約50μg/mlから約10mg/ml、約100μg/mlから約2mg/ml、または約300μg/mlから約1mg/mlの量の経鼻投与用に設計された最終的な希釈コルチコステロイド組成物中に存在する。例えば、薬剤濃度は、投与される体積に応じて、トリアムシノロンアセトニドについては約250μg/mlから1mg/ml、ブデソニドについては約400μg/mlから1.6mg/mlである。
気管支炎症の治療用には、希釈コルチコステロイド組成物が本明細書で説明されているように調製される。このような治療用のコルチコステロイドは、ジプロピオン酸ベクロメタゾン、ベタメゾン、ブデソニド、デキサメタゾン、フルニソリド、プロピオン酸フルチカゾン、フランカルボン酸モメタゾン、またはトリアムシノロンアセトニドのいずれかであるのが好ましく、本明細書で規定されている濃度で調製される。コルチコステロイドの日用量は、一般に、「Physician’s Desk Reference」により、薬剤と疾病に応じて、約0.05から10mgである。
コルチコステロイドは、中性、イオン、塩、塩基性、酸性、天然、合成、ジアステレオマー、異性体、鏡像体純度、ラセミ化合物、溶媒和物、無水物、水和物、キレート、誘導体、類似物、エステル化、非エステル化、または他の一般的な形態で存在しうる。活性物質が本明細書で指定されている場合はいつでも、そのような利用可能なすべての形態が含まれる。例えば、ブデソニドの公知のすべての形態は、本発明の範囲内にあると考えられる。
本発明の製剤は、2つまたはそれ以上の異なる活性物質を送達するために使用することができる。活性物質の特定の組み合わせを、本発明の製剤により提供できる。活性物質のいくつかの組み合わせとしては、1)第1の治療クラスからの第1の薬剤、および同じ治療クラスからの異なる第2の薬剤、2)第1の治療クラスからの第1の薬剤、および異なる治療クラスからの異なる第2の薬剤、3)第1の種類の生物活性を有する第1の薬剤、およびほぼ同じ生物活性を有する異なる第2の薬剤、4)第1の種類の生物活性を有する第1の薬剤、および異なる第2の種類の生物活性を有する異なる第2の薬剤を含む。活性物質の例示的な組み合わせは、本明細書で説明されている。
ブデソニドなどのコルチコステロイドは、1つまたはそれ以上の他の薬剤と組み合わせて投与することができる。このような他の薬剤は、β2アドレナリン受容体アゴニスト、局所麻酔剤、D2受容体アゴニスト、抗コリン剤を含む。
本発明で提供される組成物と組み合わせて使用するβ2−アドレナリン受容体アゴニストは、限定はされないが、アルブテロール(α1−(((1,1−ジメチルエチル)アミノ)メチル)−4−ヒドロキシ−1,3−ベンゼンジメタノール);バンブテロール(ジメチルカルバミン酸5−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,3−フェニレンエステル);ビトルテロール(4−メチル安息香酸4−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,2−フェニレンエステル);ブロキサテロール(3−ブロモ−α−(((1,1−ジメチルエチル)アミノ)メチル)−5−イソオキサゾールメタノール);イソプロテレノール(4−(1−ヒドロキシ−2−((1−メチルエチル−)アミノ)エチル)−1,2−ベンゼン−ジオール);トリメトキノール(1,2,3,4−テトラヒドロ−1−((3,4,5−トリメトキシフェニル)−メチル)−6,7−イソキノリンジオール);クレンブテロール(4−アミノ−3,5−ジクロロ−α−(((1,1−ジメチルエチル)アミノ)メチル)ベンゼンメタノール);フェノテロール(5−(1−ヒドロキシ−2−((2−(4−ヒドロキシフェニル)−1−メチルエチル)アミノ)エチル)−1,3−ベンゼンジオール);ホルモテロール(2−ヒドロキシ−5−((1RS)−1−ヒドロキシ−2−(((1RS)−2−(p−メトキシフェニル)−1−メチルエチル)アミノ)エチル)ホルムアニリド);(R,R)−ホルモテロール;デスホルモテロール((R,R)または(S,S)−3−アミノ−4−ヒドロキシ−α−(((2−(4−メトキシフェニル)−1−メチル−エチル)アミノ)メチル)ベンゼンメタノール);ヘキソプレナリン(4,4’−(1,6−ヘキサン−ジイル)−ビス(イミノ(1−ヒドロキシ−2,1−エタンジイル)))ビス−1,2−ベンゼンジオール);イソエタリン(4−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)ブチル)−1,2−ベンゼンジオール);イソプレナリン(4−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)エチル)−1,2−ベンゼンジオール);メタ−プロテレノール(5−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)エチル)−1,3−ベンゼンジオール);ピクメテロール(4−アミノ−3,5−ジクロロ−α−(((6−(2−(2−ピリジニル)エトキシ)ヘキシル)−アミノ)メチル)ベンゼンメタノール);ピルブテロール(α6−(((1,1−ジメチルエチル)−アミノ)メチル)−3−ヒドロキシ−2,6−ピリジンメタノール);プロカテロール(((R*,S*)−(±)−8−ヒドロキシ−5−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)ブチル)−2(1H)−キノリン−オン);レプロテロール((7−(3−((2−(3,5−ジヒドロキシフェニル)−2−ヒドロキシエチル)アミノ)−プロピル)−3,7−ジヒドロ−1,3−ジメチル−1H−プリン−2,6−ジオン);リミテロール(4−(ヒドロキシ−2−ピペリジニルメチル)−1,2−ベンゼンジオール);サルブタモール((±)−α1−(((1,1−ジメチルエチル)アミノ)メチル)−4−ヒドロキシ−1,3−ベンゼンジメタノール);(R)−サルブタモール;サルメテロール((±)−4−ヒドロキシ−α1−(((6−(4−フェニルブトキシ)ヘキシル)−アミノ)メチル)−1,3−ベンゼンジメタノール);(R)−サルメテロール;テルブタリン(5−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,3−ベンゼンジオール);ツロブテロール(2−クロロ−α−(((1,1−ジメチルエチル)アミノ)メチル)ベンゼンメタノール);およびTA−2005(8−ヒドロキシ−5−((1R)−1−ヒドロキシ−2−(N−((1R)−2−(4−メトキシフェニル)−1−メチルエチル)アミノ)エチル)カルボスチリル塩酸塩)を含む。
ドーパミンD2受容体アゴニストは、限定はされないが、アポモルヒネ((r)−5,6,6a,7−テトラヒドロ−6−メチル−4H−ジベンゾ[de,glキノリン−10,11−ジオール);ブロモクリプチン((5’α)−2−ブロモ−12’−ヒドロキシ−2’−(1−メチルエチル)−5’−(2−メチルプロピル)エルゴタマン−3’,6’,18−トリオン);カベルゴリン((8β)−N−(3−(ジメチルアミノ)プロピル)−N−((エチルアミノ)カルボニル)−6−(2−プロペニル)エルゴリン−8−カルボキサミド);リスリド(N’−((8−α−)−9,10−ジデヒドロ−6−メチルエルゴリン−8−イル)−N,N−ジエチル尿素);ペルゴリド((8−β−)−8−((メチルチオ)メチル)−6−プロピルエルゴリン);レボドーパ(3−ヒドロキシ−L−トリロシン);プラミペキソール((s)−4,5,6,7−テトラヒドロ−N6−プロピル−2,6−ベンゾチアゾールジアミン);塩酸キンピロール(trans−(−)−4aR−4,4a,5,6,7,8,8a,9−オクタヒドロ−5−プロピル−1H−ピラゾロ[3,4−g]キノリン塩酸塩);ロピニロール(4−(2−(ジプロピルアミノ)エチル)−1,3−ジヒドロ−2H−インドール−2−オン);およびタリペキソール(5,6,7,8−テトラヒドロ−6−(2−プロペニル)−4H−チアゾロ[4,5−d]アゼピン−2−アミン)を含む。本発明で使用する他のドーパミンD2受容体アゴニストは、国際特許出願公開WO99/36095で開示されており、その関連する開示は、参照により本明細書に組み込まれる。
本発明で使用する抗コリン剤は、限定はされないが、臭化イプラトロピウム、臭化オキシトロピウム、硝酸メチルアトロピン、硫酸アトロピン、イプラトロピウム、ベラドンナエキス、スコポラミン、臭化メチルスコポラミン、臭化メチルホマトロピン、ヒヨスチアミン、イソプリオプラミド(isopriopramide)、オルフェナドリン、塩化ベンザルコニウム、臭化チオトロピウム、および臭化グリコピロニウムを含む。いくつかの実施形態では、組成物は、約5μg/mLから約5mg/mL、または約50μg/mLから約200μg/mLの濃度の臭化イプラトロピウムまたは臭化チオトロピウムなどの抗コリン剤を含む。他の実施形態では、本発明の方法で使用する組成物は、約83μg/mLまたは約167μg/mLの濃度の臭化イプラトロピウムおよび臭化チオトロピウムを含む、抗コリン剤を含む。
本発明において併用療法で使用する他の有効成分は、限定はされないが、米国特許第5,668,110号、第5,683,983号、第5,677,280号、第6,071,910号、第5,654,276号(関連する開示は参照により本明細書に組み込まれる)で開示されたものなどのIL−5阻害剤、米国特許第6,136,603号(関連する開示は参照により本明細書に組み込まれる)で開示されたものなどのIL−5のアンチセンス調節剤(antisense modulators)、ミルリノン(1,6−ジヒドロ−2−メチル−6−オキソ−[3,4’−ビピリジン]−5−カルボニトリル)、乳酸ミルリノン、米国特許第5,525,623号(関連する開示は参照により本明細書に組み込まれる)で開示されたものなどのトリプターゼ阻害剤、米国特許第5,691,336号、第5,877,191号、第5,929,094号、第5,750,549号、および第5,780,467号(関連する開示は参照により本明細書に組み込まれる)で開示されたものなどのタキキニン受容体アンタゴニスト、モンテルカストナトリウム(Singular(商標)、R−(E)]−1−[[[1−[3−[2−(7−クロロ−2−キノリニル)エテニル]フェニル]−3−[2−(1−ヒドロキシ−1−メチルエチル)フェニル]−プロピル]チオ]メチル]シクロプロパン酢酸、モノナトリウム塩)などのロイコトリエン受容体アンタゴニスト、ジレウトン(Zyflo(商標)、Abbott Laboratories、Abbott Park、Ill)などの5−リポキシゲナーゼ阻害剤、Xolair(商標)(組み換え型ヒト化抗−IgEモノクローナル抗体(CGP 51901、IGE 025A、rhuMAb−E25)、Genentech,Inc.、カリフォルニア州サウスサンフランシスコ)などの抗−IgE抗体、およびリドカイン、N−アリールアミド、アミノアルキルベンゾエート、プリロカイン、エチドカイン(米国特許第5,510,339号、第5,631,267号、および第5,837,713号(関連する開示は参照により本明細書に組み込まれる))などの局所麻酔剤を含む。
本発明は、気管支収縮疾患の1つまたはそれ以上の症状の治療、予防、または改善のための方法を含む。この方法は、さらに、(a)β2−アドレナリン受容体アゴニスト、(b)ドーパミン(D2)受容体アゴニスト、(c)ステロイドなどの、予防的治療薬、または(d)抗コリン剤のうちの1つまたはそれ以上を、本明細書で提示されている組成物と同時に、または前に、または後に、投与することを含む。
本発明の実施形態では、組み合わせを以下のさまざまな方法で調製できる。
1)レバルブテロールなどのβ2−アゴニストまたは臭化イパトロピウム(ipatropium)などの抗コリン剤のすぐに使用できる溶液を、SAE−CD中のコルチコステロイドのすぐに使用できる溶液と混合する。
2)β2−アゴニストまたは抗コリン剤のすぐに使用できる溶液を、SAE−CDを使用して溶解したコルチコステロイドの濃縮溶液と混合する。
3)β2−アゴニストまたは抗コリン剤のすぐに使用できる溶液を、実質的に乾燥しているSAE−CDおよび実質的に乾燥しているコルチコステロイドと混合する。
4)β2−アゴニストまたは抗コリン剤のすぐに使用できる溶液を、SAE−CDおよ
びコルチコステロイドの実質的に乾燥している混合物と、またはより便利に、カプセルなどのユニットコンテナ内の予め測定された量の混合物と混合する(カプセルをすぐに使用できる溶液内に空ける)。
5)ブデソニドなどのコルチコステロイドのすぐに使用できる溶液を、実質的に乾燥している長時間作用型もしくは短時間作用型β2−アゴニストと、および/または臭化イパトロピウムもしくは臭化チオトロピウムなどの実質的に乾燥している抗コリン剤と混合する。
6)実質的に乾燥しているβ2−アゴニスト、ならびに/または実質的に乾燥している抗コリン剤および実質的に乾燥しているSAE−CD、それに加えて、実質的に乾燥しているコルチコステロイドを溶解する。
当業者であれば、上記の溶液または粉末は、場合によっては、緩衝液および/もしくは等張化剤および/もしくは抗菌剤および/もしくは添加剤、または本明細書で述べているような、もしくはネブライザーのアウトプットを改善するために吸入可能液体製剤で現在使用されているような、他の賦形剤などの他の成分を含むことができることをよく理解するであろう。
本明細書で開示されている治療剤の投薬、使用、および投与は、一般にPhysician’s Desk Reference,55th Edition(Thompson Healthcare,Montvale,NJ,2005)(関連する開示が参照により本明細書に組み込まれる)に記載されているガイドラインに従うことが意図されている。
治療される、予防される、または1つまたはそれ以上の症状が改善しようとする気管支収縮疾患は、喘息(気管支喘息、アレルギー喘息および内因性喘息、例えば、遅発型喘息および気道過敏症を含むがこれに限定されない)ならびに、特に、抗コリン剤が使用される実施形態にあっては、他の慢性閉塞性肺疾患(COPD)[慢性気管支炎、肺気腫、および肺高血圧症、右心室肥大、および右心不全を伴う、関連する肺性心(肺および呼吸器系の疾病の二次性心疾患)を含むがこれに限定されない]と関連する。COPDは、喫煙、感染、環境汚染、および職業性粉塵曝露に関連することが多い。
本発明による製剤の貯蔵寿命は、6ヶ月以上である。この場合、貯蔵寿命は、ブデソニド分解副産物の量の増大または製剤中に残っているブデソニドの量の減少に関してのみ決定される。例えば、貯蔵寿命が少なくとも6ヶ月ある製剤の場合、この製剤は、少なくとも6ヶ月間の貯蔵期間中に分解生成物の量の許容できない、実質的増加を示さないことになる。許容可能な貯蔵寿命に対する基準は、与えられた製品およびその貯蔵安定性要件により必要に応じて設定される。すなわち、許容可能な貯蔵寿命を持つ製剤中の分解物の量は、意図された貯蔵期間中に所定の値を超えて増大することはないことになる。他方、許容されない貯蔵寿命を持つ製剤の分解物の量は、意図された貯蔵期間中に所定の値を超えて増大すると予想される。
実施例3の方法に従って、溶液中のブデソニドの安定性を調べた。貯蔵寿命は、有効性が10%失われるまでの時間と定義された。試験された条件の下で、有効性の喪失は一次のオーダーであった。Captisol−Enabled(登録商標)Budesonide Inhalation Solution(ブデソニドおよびSBE7−β−CDを含む溶液)の貯蔵寿命は、4から5までのpHにおいて約3年を超える、すなわち、EDTAなどの他の安定剤を約5質量%/vol.のSAE−CDの存在下で水の中に加えなくても、pH 4.0では約90ヶ月、pH 5.0では約108ヶ月である。この貯蔵寿命は、Otterbeckにより報告されている寿命よりも長い(米国特許第5,914,122号、EDTA、HP−β−CD、および他の添加剤の存在下で水の中でpH 4.0〜6.0により最大6週間)。
発明者は、さらに、SAE−CDがブデソニドの異性体をさまざまな程度に安定化することができることも発見した。SBE7−β−CDがブデソニド溶液を安定化したかどうか、優先的に一方の異性体を安定化したかどうかを調べる研究が実施例13に従って行われた。図11は、60℃で貯蔵されている試料に対するそれぞれの時点における初期濃度の%の半対数のグラフである。ブデソニドの損失は、それぞれの温度で一次のオーダーであった。以下の表は、60℃および80℃における、それぞれの異性体について計算された擬似一次速度定数を示している。
Figure 2007517067
SBE7−β−CDは、pH4とpH6の両方の溶液中のブデソニドのR−およびS−異性体を両方とも安定化した。CAPTISOLがある場合とない場合の速度定数比は、すべての温度において1よりもかなり小さかった。SBE7−β−CDは、R−およびS−の両方の異性体の安定性に対し、pH4よりもpH6で大きな影響を及ぼした。所与の温度において、SBE7−β−CDがある場合とない場合の速度定数の比は、pH4よりもpH6で、小さかった。SBE7−β−CDは、両方の異性体を安定化したが、S−異性体は、R−異性体よりも、なおいっそう大きく安定化したように見える。テストされたすべての温度およびpHにおいて、SBE7−β−CDがある場合とない場合の速度定数の比は、S−異性体の場合に低かった。60℃のときにSBE7−β−CDの影響を受ける安定化の程度は、80℃のときよりも大きい。40℃および/または室温(20〜30℃)では、安定化の程度はさらに大きくなることが予想される。
上の溶液の試料は、さらに、蛍光灯列の下のチャンバ内に置かれた。バイアルびんを定期的に取り出して、ブデソニドについてアッセイ分析を行った。図12は、残っている初期値の%を露光量の関数として表した半対数グラフである(光度×時間)。以下の表に示されているように、SBE7−β−CDは、ブデソニドの光分解を著しく低減した。ブデソニドの損失は、一次のオーダーであり、pHとは無関係であった。
Figure 2007517067
本発明の製剤は、噴霧用の吸入可能溶液を形成するように適合されたキットとして提供することができる。このキットは、コルチコステロイド、SAE−CD、水性担体、および場合によっては、1つ以上の他の成分を含む。コルチコステロイドおよびSAE−CDは、一緒に、または別々に、固体形態、懸濁液形態、または溶液形態で提供することができる。水性担体の存在下で、SAE−CDをコルチコステロイドと混合した後、固形物は溶解し、噴霧用の懸濁液というよりはむしろ吸入可能溶液を形成する。それぞれの成分は、個々の容器に入れるか、または他の成分と合わせて提供することができる。例えば、SAE−CDは、水溶液で提供できるが、ブデソニドは、乾燥した固形または湿った懸濁形態で提供される。それとは別に、SAE−CDは、乾燥形態で提供され、またブデソニドは、水性懸濁液、例えば、PULMICORT RESPULES(商標)として提供される。このキットは、その代わりに、固体誘導体化シクロデキストリンと固体コルチコステロイドの混合物を含み、場合によっては、少なくとも1つの固体医薬賦形剤を含み、それにより、活性物質の大部分は、水性担体との混合物を再構成する前は誘導体化シクロデキストリンと錯体を形成しない。それとは別に、組成物は、誘導体化シクロデキストリンと活性物質の包接錯体を含む固体混合物を含むことができ、活性物質の大部分は、水性担体との固体混合物の再構成の前に誘導体化シクロデキストリンと錯体を形成する。キットの貯蔵温度に応じて、水性担体は、液体または凍結固体とすることができる。一実施形態では、キットは、貯蔵時に水性担体を除外するが、水性担体は、噴霧溶液を形成するために使用する前にSAE−CDおよびコルチコステロイドに加えられる。コルチコステロイドおよびSAE−CDは、水性担体を加える前に、錯化され、水性濃縮形態で存在することができ、水性担体は、溶液を噴霧用の体積ならびに適切な粘度および濃度にするために後から加えられる。再構成可能な製剤は、以下の方法のどれかに従って調製できる。本発明の液体製剤が、まず最初に調製され、次いで、凍結乾燥(フリーズドライ)、噴霧乾燥、噴霧フリーズドライ、アンチソルベント沈殿(antisolvent precipitation)、超臨界または近超臨界流体を利用するさまざまな方法、または再構成のため固体を形成する当業者に公知の他の方法により固体が形成される。
本発明の製剤に含まれる液体賦形剤は、水、水性アルコール、または水性有機溶媒などの水性液体担体を含む。
必須というわけではないが、本発明の製剤は、従来の保存剤、酸化防止剤、緩衝剤、酸性化剤、アルカリ化剤、着色剤、溶解度向上剤、錯化促進剤、電解質、ブドウ糖、安定剤、等張化剤、増量剤、消泡剤、油、乳化剤、抗凍結剤、可塑剤、矯味矯臭剤、甘味料、等張化剤、表面張力調整剤、粘度調整剤、密度調整剤、揮発度調整剤、保存される製剤中で使用する当業者に公知の他の賦形剤、またはこれらの組み合わせを含むことができる。
本明細書で使用されているように、「アルカリ化剤」という用語は、製品安定性のためなどに、アルカリ媒体を供給するために使用される化合物を意味することが意図されている。このような化合物は、例えば、限定はされないが、アンモニア溶液、炭酸アンモニウム、ジエタノールアミン、モノエタノールアミン、水酸化カリウム、ホウ酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、水酸化ナトリウム、トリエタノールアミン、ジエタノールアミン、有機アミン塩基、アルカリ性アミノ酸およびトロラミン、ならびに当業者に公知の他の物質を含む。
本明細書で使用されているように、「酸性化剤」という用語は、製品安定性のために、酸性媒体を供給するために使用される化合物を意味することが意図されている。このような化合物は、例えば、限定はされないが、酢酸、酸性アミノ酸、クエン酸、フマル酸および他のαヒドロキシ酸、塩酸、アスコルビン酸、リン酸、硫酸、酒石酸、および硝酸、ならびに当業者に公知の他の物質を含む。
吸入可能溶液製剤に従来の保存剤を入れることは、任意であるが、その製剤は溶液中の濃度に応じてSAE−CDにより自己保存されるからである。しかしながら、従来の保存剤は、さらに、必要に応じて、製剤の中に含めることができる。保存剤は、組成物内の微生物増殖を阻害するために使用することができる。保存剤の量は、一般に、少なくとも6ヶ月の貯蔵期間に組成物内に微生物が増殖するのを防ぐために必要な量である。本明細書で使用されているように、従来の保存剤は、生物負荷(bioburden)が増加する速度を少なくとも低減するために使用される化合物であるが、好ましくは、汚染が発生した後、バイオバーデンを定常状態に維持するか、またはバイオバーデンを低減する。このような化合物は、例えば、限定はされないが、塩化ベンザルコニウム、塩化ベンゼトニウム、安息香酸、ベンジルアルコール、塩化セチルピリジニウム、クロロブタノール、フェノール、フェニルエチルアルコール、硝酸フェニル水銀、酢酸フェニル水銀、チメロサール、メタクレゾール、ミリスチルγ塩化ピコリニウム、安息香酸カリウム、ソルビン酸カリウム、安息香酸ナトリウム、プロピオン酸ナトリウム、ソルビン酸、チモール、およびメチル、エチル、プロピル、またはブチルパラベン、ならびに当業者に公知の他の物質を含む。
本明細書で使用されているように、「酸化防止剤」という用語は、酸化を阻害し、そのため、酸化過程による調製品の分解を防止するために使用される薬剤を意味することが意図されている。このような化合物は、例えば、限定はされないが、アセトン、メタ重亜硫酸カリウム、亜硫酸カリウム、アスコルビン酸、パルミチン酸アスコルビル、クエン酸、ブチル化ヒドロキシアニソール、ブチル化ヒドロキシトルエン、次亜リン酸、モノチオグリセロール、没食子酸プロピル、アスコルビン酸ナトリウム、クエン酸ナトリウム、硫化ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、ホルムアルデヒドスルホキシル酸ナトリウム、チオグリコール酸、EDTA、ペンテト酸塩、およびメタ重亜硫酸ナトリウムならびに当業者に公知の他の物質を含む。
本明細書で使用されているように、「緩衝剤」という用語は、酸またはアルカリの希釈または添加による、pHの変化に抵抗するために使用される化合物を意味することが意図されている。緩衝剤は、本発明の組成物において、pHを約2から約8、約3から約7、または約4から約5までの範囲に調整するために使用される。このような化合物は、例えば、限定はされないが、酢酸、酢酸ナトリウム、アジピン酸、安息香酸、安息香酸ナトリウム、ホウ酸、ホウ酸ナトリウム、クエン酸、グリシン、マレイン酸、第一リン酸ナトリウム、第二リン酸ナトリウム、HEPES、乳酸、酒石酸、メタリン酸カリウム、リン酸カリウム、一塩基性の酢酸ナトリウム、重炭酸ナトリウム、トリス、酒石酸ナトリウム、および無水クエン酸ナトリウムおよび二水和物ならびに当業者に公知の他の物質を含む。他の緩衝剤は、クエン酸/リン酸塩混合液、酢酸塩、バルビタール、ホウ酸塩、Britton−Robinson、カコジル酸塩、クエン酸塩、コリジン、ギ酸塩、マレイン酸塩、Mcllvaine、リン酸塩、Prideaux−Ward、コハク酸塩、クエン酸塩−リン酸塩−ホウ酸塩(Teorell−Stanhagen)、酢酸ベロナール、MES(2−(N−モルホリノ)エタンスルホン酸)、BIS−TRIS(ビス(2−ヒドロキシエチル)イミノ−トリス(ヒドロキシメチル)メタン)、ADA(N−(2−アセトアミド)−2−イミノ二酢酸)、ACES(N−(カルバモイルメチル)−2−アミノエタンスルホン酸)、PIPES(ピペラジン−N,N’−ビス(2−エタンスルホン
酸))、MOPSO(3−(N−モルホリノ)−2−ヒドロキシプロパンスルホン酸)、BISTRIS PROPANE(1,3−ビス(トリス(ヒドロキシメチル)メチルアミノ)プロパン)、BES(N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸)、MOPS(3−(N−モルホリノ)プロパンスルホン酸)、TES(N−トリス(ヒドロキシメチル)メチル−2−アミノエタンスルホン酸)、HEPES(N−(2−ヒドロキシエチル)ピペラジン−N’−(2−エタンスルホン酸)、DIPSO(3−(N,N−ビス(2−ヒドロキシエチル)アミノ)−2−ヒドロキシプロパンスルホン酸)、MOBS(4−(N−モルホリノ)−ブタンスルホン酸)、TAPSO(3−(N−トリス(ヒドロキシメチル)メチルアミノ)−2−ヒドロキシプロパンスルホン酸)、TRIZMA(商標)(トリス(ヒドロキシメチルアミノメタン)、HEPPSO(N−(2−ヒドロキシエチル)ピペラジン−N’−(2−ヒドロキシプロパンスルホン酸)、POPSO(ピペラジン−N,N’−ビス(2−ヒドロキシプロパンスルホン酸))、TEA(トリエタノールアミン)、EPPS(N−(2−ヒドロキシエチル)ピペラジン−N’−(3−プロパンスルホン酸)、TRICINE(N−トリス(ヒドロキシメチル)メチルグリシン)、GLY−GLY(グリシルグリシン)、BICINE(N,N−ビス(2−ヒドロキシエチル)グリシン)、HEPBS(N−(2−ヒドロキシエチル)ピペラジン−N’−(4−ブタンスルホン酸))、TAPS(N−トリス(ヒドロキシメチル)メチル−3−アミノプロパンスルホン酸)、AMPD(2−アミノ−2−メチル−1,3−プロパンジオール)、および/または当業者に公知の他の緩衝剤を含む。
錯化促進剤を本発明の製剤に加えることができる。このような薬剤が存在する場合、シクロデキストリン/活性物質の比は、変更可能である。錯化促進剤は、活性物質とシクロデキストリンとの錯体形成を増強する1つの化合物、または複数の化合物である。好適な錯化促進剤は、1つまたはそれ以上の薬理学的に不活性な水溶性ポリマー、ヒドロキシ酸、および特定の薬剤とシクロデキストリンとの錯体形成を増強するために液体製剤で典型的に使用される他の有機化合物を含む。
親水性ポリマーを錯化増強、溶解度増強、および/または水分活性低減剤として使用し、シクロデキストリンを含む製剤の性能を改善することができる。Loftssonは、シクロデキストリンの性能および/または特性を増強するためにシクロデキストリン(未誘導体化または誘導体化)との併用に適した多数のポリマーを開示している。好適なポリマーが開示されているのは、Pharmazie(2001年)、56(9)、746−747頁、International Journal of Pharmaceutics(2001年)、212(1)、29〜40頁、Cyclodextrin:From Basic Research to Market,International Cyclodextrin Symposium,10th,Ann Arbor,MI,United States、5月21日〜24日、2000年、10−15(Wacker Biochem Corp.:Adrian,Mich.)、PCT国際公開WO9942111号、Pharmazie、53(11)、733〜740(1998年)、Pharm.Technol.Eur.、9(5)、26〜34頁(1997年)、J.Pharm.Sci.85(10)、1017〜1025頁(1996年)、欧州特許出願EP0579435、Proceedings of the International Symposium on Cyclodextrins,9th,Santiago de Comostela,Spain、5月31日〜6月3日、1998年(1999年)、261〜264頁(Editor(s):Labandeira,J.J.Torres;Vila−Jato,J.L.Kluwer Academic Publishers,Dordrecht,Neth)、S.T.P.Pharma Sciences(1999年)、9(3)、237〜242頁、ACS Symposium Series(1999年)、737(Polysaccharide Applications)、24〜45頁、Pharmaceutical Research(1998年)、15(11)、1696〜1701頁、Drug Development and Industrial Pharmacy(1998年)、24(4)、365〜370頁、International Journal of Pharmaceutics(1998年)、163(1−2)、115〜121頁、Book of Abstracts,216th ACS National Meeting,Boston、8月23日〜27日(1998年)、CELL−016、American Chemical Society、Journal of Controlled Release(1997年)、44/1(95−99)、Pharm.Res.(1997年)14(11)、S203、Investigative Ophthalmology & Visual Science(1996年)、37(6)、1199〜1203頁、Proceedings of the International Symposium on Controlled Release of Bioactive Materials(1996年)、23rd、453〜454頁、Drug Development and Industrial Pharmacy(1996年)、22(5)、401〜405頁、Proceedings of the International Symposium on Cyclodextrins,8th,Budapest、3月31日〜4月2日(1996年)、373〜376頁(Editor(s):Szejtli,J.;Szente,L.Kluwer:Dordrecht,Neth.)、Pharmaceutical Sciences(1996年)、2(6)、277〜279頁、European Journal of Pharmaceutical Sciences(1996年)4(SUPPL.)、S144、Third European Congress of Pharmaceutical Sciences、Edinburgh、Scotland、UK、1996年9月15〜17日、Pharmazie(1996年)、51(1)、39〜42頁、Eur.J.Pharm.Sci.(1996年)、4(Suppl.)、S143、米国特許第5,472,954および第5,324,718号、International Journal of Pharmaceutics(Netherlands)、(1995年12月29日)126、73〜78頁、Abstracts of Papers of the American Chemical Society(1995年4月2日)209(1)、33−CELL、European Journal of Pharmaceutical Sciences(1994年)2、297〜301頁、Pharmaceutical Research(New York)、(1994年)11(10)、S225、International Journal of Pharmaceutics(Netherlands)、(1994年4月11日)104、181〜184頁、およびInternational Journal of Pharmaceutics(1994年)、110(2)、169−77であり、これらの開示全体は参照により本明細書に組み込まれる。
他の好適なポリマーは、医薬製剤の分野で一般に使用されるよく公知の賦形剤であり、例えば、Remington’s Pharmaceutical Sciences,18th Edition,Alfonso R.Gennaro(editor),Mack Publishing Company,Easton,PA,1990年、291〜294頁、Alfred Martin、James Swarbrick、およびArthur Commarata、Physical Pharmacy.Physical Chemical Principles in Pharmaceutical Sciences,3rd edition(Lea & Febinger,Philadelphia,PA,1983年、592〜638頁)、A.T.FlorenceおよびD.Altwood(Physicochemical Principles of Pharmacy,2nd Edition,MacMillan Press,London,1988年、281〜334頁に記載されている。本明細書で引用されている文献の開示全体は、参照により本明細書に組み込まれる。さらに他の好適なポリマーは、水溶性天然ポリマー、水溶性半合成ポリマー(セルロースの水溶性誘導体など)および水溶性合成ポリマーを含む。天然ポリマーは、イヌリン、ペクチン、アルギン誘導体(例えば、アルギン酸ナトリウム)、および寒天などの多糖類、ならびにカゼインおよびゼラチンなどのポリペプチドを含む。半合成ポリマーは、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体、ヒドロキシプロピルメチルセルロースなどのそれらの混合エーテルおよびヒドロキシエチルエチルセルロースおよびヒドロキシプロピルエチルセルロースなどの他の混合エーテル、ヒドロキシプロピルメチルセルロースフタレート、ならびにカルボキシメチルセルロースおよびその塩、特にカルボキシメチルセルロースナトリウムを含む。合成ポリマーは、ポリオキシエチレン誘導体(ポリエチレングリコール)およびポリビニル誘導体(ポリビニルアルコール、ポリビニルピロリドンおよびポリスチレンスルホネート)ならびにアクリル酸のさまざまなコポリマー(例えば、カルボマー)を含む。水溶解度、医薬としての許容性、および薬理学的不活性の基準を満たしているここで取りあげていない他の天然、半合成、および合成ポリマーも、同様に、本発明の範囲内にあるものと考えられる。
乳化剤は、エマルジョンの形成を補助する化合物を意味することが意図されている。乳化剤を使用することで、コルチコステロイドを濡らし、溶解しやすくすることができる。本明細書で使用する乳化剤は、限定はされないが、ポリエチレンソルビタンモノオレエート(ポリソルベート80)、ポリソルベート20(ポリオキシエチレン(20)ソルビタンモノラウレート)、ポリソルベート65(ポリオキシエチレン(20)ソルビタントリステアレート)、ポリオキシエチレン(20)ソルビタンモノオレエート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタンモノステアレートなどのポリオキシエチレンソルビタン脂肪酸エステルまたはポリソルベート、レシチン、アルギン酸、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム、アルギン酸カルシウム、プロパン−1,2−ジオールアルギネート、寒天、カラギナン、ローカストビーンガム、グァーガム、トラガカント、アラビアゴム、キサンタンガム、カラヤゴム、ペクチン、アミド化ペクチン、アンモニウムホスファチド、微結晶セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、エチルメチルセルロース、カルボキシメチルセルロース、脂肪酸のナトリウム塩、カリウム塩、およびカルシウム塩、脂肪酸のモノグリセリドおよびジグリセリド、脂肪酸のモノグリセリドおよびジグリセリドの酢酸エステル、脂肪酸のモノグリセリドおよびジグリセリドの乳酸エステル、脂肪酸のモノグリセリドおよびジグリセリドのクエン酸エステル、脂肪酸のモノグリセリドおよびジグリセリドの酒石酸エステル、脂肪酸のモノグリセリドおよびジグリセリドのモノアセチル酒石酸エステルおよびジアセチル酒石酸エステル、脂肪酸のモノグリセリドおよびジグリセリドの酢酸および酒石酸の混合エステル、脂肪酸のショ糖エステル、スクログリセリド、脂肪酸のポリグリセロール
エステル、ヒマシ油の重縮合脂肪酸のポリグリセロールエステル、脂肪酸のプロパン−1,2−ジオールエステル、ステアロイル−2−乳酸ナトリウム、ステアロイル−2−乳酸カルシウム、ステアロイルタルトレート、モノステアリン酸ソルビタン、トリステアリン酸ソルビタン、モノラウリン酸ソルビタン、モノオレイン酸ソルビタン、モノパルミチン酸ソルビタン、キラヤ抽出物、大豆油の二量化脂肪酸のポリグリセロールエステル、酸化的に重合された大豆油、およびペクチン抽出物を含む。
本明細書で使用されているように、「安定剤」という用語は、治療薬の治療活性を下げる物理的、化学的、または生化学的過程に対してその治療薬を安定化させるために使用される化合物を意味することが意図されている。好適な安定剤は、例えば、限定はされないが、アルブミン、シアル酸、クレアチニン、グリシンおよび他のアミノ酸、ナイアシンアミド、ナトリウムアセチルトリプトフォネート(sodium acetyltryptophonate)、酸化亜鉛、ショ糖、ブドウ糖、乳糖、ソルビトール、マンニトール、グリセロール、ポリエチレングリコール、カプリル酸ナトリウムおよびサッカリンナトリウムならびに当業者に公知の他の物質を含む。
本明細書で使用されているように、「等張化剤」という用語は、液体製剤の張度を調整するために使用できる1つの化合物または複数の化合物を意味することが意図されている。好適な等張化剤は、グリセリン、乳糖、マンニトール、デキストロース、塩化ナトリウム、硫酸ナトリウム、ソルビトール、トレハロース、および当業者に公知の他の物質を含む。他の等張化剤は、無機と有機の両方の等張化剤(tonicity adjusting agents)を含む。等張化剤は、限定はされないが、炭酸アンモニウム、塩化アンモニウム、乳酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、硫酸アンモニウム、アスコルビン酸、酒石酸ビスマスナトリウム、ホウ酸、塩化カルシウム、エデト酸二ナトリウムカルシウム、グルコン酸カルシウム、乳酸カルシウム、クエン酸、デキストロ−ス、ジエタノールアミン、ジメチルスルホキシド、エデト酸二ナトリウム、エデト酸三ナトリウム一水和物、フルオレセインナトリウム、果糖、ガラクトース、グリセリン、乳酸、乳糖、塩化マグネシウム、硫酸マグネシウム、マンニトール、ポリエチレングリコール、酢酸カリウム、塩素酸カリウム、塩化カリウム、ヨウ化カリウム、硝酸カリウム、リン酸カリウム、硫酸カリウム、プロピレングリコール、硝酸銀、酢酸ナトリウム、重炭酸ナトリウム、重リン酸ナトリウム、重亜硫酸ナトリウム、ホウ酸ナトリウム、臭化ナトリウム、カコジル酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、クエン酸ナトリウム、ヨウ化ナトリウム、乳酸ナトリウム、メタ重亜硫酸ナトリウム、硝酸ナトリウム、亜硝酸ナトリウム、リン酸ナトリウム、プロピオン酸ナトリウム、コハク酸ナトリウム、硫酸ナトリウム、亜硫酸ナトリウム、酒石酸ナトリウム、チオ硫酸ナトリウム、ソルビトール、ショ糖、酒石酸、トリエタノールアミン、尿素、ウレタン、ウリジン、および硫酸亜鉛を含む。一実施形態では、液体製剤の張度は、呼吸管内の組織の張度に近似する。
浸透圧性薬剤を組成物に使用し、コルチコステロイド組成物の送達により患者に対する全体的な快適さ高めることができる。浸透圧性薬剤は、SAE−CD含有溶液の張度を調整するために加えることができる。オスモル濃度は、水中のSAE−CDの濃度に関係する。約11〜13%w/vよりも低いSBE7−β−CD濃度では、溶液は、血液に関して低張または低浸透圧であり、約11〜13%w/vよりも高いSBE7−β−CD濃度では、SBE7−β−CD含有溶液は、血液に関して高張または高浸透圧である。赤血球が低または高張である溶液に曝された場合、サイズが縮小または膨張し、溶血に至る可能性がある。上で述べたように、また図1に示されているように、SBE−CDは、他の誘導体化シクロデキストリンよりも、溶血を誘発する傾向が小さい。好適な浸透圧性薬剤は、塩化ナトリウム、乳糖、およびブドウ糖などの経肺および経鼻送達用に医薬品として認可されている低分子量水溶性化学種を含む。本発明の製剤は、さらに、生物学的塩、塩化カリウム、または他の電解質を含むこともできる。
本明細書で使用されているように、「消泡剤」という用語は、液体製剤の表面上に形成される泡を防ぐか、または量を減らす1つの化合物または複数の化合物を意味することが意図されている。好適な消泡剤は、ジメチコーン、シメチコーン、オクトキシノール、エタノール、および当業者に知られている他の物質を含む。
本明細書で使用されているように、「増量剤」という用語は、凍結乾燥製品にかさ高さを加え、および/または凍結乾燥時に製剤の特性の制御を助けるために使用される化合物を意味することが意図されている。このような化合物は、例えば、限定はされないが、デキストラン、トレハロース、ショ糖、ポリビニルピロリドン、乳糖、イノシトール、ソルビトール、ジメチルスルホキシド、グリセロール、アルブミン、ラクトビオン酸カルシウム、および当業者に公知の他の物質を含む。
本明細書で使用されているように、「抗凍結剤」という用語は、凍結乾燥時に活性治療薬の物理的または化学的分解を防ぐために使用される化合物を意味することが意図されている。このような化合物は、例えば、限定はされないが、ジメチルスルホキシド、グリセロール、トレハロース、プロピレングリコール、ポリエチレングリコール、および当業者に公知の他の物質を含む。
溶解度向上剤を本発明の製剤に加えることができる。溶解度向上剤は、液体製剤の場合に活性物質の溶解度を増強する1つの化合物、または複数の化合物である。このような薬剤が存在する場合、シクロデキストリン/活性物質の比は、変更可能である。好適な溶解度向上剤は、1つまたはそれ以上の有機溶媒、洗浄剤、石けん、界面活性剤、および特定の薬剤の溶解度を増強するため非経口製剤において典型的に使用される他の有機化合物を含む。
製剤で使用できる好適な有機溶媒は、例えば、エタノール、グリセリン、ポリエチレングリコール、プロピレングリコール、ポロクソマー、および当業者に公知の他の物質を含む。
医薬製剤の分野で使用される化合物は、一般に、さまざまな機能または目的のために使用されることは当然理解されるであろう。そのため、ここに挙げられている化合物が1回しか言及されていないか、またここで複数の用語を定義するために使用されている場合、その目的または機能は、指定された目的または機能にのみ限られると解釈すべきではない。
本発明の製剤に含まれる活性物質は、その薬剤として許容される塩として存在しうる。本明細書で使用されているように、「医薬として許容される塩」は、開示されている化合物の誘導体を指し、活性物質は、必要に応じて酸または塩基と反応させることにより修飾され、イオン結合対を形成する。薬剤として許容される塩の実例は、従来の非毒性の塩または例えば、非毒性の無機または有機酸から形成された親化合物の第四アンモニウム塩を含む。好適な非毒性の塩は、塩化水素酸、臭化水素酸、硫酸、スルホン酸、スルファミン酸、リン酸、硝酸、および当業者に公知の他の物質などの無機酸から誘導される塩を含む。塩は、アミノ酸、酢酸、プロピオン酸、コハク酸、グリコール酸、ステアリン酸、乳酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、パモ酸、マレイン酸、ヒドロキシマレイン酸、フェニル酢酸、グルタミン酸、安息香酸、サリチル酸、スルファニル酸、2−アセトキシ安息香酸、フマル酸、トルエンスルホン酸、メタンスルホン酸、エタンジスルホン酸、シュウ酸、イセチオン酸、および当業者に公知の他の物質などの有機酸から製造される。本発明の薬剤として許容される塩は、従来の化学的方法により塩基または酸性部分構造を含む親活性物質から合成することができる。他の好適な塩の一覧は、Remington’s Pharmaceutical Sciences,17th.ed.,Mack Publishing Company,Easton,PA、1985年に記載されており、関連する開示は、参照により本明細書に組み込まれる。
「医薬として許容される」という用語は、本明細書では、正しい医薬的判断の範囲内で、妥当なメリット/リスクの比と釣り合う形で、過剰な毒性、刺激、アレルギー反応、または他の問題または面倒な事態を引き起こすことなくヒトおよび動物の組織に接触して使用するのに適している化合物、材料、組成物、および/または投薬形態を指すために使用されている。
本明細書で使用されているように、「患者」または「被験者」は、哺乳類、例えば、ネコ、イヌ、マウス、モルモット、ウマ、ウシ、ヒツジ、およびヒトなどの温血動物を意味するものとする。
本発明の製剤は、有効量存在する活性物質を含む。「有効量」という用語は、必要な、もしくは所望の応答を引き出すのに十分な活性物質の量もしくは数量、または言い換えると、被験者に投与する場合に適切な生物学的反応を引き出すのに十分な量を意味する。
上の説明および以下の実施例を鑑みて、当業者であれば、過度の実験を行わずに、特許請求されているような本発明を実施することができる。前記は、本発明により製剤の調製のいくつかの手順を詳述している以下の実施例を参照するとさらによく理解できる。これらの実施例に対する参照はすべて、例示目的である。以下の実施例は、網羅されていると考えるべきではなく、本発明により考察された多数の実施形態のうちのごくわずかを例示するだけであると考えるべきである。
〔実施例1〕
本発明による例示的な製剤は、以下の一般的手順に従って作られた。
方法A
シクロデキストリンを水(または緩衝液)に溶解して、既知の濃度のシクロデキストリンを含む溶液を形成した。この溶液を、混合しながら、場合によっては加熱しながら、固体、懸濁液、ゲル、液体、ペースト、粉末、または他の形態の活性物質と混合し、吸入可能溶液を形成した。
方法B
既知の量の実質的に乾燥しているシクロデキストリンを、既知の量の実質的に乾燥している活性物質と混合した。液体をこの混合物に加えて、混合しながら、場合によっては加熱しながら、場合によっては1つまたはそれ以上の他の賦形剤が存在するときに、懸濁液、ゲル、溶液、シロップまたはペーストを形成し、吸入可能溶液を形成した。
方法C
既知の量の実質的に乾燥しているシクロデキストリンを、混合しながら、場合によっては加熱しながら、場合によっては1つまたはそれ以上の他の賦形剤が存在するときに、既知の量の活性物質を含む懸濁液、ゲル、溶液、シロップまたはペーストに加え、吸入可能溶液を形成した。
この実施例の方法を、湿潤剤を組成物内に含めることにより改変し、コルチコステロイドの溶解およびその後の包接錯体を形成しやすくできる。界面活性剤、石けん、洗浄剤、または乳化剤を湿潤剤として使用できる。
〔実施例2〕
SBE7−β−CDおよびブデソニドを含む噴霧溶液のMMDは、以下のように決定した。
3つの異なるシクロデキストリンのプラセボ溶液を異なる濃度で調製した。溶液2mlを、Pari Proneb Ultraコンプレッサから給気されるPari LC Plusネブライザーのカップに加えた。Malvern Mastersizer Sレーザー光散乱測定装置を使用して、放出液滴の粒径を決定した。
〔実施例3〕
貯蔵されている液体から定期的に引き出されるアリコートのHPLCクロマトグラフィによりSAE−CDを含む液体製剤の安定性を決定した。
種々の量の0.01Mのクエン酸を0.02MのNa2HPO4に混合して、pH4、5、6、7または8のクエン酸リン酸塩(McIlvaines)緩衝液を調製した。これらの原液は、5%w/w Captisolを含んでいた。約250μg/mLのブデソニドをそれぞれの緩衝液中に溶解した。溶液のアリコートを40℃、50℃、および60℃で保管した。対照試料を5℃で保管したが、ここでは報告していない。試料のHPLC分析を最初と、1、2、および3ヶ月間貯蔵後に、実行した。
HPLCの条件は以下のとおりであった。
Figure 2007517067
〔実施例4〕
コーンプレート粘度計を使用して、SAE−CDを含む水溶液の粘度を測定した。
Brookfield Programmable DV−III+Rheometer、CPE−40コーンおよびCPE 40Yプレート(Brookfield Engineering Laboratories、マサチューセッツ州ミドルボロ)を使用し、1、2、3、5、および10rpmで試料0.5mlについて測定を行った。それぞれの測定の前に約5回転している間に試料を剪断した。これにより、試料の正確なレオロジー特性が得られた。電子制御恒温循環水槽(Model、8001、Fisher Scientific、ペンシルバニア州ピッツバーグ)から水が供給される二重壁粘度計コーンを使用してすべての試料の温度を25±1℃に合わせた。シリコーンオイル較正基準を使用し、5および50センチポアズを使って粘度計を較正した。5以上の回転速度で粘度測定を行い、ずり流動化挙動(ずり速度が増加すると減少する粘度)を調べた。高回転になる程、ずり速度が増した。
〔実施例5〕
以下の一般的手順に従って、SAE−CD濃度の関数としてのネブライザーアウトプット率を測定した。
43%、21.5%、10.75%、および5.15%w/wのSBE7−β−CDを含む溶液について、Pari LC Plus NebulizerをPari ProNeb Ultra Air Compressorと共に使用し(最小ネブライザー体積=2ml、最大ネブライザー体積=8ml)、ネブライザーアウトプットを試験した。放出された試料のパーセンテージを質量測定法で推定した。噴霧が完了する前後にネブライザーカップを計量した。噴霧時間は、ネブライザー作動が開始してから最初のスパッター時間までの持続時間と定義した。ネブライザーアウトプット率は、放出%を噴霧時間で割って計算した。
〔実施例6〕
ブデソニドを含む吸入可能溶液の調製。
クエン酸緩衝液3mMおよびNaCl 82mMを含むpH4.45の緩衝液を調製した。CAPTISOL約12.5グラムを250ml容量フラスコ内に入れた。ブデソニド約62.5mgを同じフラスコに入れた。フラスコをクエン酸緩衝液3mM/NaCl溶液82mMの体積にした。フラスコをボルテクサーで10分間よく混ぜ、10分間超音波処理した。磁気攪拌機でフラスコを週末に攪拌した。約62時間後に攪拌を止め、再びそれぞれ10分間フラスコを激しく攪拌し、超音波処理した。0.22μm Durapore Millex−GV Milliporeシリンジフィルターユニットを通して溶液を濾過した。最初の数滴を捨ててから、溶液の濾過の残り部分を、テフロン(登録商標)でライニングされたネジ蓋付きのアンバーグラスジャーに入れた。試料濃度は、約237μg/mlであった。
〔実施例7〕
ブデソニドを含む吸入可能溶液の調製。
CAPTISOL約5グラムを100ml容量フラスコ内に入れた。ブデソニド約26.3mgを同じフラスコに入れた。フラスコをクエン酸緩衝液3mM/NaCl溶液82mMの体積にした。混合液をボルテクサーで10分間よく混ぜ、10分間超音波処理した。磁気攪拌機で混合液を一晩攪拌した。約16時間後に攪拌を止め、再びそれぞれ10分間フラスコを激しく攪拌し、超音波処理した。0.22μm Durapore Millex−GV Milliporeシリンジフィルターユニットを通して溶液を濾過した。最初の5滴を捨ててから、溶液の濾過の残り部分を、テフロンでライニングされたネジ蓋付きのアンバーグラスジャーに入れた。試料は、233μg/mlのブデソニドであると分析された。
〔実施例8〕
ブデソニドを含む吸入可能溶液の調製。
12.5gのCAPTISOL、62.5mgのブデソニド、および約250mlの緩衝液を用いた以外は、実施例7の手順に従った。十分なEDTA二ナトリウムを加えて、EDTA濃度約0.01または0.05%wt/vEDTAを有する溶液を調製した。
〔実施例9〕
PULMICORT RESPULES懸濁液から調製されるようなSAE−CDおよびブデソニドを含む溶液の調製。
方法A
Pulmicort Respulesの1つまたはそれ以上の容器の内容物に対し(懸濁液公称2mL)、CAPTISOL約50mg(水分について補正)をRespuleの1mL毎に加え、数分間よく混ぜるか、振った。約30分間から数時間の間放置後、インビトロ特徴付けの場合のように溶液を使用した。ブデソニドおよび水に加えて、PULMICORT RESPULE(懸濁液)は、さらに、ラベルごとに、活性物質に以下のもの:クエン酸、クエン酸ナトリウム、塩化ナトリウム、EDTA二ナトリウム、およびポリソルベート80も含む。
方法B
CAPTISOL(水分について補正)約200mgの量を計って2−ドラムアンバーバイアルに入れた。CAPTISOLの計量した量を含むそれぞれのバイアル内に、変形可能プラスチック容器を軽く押しつぶして最後の1滴まで絞り出すことにより2つのPulmicort Respules容器の中身(0.5mg/2mL、Lot#308016Feb05)を空けた。Respulesはすでに回転させ、ブデソニド粒子を再懸濁させてあった。バイアルはネジ蓋付きであり、ボルテックスで激しく混合し、次いでホイルで包んだ。この材料は、使用するまで冷蔵庫に保管しておくことができる。
これらの方法で調製された吸入可能液体組成物は、公知のどのネブライザーでも使用できる。懸濁液を液体に転換することにより、ブデソニド(コルチコステロイド)の送達の改善が観察された。
〔実施例10〕
本発明による他の溶液は、以下に詳述するように調製することができる。
Figure 2007517067
濃縮物Aを無水ベースで5%w/vのCAPTISOLを含むpH4.5の食塩クエン酸緩衝液(salinated citrate buffer)(塩化ナトリウム109mMを含む4mM)で1対4に希釈した。0.22μm Millipore Durapore Millex−GVシリンジフィルターーユニットを通して希釈濃縮物を濾過した。濾過された溶液をHPLCでアッセイし、次いで補助ブデソニドを必要に応じて加えて、溶液の最終濃度を約250μg/mL(±<5%)にした。
濃縮物Bを無水ベースで5%w/vのCAPTISOLを含むpH4.5の食塩クエン酸緩衝液(塩化ナトリウム109mMを含む4mM)で1対4に希釈した。0.22μm Millipore Durapore Millex−GVシリンジフィルターユニットを通して希釈濃縮物を濾過した。濾過された溶液をHPLCでアッセイし、次いでpH4.5の食塩クエン酸緩衝液(塩化ナトリウム82mMを含む3mM)で必要に応じてさらに希釈し、最終溶液濃度を約250μg/mL(±<5%)にした。この手法は、溶液を飽和させるために使用される過剰固体ブデソニドを利用した。
〔実施例11〕
目視検査または計測器で溶液の澄明度を測定した。肉眼による目視検査では、澄明溶液は少なくとも澄明であった。
〔実施例12〕
以下の方法を使用して、図10a〜10bに従い、ネブライザーから放出された噴霧組成物の性能を決定した。
2mlの試験CD溶液またはPulmicort懸濁液を容積ピペットで、清浄ネブライザーカップ内に正確に取り、その後、それぞれの実験を開始した。製造業者の取扱説明書に従って、試験ネブライザーを組み立てて、試験吸入溶液または懸濁液を充填した。マウスピースの末端をMALVERN MASTERSIZERの台からネブライザーマウスピースの先端の中点まで約18cmの高さに置いた。真空源を、マウスピースの反対側に約6cm離して配置し、サイジングの後にエアロゾルをスカベンジした。マウスピースと検出器との間の距離は約8cmであった。マウスピースの中心を、レーザービームと同じ高さにした(または、それぞれのネブライザーの個々の設計に応じて、適宜調節した)。レーザーは、ネブライザーが稼働したときに放出雲の中心を通過した。測定は、噴霧してから15秒後に手動で開始した。データ収集は、ビームの暗さが10%に到達したときに開始し、15,000回のスイープ(30秒)にわたって平均をとった。「Standard−Wet」モデルを使用して、検出器リング上の散乱光強度データをモデル化した。測定時に低い相対湿度のためチャネル1および2を殺し、ビームステアリングを防いだ。累積体積アンダーサイズの10、50(体積中央値)、および90%を定義する液滴の体積直径を決定した。(Dv10は、物質の体積の10%が存在する最大のサイズであり、Dv50は、物質の体積の50%が存在する最大のサイズであり、Dv90は、物質の体積の90%が存在する最大のサイズである。)
〔実施例13〕
SBE7−β−CDがある場合とない場合のブデソニドの溶液を2つの異なるpH(4および6)で調製し、2つの異なる温度(60℃および80℃)で保管した。クエン酸50mMおよびクエン酸ナトリウム溶液(三塩基性、二水和物)50mMの異なる部分を混合することによりそれぞれのpH値のクエン酸塩緩衝剤(50mM)を調製した。正確な測定を行うのに十分なSBE7−β−CDなしで緩衝液中のブデソニドの濃度を得るために、まず、ブデソニドを100%エチルアルコールに溶解した。次いでエタノール/ブデソニドのアリコートを攪拌しつつ1滴ずつそれぞれの緩衝液に加えた。理論的ブデソニド濃度は、100μg/mlであり、最終エタノール含有量はそれぞれの緩衝液中で5%であった。ブデソニドを伴うすべての溶液の調製および手順は、赤色光で照らした暗室内で行った。溶液を24時間振った後、両方の緩衝液をMillipore Millex−GV 0.22μmシリンジフィルターに通して濾過し、溶液から沈殿した固体(有意な量は観察されなかった)を取り除いた。最終的なブデソニド濃度は約50μg/mLであった。pH4および6の溶液の両方を2つに分けて、固体SBE7−β−CDを一方の部分に加え、それぞれのpHで1%w/vのSBE7−β−CDがある場合とない場合の溶液を作成した。それぞれの溶液を等分して個々のアンバーバイアルに入れた。次いで、60℃および80℃のオーブンに入れた。試料バイアルをオーブンから取り出して、0、96、164、および288時間でHPLCにより分析した。HPLCアッセイ条件を以下にまとめた。
クロマトグラフィ条件
(Hou、S.、Hindle、M.、およびByron、P.R.A.Stability−Indicating HPLC Assay Method for Budesonide. Journal of Pharmaceutical and Biomedical Analysis、2001年、24:371から380頁から適合)
Figure 2007517067
〔実施例14〕
SAE−CD、ブデソニド、および硫酸アルブテロールを含む併用溶液の調製および使用。
実施例9(SAE−CDをPULMICORT RESPULES懸濁液と混合する)に従ってブデソニド溶液を調製し、硫酸アルブテロールとして提供される2.5mgのアルブテロール(アルブテロール塩基の世界保健機関推奨名は、サルブタモールである)を含む溶液3mlに加えた。アルブテロール溶液は、事前希釈で市販されており、PROVENTIL(登録商標)Inhalation Solution(0.083%)という名前で販売されているか、または市販の濃縮物0.5%(吸入用にPROVENTIL(登録商標)Solutionという名前で、またVENTOLIN(登録商標)Inhalation Solutionという名前で販売されている)から調製した。
2歳から12歳の子供に必要用量を与えるために、初期投薬は体重(1用量当たり0.1から0.15mg/kg)に基づき、その後、用量を漸増して、所望の臨床反応を得るようにした。投薬は、1日3から4回噴霧で、2.5mg以下としなければならない。0.5%吸入溶液の適切な体積は、噴霧投与前に、無菌生理食塩水で希釈し全体積を3mLにしなければならない。2.5mgを与えるために、濃縮物0.5mLを無菌生理食塩水で3mLに希釈した。アルブテロール水溶液は、さらに、塩化ベンザルコニウムも含み、硫酸を使用して、pHを3から5の範囲に調整した。それとは別に、保存剤塩化ベンザルコニウムを添加した場合またはしない場合に適切な強度のアルブテロールの水溶液を硫酸アルブテロールから調製することができ、硫酸を使用するpH調整は、コルチコステロイド溶液と組み合わせる場合には不要な場合もある。さらに、適切な用量のコルチコステロイドを含む体積を、以下の実施例で説明されているように4倍減らして、全体積を小さくし、投与時間をそれに応じて短縮することができる。
〔実施例15〕
SAE−CD、ブデソニド、および硫酸アルブテロール、またはレバルブテロールHCL(Xopenex)を含む併用溶液の調製および使用。
以下のようにクエン酸緩衝剤(3mM pH4.5)を調製した。1つの100ml容量フラスコでクエン酸約62.5mgを水に溶解し、水を入れてその体積にした。もう1つの100ml容量フラスコでクエン酸ナトリウム約87.7mgを水に溶解し、水を入れてその体積にした。ビーカー内で、クエン酸ナトリウム溶液をクエン酸溶液に加え、pHを約4.5にした。
約10.4mgのブデソニドおよび1247.4mgのCaptisolをすり鉢とすりこぎで一緒にすり、10mLフラスコに移した。緩衝液を加えて、混合物を激しく攪拌し、超音波処理し、さらに1.4mgのブデソニドを加えた。一晩振って、0.22μm Durapore Millex−GV Milliporeシリンジフィルターユニットを通して溶液を濾過した。その結果得られるブデソニド濃度は約1mg/mlであった。約0.5mlのブデソニド溶液を単位用量のProventil(2.5mg/3mL)またはXopenex(1.25mg/3mL)のいずれかに加えて、本発明の組み合わせ澄明液体投薬形態を形成した。その結果得られる混合物は、光を遮った室温条件で少なくとも17日間本質的に澄明のままであった。
〔実施例16〕
SAE−CD、ブデソニド、およびホルモテロール(FORADIL(登録商標)(フマル酸ホルモテロール吸入粉末)を含む併用溶液の調製および使用。
乳糖25mgとブレンドされた12mcgのフマル酸ホルモテロールを含む1カプセルの内容物をバイアルに空けて、そこに、前の実施例で説明されているように調製された3mMのクエン酸緩衝液(pH4.5)3mLを加えた。バイアルの内容物を激しく攪拌して、存在する固形物を溶解した。前の実施例で説明されているようにブデソニド濃縮物を調製し、濃度を約1mg/mLとした。約1mlのブデソニド溶液をフマル酸ホルモテロール緩衝化溶液に加えた。その結果得られる溶液は、光を遮った室温条件で少なくとも1ヶ月間本質的に澄明のままであった。
〔実施例17〕
投薬形態の噴霧投与の前後に、被験者に対しガンマシンチグラフィー分析を実施することにより本発明による投薬形態の臨床評価を行った。
Pari LC空気ジェット式ネブライザーを使用したPulmicort Respules(登録商標)、およびCaptisol−Enabled(登録商標)ブデソニド製剤を介したブデソニドの経肺送達を比較するシングルセンター・フォーウェイクロスオーバーガンマシンチグラフィー研究を実施した。この研究の目的は、健常男性ボランティアにブデソニド懸濁液(Pulmicort Respules(登録商標)、Astra Zeneca、基準製剤)およびCaptisol(登録商標)−Enabledブデソニド溶液(試験製剤)を噴霧した後の放射性標識ブデソニドの肺内沈着をガンマシンチグラフィーにより調べることであった。投薬は、Pari LC Plus空気ジェット式ネブライザーを使用して行った。ガンマシンチグラフィーを放射性標識研究薬剤および/または賦形剤と共に使用することは、吸入薬剤および/または賦形剤の肺沈着および除去の定量的評価を行うための標準的手法である。
研究投薬形態は、1)2mL×0.5mg/mL Pulmicort Respules(登録商標)として1mgブデソニド、または2)7.5% w/v Captisol(登録商標)が加えられた2mL×0.5mg/mL Pulmicort Respulesとして1mgブデソニドで構成された。
それぞれの被験者は、無作為でない形で、放射性標識ブデソニドの4回の研究投与のそれぞれを受けた。この研究に、非無作為実験計画を使用したが、それは、スパッター時間(TTS)を決定するために、基準製剤(Pulmicort Respule(登録商標))は、最初に、すべての被験者に投与されなければならないからである。TTSは、被験者間で異なっていた。その後の投与では、投与される用量は、基準製剤の投与の
後に決定されたスパッター時間の分数(すなわち、25% TTS、50% TTS、および75% TTS)として表される投与の長さにより制御された。同じ濃度のブデソニドが短時間の間に噴霧されるとしても、ボランティアの肺に到達する薬剤の量は、研究の複数の区間の1つに対する基準懸濁液と本質的に同じであると予想された。ボランティアへの投薬の完了直後に、ガンマカメラを使用してシンチグラフィー像を得た。
基準製品からの像と25%TTS区間を比較すると、投与直後、Respuleからのより大きな割合のブデソニドが胃および喉に入っていた。そのため、Captisolを使用してブデソニドを溶解した場合、より大きな割合のブデソニドが標的肺組織に到達した。これにより、薬剤により引き起こされる望ましくない副作用を軽減することができた。そこで、本発明の方法および投薬形態の一態様では、コルチコステロイド懸濁液ベースの単位用量を投与する改善された方法を提供し、この方法は、懸濁液を澄明溶液に転換する十分な量のSAE−CDを加え、次いで、澄明溶液を被験者に投与する工程を含む。その結果、本発明の方法は、初期単位用量懸濁液製剤に比較して、投与速度を高めるだけでなく、コルチコステロイドの全経肺送達を高速化した。
〔実施例18〕
コルチコステロイド誘導体の可溶化におけるさまざまな形態のSAE−CDの比較評価。
CAPTISOLおよびさまざまなSBEnγ−CDを含む溶液中のジプロピオン酸ベクロメタゾン(BDP)、17−モノプロピオン酸ベクロメタゾン(B17P)、21−モノプロピオン酸ベクロメタゾン(B21P)、およびベクロメタゾン(非エステル化)の溶解度を評価した。BDP、B17P、およびB21Pは、Hovioneから入手した。ベクロメタゾンは、Spectrum Chemicalsから入手した。CAPTISOL、SBE(3.4)γ−CD、SBE(5.23)γ−CD、およびSBE(6.1)γ−CDは、CyDex,Inc.(カンザス州レネクサ)が提供した。γ−CDは、Wacker Chemical Co.から入手した。SBE(5.24)γ−CDおよびSBE(7.5)γ−CDは、カンザス大学から提供された。
それぞれの選択されるCDの0.04M溶液を調製した。それぞれの形態のベクロメタゾンは、2mlのCD溶液を必要とした。したがって0.04M溶液を20または25mL容量フラスコ内で二重(N=2)に調製した。以下の表は、それぞれのCD内の水の含有量を計算した後に使用されたそれぞれのCDの量を示している。
Figure 2007517067
ベクロメタゾン形態は、予想溶解度を超える量だけ計量して2−ドラムのテフロンでライニングされたネジ蓋付きバイアル内に直接入れた。これらの量では、典型的に、約6mg/mLの固体が得られた。次いで、それぞれのバイアルは、適切なCD溶液2mLを受け入れた。バイアルを激しく攪拌し、約10分間超音波処理し、固形物を流体で濡らすのを助けた。次いで、バイアルをアルミホイルで包んで光から保護し、ラブクエーク(lab quake)上に置いて平衡させた。バイアルを定期的に目視検査し、固体が適切に濡れ、流体に接触していることを確認した。サンプリングの時間点は、すべての試料について24時間、BDPのみについては72時間であった。
SBE(6.1)γ−CDの溶液を0.04、0.08、および0.1Mで、SBE(5.
23)γ−CDの溶液を0.04および0.08Mでのみ調製した。ジプロピオン酸ベクロメタゾンは、予想溶解度を超える量だけ計量して2−ドラムのテフロンでライニングされたネジ蓋付きバイアル内に直接入れた。これらの量では、典型的に、約2mg/mLの固体が得られた。次いで、それぞれのバイアルは、適切なCD溶液2mLを受け入れた(N=1)。バイアルを激しく攪拌し、約10分間超音波処理し、固形物を流体で濡らすのを助けた。次いで、バイアルをアルミホイルで包んで光から保護し、ラブクエーク上に置いて5日間で平衡させた。
γ−CDの溶液を0.01および0.02Mで調製した。ジプロピオン酸ベクロメタゾンは、予想溶解度を超える量だけ計量して2−ドラムのテフロンでライニングされたネジ蓋付きバイアル内に直接入れた。これらの量では、典型的に、約2mg/mLの固体が得られた。次いで、それぞれのバイアルは、γ−CD溶液2mLを受け入れた(N=2)。さらに、BDPの固有溶解度を測定するために、CDの代わりにHPLCグレード水を使用して溶液を調製した。試料をホイルにくるみ、5日間ラブクエーク上に置いた。
各段階で平衡時間が終わると、バイアルを遠心分離器にかけ、上清1mlを取り除いた。次いで、Durapore PVDF 0.22μmシリンジフィルターを使用して(最初の数滴を捨てる)、取り除いた浮遊物を濾過し、移動相で希釈して標準曲線内の適切な濃度にした。次いで、HPLCにより試料を分析し、可溶化されたコルチコステロイドの濃度を決定した。
〔実施例19〕
SAE−CD、ブデソニド、およびフマル酸ホルモテロールを含む併用溶液の調製および使用。
フマル酸ホルモテロール乾燥粉末をCaptisol乾燥粉末と混合したが、両方とも、質量比12mcgフマル酸ホルモテロール/100mg Captisolで含有量一様になるように適切なサイズにした。単位用量のフマル酸ホルモテロールに対応する粉末ブレンドの量を後で使用するためのHPMCカプセルなどの適当な単位用量容器に入れるか、または直接、単位用量のPulmicort Respulesブデソニド吸入用懸濁液(500mcg/2mL)に加え、次いで、混合して、すべての固体の溶解を行い(澄明溶液)、投与用のネブライザーリザーバ内に入れた。
〔実施例20〕
SAE−CD、ブデソニド、および臭化イプラトロピウムを含む併用溶液の調製および使用。
ブデソニド溶液を実施例9に従って調製し、市販されており、ATROVENT(登録商標)Inhalation Solution Unit Doseという名称で販売されている臭化イプラトロピウム溶液に加えた。ATROVENT(登録商標)(臭化イプラトロピウム)吸入用溶液は、1日3回から4回に分けて、6時間から8時間間隔の投薬で経口噴霧投与される500mcg(1単位用量バイアル)である。ATROVENT(登録商標)吸入用溶液単位用量バイアルは、塩酸で3.4(3から4)にpH調整された2.5mlの無菌保存剤不使用等張食塩水中に500mcgの無水臭化イプラトロピウムを含んでいる。さらに、適切な用量のコルチコステロイドを含む体積を、上記の実施例(ブデソニド濃縮物約1mg/mL)で説明されているように4倍減らして、全体積を小さくし、投与時間をそれに応じて短縮することができる。
上記の説明は、本発明の特定の実施形態の詳細な説明である。本明細書では例示を目的として本発明の特定の実施形態が説明されているが、本発明の精神および範囲を逸脱することなくさまざまな修正を加えられることは理解されるであろう。したがって、本発明は、添付の特許請求の範囲以外では限定されない。本明細書で開示され、特許請求されている実施形態は、すべて本発明の開示に照らして過度の実験を行うことなく、実施することができる。
親β−シクロデキストリン、市販のヒドロキシプロピル誘導体、ENCAPSIN(商標)(置換度約3−4)、およびMOLECUSOL(登録商標)(置換度約7−8)、および他の2つのスルホブチルエーテル誘導体であるSBE1−β−CDおよびSBE4−β−CDに対する溶血挙動と比較したCAPTISOL(登録商標)の溶血挙動のグラフである。 さまざまな置換度のSBE−CD含有溶液および類似の濃度のシクロデキストリン誘導体を含むHP−β−CD含有溶液のオスモル濃度のグラフである。 シクロデキストリンの濃度(モル)対γ−CD、HP−β−CD、およびSBE7−β−CDのブデソニドの濃度(モル)の相溶解度グラフである。 4つの異なる噴霧組成物(PULMICORT RESPULES懸濁液、5%w/v SBE7−β−CD溶液、10%w/v SBE7−β−CD溶液、および20%w/v SBE7−β−CD溶液)のそれぞれに対し3つの異なるネブライザー(PARI LC PLUS、HUDSON UPDRAFT II NEB−U−MIST、およびMYSTIQUE)から放出される噴霧組成の推定パーセンテージのグラフである。 PARI LC PLUSネブライザーでの溶液の噴霧に対する液滴サイズデータを示す図である。 HUDSON UPDRAFT II NEBUMISTネブライザーでの溶液の噴霧に対する液滴サイズデータを示す図である。 MYSTIQUE超音波ネブライザーでの溶液の噴霧に対する液滴サイズデータを示す図である。 3つのネブライザーPARI LC PLUS、HUDSON UPDRAFT II NEBUMIST、およびMYSTIQUEによる組成物の噴霧に関する比較Dv50液滴サイズデータを示す図である。 さまざまな異なるネブライザーにおけるSAE−CDの濃度とSAE−CDのアウトプット率との関係を示すグラフである。 PULMICORT RESPULES懸濁液および改変したPULMICORT RESPULESベースのSAE−CD溶液のPARI LC PLUSおよびMYSTIQUEネブライザーを使用する噴霧溶液に関する比較液滴サイズデータを示す図である。 CAPTISOLがある場合とない場合の溶液中のブデソニドのR−およびS−異性体の初期濃度(%)の溶液中60℃での時間に対する半対数グラフである。 ブデソニドの初期濃度の%と、試料が蛍光灯に露光されたときのルクス時間との半対数グラフである。 いくつかの異なるシクロデキストリンの存在下でのプロピオン酸フルチカゾンに対する相溶解度図である。 いくつかの異なるシクロデキストリンの存在下でのフランカルボン酸モメタゾンに対する相溶解度図である。 SAE(5−6)−γ−CDの存在下でのエステル化および非エステル化フルチカゾンの相溶解度図である。 さまざまなSAE−CD誘導体の存在下でのジプロピオン酸ベクロメタゾンの水溶解度を要約した棒グラフである。

Claims (24)

  1. 有効量のコルチコステロイド、SAE−CD、および水性液体媒体を含み、SAE−CDが貯蔵時にコルチコステロイドを溶解し安定化するのに十分な量で存在する吸入可能な液体製剤。
  2. β2−アドレナリン受容体アゴニスト、ドーパミン(D2)受容体アゴニスト、局所麻酔剤、抗コリン剤、IL−5阻害剤、IL−5のアンチセンス調節剤、ミルリノン(1,6−ジヒドロ−2−メチル−6−オキソ−[3,4’−ビピリジン]−5−カルボニトリル)、乳酸ミルリノン、トリプターゼ阻害剤、タキキニン受容体アンタゴニスト、ロイコトリエン受容体アンタゴニスト、5−リポキシゲナーゼ阻害剤、および抗−IgE抗体からなる群から各場合において独立に選択される1種またはそれ以上の治療薬をさらに含む、請求項1に記載の製剤。
  3. β2−アドレナリン受容体アゴニストが、アルブテロール(α1−(((1,1−ジメチルエチル)アミノ)メチル)−4−ヒドロキシ−1,3−ベンゼンジメタノール);バンブテロール(ジメチルカルバミン酸5−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,3−フェニレンエステル);ビトルテロール(4−メチル安息香酸4−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,2−フェニレンエステル);ブロキサテロール(3−ブロモ−α−(((1,1−ジメチルエチル)アミノ)メチル)−5−イソオキサゾールメタノール);イソプロテレノール(4−(1−ヒドロキシ−2−((1−メチルエチル−)アミノ)エチル)−1,2−ベンゼン−ジオール);トリメトキノール(1,2,3,4−テトラヒドロ−1−((3,4,5−トリメトキシフェニル)−メチル)−6,7−イソキノリンジオール);クレンブテロール(4−アミノ−3,5−ジクロロ−α−(((1,1−ジメチルエチル)アミノ)メチル)ベンゼンメタノール);フェノテロール(5−(1−ヒドロキシ−2−((2−(4−ヒドロキシフェニル)−1−メチルエチル)アミノ)エチル)−1,3−ベンゼンジオール);ホルモテロール(2−ヒドロキシ−5−((1RS)−1−ヒドロキシ−2−(((1RS)−2−(p−メトキシフェニル)−1−メチルエチル)アミノ)エチル)ホルムアニリド);(R,R)−ホルモテロール;デスホルモテロール((R,R)または(S,S)−3−アミノ−4−ヒドロキシ−α−(((2−(4−メトキシフェニル)−1−メチル−エチル)アミノ)メチル)ベンゼンメタノール);ヘキソプレナリン(4,4’−(1,6−ヘキサン−ジイル)−ビス(イミノ(1−ヒドロキシ−2,1−エタンジイル)))ビス−1,2−ベンゼンジオール);イソエタリン(4−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)ブチル)−1,2−ベンゼンジオール);イソプレナリン(4−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)エチル)−1,2−ベンゼンジオール);メタ−プロテレノール(5−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)エチル)−1,3−ベンゼンジオール);ピクメテロール(4−アミノ−3,5−ジクロロ−α−(((6−(2−(2−ピリジニル)エトキシ)ヘキシル)−アミノ)メチル)ベンゼンメタノール);ピルブテロール(α6−(((1,1−ジメチルエチル)−アミノ)メチル)−3−ヒドロキシ−2,6−ピリジンメタノール);プロカテロール(((R*,S*)−(±)−8−ヒドロキシ−5−(1−ヒドロキシ−2−((1−メチルエチル)アミノ)ブチル)−2(1H)−キノリン−オン);レプロテロール((7−(3−((2−(3,5−ジヒドロキシフェニル)−2−ヒドロキシエチル)アミノ)−プロピル)−3,7−ジヒドロ−1,3−ジメチル−1H−プリン−2,6−ジオン);リミテロール(4−(ヒドロキシ−2−ピペリジニルメチル)−1,2−ベンゼンジオール);サルブタモール((±)−α1−(((1,1−ジメチルエチル)アミノ)メチル)−4−ヒドロキシ−1,3−ベンゼンジメタノール);(R)−サルブタモール;サルメテロール((±)−4−ヒドロキシ−α1−(((6−(4−フェニルブトキシ)ヘキシル)−アミノ)メチル)−1,3−ベンゼンジメタノール);(R)−サルメテロール;テルブタリン(5−(2−((1,1−ジメチルエチル)アミノ)−1−ヒドロキシエチル)−1,3−ベンゼンジオール);ツロブテロール(2−クロロ−α−(((1,1−ジメチルエチル)アミノ)メチル)ベンゼンメタノール);およびTA−2005(8−ヒドロキシ−5−((1R)−1−ヒドロキシ−2−(N−((1R)−2−(4−メトキシフェニル)−1−メチルエチル)アミノ)エチル)カルボスチリル塩酸塩)からなる群から選択される請求項2に記載の製剤。
  4. ドーパミン(D2)受容体アゴニストが、アポモルヒネ((r)−5,6,6a,7−テトラヒドロ−6−メチル−4H−ジベンゾ[de,glキノリン−10,11−ジオール);ブロモクリプチン((5’α)−2−ブロモ−12’−ヒドロキシ−2’−(1−メチルエチル)−5’−(2−メチルプロピル)エルゴタマン−3’,6’,18−トリオン);カベルゴリン((8β)−N−(3−(ジメチルアミノ)プロピル)−N−((エチルアミノ)カルボニル)−6−(2−プロペニル)エルゴリン−8−カルボキサミド);リスリド(N’−((8−α−)−9,10−ジデヒドロ−6−メチルエルゴリン−8−イル)−N,N−ジエチル尿素);ペルゴリド((8−β−)−8−((メチルチオ)メチル)−6−プロピルエルゴリン);レボドーパ(3−ヒドロキシ−L−トリロシン);プラミペキソール((s)−4,5,6,7−テトラヒドロ−N6−プロピル−2,6−ベンゾチアゾールジアミン);塩酸キンピロール(trans−(−)−4aR−4,4a,5,6,7,8,8a,9−オクタヒドロ−5−プロピル−1H−ピラゾロ[3,4−g]キノリン塩酸塩);ロピニロール(4−(2−(ジプロピルアミノ)エチル)−1,3−ジヒドロ−2H−インドール−2−オン);およびタリペキソール(5,6,7,8−テトラヒドロ−6−(2−プロペニル)−4H−チアゾロ[4,5−d]アゼピン−2−アミン)からなる群から選択される請求項2に記載の製剤。
  5. 抗コリン剤が、臭化イプラトロピウム、臭化オキシトロピウム、硝酸メチルアトロピン、硫酸アトロピン、イプラトロピウム、ベラドンナエキス、スコポラミン、臭化メチルスコポラミン、臭化メチルホマトロピン、ヒヨスチアミン、イソプリオプラミド、オルフェナドリン、塩化ベンザルコニウム、臭化チオトロピウム、および臭化グリコピロニウムからなる群から選択される請求項2に記載の製剤。
  6. 局所麻酔剤が、リドカイン、N−アリールアミド、アミノアルキルベンゾエート、プリロカイン、およびエチドカインからなる群から選択される請求項1に記載の製剤。
  7. コルチコステロイドが、アルドステロン、ベクロメタゾン、ベタメタゾン、ブデソニド、シクレソニド、クロプレドノール、コルチゾン、コルチバゾール、デオキシコルトン、デソニド、デスオキシメタゾン、デキサメタゾン、ジフルオロコルトロン、フルクロロロン、フルメタゾン、フルニソリド、フルオシノロン、フルオシノニド、フルオコルチンブチル、フルオロコルチゾン、フルオロコルトロン、フルオロメトロン、フルランドレノロン、フルチカゾン、ハルシノニド、ヒドロコルチゾン、イコメタゾン、メプレドニゾン、メチルプレドニゾロン、モメタゾン、パラメタゾン、プレドニゾロン、プレドニゾン、ロフレポニド、RPR 106541、チクソコルトール、トリアムシノロン、およびそれぞれの医薬として許容される誘導体からなる群から選択される請求項1に記載の製剤。
  8. コルチコステロイド誘導体が、ジプロピオン酸ベクロメタゾン、モノプロピオン酸ベクロメタゾン、21−イソニコチン酸デキサメタゾン、プロピオン酸フルチカゾン、イコメタゾンエンブテート、21−ピバル酸チクソコルトール、およびトリアムシノロンアセトニドからなる群から選択される請求項7に記載の製剤。
  9. コルチコステロイドが、ジプロピオン酸ベクロメタゾン、ブデソニド、フルニソリド、プロピオン酸フルチカゾン、フランカルボン酸モメタゾン、およびトリアムシノロンアセトニドからなる群から選択される請求項1に記載の製剤。
  10. SAE−CDが、コルチコステロイドの少なくとも90%を可溶化するのに十分な量で存在する請求項1に記載の製剤。
  11. SAE−CDが、コルチコステロイドの少なくとも95%を可溶化するのに十分な量で存在する請求項1に記載の製剤。
  12. SAE−CDがコルチコステロイドを十分に可溶化するのに十分な量で存在することにより、溶液製剤が5質量%未満の固体コルチコステロイドを含む実質的に澄明な溶液になる請求項11に記載の製剤。
  13. コルチコステロイド対SAE−CDのモル比が、約1:1〜約1:10,000までの範囲である請求項1に記載の製剤。
  14. 溶液製剤が、従来の保存剤、酸化防止剤、緩衝剤、酸性化剤、可溶化剤、着色剤、錯化促進剤、食塩水、電解質、他の治療薬、アルカリ化剤、等張化剤、表面張力調整剤、粘度調整剤、密度調整剤、揮発度調整剤、消泡剤、矯味矯臭剤、甘味料、親水性ポリマー、またはそれらの組み合わせをさらに含む請求項1に記載の製剤。
  15. 溶液製剤の貯蔵寿命が少なくとも6ヶ月間である請求項1に記載の製剤。
  16. 水以外の液体担体をさらに含む請求項1に記載の製剤。
  17. SAE−CDを21.5±5質量/質量%未満又は約21.5±5質量/質量%含む請求項1に記載の製剤。
  18. SAE−CDが、コルチコステロイドの少なくとも50質量%を溶解するのに十分な量で存在する請求項1に記載の製剤。
  19. SAE−CDが、液体製剤1ml当たり約10〜約500mgの濃度で液体製剤中に存在する請求項1に記載の製剤。
  20. その他の点では類似の条件下で作用するコルチコステロイド/HP−β−CD含有溶液を充填した同じネブライザーよりも、全体として小さな液滴を発生するようにネブライザーの性能を変更する方法であって、HP−β−CDをSAE−CDで置き換え、そしてネブライザーを動作させ、それにより吸入可能な液滴の割合を増やし、そしてHP−β−CDで得られる場合に比べて肺浸透を深くする工程を含む方法。
  21. コルチコステロイドを可溶化するのに十分な量でSAE−CDを組成物中に含めて吸入可能なコルチコステロイド含有水溶液を形成し、そしてネブライザーを使用して患者に該溶液を吸入により投与する段階を含み、該溶液と共に患者に治療有効量のコルチコステロイドを供給するのに要する時間が、懸濁液および溶液がその他の点では類似の噴霧条件下で投与されるときに、同じ量または濃度のコルチコステロイドを含むコルチコステロイド含有懸濁液と共に治療有効量のコルチコステロイドを患者に供給するのに要する時間に比べて短縮される、ネブライザーを使用するコルチコステロイド含有組成物の吸入により治療有効量のコルチコステロイドを患者に供給するのに要する時間を短縮する方法。
  22. シクロデキストリンが、式1:
    Figure 2007517067
    [式中、
    nは、4、5、または6であり、
    1、R2、R3、R4、R5、R6、R7、R8、およびR9は、それぞれ独立に−O−または−O−(C2−C6アルキレン)−SO3 -基であり、R1〜R9の少なくとも1つは独立に−O−(C2−C6アルキレン)−SO3 -基、−O−(CH2mSO3 -基であり、mは2〜6(−OCH2CH2CH2SO3 -または−OCH2CH2CH2CH2SO3 -)であり、そして
    1、S2、S3、S4、S5、S6、S7、S8、およびS9は、それぞれ独立に薬剤として許容されるカチオンである]の化合物である請求項1〜21のいずれか1項に記載の発明。
  23. シクロデキストリンが、「x」が1〜18までの範囲である式II(SAEx−α−CD)、「y」が1〜21までの範囲である式III(SAEy−β−CD)、または「z」が1〜24までの範囲である式IV(SAEz−γ−CD)の化合物であり、「SAE」は、スルホアルキルエーテル置換基を表し、値「x」、「y」、および「z」は、CD分子1個当たりのスルホアルキルエーテル基の個数に関する平均置換度を表す請求項1〜22のいずれか1項に記載の発明。
  24. シクロデキストリンは、
    Figure 2007517067
    からなる群から選択される請求項22に記載の発明。
JP2006547613A 2003-12-31 2004-12-31 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤 Withdrawn JP2007517067A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53362803P 2003-12-31 2003-12-31
PCT/US2005/000082 WO2005065435A2 (en) 2003-12-31 2004-12-31 Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012184694A Division JP5782413B2 (ja) 2003-12-31 2012-08-24 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤

Publications (2)

Publication Number Publication Date
JP2007517067A true JP2007517067A (ja) 2007-06-28
JP2007517067A5 JP2007517067A5 (ja) 2008-01-31

Family

ID=34794240

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2006547613A Withdrawn JP2007517067A (ja) 2003-12-31 2004-12-31 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2006547615A Abandoned JP2007517069A (ja) 2003-12-31 2004-12-31 スルホアルキルエーテルγ−シクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2006547614A Abandoned JP2007517068A (ja) 2003-12-31 2004-12-31 単位用量懸濁液から調製されるスルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2012184694A Active JP5782413B2 (ja) 2003-12-31 2012-08-24 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2015041915A Pending JP2015129173A (ja) 2003-12-31 2015-03-04 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2016133094A Active JP6186478B2 (ja) 2003-12-31 2016-07-05 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2006547615A Abandoned JP2007517069A (ja) 2003-12-31 2004-12-31 スルホアルキルエーテルγ−シクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2006547614A Abandoned JP2007517068A (ja) 2003-12-31 2004-12-31 単位用量懸濁液から調製されるスルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2012184694A Active JP5782413B2 (ja) 2003-12-31 2012-08-24 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2015041915A Pending JP2015129173A (ja) 2003-12-31 2015-03-04 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
JP2016133094A Active JP6186478B2 (ja) 2003-12-31 2016-07-05 スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤

Country Status (15)

Country Link
EP (4) EP3238708A1 (ja)
JP (6) JP2007517067A (ja)
KR (3) KR20070007075A (ja)
CN (3) CN1921830A (ja)
AU (3) AU2004311478A1 (ja)
BR (3) BRPI0418276B8 (ja)
CA (3) CA2552641A1 (ja)
DK (1) DK1732512T3 (ja)
HU (1) HUE032527T2 (ja)
IL (6) IL176577A0 (ja)
MX (2) MXPA06007581A (ja)
NZ (1) NZ548225A (ja)
PT (1) PT1732512T (ja)
RU (3) RU2006127432A (ja)
WO (3) WO2005065649A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516873A (ja) * 2009-02-04 2012-07-26 アクティファエロ ゲーエムベーハー リサーチ アンド デベロップメント 重度で抑制されていないぜんそくの治療方法、装置、および組成物
JP2012530708A (ja) * 2009-06-18 2012-12-06 アラーガン インコーポレイテッド 安全なデスモプレシン投与
JP2017509709A (ja) * 2014-03-28 2017-04-06 ユニベルシテ・ド・リエージュUniversite De Liege シクロデキストリン及びブデソニド誘導体組成物ならびに方法
JP2018521987A (ja) * 2015-06-18 2018-08-09 セージ セラピューティクス, インコーポレイテッド 神経活性ステロイド溶液およびその使用方法
JP2020100658A (ja) * 2014-03-28 2020-07-02 ユニベルシテ・ド・リエージュUniversite De Liege シクロデキストリン及びブデソニド誘導体組成物ならびに方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020299A1 (en) * 2003-12-31 2007-01-25 Pipkin James D Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid
RU2006141358A (ru) 2004-04-23 2008-05-27 Сайдекс, Инк. (Us) Препаративная форма для ингалятора сухого порошка, содержащая простой сульфоалкиловый эфир циклодекстрина
DE102005041860A1 (de) * 2005-09-02 2007-03-08 Schering Ag Nanopartikulärer Einschluss- und Ladungskomplex für pharmazeutische Formulierungen
DK2581078T3 (en) * 2005-10-26 2015-03-02 Cydex Pharmaceuticals Inc Sulfoalkylætercyclodekstrinsammensætninger and processes for the preparation thereof
US7629331B2 (en) 2005-10-26 2009-12-08 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions and methods of preparation thereof
PL1948678T3 (pl) 2005-11-09 2013-09-30 Onyx Therapeutics Inc Związki do hamowania enzymów
BRPI0618653A2 (pt) * 2005-11-15 2011-09-06 Baxter Int composições compreendendo inibidores da lipoxigenase e ciclodextrina
EP1959953A2 (en) * 2005-12-02 2008-08-27 Alembic Limited Stabilized pharmaceutical composition of pramipexole and method of preparation thereof
EP1971348A2 (en) * 2005-12-20 2008-09-24 Tika Läkemedel AB Systems and methods for the delivery of corticosteroids having an increased lung deposition
AU2006329042B2 (en) * 2005-12-21 2012-02-02 Meda Pharma Gmbh & Co Kg Combination of anticholinergics, glucocorticoids, beta2-agonists, PDE4 inhibitor and antileukotriene for the treatment of inflammatory diseases
TR201807714T4 (tr) * 2006-02-10 2018-06-21 Pari Pharma Gmbh İnhalasyon tedavisine yönelik nebülize antibiyotikler.
JP2009526858A (ja) * 2006-02-15 2009-07-23 ティカ レーケメデル アーベー コルチコステロイド溶液を製造する方法
ES2913483T3 (es) * 2006-04-03 2022-06-02 Ceva Animal Health Pty Ltd Formulaciones estabilizadas de polisulfato de pentosano (PPS)
DK2041158T3 (da) 2006-06-19 2013-06-24 Onyx Therapeutics Inc Peptid-epoxidketoner til proteasom inhibering
WO2009003199A1 (en) * 2007-06-28 2008-12-31 Cydex Pharmaceuticals, Inc. Nasal and ophthalmic delivery of aqueous corticosteroid solutions
EP1894568A1 (en) * 2006-08-31 2008-03-05 Novartis AG Pharmaceutical compositions for the treatment of inflammatory or obstructive airway diseases
EP1894559A1 (en) * 2006-09-01 2008-03-05 PARI Pharma GmbH Means to solubilise steroids for inhalation
US20090325917A1 (en) * 2006-10-19 2009-12-31 Cipla Limited Pharmaceutical Compositions and Nasal Spray Incorporating Anhydrous Mometasone Furoate
WO2008065142A1 (en) * 2006-11-29 2008-06-05 N.V. Organon Stabilized solution of rocuronium comprising a sulfoalkyl-ether-beta-cyclodextrin derivative
KR20150041173A (ko) 2007-04-27 2015-04-15 사이덱스 파마슈티칼스, 인크. 클로피도그렐 및 설포알킬 에테르 사이클로덱스트린을 함유하는 제형 및 사용 방법
KR20150131405A (ko) 2007-10-04 2015-11-24 오닉스 세라퓨틱스, 인크. 결정형 펩티드 에폭시 케톤 프로테아제 저해제 및 아미노산 케토-에폭시드의 합성
MX2010005100A (es) * 2007-11-09 2010-11-12 Map Pharmaceuticals Inc Metodos para administrar formulaciones de corticoesteroides.
EP2349313A4 (en) 2008-10-21 2012-08-29 Onyx Therapeutics Inc COMBINATION THERAPY WITH EPOXYCLETON PEPTIDES
US10463677B2 (en) 2008-11-07 2019-11-05 Cydex Pharmaceuticals, Inc. Composition containing sulfoalkyl ether cyclodextrin and latanoprost
EP2400987B1 (en) * 2009-02-25 2014-09-03 Supratek Pharma, Inc. Bendamustine cyclopolysaccharide compositions
AR075899A1 (es) 2009-03-20 2011-05-04 Onyx Therapeutics Inc Tripeptidos epoxicetonas cristalinos inhibidores de proteasa
KR101743591B1 (ko) 2009-05-13 2017-06-20 사이덱스 파마슈티칼스, 인크. 프라수그렐 및 사이클로덱스트린 유도체를 포함하는 약학 조성물 및 그의 제조 및 사용 방법
RU2580315C3 (ru) 2009-05-29 2021-06-18 Перл Терапьютикс, Инк. Композиции для респираторной доставки активных веществ и связанные с ними способы и системы
US8853147B2 (en) 2009-11-13 2014-10-07 Onyx Therapeutics, Inc. Use of peptide epoxyketones for metastasis suppression
MX2012010017A (es) 2010-03-01 2012-10-01 Onyx Therapeutics Inc Compuestos de para la inhibicion de inmunoproteasomas.
RU2445119C2 (ru) * 2010-05-25 2012-03-20 Сергей Викторович Чепур Фармацевтическая композиция и способ ее ингаляционного введения
WO2012146642A1 (en) * 2011-04-26 2012-11-01 Activaero Gmbh Administration of iloprost as aerosol bolus
CN102188371B (zh) * 2011-05-11 2013-01-23 台州职业技术学院 一种环索奈德纳米粒水溶液及其制备方法
CN102973574A (zh) * 2011-09-02 2013-03-20 北京燕锋晨医药技术发展有限公司 一种用于治疗哮喘的药物组合物及制备方法
US8765725B2 (en) 2012-05-08 2014-07-01 Aciex Therapeutics, Inc. Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof
CN104411334A (zh) * 2012-05-08 2015-03-11 欧尼斯治疗公司 用于配制肽蛋白酶体抑制剂的环糊精络合法
DK3517541T3 (da) 2012-05-08 2020-09-07 Nicox Ophthalmics Inc Polymorf form af fluticasonpropionat
RU2504382C1 (ru) * 2012-06-13 2014-01-20 Шолекс Девелопмент Гмбх Ингаляционный препарат для лечения бронхиальной астмы и хронической обструктивной болезни легких и способ его получения
US20140105921A1 (en) 2012-07-09 2014-04-17 Onyx Therapeutics, Inc. Prodrugs of Peptide Epoxy Ketone Protease Inhibitors
RU2506080C1 (ru) * 2012-09-25 2014-02-10 Государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородская государственная медицинская академия" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО НижГМА Минздравсоцразвития России) Способ лечения и профилактики осложнений в полости рта, вызванных приемом ингаляционных гормональных препаратов у больных бронхиальной астмой
RU2493827C1 (ru) * 2012-10-03 2013-09-27 Шолекс Девелопмент Гмбх Стабильный комбинированный раствор фенотерола гидробромида и ипратропия бромида
BR112015010601B1 (pt) * 2012-11-09 2022-07-19 Civitas Therapeutics, Inc. Composição farmacêutica e uso da composição
US9815865B2 (en) 2013-01-07 2017-11-14 Nicox Ophthalmics, Inc. Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof
AU2016218976B2 (en) * 2015-02-13 2021-04-01 Cumberland Pharmaceuticals, Inc. Milrinone composition and method for administering same
WO2017193110A1 (en) * 2016-05-06 2017-11-09 Stites Adam Cannabinoid compositions for sublingual spray nebulizer
KR20220119529A (ko) 2016-06-02 2022-08-29 애브비 인코포레이티드 글루코코르티코이드 수용체 작용제 및 이의 면역접합체
WO2019106609A1 (en) 2017-12-01 2019-06-06 Abbvie Inc. Glucocorticoid receptor agonist and immunoconjugates thereof
WO2019147154A1 (ru) * 2018-01-23 2019-08-01 Александр Григорьевич ЧУЧАЛИН Фармацевтическая композиция (варианты) применение фармацевтической композиции (варианты)
US11007185B2 (en) 2019-08-01 2021-05-18 Incarda Therapeutics, Inc. Antiarrhythmic formulation
CN115811978B (zh) * 2020-06-23 2024-04-26 广州谷森制药有限公司 包含奥达特罗、噻托溴铵和布地奈德的药物组合物的制备
CN115835885A (zh) * 2020-06-23 2023-03-21 广州谷森制药有限公司 包含奥达特罗和布地奈德的药物组合物的制备
CN113018280A (zh) * 2021-03-01 2021-06-25 石家庄四药有限公司 一种异丙托溴铵吸入用溶液制剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504783A (ja) * 1990-01-23 1993-07-22 ザ ユニバーシティ オブ カンザス 水溶解性の高いシクロデキストリン誘導体組成物及びその用途
JPH06511513A (ja) * 1992-07-27 1994-12-22 ザ ユニヴァシティ オブ カンサス 水溶性の高いシクロデキストリン誘導体及びその使用
US6358935B1 (en) * 1998-09-02 2002-03-19 Allergan Sales, Inc. Preserved cyclodextrin-containing compositions
WO2003080079A1 (en) * 2002-03-19 2003-10-02 Cydex, Inc. Use of sulfoalkyl ether cyclodextrin as a preservative

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008875A (en) * 1960-01-08 1961-11-14 Upjohn Co Neomycin and mirystyl-gamma-picolinium halide compositions
BE629985A (ja) * 1962-11-29
US3426011A (en) 1967-02-13 1969-02-04 Corn Products Co Cyclodextrins with anionic properties
US6407079B1 (en) 1985-07-03 2002-06-18 Janssen Pharmaceutica N.V. Pharmaceutical compositions containing drugs which are instable or sparingly soluble in water and methods for their preparation
US5002935A (en) 1987-12-30 1991-03-26 University Of Florida Improvements in redox systems for brain-targeted drug delivery
US5977070A (en) 1992-07-14 1999-11-02 Piazza; Christin Teresa Pharmaceutical compositions for the nasal delivery of compounds useful for the treatment of osteoporosis
US5472954A (en) 1992-07-14 1995-12-05 Cyclops H.F. Cyclodextrin complexation
US5324718A (en) 1992-07-14 1994-06-28 Thorsteinn Loftsson Cyclodextrin/drug complexation
US5510339A (en) 1993-02-02 1996-04-23 Mayo Foundation For Medical Education And Research Method for the treatment of bronchial asthma by administration of topical anesthetics
US5525623A (en) 1993-03-12 1996-06-11 Arris Pharmaceutical Corporation Compositions and methods for the treatment of immunomediated inflammatory disorders
WO1994022445A2 (en) 1993-03-26 1994-10-13 Merkus Franciscus W H M Pharmaceutical compositions for intranasal administration of dihydroergotamine, apomorphine and morphine
BE1007402A5 (nl) 1993-03-26 1995-06-06 Adir Nasale farmaceutische preparaten met progestagene stof.
TW385308B (en) 1994-03-04 2000-03-21 Merck & Co Inc Prodrugs of morpholine tachykinin receptor antagonists
EP1283035A3 (en) 1994-12-22 2003-03-19 AstraZeneca AB Therapeutic preparation for inhalation containing parathyroid hormone
DE4446891A1 (de) * 1994-12-27 1996-07-04 Falk Pharma Gmbh Stabile wäßrige Budesonid-Lösung
US5840713A (en) * 1995-04-03 1998-11-24 Weisz; Paul B. Therapy for tissue membrane insufficiency
US5576645A (en) * 1995-06-05 1996-11-19 Hughes Aircraft Company Sample and hold flip-flop for CMOS logic
US5654276A (en) 1995-06-07 1997-08-05 Affymax Technologies N.V. Peptides and compounds that bind to the IL-5 receptor
US5683983A (en) 1995-06-07 1997-11-04 Glaxo Group Limited Peptides and compounds that bind to the IL-5 receptor
US5668110A (en) 1995-06-07 1997-09-16 Affymax Technologies N.V. Peptides and compounds that bind to the IL-5 receptor
US5677280A (en) 1995-06-07 1997-10-14 Glaxo Group Limited Peptides and compounds that bind to the IL-5 receptor
US5750549A (en) 1996-10-15 1998-05-12 Merck & Co., Inc. Cycloalkyl tachykinin receptor antagonists
GB9625843D0 (en) 1996-12-12 1997-01-29 Merck & Co Inc Phenyl spiroethercycloalkyl tachykinn receptor antagonists
US5929094A (en) 1996-10-25 1999-07-27 Merck & Co., Inc. Heteroaryl spiroethercycloalkyl tachykinin receptor antagonists
JP2001503406A (ja) * 1996-10-28 2001-03-13 ファーマーク、ニーダーランド、ベスローテン、フェンノートシャップ 医薬組成物
US6071910A (en) 1996-12-05 2000-06-06 Mayo Foundation For Medical Education And Research Use of agents to treat eosinophil-associated pathologies
US5837713A (en) 1997-02-26 1998-11-17 Mayo Foundation For Medical Education And Research Treatment of eosinophil-associated pathologies by administration of topical anesthetics and glucocorticoids
US6046177A (en) * 1997-05-05 2000-04-04 Cydex, Inc. Sulfoalkyl ether cyclodextrin based controlled release solid pharmaceutical formulations
PT889056E (pt) 1997-07-01 2006-07-31 Pfizer Prod Inc Processo para produzir um,a ciclodextrina.
JP2002509119A (ja) 1998-01-13 2002-03-26 アストラゼネカ ユーケイ リミテッド ドーパミン(D2)レセプターアゴニスト活性を有する化合物およびβ2−アドレナリンレセプターアゴニスト活性を有する化合物(B)を含有する薬学的組成物
CA2320772A1 (en) 1998-02-23 1999-08-26 Cyclops, Ehf. High-energy cyclodextrin complexes
US6241969B1 (en) 1998-06-26 2001-06-05 Elan Corporation Plc Aqueous compositions containing corticosteroids for nasal and pulmonary delivery
US6509323B1 (en) 1998-07-01 2003-01-21 California Institute Of Technology Linear cyclodextrin copolymers
US20020198174A1 (en) * 2001-05-07 2002-12-26 Allergan Sales, Inc. Disinfecting and solubilizing steroid compositions
WO2000047203A1 (en) 1999-02-12 2000-08-17 Mqs, Inc. Formulation and system for intra-oral delivery of pharmaceutical agents
FR2789685B1 (fr) 1999-02-15 2001-05-04 Univ Lille Sciences Tech Procede de fabrication de polymeres solubles et insolubles a base de cyclodextrine(s) et/ou de derives de cyclodextrine(s) et polymeres solubles a base de cyclodextrine(s) et/ou de derives de cyclodextrine(s)
US6136603A (en) 1999-03-26 2000-10-24 Isis Pharmaceuticals Inc. Antisense modulation of interleukin-5 signal transduction
ES2343124T3 (es) 1999-10-29 2010-07-23 Novartis Ag Composiciones de polvo seco con dispersabilidad mejorada.
US6479467B1 (en) 1999-12-16 2002-11-12 Eastman Chemical Company Cyclodextrin ethers
RU2180217C2 (ru) 2000-03-21 2002-03-10 Закрытое акционерное общество "Пульмомед" Стабильный водный раствор противовоспалительного действия, содержащий будесонид
JP2003532757A (ja) 2000-05-11 2003-11-05 イーストマン ケミカル カンパニー アシル化シクロデキストリン:ゲスト分子包接錯体
JP2005503446A (ja) 2001-01-11 2005-02-03 イーストマン ケミカル カンパニー シクロデキストリンスルホネート、ゲスト包接錯体、その製造方法及び関連物質
WO2002064635A1 (en) 2001-02-14 2002-08-22 Akzo Nobel N.V. 2-alkylated-cyclodextrin derivatives: reversal agents for drug-induced neuromuscular block
US20030055026A1 (en) * 2001-04-17 2003-03-20 Dey L.P. Formoterol/steroid bronchodilating compositions and methods of use thereof
WO2004032862A2 (en) 2002-10-09 2004-04-22 Insert Therapeutics, Inc. Cyclodextrin-based materials, compositions and uses related thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504783A (ja) * 1990-01-23 1993-07-22 ザ ユニバーシティ オブ カンザス 水溶解性の高いシクロデキストリン誘導体組成物及びその用途
JPH06511513A (ja) * 1992-07-27 1994-12-22 ザ ユニヴァシティ オブ カンサス 水溶性の高いシクロデキストリン誘導体及びその使用
US6358935B1 (en) * 1998-09-02 2002-03-19 Allergan Sales, Inc. Preserved cyclodextrin-containing compositions
WO2003080079A1 (en) * 2002-03-19 2003-10-02 Cydex, Inc. Use of sulfoalkyl ether cyclodextrin as a preservative

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516873A (ja) * 2009-02-04 2012-07-26 アクティファエロ ゲーエムベーハー リサーチ アンド デベロップメント 重度で抑制されていないぜんそくの治療方法、装置、および組成物
JP2012530708A (ja) * 2009-06-18 2012-12-06 アラーガン インコーポレイテッド 安全なデスモプレシン投与
US9539302B2 (en) 2009-06-18 2017-01-10 Allergan, Inc. Safe desmopressin administration
US11419914B2 (en) 2009-06-18 2022-08-23 Serenity Pharmaceuticals Llc Safe desmopressin administration
US12090190B2 (en) 2009-06-18 2024-09-17 Acerus Pharmaceuticals USA, LLC Safe desmopressin administration
JP2017509709A (ja) * 2014-03-28 2017-04-06 ユニベルシテ・ド・リエージュUniversite De Liege シクロデキストリン及びブデソニド誘導体組成物ならびに方法
JP2020100658A (ja) * 2014-03-28 2020-07-02 ユニベルシテ・ド・リエージュUniversite De Liege シクロデキストリン及びブデソニド誘導体組成物ならびに方法
JP2018521987A (ja) * 2015-06-18 2018-08-09 セージ セラピューティクス, インコーポレイテッド 神経活性ステロイド溶液およびその使用方法
JP2021127350A (ja) * 2015-06-18 2021-09-02 セージ セラピューティクス, インコーポレイテッド 神経活性ステロイド溶液およびその使用方法
JP7374954B2 (ja) 2015-06-18 2023-11-07 セージ セラピューティクス, インコーポレイテッド 神経活性ステロイド溶液およびその使用方法

Also Published As

Publication number Publication date
IL176576A0 (en) 2006-10-31
CA2552641A1 (en) 2005-07-21
EP1732512A2 (en) 2006-12-20
EP1718276A4 (en) 2008-07-23
KR20070005586A (ko) 2007-01-10
EP1718276A2 (en) 2006-11-08
RU2388462C2 (ru) 2010-05-10
IL225946A0 (en) 2013-06-27
RU2006127467A (ru) 2008-02-10
WO2005065435A3 (en) 2005-09-01
EP3238708A1 (en) 2017-11-01
BRPI0418276B8 (pt) 2021-05-25
HUE032527T2 (en) 2017-09-28
WO2005065435A2 (en) 2005-07-21
DK1732512T3 (en) 2017-07-10
CA2551749A1 (en) 2005-07-21
RU2006127432A (ru) 2008-02-10
IL176575A0 (en) 2006-10-31
WO2005065651A1 (en) 2005-07-21
JP2016172774A (ja) 2016-09-29
BRPI0418276A (pt) 2007-05-02
BRPI0418276B1 (pt) 2017-02-14
JP5782413B2 (ja) 2015-09-24
AU2004312095A1 (en) 2005-07-21
CN1976679B (zh) 2011-08-31
CN1921834A (zh) 2007-02-28
CA2551749C (en) 2014-02-11
EP1729724A1 (en) 2006-12-13
IL225946A (en) 2017-04-30
IL176577A0 (en) 2006-10-31
JP2007517068A (ja) 2007-06-28
JP2015129173A (ja) 2015-07-16
AU2004311478A1 (en) 2005-07-21
MXPA06007581A (es) 2007-03-09
RU2006127443A (ru) 2008-02-10
CN1921830A (zh) 2007-02-28
CN1976679A (zh) 2007-06-06
EP1732512B1 (en) 2017-03-22
BRPI0418386A (pt) 2007-05-22
IL251496B (en) 2021-04-29
EP1732512A4 (en) 2008-07-23
JP2012224648A (ja) 2012-11-15
AU2004312096A1 (en) 2005-07-21
MX348041B (es) 2017-05-25
IL251496A0 (en) 2017-05-29
WO2005065649A1 (en) 2005-07-21
PT1732512T (pt) 2017-07-24
JP6186478B2 (ja) 2017-08-23
CA2551826A1 (en) 2005-07-21
RU2390330C2 (ru) 2010-05-27
KR20070007075A (ko) 2007-01-12
NZ548225A (en) 2012-12-21
EP1729724A4 (en) 2008-07-23
BRPI0418232A (pt) 2007-04-27
JP2007517069A (ja) 2007-06-28
KR20070007076A (ko) 2007-01-12

Similar Documents

Publication Publication Date Title
JP6186478B2 (ja) スルホアルキルエーテルシクロデキストリンおよびコルチコステロイドを含む吸入製剤
US10799599B2 (en) Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid
US20070020196A1 (en) Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension
US20070020298A1 (en) Inhalant formulation containing sulfoalkyl ether gamma-cyclodextrin and corticosteroid
AU2014227557B2 (en) Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid
MXPA06007583A (en) Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120910

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140218

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140905

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140905