JP2006121093A - 非平面トランジスタを有する固体イメージセンサ素子及びその製造方法 - Google Patents

非平面トランジスタを有する固体イメージセンサ素子及びその製造方法 Download PDF

Info

Publication number
JP2006121093A
JP2006121093A JP2005306376A JP2005306376A JP2006121093A JP 2006121093 A JP2006121093 A JP 2006121093A JP 2005306376 A JP2005306376 A JP 2005306376A JP 2005306376 A JP2005306376 A JP 2005306376A JP 2006121093 A JP2006121093 A JP 2006121093A
Authority
JP
Japan
Prior art keywords
region
image sensor
gate electrode
forming
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005306376A
Other languages
English (en)
Other versions
JP5361110B2 (ja
Inventor
Jeong-Ho Lyu
政▲ホ▼ 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020040083968A external-priority patent/KR100630704B1/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006121093A publication Critical patent/JP2006121093A/ja
Application granted granted Critical
Publication of JP5361110B2 publication Critical patent/JP5361110B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】非平面トランジスタを有する固体イメージセンサ素子及びその製造方法を提供する。
【解決手段】アクティブピクセルセンサが垂直ゲート電極及びチャンネルを有する非平面トランジスタで構成され、残像及び暗電流の効果が最小化されたCIS素子及びその製造方法である。
【選択図】図3

Description

本発明は、固体イメージセンサ素子及びその製造方法に係り、特に垂直ゲート電極及びチャンネルを有する非平面トランジスタで設計されて、残像及び暗電流を最小化するアクティブピクセルセンサからなるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ(CIS)及びその製造方法に関する。
これまで多様な形態の固体撮像素子が開発され、それらは、基本的にCCD(Charge−Coupled Devices)及びCISを始めとして、CCD及びCISに基づいたハイブリッドイメージセンサを含む。一般的に、CCD及びCISは、シリコンが光に露出されるときに起きる“光電効果”に基づく動作を行う。特に、CCD及びCISは、ピクセルアレイを備え、ここで、各単位ピクセルは、そのピクセルの活性シリコン領域に形成されている一つまたはそれ以上の感光素子(例えば、フォトダイオード)を含む受光領域を備える。受光領域が光に露出されるとき、可視光線及び近赤外線スペクトラムで、光子は、シリコンの共有結合を破壊するのに十分なエネルギーを有するので、電子は、価電子帯から伝導帯にリリースされる。電子発生量は、光強度に比例する。光子から発生した電荷は、ピクセルアレイの感光素子により蓄積された後、検出及び処理されてデジタルイメージを生成する。
歴史的に、固体撮像応用分野では、アナログCCDイメージセンサが市場を占有してきた。その理由は、アナログCCDイメージセンサは、ダイナミックレンジが優れており、FPN(Fixed Pattern Noise)が低く、光に敏感であるという利点があるためである。しかし、CMOS技術の進展は、改善されたCIS設計の開発を誘導して、多様な固体撮像応用分野でCCDがCISに交替された。固体CISの利点として、例えば低い製造コスト、単一電圧電源による低い電力消耗、システムオンチップの集積化、高速動作(例えば、高いフレームレートにおける順次的なイメージキャプチャリング)、高度集積されたピクセルアレイ、オンチップイメージ処理システム、単位ピクセルへのランダムアクセスなどを挙げることができる。一方、CCDイメージセンサは、製造コストが高く、典型的に相異なるクロックスピードで2〜3、またはそれ以上の供給電圧が要求されて電力消耗が非常に大きく、単位ピクセルへのランダムアクセスが不可能である。
しかし、従来の固体CISは、低減度及び多様なノイズソースによりパフォーマンスが劣化された。例えば、従来のCISのうち一部は、暗電流のようなノイズに非常に敏感である。従来技術で周知のように、暗電流は、光源のない状態で熱的に生成された電荷であって、光子による電荷と共に蓄積される。暗電流は、典型的にゲート及びスペーサのエッチング工程のような製造工程時に引き起こされる単位ピクセルのフォトダイオード領域のような活性シリコン領域での表面欠陥(例えば、シリコンダングリングボンド)により発生する。また、暗電流は、素子分離領域と活性シリコン領域との界面でのシリコン欠陥により生成されることもある。一般的に、暗電流の生成量は、温度及び時間の関数であり、暗電流の生成量は、動作条件によってピクセルごとに顕著に異なりうる。その結果、暗電流によりピクセル感度が低下し、イメージセンサ素子のダイナミックレンジが小さくなる。
さらに、CISは、残像として知られる現象が現れることがある。この技術分野で周知のように、残像は、不完全なピクセルリセットにより引き起こされ、ここで、ピクセルのフォトダイオードまたはセンスノードのリセット電圧は、リセット動作の時点で所望の基準電圧リセットレベルから変化する。また、残像は、フォトダイオードから与えられたピクセルのセンシングノードまでの不完全な電荷伝送から引き起こされる。二つの領域間で電荷を完全に伝送できるCISの能力は、それらの二つの領域間の電界強度に依存する。この点において、CIS素子は、低消費電力の要求に符合するように、さらに低い電源電圧で動作するように設計されたので(不完全な電荷伝送及びリセットによる)残像を最小化する能力が次第に問題となっている。
本発明の目的は、垂直ゲート電極及びチャンネルを有する非平面トランジスタを有するように設計されたアクティブピクセルセンサからなり、残像及び暗電流の効果が最小化されたCIS素子を提供するところにある。
本発明の他の目的は、垂直ゲート電極及びチャンネルを有する非平面トランジスタを有するように構成されたアクティブピクセルセンサを備え、残像及び暗電流の効果が最小化されたCIS素子の製造方法を提供するところにある。
本発明の例示的な一実施形態において、イメージセンサ素子は、素子分離領域により画定される複数の活性領域を備える半導体基板、及び前記活性領域のうち一つの活性領域にそれぞれ一つずつ形成されている複数のピクセルを備えるピクセルアレイを備える。前記各ピクセルは、受光部及び電荷伝送部を備える。前記電荷伝送部は、前記受光部からの電荷を、例えばフローティング拡散領域またはセンスノードへ伝送する。前記電荷伝送部は、前記ピクセルの活性領域で前記電荷を伝送するための垂直チャンネル領域、前記素子分離領域で前記垂直チャンネル領域に隣接するように配置された垂直ゲート電極、及び前記垂直チャンネル領域と垂直ゲート電極との間に配置された絶縁物質を備える。
本発明の例示的な他の実施形態において、受光部は、フォトダイオードまたはPPD(Pinning PhotoDiode)でありうる。前記受光部は、前記活性領域に形成されたHAD(Hole Accumulation Diode)、及び前記HADの下部に形成されたnウェル領域を備える。
残像及び他の形態のノイズを最小化するために、前記垂直ゲート電極は、前記受光部の電荷蓄積領域の少なくとも一部に隣接する深さまで形成される。例えば、前記垂直ゲート電極は、前記nウェル領域の少なくとも一部に隣接するようにHAD領域下の深さまで形成されうる。
本発明の例示的な他の実施形態において、前記電荷伝送部は、前記電荷を伝送するために、前記ピクセルの活性領域に形成された水平チャンネル領域、前記水平チャンネル領域に隣接するように配置された水平ゲート電極、及び前記水平チャンネル領域と水平ゲート電極との間に配置された絶縁物質をさらに備える。
本発明の例示的な他の実施形態において、前記水平ゲート電極は、前記半導体基板の表面に形成されるか、または前記水平ゲート電極の少なくとも一部が前記半導体基板の表面に形成されたリセス内に配置される。前記水平ゲート電極は、例えばL字形または長方形である。前記垂直ゲート電極は、前記素子分離領域を覆う水平ゲート電極の一部に連結されて、それから延びている。
本発明の例示的な他の実施形態において、イメージセンサ素子は、基板に形成された複数のアクティブピクセルを備える。一つのアクティブピクセルは、受光部、リセットトランジスタ、電荷伝送部、フローティング拡散領域及び増幅トランジスタを備える。前記リセットトランジスタ、電荷伝送部または増幅トランジスタは、垂直チャンネルを有するように構成されうる。
本発明の他の例示的な実施形態は、垂直ゲート電極及びチャンネルを有する非平面トランジスタを有するように構成されたアクティブピクセルセンサを備え、残像及び暗電流の効果が最小化されたCIS素子の製造方法を含む。
本発明の例示的な一実施形態では、イメージセンサ素子の製造方法を提供する。単位ピクセルの活性領域が半導体基板に形成される。前記活性領域は、素子分離領域により取り囲まれた受光領域及びトランジスタ領域を備える。前記受光領域及びトランジスタ領域に近接するように、トランスファゲートが形成される。ここで、前記トランスファゲートは、半導体基板に形成され、前記活性領域の側壁に隣接するように配置される垂直ゲート電極を備える。
本発明の例示的な一実施形態において、前記トランスファゲートは、前記活性領域の側壁の一部を露出させるように、前記素子分離領域をエッチングしてリセスを形成し、前記活性領域の側壁の露出された部分上に絶縁層を形成し、前記リセス内に導電物質を充填して、前記垂直ゲート電極を形成することによって形成される。例示的な一実施形態において、前記リセスは、前記素子分離領域のみに形成される。例えば、前記リセスは、前記アクティブトランジスタ領域の側壁の一部を露出させるか、または前記受光領域の側壁の一部を露出させるか、または前記アクティブトランジスタ領域及び受光領域両方の側壁の一部を露出させるように形成されうる。本発明の例示的な他の実施形態において、トランスファゲートは、活性領域の側壁に隣接した半導体基板の相異なる領域に形成される複数の垂直ゲート電極を備える。
本発明の例示的な他の実施形態において、前記トランスファゲートは、水平ゲート電極、及び一つまたはそれ以上の垂直ゲート電極を有するように形成されうる。例えば、前記水平ゲート電極は、前記半導体基板上で、前記トランジスタ領域及び素子分離領域の一部上に形成されうる。前記水平ゲート電極は、前記半導体基板上で、前記受光領域の一部及び素子分離領域の一部上に形成されうる。前記水平ゲート電極は、前記半導体基板上で、前記トランジスタ領域の一部、前記受光領域の一部及び前記素子分離領域の一部上に形成されうる。例示的な一実施形態において、前記水平及び垂直ゲート電極は、一体に形成される。
本発明の例示的な他の実施形態において、前記トランスファゲートを形成するために、前記活性領域の一部をエッチングして、前記半導体基板の表面下の深さでリセスされた表面を形成し、前記水平ゲート電極の少なくとも一部が前記リセスされた表面上に形成されるように前記水平ゲート電極を形成する。
本発明の例示的な実施形態において、前記受光領域に受光部を形成する。前記受光部は、例えばフォトダイオードまたはPPDである。前記受光部を形成するために、前記受光領域の表面にHADを形成し、前記HADの下部にnウェル領域を形成できる。前記伝送部の垂直ゲート電極は、前記受光部の電荷蓄積領域(例えば、前記HAD層のnウェル領域)の少なくとも一部に隣接する深さで前記半導体基板に形成される。
本発明の例示的なさらに他の実施形態において、受光領域、リセットトランジスタ、フローティング拡散領域及び前記フローティング拡散領域に動作的に連結された増幅素子を有するイメージセンサ素子の製造方法を提供する。その方法は、素子分離領域により取り囲まれる基板上に単位ピクセルの活性領域を形成する工程、前記素子分離領域にリセスを形成する工程、及び前記リセス内にトランスファゲートを形成する工程を含む。本発明の例示的な実施形態において、前記受光領域に近接した前記活性領域の側部領域に隣接するように前記素子分離領域に少なくとも二つのリセスを形成する。
本発明の例示的な他の実施形態において、イメージセンサ素子の製造方法は、素子分離領域により取り囲まれた基板上に単位ピクセルの活性領域を画定する工程、前記基板に受光部を形成する工程、前記素子分離領域をエッチングしてリセスを形成する工程、チャンネル領域で前記基板の上面をエッチングする工程、前記リセスの内部及び前記基板の上面上に絶縁層を形成する工程、前記リセスの内部及び前記基板の上面上に導電層を蒸着して電荷伝送部を形成する工程、前記電荷伝送部と前記受光部との間にフローティング拡散領域を形成する工程、及び前記基板にリセットトランジスタ及び増幅素子を形成する工程を含む。
本発明の他の例示的な実施形態、様相、目的、特徴及び利点は、添付図面を参照して説明する次の例示的な実施形態についての詳細な説明から明白になる。
本発明によれば、垂直ゲート電極及びチャンネルを有する非平面トランジスタを有するように設計されたアクティブピクセルセンサからなり、残像及び暗電流が最小化されうる。
次に、本発明の例示的な実施形態によるCIS素子及びその製造方法について、添付図面を参照して詳細に説明する。添付図面は、単に説明のために概略的に示すものであり、多様な構成要素の厚さ及び大きさは、明確性のために誇張されたものである。また、ある膜が他の膜または基板の“上”にあると記載された場合、前記ある膜が前記他の膜上に直接存在することもあり、その間に第3の他の膜が介在されることもある。添付図面で、同じ参照符号は同一または類似している機能を有する。
図1は、本発明の例示的な実施形態による固体CIS素子のハイレベルブロックダイヤグラムである。特に、図1は、センサ行及びセンサ列が直交する格子状に配置された複数の単位ピクセル22からなるピクセルアレイ20を備えるCIS素子10を示すものである。用途によって、ピクセルアレイ20は、任意の数の行及び列で配列されうる。後述するように、ピクセルアレイ20の単位ピクセル22は、本発明の例示的な実施形態による非平面トランジスタを有する多様なピクセル構造のうちの一つで設計され、このように設計されることによって残像及び暗電流を最小化できる。
CIS10は、行デコーダロジック30及び出力コントロールロジック35を備えるCMOSコントロール論理回路をさらに備える。前記行デコーダロジック30から単位ピクセル22の該当行によって複数のコントロールライン24が延び、それら複数のコントロールライン24は、各行で該当単位ピクセル22に連結される。センサ列で、各単位ピクセル22の出力ポートは、該当列出力ライン26により出力コントロール回路35(例えば、列センシング及びマルチプレクシングなどの機能を行う)に連結される。詳細に図示していないが、CIS10は、ピクセル信号の読み取り及び処理機能のために、アナログ信号プロセッサ、アナログ−デジタルコンバータ、バイアス電圧発生器、タイミング信号発生器、デジタル論理及びメモリなどを含む他のオンチップ混合信号回路をさらに備える。
動作時には、制御信号が前記行デコーダロジック30に印加されて、コントロールライン24を通じて単位ピクセルの各行を順次に活性化させて光強度を検出し、列出力ライン26に印加される該当出力電圧信号を発生させる。前記CMOSコントロール論理回路30、35は、アレイ20でピクセル22の各センサ行についてのピクセルリセット、集積化及びピクセル読み取り動作などの機能を制御するために、公知のx−yアドレシング及びタイミングプロトコルであれば何でも具現できる。
図2は、図1のCISの単位ピクセルを示す概略的な回路図であり、本発明の例示的な実施形態によって非平面トランジスタで具現されうる。特に、図2は、4トランジスタ(4−T)アクティブピクセルセンサフレームワークを有する単位ピクセル22を概略的に示すものである。一般的に、例示的な単位ピクセル22は、PD(PhotoDetector)素子(または、受光部)、トランスファトランジスタTX、FD(Floating Diffusion)領域(または、センスノード)、リセットトランジスタRX、増幅トランジスタDX(または、ソースフォロワアンプ)及びセレクトトランジスタSXからなる。前記PD素子は、例えばピクセル22の受光領域に形成されているフォトダイオードまたはPPDからなる。前記PD素子は、トランスファトランジスタTXの動作によりFD領域に又はFD領域からカップリング/デカップリングされる。前記リセットトランジスタRXは、RSコントロール信号線に連結されたゲート電極を有する。トランスファトランジスタTXは、TGコントロール信号線に連結されたゲート電極を有する。前記セレクトトランジスタSXは、SELコントロール信号線に連結されたゲート電極と出力(列)ライン26に連結されたソース電極とを有する。
トランジスタRX、TX、DX、SXは、ピクセルのリセット、蓄積された電荷をPD素子からFD領域まで伝達、及びFD領域にある蓄積電荷を測定可能な電圧に変換し、それを増幅させて出力ライン26へ伝送するなどの機能を行うように作動される。特に、例示的な単位ピクセル22は、次のように動作する。まず、集積化の間(または、電荷蓄積期間)、ピクセルに入射光が照射されて光電荷をPD素子の電位ウェル(または、電荷蓄積領域)に蓄積される。集積期間が終了すれば、リセットトランジスタRXは、RSコントロール信号線に印加されるリセットコントロール信号により活性化されて、電荷をFD領域からドレインさせ、前記FD領域を基準電位にセットする(例えば、前記FD領域は、リセットトランジスタRXの限界電圧より小さいソース電圧VDD程度に充電されうる)。リセット動作後には、前記トランスファトランジスタTXは、TGコントロール信号線に印加されたコントロール信号により活性化されて、蓄積された光電荷をPD素子からFD領域へ伝送する。増幅トランジスタDXは、FD領域の電圧を増幅させ、増幅された電圧は、SEL信号線に印加された行信号により活性化される選択トランジスタSXを通じて列出力ライン26にバッファリング/カップリングされる。
通常的に設計された図2の単位ピクセル22は、ピクセルの活性シリコン領域にある多様な位置、例えばピクセルの受光領域、PD領域とFD領域との間の電荷伝送領域を含む多様な位置で暗電流が発生する。さらに、単位ピクセル22は、トランスファトランジスタTXによりPD領域からFD領域までの光電荷が不完全に伝送される理由、及び/またはリセットトランジスタRXの動作によるFD領域の基準電圧へのリセットが不完全になされる理由により、残像が発生する。
後述する本発明の例示的な実施形態によれば、アクティブピクセルセンサのトランスファトランジスタTX及びリセットトランジスタRXは、暗電流及び残像効果を最小化するように設計された。
図3は、本発明の例示的な実施形態による単位ピクセル22−1のレイアウトパターンを概略的に示すものである。特に、図3は、図2に示した4−Tアクティブピクセルセンサ構成を有する単位ピクセルの例示的なレイアウトパターンを示す。例示的な単位ピクセル22−1は、半導体基板上に形成された活性シリコン領域110及び素子分離領域102を備える。前記活性シリコン領域110は、素子分離領域102により画定(包囲)される。例示的な実施形態において、前記素子分離領域102は、STI(Shallow Trench Isolation)技術を利用して形成される。活性シリコン領域110は、PD(PhotoDiode)領域110a(または、受光領域)及びトランジスタ活性領域110b(または、トランジスタ領域)を備える。図3の例示的な実施形態では、前記PD領域110aが四角形で形成され、前記トランジスタ活性領域110bが、前記PD領域110aの一側から延びて折曲部がある線形で形成されたことが示されている。本発明の他の実施形態において、前記PD領域110a及びトランジスタ活性領域110bは、他の形状及び構成を有することもあり、これについては後述する。
単位ピクセル22−1は、トランジスタ活性領域110bに沿う位置に形成される多様なゲート電極を備え、それらは、トランスファトランジスタTXのゲート電極120(または、トランスファゲート)、リセットトランジスタRXのゲート電極130(または、リセットゲート)、増幅トランジスタDXのゲート電極140及びセレクトトランジスタSXのゲート電極150を備える。前記ゲート電極120、130、140、150は、トランジスタ活性領域110bの一部及び素子分離領域102の一部と重なるように形成される。各ゲート電極120、130、140、150の一部には、多様なコンタクトTG、RS、144、SELが形成される。
前記トランスファゲート120は、PD領域110aとトランジスタ活性領域110bのFD領域との間に配置される。前記トランスファゲート120は、複数のゲート電極120a、120b、120c及び延長部120dを備える。コンタクトTGが前記ゲート電極120の延長部120dに形成されて、TGコントロールラインへのコンタクトを提供する。前記ゲート電極120a、120bは、素子分離領域102の他の領域に下向きに延び、前記活性シリコン領域110の側面に隣接するように配置される垂直ゲート電極である。後述するように、前記垂直ゲート電極に隣接して配置された活性シリコン領域の側壁は、垂直チャンネルを含み、前記垂直チャンネルでは、光電荷がトランスファトランジスタTXの動作によりPD領域からFD領域まで容易に伝送される。
FD領域は、トランスファゲート120とリセットゲート130との間でアクティブトランジスタ領域110bの一部をドーピングして形成される。FD領域は、トランスファトランジスタTXのドレイン領域とリセットトランジスタRXのソース領域とを提供する。FD領域上に形成されたコンタクト134は、前記FD領域と増幅トランジスタDXのゲート電極140上に形成されたコンタクト144との電気的連結を可能にする。ゲート電極130、140の間でアクティブトランジスタ領域110bの一部がドーピングされて、リセットトランジスタRX及び増幅トランジスタDXのドレイン領域を提供し、その上に形成されたコンタクトVDDは、VDD供給電圧接続を提供する。リセットゲート130上に形成されたコンタクトRSは、リセットゲートコントロール信号ラインを提供する。ゲート電極140、150間で前記アクティブトランジスタ領域110bの一部がドーピングされて、増幅トランジスタDXのソース領域及びセレクトトランジスタSXのドレイン領域を提供する。ゲート電極上に形成されたSELコンタクトは、セレクトゲートコントロール信号ラインへのコンタクトを提供する。アクティブトランジスタ領域110bのドーピングされた一部により、セレクトトランジスタSXのソース領域を提供する部分には、出力コンタクト159が形成される。前記出力コンタクト159は、セレクトトランジスタSXのソース領域を出力ライン(ビット列ライン)に連結させる連結部を提供する。
図4A〜図4Cは、本発明の例示的な実施形態による図3の例示的な単位ピクセル22−1の詳細を示す概略的なダイヤグラムである。特に、図4Aは、図3の4A−4A線の単位ピクセル22−1の概略的な断面図であり、ここで、PD領域110aと、トランスファゲート120、FD領域160及びリセットゲート130を備えるアクティブトランジスタ領域110bの一部とが示されている。また、図4Bは、図3の4B−4B線の単位ピクセル22−1の概略的な断面図であり、ここで、例示的なトランスファゲート120の詳細な構造が示されている。図4Cは、単位ピクセル22−1のトランスファゲート120の概略的な斜視図である。
図4Aに示すように、PD領域110aは、半導体基板層100に形成された受光素子(または、光検出素子)を含む。例示的な一実施形態において、前記基板層100は、アクティブピクセル素子が形成されている半導体基板に形成されたpドーピング層(例えば、pウェルまたはpエピタキシャル層)である。例示的な実施形態において、前記PD領域110aに形成された受光素子は、p層155(または、HAD層)及び前記p層155の下部に形成された埋め込みnウェル層156を備える。PD領域110aの積層されたp層155/n層156/p層100は、この技術分野で周知されたようなPPDを形成する。典型的に、PPDは、アクティブピクセルセンサの設計に採用されて多様な利点を提供する。
例えば、PPD素子は、素子が完全に空乏されたとき(すなわち、p/n接合の空乏領域が合ったとき)、素子の電圧がVP(Pinning Voltage)を超過しないように形成されうる。PPDは、リセット時、VPがFD領域160の電圧より低くなってPD領域110aからFD領域160までの完全な電荷伝送が可能になるように設計されうる。PPDを使用する他の利点は、p層155により埋め込みnウェル層156がシリコン表面から隔離されて、暗電流が(従来のフォトダイオードに比べて)減少するということである。実際に、p層155によりPD領域110aにある光電荷が蓄積されて埋め込みnウェル層156に拘束される。このように、p層155は、活性シリコン基板で熱的に生成された電荷からnウェル層156を効果的に保護して暗電流を減少させ、これによりノイズを減少させる。さらに、p層156は、p及びnウェル層間の接合で短波長可視光(青色光)を捕獲することによって、ピクセルのスペクトラム感度を向上させるように動作し、このとき、さらに深いp/nウェル接合は、さらに長い波長の光(赤色及び赤外)を捕獲できる。
図4Aに詳細に示すように、トランスファトランジスタTXは、側壁スペーサ125を有するゲート電極120、及び基板層100とゲート電極120との間に形成されたゲート絶縁膜126を備える。リセットトランジスタRXは、側壁スペーサ135を有するゲート電極130、及び基板層100とゲート電極130との間に形成されたゲート絶縁膜136を備える。FD領域160は、トランスファゲート120とリセットゲート130との間で、基板層100の活性領域に形成された低濃度のnドーピング層160a及び高濃度のnドーピング層160bを備える。前述したように、FD領域160は、リセットトランジスタRXのソース領域、及びトランスファトランジスタTXのドレイン領域を備える。リセットトランジスタRXのドレイン領域は、nドーピング領域132であり、これは、低濃度のnドーピング拡散領域132a及び高濃度のnドーピング拡散領域132bを備える。ドレイン領域132は、供給電圧VDDに連結される。
図4B及び図4Cに示すように、トランスファゲート120は、垂直ゲート電極120a、120b及び水平ゲート電極120cを備える。垂直ゲート電極120a、120bは、水平ゲート電極120cに連結されており、水平ゲート電極120cから素子分離領域102に基板層100の表面下の深さD1まで延びている。活性シリコン領域110bのうちゲート電極120a、120b、120cにより覆われた(包まれた)部分は、垂直側壁104a、104b及び上面104cを有するメサ型のチャンネル領域104を形成する。ゲート電極120a、120b、120c、基板層100及び素子分離領域102の間には、絶縁層126が形成されている。前記チャンネル領域104は、コントロール電圧がトランスファゲート120に印加されたとき、PD領域110aからFD領域160まで蓄積された電荷を伝送するための複数のチャンネルを備える。前記チャンネルは、垂直側壁104a、104bに沿って活性シリコン領域にそれぞれ形成される垂直チャンネルC、C及び上面104cに沿って活性シリコン領域に形成される水平チャンネルCを備える。
従来の設計と比較するとき、垂直ゲート電極120a、120bを有する例示的なトランスファゲート120の構造は、PD領域110aに蓄積された光電荷が残像を最小化または防止する方法でFD領域160に伝送される。実際に、従来のピクセル設計では、トランスファゲート電極が典型的に活性シリコン表面上にスタックゲート構造で形成される。しかし、かかる従来の設計では、トランスファゲートのチャンネル領域とPD素子の電荷蓄積領域との間の距離が広くなるほど、光電荷をFD領域へ伝送し難くなって残像が引き起こされる。
例えば、図4Aには、水平ゲート電極120cと表面チャンネルCとが示されており、ここで、Cは、PPD素子のnウェル層156(電荷蓄積領域)から分離されている。スタックゲート構造(ゲート電極120c及びゲート酸化膜126)のみで構成された従来のトランスファゲートでは、nウェル層156(電荷蓄積領域)と表面チャンネルCとの間の距離が広くなるにつれて残像が発生する。実際に、CISが次第に高集積化され(例えば、ピクセル領域面積が小さくなり)、さらに低電圧で動作するように設計されることによって、トランスファゲート電極の長さは減少せねばならず、フォトダイオード素子の垂直深さは増加せねばならない。かかる場合に、表面チャンネルCとnウェル領域156との間の広くなった距離及び減少した電圧(減少した電位)により、表面チャンネルCの深いnウェル領域156(または、他の形態のフォトダイオード素子の電荷蓄積領域)からFD領域160まで電荷を伝送するのに非効果的になり、その結果、残像が増加する。
図4A〜図4Cの例示的な実施形態によれば、トランスファゲート120の垂直ゲート電極120a、120b及び水平ゲート電極120cの組み合わせにより、トランスファゲートの幅が効果的に広くなりつつ、さらに小さいデザインルールは維持できる。さらに、トランスファゲート120のチャンネル領域104は、垂直チャンネルC、Cと水平チャンネルCとを備え、蓄積された電荷をnウェル150からFD領域160まで伝送する。望ましくは、垂直チャンネルC、Cは、少なくともnウェル領域156に隣接して配置されるように垂直深さD1で形成される。例示的な一実施形態において、STI領域102は、約0.4ミクロンの深さで形成され、D1は、0.4ミクロン以下に形成される。特に、例示的な一実施形態において、垂直ゲート電極120a、120bは、埋め込みnウェル層156のほぼセンタ深さである深さD1で形成される。このように、垂直チャンネルC、Cは、nウェル領域156と表面チャンネルCとの物理的なギャップを効果的に減少させて電荷伝送をさらに効果的にし、残像を減少させるか、または除去する。
図4Dは、例示的な単位ピクセル22−1について、PD領域110aとトランスファゲート120に近接したトランジスタ領域110bとの電位レベルを示すグラフである。曲線Aは、トランスファトランジスタTXが“オン”であるとき、PD領域110aの電位レベル及びトランスファゲート120の表面チャンネルCの電位レベルを表す。曲線Bは、トランスファトランジスタTXが“オン”であるとき、PD領域110aの電位レベル及びトランスファゲート120の垂直チャンネルC、Cの電位レベルを表す。曲線Cは、トランスファトランジスタTXが“オフ”であるとき、PD領域110aの電位レベル及びトランスファゲート120のチャンネルの電位レベルを表す。トランスファゲート120が“オン”または“オフ”であるとき、トランスファゲート120の下部領域で電位障壁が変化する。図4Dから分かるように、垂直チャンネルC、Cは表面チャンネルCより低いので、残像なしにPD領域110aにある電子がFD領域へ容易に伝送されうる。
また、従来の設計と比較するとき、垂直ゲート電極120a、120bを備えるトランスファゲート120を使用することによって、PPDのnウェル領域156が基板100内でその表面から遠くて深く位置する。これにより、暗電流ノイズを減少または除去できる。
本発明の例示的な他の実施形態において、図3及び図4AのリセットトランジスタRXのゲート電極130は、トランスファトランジスタTXのゲート電極120と類似した構造を有するように設計されうる。例えば、図4Eは、図3の4E−4E線の断面図であり、ここでは、本発明の例示的な実施形態によるリセットゲート電極130の構造が示されている。リセットゲート電極130は、垂直ゲート電極130a、130b及び水平ゲート電極130cを備える。垂直ゲート電極130a、130bは、水平ゲート電極130cに連結されて、それから素子分離領域102まで基板層100の下部に深さD1まで延びている。活性シリコン領域110bのうちゲート電極130a、130b、130cにより覆われた(包まれた)部分は、垂直側壁106a、106b及び上部表面106cを有するメサ型のチャンネル領域106を形成する。ゲート電極130a、130b、130c、基板層100及び素子分離層102の間には、絶縁層136が形成されている。前記チャンネル領域106は、垂直側壁106a、106bに沿って活性シリコン領域にそれぞれ形成される垂直チャンネルC、C、及び上部表面106cに沿って活性シリコン領域に形成される水平表面チャンネルCを備える。
垂直ゲート電極106a、106bを有する例示的なリセットゲート130の構造により、リセット時、FD領域の放電がさらに効果的に行われて、FD領域の所望の基準電圧レベルまでの不完全なリセットの結果として発生する残像から保護されうる。実際に、ピクセルが減少したデザインルール及び低い供給電圧で設計されるので、垂直ゲート電極130a、130bを有するリセットゲート130は、ゲート幅を効果的に広げて、FD領域と供給電圧との電位差が小さいにもかかわらず、効果的な電荷伝送が可能になる。
図5A〜図5Cは、本発明の例示的な他の実施形態による単位ピクセル22−2の構造を概略的に示すものである。図示のために、例示的な単位ピクセル22−2が図3に示すような例示的な単位ピクセル22−1のレイアウトパターンと類似したレイアウトパターンを有することを前提とした。これと関連し、図5Aは図4Aと類似した断面図であり、図5Bは図4Bと類似した断面図であり、図5Cは図4Cと類似した断面図である。一般的に、図5A〜図5Cの例示的な単位ピクセル22−2は、図4A〜図4Cの単位ピクセル22−1と類似したが、相違点は、トランスファゲート120の水平ゲート電極120cが基板層100内に部分的にリセスされたということである。
特に、図5B及び図5Cに示すように、トランスファゲート電極104a、104b、104cにより包まれたチャンネル領域104は(チャンネル領域104の上部表面104cが基板100の表面と同じレベルである単位ピクセル22−1と比較するとき)、基板100の表面下に深さD2までリセスされている上部表面104dを有する。図5Aに示すように、例示的な実施形態において(図4Aと比較するとき)、表面チャンネルCが埋め込みnウェル層156にさらに近接し、このように構成することによって、PD領域110aからFD領域160までの電荷伝送能力を向上させる。また、図5Aに示すように、水平ゲート電極120cのFD領域160に隣接した側壁に形成されたスペーサも、基板100の表面下にリセスされてゲート電極120とFD領域160とを電気的に隔離させる。
図6は、本発明の例示的な他の実施形態による単位ピクセル22−3のレイアウトパターンを概略的に示すものである。特に、図6は、図2に示すように4−Tアクティブピクセルセンサ構造を有する実施形態による単位ピクセル22−3の例示的なレイアウトパターンである。例示的な単位ピクセル22−3のレイアウトパターンは、図3の例示的な単位ピクセル22−1と類似している。したがって、これについての詳細な説明は省略する。例示的な単位ピクセル22−3は、それぞれゲートコンタクトTGa、TGbを有する分離された垂直ゲート電極220a、220bからなるトランスファゲート220を備える。前記トランスファゲート220は、アクティブトランジスタ領域110bの反対側でPD領域110aに隣接するように配置される。前記トランスファゲート220の例示的な構造が、図7A〜図7Cの例示的な実施形態にさらに詳細に示されている。
さらに詳細に説明すれば、図7A〜図7Cは、図6の例示的な単位ピクセル22−3をさらに詳細に示す概略的な図面であって、図7Aは、図6の7A−7A線の単位ピクセル22−3の断面図であり、図7Bは、図6の7B−7B線の単位ピクセル22−3の断面図であり、図7Cは、トランスファゲート220の概略的な斜視図である。図7A〜図7Cに示すように、トランスファゲート220は、分離された垂直ゲート電極220a、220bを備える。それらは、基板100の表面下に深さD1まで形成されており、チャンネル領域104の各側壁104a、104bに隣接している。前記チャンネル領域104は、深い垂直チャンネルC、Cを備え、それらは、埋め込みnウェル層156に近接して配置されて、PD領域110aからFD領域160まで蓄積電荷を効果的に伝送する。
前述した単位ピクセル22−1、22−2の例示的なトランスファゲート120と比較するとき、前記単位ピクセル22−3のトランスファゲート220は、活性シリコンチャンネル領域104上で基板100の上面上に形成される水平ゲート電極は含まない。用途によって、垂直ゲート電極220a、220bを有する例示的なトランスファゲート200の構造により、残像を効果的に最小化させるか、または除去しつつ、水平ゲート電極及びチャンネルが具現されたとき、活性シリコンチャンネル領域104の上面での表面欠陥により引き起こされる暗電流ノイズを減少させることができる。また、水平ゲート電極を省略することによって、上部の水平ゲート構造により引き起こされる陰影効果を低下させて単位ピクセルの効率または“フィルファクタ”を増加させ、これによりPD領域110aに達する光の入射角を増加させることができる。
図8は、本発明の他の例示的な実施形態による単位ピクセル22−4のレイアウトパターンを概略的に示す平面図である。特に、図8は、図2に示すように4−Tアクティブピクセルセンサ構造を有する実施形態による単位ピクセル22−4の例示的なレイアウトパターンである。例示的な単位ピクセル22−4のレイアウトパターンは、前述した単位ピクセルの例示的なレイアウトパターンと基本的には類似している。ただし、例示的な単位ピクセル22−4は、PD領域110aでホール蓄積層155上に形成されたL字形のトランスファゲート320を備える。この技術分野で周知のように、従来のL字形のトランスファゲートは、PD領域110aからFD領域160まで蓄積電荷を伝送する電荷伝送効率を向上させるために、PD領域上で基板の表面上に形成されたスタックゲート構造を有する。
本発明の例示的な実施形態によれば、従来技術の設計とは異なり、前記L字形のトランスファゲート320は、垂直ゲート電極320a、320b及び水平ゲート電極320cを備える。前記した例示的なトランスファゲート120、220の垂直ゲート電極のように、前記L字形のトランスファゲート320の垂直ゲート電極320a、320bは、水平ゲート電極320cに連結されて、それから素子分離層102に延び、活性シリコン領域の側壁に隣接するように配置される。前記したように、垂直ゲート電極320a、320bにより、垂直ゲート電極に隣接した活性シリコン領域の側壁で垂直チャンネルが形成され、これによりPD領域110aからFD領域160までの光電荷伝送効率が向上する。
図9は、本発明の他の例示的な実施形態による単位ピクセル22−5のレイアウトパターンを概略的に示す平面図である。特に、図9は、図2に示すように4−Tアクティブピクセルセンサ構造を有する実施形態による単位ピクセル22−5の例示的なレイアウトパターンである。例示的な単位ピクセル22−5のレイアウトパターンは、前述した単位ピクセルの例示的なレイアウトパターンと基本的には類似している。ただし、例示的な単位ピクセル22−5は、PD領域110aでホール蓄積層155上に形成され、活性シリコン領域110b上に延びた長方形のトランスファゲート420を備える。前述したL字形のトランスファゲート320のように、前記長方形のトランスファゲート420を採用することによって、PD領域110aからFD領域160まで蓄積電荷を伝送する電荷伝送効率が向上する。
本発明の例示的な実施形態によれば、従来技術の設計とは異なり、前記長方形のトランスファゲート420は、垂直ゲート電極420a、420b及び水平ゲート電極420cを備える。前記した例示的なトランスファゲート120、220、320の垂直ゲート電極のように、前記長方形のトランスファゲート420の垂直ゲート電極420a、420bは、水平ゲート電極420cに連結されて、それから素子分離層102に延び、活性シリコン領域の側壁に隣接するように配置される。前記したように、垂直ゲート電極420a、420bにより、垂直ゲート電極に隣接した活性シリコン領域の側壁で垂直チャンネルが形成され、これによりPD領域110aからFD領域160までの光電荷伝送効率が向上する。
図10は、本発明の他の例示的な実施形態による単位ピクセル22−6のレイアウトパターンを概略的に示す平面図である。特に、図10は、図2に示すように4−Tアクティブピクセルセンサ構造を有する実施形態による単位ピクセル22−6の例示的なレイアウトパターンである。例示的な単位ピクセル22−6のレイアウトパターンは、前述した単位ピクセルの例示的なレイアウトパターンと基本的には類似している。ただし、例示的な単位ピクセル22−6は、その形状及び構造がさらにコンパクトなレイアウト領域を提供する活性領域110及びトランスファゲート520を有する。例えば、図3の単位ピクセル22−1の例示的なレイアウトパターンと比較するとき、トランジスタRX、DX間の活性シリコン領域110bが折り曲げられてコンパクトな活性領域レイアウトを提供する。また、前記単位ピクセル22−6は、トランスファゲート520を備える。前記トランスファゲート520は、垂直ゲート電極520a、520b及び水平ゲート電極520cを備える。前記した例示的なトランスファゲート520は、図3の例示的なトランスファゲート120と構造面で類似している。ただし、前記トランスファゲート520は、図3のトランスファゲート120のように延長部102dを有さないので、トランスファゲートに必要なレイアウト面積を減少できる。
図11A〜図18Bは、本発明の例示的な実施形態によるイメージセンサ素子の製造方法を説明するための図面である。特に、図11A〜図18Bは、例えば図4A〜図4Dを参照して詳述した例示的な単位ピクセル22−1の構造を有するイメージセンサ素子の製造方法を示すものである。図11A、図12A、図13A、図14A、図15A、図16A、図17A、図18Aは、図4Aの観点で例示的な単位ピクセル22−1の多様な製造工程を示すものであり、図11B、図12B、図13B、図14B、図15B、図16B、図17B、図18Bは、図4Bの観点で例示的な単位ピクセル22−1の多様な製造工程を示すものである。
図11A及び図11Bに示すように、例示的な製造工程の初期工程では、半導体基板層100の素子分離領域102を形成してピクセルの活性シリコン領域を画定する。例示的な一実施形態において、半導体基板層100は、半導体基板上に形成されたpドーピング層である。前記素子分離領域102は、STIまたはLOCOS(Local Oxidation Of Silicon)方法により二酸化シリコンのような適切な絶縁物質で形成されうる。図11Bに示すように、チャンネル領域104は、垂直側壁104a、104b及び上面104cを有するメサ型の構造でなり、素子分離領域102により包囲されることによって画定される。図12A及び図12Bに示すように、通常のフォトリソグラフィ方法により半導体基板層100上に第1フォトレジストパターン112を形成する。前記第1フォトレジストパターン112には、トランスファトランジスタTXのチャンネル領域104を画定して露出させる開口112aが形成されている。多様なイオン注入方法を利用して、前記チャンネル領域104の表面104cにイオン注入してドーピング層170、172を形成する。特に、一実施形態において、n型ドーパント(例えば、リン)をチャンネル領域104の露出された表面104cに第1イオン注入エネルギーで注入して、トランスファトランジスタの埋め込みチャンネル層172を形成する。前記n型の埋め込みチャンネル層172は、トランスファトランジスタTXの空乏特性を限定し、ブルーミング現象として知られる現象を減少させるために形成される。
また、チャンネル領域104の露出表面104cにp型ドーパント(例えば、ボロン)を第2イオン注入エネルギーでイオン注入して、表面104cの直下で埋め込みチャンネル層172上にp型層170を形成する。前記p型層170は、チャンネル領域104が表面104cで熱的に発生する電子から埋め込みチャンネル層172を保護することによって、暗電流ノイズを減少させる手段として形成される。前記pドーピング層170は、半導体基板層100に比べて向上した伝導度を有するように形成することによって、上面で発生した暗電流を吸収できるホールを表面領域に蓄積させることができる。
図13A及び図13Bに示すように、第1フォトレジストパターン112を通常の方法により除去し、基板層100上にリセットトランジスタRXのチャンネル領域106を画定して露出させる開口114aが形成された第2フォトレジストパターン114を形成する。例示的な一実施形態において、チャンネル領域106の露出された表面に第1イオン注入エネルギーでn型ドーパント(例えば、リン)をイオン注入115して、リセットトランジスタRXの埋め込みチャンネル層180を形成する。前記n型の埋め込みチャンネル層180は、リセットトランジスタRXの空乏特性を限定し、ブルーミング現象を減少させるために形成される。図13Bに示すように、前記第2フォトレジストパターン114は、イオン注入115工程中にトランスファトランジスタTXのチャンネル領域104を保護する。
図14A及び図14Bに示すように、通常の方法で第2フォトレジストパターン114を除去し、前記基板層100上に、チャンネル領域104に隣接した素子分離領域102の一部を露出させる開口116aが形成された第3フォトレジストパターン116を形成する。前記第3フォトレジストパターン116をエッチングマスクとしてドライエッチングして、前記素子分離領域102の露出された部分にリセス117を形成する。開口116aにより画定されたように、素子分離領域102がエッチングされて前記リセス117が形成されることによって、チャンネル領域104の側壁104a、104bが露出される。本発明の例示的な一実施形態において、前記リセス117は、前記素子分離領域102の底面レベル190を超過しない深さまで形成される。前記リセス117は、ドライエッチング方法を含む適切なエッチング方法のうち任意の方法によりエッチングされ、ここで、エッチング量は、時間に基づいて(材料のエッチング率を知るとき)またはプラズマのカラーを検出する終了点検出方法により決定される。他の実施形態において、開口116a、116bにより露出された素子分離領域102の一部をエッチングするにおいて、DHF薬液(diluted HF,HO:HF=100:1)を使用するウェットエッチング方法を利用できる。
エッチング工程中には、チャンネル領域104の活性シリコンがエッチングされないようにすることが望ましい。その理由は、かかるエッチングにより、垂直ゲート電極と垂直チャンネルとの界面で熱的に発生する暗電流が引き起こされて損傷される恐れがあるためである。
図15A及び図15Bに示すように、通常の方法で第3フォトレジストパターン116を除去し、前記基板層100上に絶縁層118及び導電層119を順次に形成する。前記絶縁層118は、熱酸化により形成された酸化膜(または、シリコン酸化膜)からなる。他の例示的な実施形態において、前記絶縁層118は、CVD(Chemical Vapor Deposition)またはALD(Atomic Layer Deposition)方法のような公知の方法を利用して、シリコン窒化膜、ONOのような絶縁物質を蒸着して形成されうる。図15Bに示すように、前記絶縁層118は、エッチングされたリセス117の側壁及び底面の形状によってコンフォーマルに形成される薄膜からなる。また、前記導電層119は、前記リセス117が充填されるようにポリシリコン、タングステン、銅または他の適切なゲート電極物質のような導電物質を蒸着して形成されうる。
図16A及び図16Bに示すように、適切なマスクパターンを利用してエッチング工程を行って、トランスファトランジスタTX及びリセットトランジスタRX用のゲート電極120、130を形成する。図示していないが、同一のマスクパターン及びエッチング工程を利用して、増幅トランジスタDX及びセレクトトランジスタSX用のゲート電極を形成できる。図16Aに示すような本発明の例示的な一実施形態において、前記絶縁層118は、後続のエッチング工程中にシリコン基板の表面を保護するように維持される。他の例示的な実施形態において、前記絶縁層118は、ゲート電極形成用と同じマスクを使用してエッチングされることによって、トランスファゲート及びリセットゲート用のゲート絶縁層125、136(図示していない増幅トランジスタ及びセレクトトランジスタ用のゲート絶縁層も同様である)を画定できる。
図17A及び図17Bに示すように、PD領域110aを露出して画定する開口152aが形成されたフォトレジストパターン152を形成する。図17Aに示すように、フォトレジストパターン152は、トランスファゲート120の側部を露出させる。別個のイオン注入方法により、PD領域110aにドーパントをイオン注入してフォトダイオードを形成する。例えば、第1イオン注入工程を行って第1イオン注入エネルギーでp型不純物、例えばボロンイオンを露出されたPD領域110aに注入してホール蓄積層155を形成する。この場合、第1イオン注入エネルギーは、半導体基板層100の表面領域にp型ドーパントをイオン注入できる程度に低くすることが望ましい。ボロンイオンを半導体基板層100に注入して活性化させて、p層155を形成する。第2イオン注入工程を行って第2イオン注入エネルギーでn型不純物(例えば、リンまたはヒ素イオン)を露出されたPD領域110aに注入して、埋め込みnウェル層156を形成する。
一実施形態において、nウェル層156を形成するn型ドーパントは、半導体基板層100の表面から約0.3ミクロン〜約0.7ミクロンのRp(projection range)で注入される。平面ゲート電極を具現するための従来のピクセル設計では、nウェル層156の形成のためのRpは0.3ミクロン以下に制限され、そのようにしなければ深刻な残像が発生する。しかし、本発明による垂直ゲート電極を使用することによって、nウェル層156が残像を惹起せずにさらに深いRpで形成されうる。
図17Aに示すように、nウェル層156が基板層100でトランスファゲート120の側面を距離“W”ほど過ぎるように形成され、これによりnウェル層156がトランスファトランジスタの垂直ゲート電極120a、120b及びチャンネルにさらに近接に位置する。また、nウェル層156は、素子分離領域102とは接触しないように形成され、素子分離膜102が形成されるとき、基板層100のエッチングにより引き起こされる素子分離領域102とシリコン基板層100との界面での暗電流欠陥の影響を最小化できる。
図18A及び図18Bに示すように、通常の方法(例えば、プラズマアッシング)によりフォトレジストパターン152を除去する。次いで、多様な方法を用いて、ゲート120、130の側部に隣接した半導体基板層100のうちPD領域110aを除いた領域にn型不純物をイオン注入して、低濃度のn型拡散領域160a、132aを形成する。絶縁層(例えば、窒化膜)を蒸着した後で再びエッチングして、ゲート電極120、130(図示していない増幅及びセレクトゲート電極も同様である)の側壁に側壁スペーサ126、136を形成する。次いで、活性領域に不純物を注入して、高濃度のn型ドーピング拡散層160b、132bを形成する。ここで、高濃度のn型ドーピング拡散層は、側壁スペーサ162の外側エッジにより整列される。よく分かるように、ゲートスペーサ162及びドーピング領域160、132は、この技術分野で公知の適切な方法を使用して形成され、これについての詳細な説明は省略する。
図19A〜図22Bは、本発明の他の例示的な実施形態によるイメージセンサ素子の製造方法を説明するための図面である。特に、図19A〜図22Bは、例えば図5A〜図5Cを参照して前述した例示的な単位ピクセル22−2の構造を有するイメージセンサ素子の製造方法を説明するものである。これと関連し、図19A、図20A、図21A、図22Aは、図5Aの観点で例示的な単位ピクセル22−1の多様な製造工程を示し、図19B、図20B、図21B、図22Bは、図5Bの観点で例示的な単位ピクセル22−2の多様な製造工程を示す。
図19A及び図19Bに示すように、基板層100及び素子分離領域102が形成された半導体基板上にフォトレジストパターン216を形成する。前記フォトレジストパターン216は、チャンネル領域104に隣接した素子分離領域102の一部を露出させる開口216a、216bを有する。フォトレジストパターン216をエッチングマスクとしてドライエッチングして、素子分離領域102が露出された部分にリセス217a、217bを形成する。前記リセス217a、217b(それぞれの開口216a、216bにより画定されたようである)は、素子分離領域102をエッチングするが、チャンネル領域104の各側壁104a、104bをエッチングしない。すなわち、前記したように、エッチング工程中には、チャンネル領域104の活性シリコンをエッチングしないことが望ましい。その理由は、チャンネル領域104の活性シリコンがエッチングされれば、垂直ゲート電極と垂直チャンネルとの界面で熱的に発生する暗電流を惹起させるためである。
図20A及び図20Bに示すように、フォトレジストパターン216を除去し、トランスファトランジスタTXのチャンネル領域104の上面104cを画定しつつ露出させる開口218aを有するフォトレジストパターン218を形成する。前記フォトレジストパターン218は、素子分離領域102に形成されたリセス217a、217bを充填する。図21A及び図21Bに示すように、前記フォトレジストパターン218をエッチングマスクとしてエッチング工程を行って、チャンネル領域104の上面104cをエッチングしてリセスされた表面104dを形成する。前記リセスされた表面104dにより、前記埋め込みnウェル層156の中心とトランスファゲート120のチャンネル領域との物理的な距離が狭くなる。例示的な一実施形態において、前記エッチング工程は、Cl、HBr、Oガスを使用するドライエッチング工程を利用して行える。
図22A及び図22Bに示すように、フォトレジストパターン218を除去した後、公知の材料及び方法を利用して絶縁層及び導電層を蒸着及びエッチングして、トランスファゲート120、ゲート絶縁層126及び他のピクセルトランジスタ用のゲート構造を形成する。図22Bに示すように、前記ゲート絶縁層126は、エッチングされたリセス217a、217bの側壁及び底面によってコンフォーマルに形成される薄膜からなる。前記リセス217a、217bに導電物質を充填して、垂直ゲート電極120a、120bを形成する。図22Aに示すように、前記リセスされた領域で、ゲート電極120の側壁とシリコン基板100の側壁との間にスペースSが形成されるように、前記ゲート電極120及びゲート絶縁層126を形成する。前述したように、前記スペースSは、絶縁物質で充填してゲート電極120を、前記基板層100のFD領域を形成するドーピング層から絶縁させる。図22Aには、ゲート電極120、ゲート絶縁層126、リセスされた表面104d及びスペースSが基板100に形成されたことが示されている。しかし、基板の上面及びリセスされた表面を覆うゲート電極120の左側部分が、ゲート電極の右側部分でもスペースSなしに反復される(図5C参照)。
ゲート電極を形成した後、図17A〜図18Bを参照して説明したような方法を行って、PD領域110a及びアクティブトランジスタ領域110bにドーピング層を形成して、多様なピクセルトランジスタのためのPD素子及びソース/ドレイン領域を形成する。
よく分かるように、例示的な単位ピクセル22−3、22−4、22−5または22−6は、前述した工程と同一または類似した工程を利用して製造され、これについての詳細な説明は省略する。
本発明の例示的な実施形態によるピクセルで構成されたピクセルアレイを有するCIS素子は、多様な形態のプロセッサ基盤のシステムに具現されうる。例えば、図23は、本発明の例示的な実施形態によるイメージセンサ素子を有するシステム600のハイレベルブロックダイヤグラムである。前記システム600は、例えばコンピュータシステム、カメラシステム、スキャナー、マシンビジョンシステム、車両用ナビゲーションシステム、ビデオホン、監督システム、自動フォーカスシステム、スタートラッカーシステム、動作感知システム、イメージ安定化システム、携帯電話及びその他のプロセッサ基盤システムで具現されうる。
一般的に、システム600は、CIS素子610、一つまたはそれ以上のCPU(Central Processing Unit)またはマイクロプロセッサ620、一つまたはそれ以上のI/O素子630、フロッピー(登録商標)ディスクドライブ640(または、他のメモリカードスロット)、RAM(Random Access Memory)650及びCD−ROM(Compact Disk Read Only Memory)ドライブ660を含み、いずれもシステムバス670を通じて動作的に相互連結されている。具現されたシステム構成品の形態は、システムの形態によって多様である。例えば、フロッピー(登録商標)ディスクドライブ640及びCD−ROMドライブ660のような周辺素子は、典型的に、例えばパーソナルコンピュータまたはラップトップコンピュータと共に採用される。
CIS素子610は、ここに記載された例示的なピクセル構造のうちいずれか一つを使用して構成されうるピクセルアレイを備える。CIS素子610は、ピクセルアレイから供給された信号から出力イメージを生成する。CIS素子610は、バス670または他のコミュニケーションリンクを通じてシステム構成品と通信する。他の例示的な実施形態において、プロセッサ620、CIS素子610及びメモリ650は、単一ICチップ上に集積されうる。
本発明の例示的な実施形態について添付図面を参照して詳細に説明したが、本発明は、それらに限定されるものではなく、当業者には、本発明の範囲または思想を逸脱せずに特許請求の範囲に記載された本発明の範囲内で多様な変形及び変更が可能である。
本発明は、固体イメージセンサ素子及びその製造方法関連の技術分野に適用可能である。
本発明の例示的な実施形態による固体CIS素子のハイレベルブロックダイヤグラムである。 本発明の例示的な多様な実施形態によって非平面トランジスタで具現可能なアクティブピクセルセンサを説明する概略的な回路図である。 本発明の例示的な実施形態による単位ピクセルのレイアウトパターンを概略的に示す平面図である。 本発明の例示的な実施形態による図3の4A−4A線の断面図である。 本発明の例示的な実施形態による図3の4B−4B線の断面図である。 本発明の例示的な実施形態による図3の単位ピクセルのトランスファゲート構造の概略的な斜視図である。 図3の例示的な単位ピクセルのトランスファゲートに隣接した単位ピクセルの活性領域での電位レベルを示すグラフである。 本発明の例示的な実施形態による図3の4E−4E線の単位ピクセルの断面図である。 本発明の例示的な他の実施形態による単位ピクセルの概略的な構造を示す図面である。 本発明の例示的な他の実施形態による単位ピクセルの概略的な構造を示す図面である。 本発明の例示的な他の実施形態による単位ピクセルの概略的な構造を示す図面である。 本発明の例示的な他の実施形態による単位ピクセルのレイアウトパターンを概略的に示す平面図である。 本発明の例示的な実施形態による図6の7A−7A線の単位ピクセルの概略的な断面図である。 本発明の例示的な実施形態による図6の7B−7B線の単位ピクセルの概略的な断面図である。 本発明の例示的な実施形態による図6の単位ピクセルのトランスファゲート構造の概略的な斜視図である。 本発明の例示的な他の実施形態による単位ピクセルのレイアウトパターンを概略的に示す平面図である。 本発明の例示的な他の実施形態による単位ピクセルのレイアウトパターンを概略的に示す平面図である。 本発明の例示的な他の実施形態による単位ピクセルのレイアウトパターンを概略的に示す平面図である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な他の実施形態によるイメージセンサの製造方法を説明する図面である。 本発明の例示的な実施形態によるイメージ素子を具現するシステムのハイレベルブロックダイヤグラムである。
符号の説明
22−1 単位ピクセル
102 素子分離領域
110 活性シリコン領域
110a PD領域
110b アクティブトランジスタ領域
120 トランスファトランジスタのゲート電極
120a,120b,120c ゲート電極
120d 延長部
130 リセットトランジスタのゲート電極
134 コンタクト
140 増幅トランジスタのゲート電極
150 セレクトトランジスタのゲート電極
159 出力コンタクト
TG,RS,144,SEL コンタクト

Claims (49)

  1. 半導体基板に形成された素子分離領域により画定される複数の活性領域を備える半導体基板と、
    前記活性領域のうち一つの活性領域にそれぞれ一つずつ形成されている複数のピクセルを備えるピクセルアレイと、を備え、
    前記各ピクセルは、受光部と、前記受光部から電荷を伝送するための電荷伝送部と、を備え、
    前記電荷伝送部は、前記ピクセルの活性領域で前記電荷を伝送するための垂直チャンネル領域と、前記素子分離領域で前記垂直チャンネル領域に隣接するように配置された垂直ゲート電極と、前記垂直チャンネル領域と垂直ゲート電極との間に配置された絶縁物質と、を備えることを特徴とするイメージセンサ素子。
  2. 前記電荷伝送部は、前記電荷を伝送するために、前記ピクセルの活性領域に形成された水平チャンネル領域と、前記水平チャンネル領域に隣接するように配置された水平ゲート電極と、前記水平チャンネル領域と水平ゲート電極との間に配置された絶縁物質と、をさらに備えることを特徴とする請求項1に記載のイメージセンサ素子。
  3. 前記水平ゲート電極は、前記半導体基板の表面に形成されることを特徴とする請求項2に記載のイメージセンサ素子。
  4. 前記水平ゲート電極の少なくとも一部は、前記半導体基板の表面に形成されたリセス内に配置されていることを特徴とする請求項2に記載のイメージセンサ素子。
  5. 前記水平ゲート電極は、L字形であることを特徴とする請求項2に記載のイメージセンサ素子。
  6. 前記水平ゲート電極は、長方形であることを特徴とする請求項2に記載のイメージセンサ素子。
  7. 前記垂直ゲート電極は、前記素子分離領域を覆う水平ゲート電極の一部に連結されて、該電極の一部から延びていることを特徴とする請求項2に記載のイメージセンサ素子。
  8. 前記受光部は、フォトダイオードであることを特徴とする請求項1に記載のイメージセンサ素子。
  9. 前記受光部は、PPDであることを特徴とする請求項1に記載のイメージセンサ素子。
  10. 前記受光部は、活性領域に形成されたHADと、前記HADの下部に形成されたnウェル領域と、を備えることを特徴とする請求項1に記載のイメージセンサ素子。
  11. 前記垂直ゲート電極は、前記nウェル領域の少なくとも一部に隣接する深さまで形成されることを特徴とする請求項10に記載のイメージセンサ素子。
  12. 前記垂直ゲート電極は、前記受光部の電荷蓄積領域の少なくとも一部に隣接する深さまで形成されることを特徴とする請求項1に記載のイメージセンサ素子。
  13. 前記電荷伝送部に隣接したピクセルの活性領域に形成され、前記電荷伝送部から伝送された電荷を保存するフローティング拡散領域と、
    前記フローティング拡散領域の電圧をリセットするピクセルリセット部と、をさらに備え、前記フローティング拡散領域は、前記電荷伝送部及びピクセルリセット部について共通拡散領域であることを特徴とする請求項1に記載のイメージセンサ素子。
  14. 前記ピクセルリセット部は、
    前記ピクセルの活性領域にある垂直チャンネル領域と、
    前記素子分離領域で、前記垂直チャンネル領域に隣接するように配置された垂直ゲート電極と、
    前記垂直チャンネル領域と垂直ゲート電極との間に配置された絶縁物質と、をさらに備えることを特徴とする請求項13に記載のイメージセンサ素子。
  15. 前記ピクセルアレイは、アクティブピクセルアレイであることを特徴とする請求項1に記載のイメージセンサ素子。
  16. 前記イメージセンサ素子は、CISであることを特徴とする請求項1に記載のイメージセンサ素子。
  17. 前記電荷伝送部は、前記電荷伝送部のソース領域とドレイン領域との間に形成された埋め込みチャンネル層をさらに備え、前記埋め込みチャンネル層、前記ソース領域及びドレイン領域は、第1導電型の不純物でドーピングされており、前記活性領域は、第2導電型の不純物でドーピングされていることを特徴とする請求項1に記載のイメージセンサ素子。
  18. 前記電荷伝送部は、ソース領域とドレイン領域との間の埋め込みチャンネル層上の活性領域の表面に形成されたピニング層をさらに備え、前記ピニング層は、前記第2導電型の不純物でドーピングされていることを特徴とする請求項17に記載のイメージセンサ素子。
  19. 素子分離領域により画定された複数の活性領域を有するピクセルアレイを備える半導体基板と、
    受光部、電荷伝送部及び増幅トランジスタに動作的に連結されたフローティング拡散領域を備える前記ピクセルアレイのうち少なくとも一つのピクセルと、を備え、
    前記電荷伝送部のゲート電極は、前記受光部からの電荷を伝送するために、前記ピクセルの活性領域にある垂直チャンネル領域を備えることを特徴とするイメージセンサ素子。
  20. 前記電荷伝送部の前記ゲート電極は、表面チャンネルを形成することを特徴とする請求項19に記載のイメージセンサ素子。
  21. 前記電荷伝送部のゲート電極は、リセスされた表面チャンネルを形成することを特徴とする請求項19に記載のイメージセンサ素子。
  22. 基板に形成されたアクティブピクセルを含むイメージセンサ素子において、少なくとも一つのアクティブピクセルは、
    受光部と、
    リセットトランジスタと、
    電荷伝送部と、
    フローティング拡散領域と、
    増幅トランジスタと、を備え、
    前記リセットトランジスタ、電荷伝送部または増幅トランジスタは、垂直チャンネルを備えることを特徴とするイメージセンサ素子。
  23. 素子分離領域により取り囲まれた受光領域及びトランジスタ領域を備える単位ピクセルの活性領域を半導体基板に形成する工程と、
    前記半導体基板に形成され、前記活性領域の側壁に隣接するように配置される垂直ゲート電極を備えるトランスファゲートを、前記受光領域及びトランジスタ領域に近接するように形成する工程と、を含むことを特徴とするイメージセンサ素子の製造方法。
  24. 前記トランスファゲートを形成する工程は、水平ゲート電極を形成する工程をさらに含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  25. 前記水平ゲート電極は、前記半導体基板上で、前記トランジスタ領域及び素子分離領域の一部上に形成されることを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  26. 前記水平ゲート電極は、前記半導体基板上で、前記受光領域の一部及び素子分離領域の一部上に形成されることを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  27. 前記水平ゲート電極は、前記半導体基板上で、前記トランジスタ領域の一部、前記受光領域の一部及び前記素子分離領域の一部上に形成されることを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  28. 前記水平及び垂直ゲート電極は、一体に形成されることを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  29. 前記トランスファゲートを形成する工程は、
    前記活性領域の側壁の一部を露出させるように、前記素子分離領域にリセスを形成する工程と、
    前記活性領域の側壁の露出された部分上に絶縁層を形成する工程と、
    前記リセス内に導電物質を充填して、前記垂直ゲート電極を形成する工程と、を含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  30. 前記リセスは、前記素子分離領域のみに形成されることを特徴とする請求項29に記載のイメージセンサ素子の製造方法。
  31. 前記素子分離領域にリセスを形成する工程は、前記アクティブトランジスタ領域の側壁の一部、前記受光領域の側壁の一部、または前記アクティブトランジスタ領域及び受光領域両方の側壁の一部を露出させるリセスを形成するように、前記素子分離領域をエッチングする工程を含むことを特徴とする請求項29に記載のイメージセンサ素子の製造方法。
  32. 前記絶縁層を形成する工程は、前記リセス内の表面に沿って半導体基板上にコンフォーマルに形成される絶縁層を形成する工程を含むことを特徴とする請求項29に記載のイメージセンサ素子の製造方法。
  33. 前記活性領域に埋め込みチャンネル層を形成する工程をさらに含み、前記埋め込みチャンネル層は、前記水平ゲート電極に整列されるように形成され、前記埋め込みチャンネル層は、第1導電型の不純物でドーピングされ、前記活性領域は、第2導電型の不純物でドーピングされることを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  34. 前記埋め込みチャンネル層上であって前記活性領域の表面にピニング層を形成する工程をさらに含み、前記ピニング層は、前記第2導電型の不純物でドーピングされることを特徴とする請求項33に記載のイメージセンサ素子の製造方法。
  35. 前記トランスファゲートを形成する工程は、
    前記活性領域の一部をエッチングして、前記半導体基板の表面下に深さD1のリセスされた表面を形成する工程と、
    前記水平ゲート電極の少なくとも一部が前記リセスされた表面上に形成されるように、前記水平ゲート電極を形成する工程と、を含むことを特徴とする請求項24に記載のイメージセンサ素子の製造方法。
  36. 前記トランスファゲートを形成する工程は、前記活性領域の側壁に隣接した前記半導体基板の相異なる領域に複数の垂直ゲート電極を形成する工程を含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  37. 前記垂直ゲート電極は、相互別個に形成されることを特徴とする請求項36に記載のイメージセンサ素子の製造方法。
  38. 前記複数の垂直ゲート電極のうち少なくとも二つは、前記半導体基板の表面上に形成された水平ゲート電極に一体に連結されたことを特徴とする請求項36に記載のイメージセンサ素子の製造方法。
  39. 前記トランスファゲートを形成する工程は、前記受光領域及びアクティブトランジスタ領域の表面領域上に形成され、前記垂直ゲート電極に連結されているL字形のゲート電極を形成する工程を含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  40. 前記トランスファゲートを形成する工程は、前記受光領域及びアクティブトランジスタ領域の表面領域上に形成され、前記垂直ゲート電極に連結されている長方形のゲート電極を形成する工程を含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  41. 前記受光領域に受光部を形成する工程をさらに含むことを特徴とする請求項23に記載のイメージセンサ素子の製造方法。
  42. 前記受光部は、フォトダイオードであることを特徴とする請求項41に記載のイメージセンサ素子の製造方法。
  43. 前記フォトダイオードは、PPDであることを特徴とする請求項42に記載のイメージセンサ素子の製造方法。
  44. 前記受光部を形成する工程は、前記受光領域の表面にHADを形成し、前記HADの下部にnウェル領域を形成する工程を含むことを特徴とする請求項41に記載のイメージセンサ素子の製造方法。
  45. 前記垂直ゲート電極は、前記nウェル領域の少なくとも一部に隣接する深さで前記半導体基板に形成されることを特徴とする請求項44に記載のイメージセンサ素子の製造方法。
  46. 受光領域、リセットトランジスタ、フローティング拡散領域及び前記フローティング拡散領域に動作的に連結された増幅素子を有するイメージセンサ素子の製造方法において、
    素子分離領域により取り囲まれる基板上に単位ピクセルの活性領域を形成する工程と、
    前記素子分離領域にリセスを形成する工程と、
    前記リセス内にトランスファゲートを形成する工程と、を含むことを特徴とするイメージセンサ素子の製造方法。
  47. 前記リセスの形成工程は、前記受光領域に近接した前記活性領域の側部領域に隣接するように、前記素子分離領域に少なくとも二つのリセスを形成する工程を含むことを特徴とする請求項46に記載のイメージセンサ素子の製造方法。
  48. 前記受光領域と前記フローティング拡散領域との間に、リセスされた表面を形成する工程をさらに含むことを特徴とする請求項46に記載のイメージセンサ素子の製造方法。
  49. 素子分離領域により取り囲まれた基板上に単位ピクセルの活性領域を画定する工程と、
    前記基板に受光部を形成する工程と、
    前記素子分離領域をエッチングしてリセスを形成する工程と、
    チャンネル領域で前記基板の上面をエッチングする工程と、
    前記リセスの内部及び前記基板の上面上に絶縁層を形成する工程と、
    前記リセスの内部及び前記基板の上面上に導電層を蒸着して、電荷伝送部を形成する工程と、
    前記電荷伝送部と前記受光部との間にフローティング拡散領域を形成する工程と、
    前記基板にリセットトランジスタ及び増幅素子を形成する工程と、を含むことを特徴とするイメージセンサ素子の製造方法。
JP2005306376A 2004-10-20 2005-10-20 非平面トランジスタを有する固体イメージセンサ素子及びその製造方法 Active JP5361110B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020040083968A KR100630704B1 (ko) 2004-10-20 2004-10-20 비평면 구조의 트랜지스터를 구비한 cmos 이미지 센서및 그 제조 방법
KR10-2004-0083968 2004-10-20
US11/211,300 US7535037B2 (en) 2004-10-20 2005-08-25 Solid state image sensor devices having non-planar transistors
US11/211,300 2005-08-25

Publications (2)

Publication Number Publication Date
JP2006121093A true JP2006121093A (ja) 2006-05-11
JP5361110B2 JP5361110B2 (ja) 2013-12-04

Family

ID=36538612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306376A Active JP5361110B2 (ja) 2004-10-20 2005-10-20 非平面トランジスタを有する固体イメージセンサ素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP5361110B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317939A (ja) * 2006-05-26 2007-12-06 Matsushita Electric Ind Co Ltd 固体撮像素子及びその製造方法
JP2008079937A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp 画像処理装置、内視鏡装置、及び画像処理プログラム
US8111286B2 (en) 2006-09-28 2012-02-07 Fujifilm Corporation Image processing apparatus, endoscope, and computer readable medium
JP2015518692A (ja) * 2012-04-18 2015-07-02 ブライトウェイ ビジョン リミテッド 読み出し毎の複数のゲーテッド画素
WO2017169884A1 (ja) * 2016-03-31 2017-10-05 ソニー株式会社 固体撮像素子、センサ装置、および電子機器
KR20170131928A (ko) * 2016-05-23 2017-12-01 에스케이하이닉스 주식회사 이미지 센서
CN110546764A (zh) * 2017-04-28 2019-12-06 索尼半导体解决方案公司 固态摄像元件和电子装置
WO2020129694A1 (ja) 2018-12-21 2020-06-25 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2020183937A1 (ja) 2019-03-14 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 半導体素子、半導体装置、半導体素子の製造方法及び半導体装置の製造方法
WO2021010024A1 (ja) * 2019-07-12 2021-01-21 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び撮像装置
WO2021033556A1 (en) 2019-08-20 2021-02-25 Sony Semiconductor Solutions Corporation Solid-state imaging device, method for manufacturing the same, and electronic apparatus
CN112449129A (zh) * 2019-08-28 2021-03-05 天津大学青岛海洋技术研究院 一种具有环绕驱动的网状像素结构
WO2021171798A1 (ja) * 2020-02-28 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び光検出装置
WO2022118654A1 (ja) * 2020-12-04 2022-06-09 ソニーグループ株式会社 固体撮像素子
KR20220100581A (ko) 2019-11-13 2022-07-15 소니 세미컨덕터 솔루션즈 가부시키가이샤 반도체 장치 및 반도체 장치의 제조 방법, 촬상 장치
CN115347007A (zh) * 2021-05-14 2022-11-15 思特威(上海)电子科技股份有限公司 像素单元、cmos图像传感器、电子设备及制备方法
WO2022270039A1 (ja) * 2021-06-24 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
KR20230122584A (ko) 2020-12-22 2023-08-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법
WO2024057805A1 (ja) * 2022-09-15 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子および電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341771A (ja) * 1989-07-10 1991-02-22 Toshiba Corp 半導体装置の製造方法
JPH11274462A (ja) * 1998-03-23 1999-10-08 Sony Corp 固体撮像装置
JP2000124437A (ja) * 1998-10-19 2000-04-28 Toshiba Corp 固体撮像装置
JP2001028433A (ja) * 1999-07-14 2001-01-30 Sony Corp 半導体装置、固体撮像素子及びその製造方法
JP2002151688A (ja) * 2000-08-28 2002-05-24 Mitsubishi Electric Corp Mos型半導体装置およびその製造方法
JP2003158255A (ja) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp 半導体装置
JP2003234496A (ja) * 2002-02-12 2003-08-22 Sony Corp 固体撮像装置およびその製造方法
JP2003258231A (ja) * 2002-03-05 2003-09-12 Sony Corp 固体撮像素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341771A (ja) * 1989-07-10 1991-02-22 Toshiba Corp 半導体装置の製造方法
JPH11274462A (ja) * 1998-03-23 1999-10-08 Sony Corp 固体撮像装置
JP2000124437A (ja) * 1998-10-19 2000-04-28 Toshiba Corp 固体撮像装置
JP2001028433A (ja) * 1999-07-14 2001-01-30 Sony Corp 半導体装置、固体撮像素子及びその製造方法
JP2002151688A (ja) * 2000-08-28 2002-05-24 Mitsubishi Electric Corp Mos型半導体装置およびその製造方法
JP2003158255A (ja) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp 半導体装置
JP2003234496A (ja) * 2002-02-12 2003-08-22 Sony Corp 固体撮像装置およびその製造方法
JP2003258231A (ja) * 2002-03-05 2003-09-12 Sony Corp 固体撮像素子

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317939A (ja) * 2006-05-26 2007-12-06 Matsushita Electric Ind Co Ltd 固体撮像素子及びその製造方法
JP2008079937A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp 画像処理装置、内視鏡装置、及び画像処理プログラム
US8111286B2 (en) 2006-09-28 2012-02-07 Fujifilm Corporation Image processing apparatus, endoscope, and computer readable medium
JP2015518692A (ja) * 2012-04-18 2015-07-02 ブライトウェイ ビジョン リミテッド 読み出し毎の複数のゲーテッド画素
WO2017169884A1 (ja) * 2016-03-31 2017-10-05 ソニー株式会社 固体撮像素子、センサ装置、および電子機器
US10600828B2 (en) 2016-03-31 2020-03-24 Sony Corporation Solid-state imaging element, sensor apparatus, and electronic device
KR20170131928A (ko) * 2016-05-23 2017-12-01 에스케이하이닉스 주식회사 이미지 센서
KR102591008B1 (ko) 2016-05-23 2023-10-19 에스케이하이닉스 주식회사 이미지 센서
CN110546764A (zh) * 2017-04-28 2019-12-06 索尼半导体解决方案公司 固态摄像元件和电子装置
WO2020129694A1 (ja) 2018-12-21 2020-06-25 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
KR20210104725A (ko) 2018-12-21 2021-08-25 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 소자 및 촬상 장치
DE112019006299T5 (de) 2018-12-21 2021-09-30 Sony Semiconductor Solutions Corporation Bildgebungselement und bildgebungsvorrichtung
WO2020183937A1 (ja) 2019-03-14 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 半導体素子、半導体装置、半導体素子の製造方法及び半導体装置の製造方法
KR20210141931A (ko) 2019-03-14 2021-11-23 소니 세미컨덕터 솔루션즈 가부시키가이샤 반도체 소자, 반도체 장치, 반도체 소자의 제조 방법 및 반도체 장치의 제조 방법
WO2021010024A1 (ja) * 2019-07-12 2021-01-21 ソニーセミコンダクタソリューションズ株式会社 半導体装置及び撮像装置
WO2021033556A1 (en) 2019-08-20 2021-02-25 Sony Semiconductor Solutions Corporation Solid-state imaging device, method for manufacturing the same, and electronic apparatus
KR20220049512A (ko) 2019-08-20 2022-04-21 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 장치, 그 제조 방법, 및 전자 기기
CN112449129A (zh) * 2019-08-28 2021-03-05 天津大学青岛海洋技术研究院 一种具有环绕驱动的网状像素结构
KR20220100581A (ko) 2019-11-13 2022-07-15 소니 세미컨덕터 솔루션즈 가부시키가이샤 반도체 장치 및 반도체 장치의 제조 방법, 촬상 장치
WO2021171798A1 (ja) * 2020-02-28 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び光検出装置
WO2022118654A1 (ja) * 2020-12-04 2022-06-09 ソニーグループ株式会社 固体撮像素子
KR20230112614A (ko) 2020-12-04 2023-07-27 소니그룹주식회사 고체 촬상 소자
KR20230122584A (ko) 2020-12-22 2023-08-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법
CN115347007A (zh) * 2021-05-14 2022-11-15 思特威(上海)电子科技股份有限公司 像素单元、cmos图像传感器、电子设备及制备方法
WO2022270039A1 (ja) * 2021-06-24 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置
WO2024057805A1 (ja) * 2022-09-15 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子および電子機器

Also Published As

Publication number Publication date
JP5361110B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5361110B2 (ja) 非平面トランジスタを有する固体イメージセンサ素子及びその製造方法
US7535037B2 (en) Solid state image sensor devices having non-planar transistors
JP4742602B2 (ja) 固体撮像装置及びその製造方法
US20150325610A1 (en) Photoelectric conversion device, method for producing photoelectric conversion device, and image pickup system
CN102544036B (zh) 固态图像传感器、制造固态图像传感器的方法和照相机
KR101152389B1 (ko) 이미지 센서와 그 제조 방법
JP5975219B2 (ja) 色最適化イメージセンサー
US8754458B2 (en) Semiconductor device, manufacturing method thereof, solid-state imaging device, manufacturing method thereof, and electronic unit
US8076702B2 (en) CMOS image sensor and fabricating method thereof
JP2010016114A (ja) 固体撮像装置とその製造方法、及び電子機器
KR20080037108A (ko) 이미저에 대해 수직 안티-블루밍 제어 및 크로스토크감소를 위한 매설된 도핑 영역
JP2003258232A (ja) 固体撮像素子
JP6612139B2 (ja) 半導体装置
JP2006173634A (ja) ピクセルアレイを備えるcmosイメージセンサー
US20090278181A1 (en) Solid-state image sensor and manufacturing method thereof
KR100853792B1 (ko) 씨모스 이미지 센서 및 그 제조방법
US20050253214A1 (en) Solid-state imaging device
JP2009534836A (ja) ブルーミングおよびクロストークからのダーク基準列とダーク基準行の保護を改良するnウェル障壁画素
WO2013146037A1 (ja) 固体撮像素子及び固体撮像素子の製造方法
JP2008153566A (ja) 固体撮像装置及びその製造方法
TW201628176A (zh) 固體攝像裝置及固體攝像裝置之製造方法
US20070145443A1 (en) CMOS Image Sensor and Method of Manufacturing the Same
US7459332B2 (en) CMOS image sensor and method for manufacturing the same
KR100619408B1 (ko) 크로스 토크를 방지할 수 있는 이미지센서 및 그 제조 방법
JP2009302103A (ja) 固体撮像装置およびその製造方法および撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250