JP2006114853A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2006114853A
JP2006114853A JP2004303442A JP2004303442A JP2006114853A JP 2006114853 A JP2006114853 A JP 2006114853A JP 2004303442 A JP2004303442 A JP 2004303442A JP 2004303442 A JP2004303442 A JP 2004303442A JP 2006114853 A JP2006114853 A JP 2006114853A
Authority
JP
Japan
Prior art keywords
trench
semiconductor layer
fine particles
contact
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004303442A
Other languages
English (en)
Other versions
JP4791723B2 (ja
Inventor
Tomoki Inoue
智樹 井上
Satoshi Aida
聡 相田
Yasushi Takahashi
泰 高橋
Hitoshi Kobayashi
仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004303442A priority Critical patent/JP4791723B2/ja
Priority to US11/249,265 priority patent/US20060081903A1/en
Publication of JP2006114853A publication Critical patent/JP2006114853A/ja
Application granted granted Critical
Publication of JP4791723B2 publication Critical patent/JP4791723B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/515Insulating materials associated therewith with cavities, e.g. containing a gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】 トレンチパワーMOSやトレンチIGBT、或いはトレンチアイソレーションを用いた半導体装置での基板に加わる応力を低減する。
【解決手段】 Nch パワーMOSトランジスタには、小さな粒径を有するシリカ微粒子7がトレンチゲート底部に埋め込まれ、トレンチゲート上部には、シリカ微粒子と接するN+多結晶シリコン膜からなるゲート電極8が埋め込まれている。シリカ微粒子7の空隙には、ゲート電極8が形成されていない。
【選択図】 図1

Description

本発明は、トレンチ構造を有する半導体装置に係り、特にトレンチパワーMOSトランジスタやトレンチIGBT(Insulated Gate Bipolar Transistor)、或いはトレンチアイソレーションを有する半導体装置及びその製造方法に関する。
近年、メモリデバイスやロジックデバイス等のLSIでは、微細化、高集積化、及び高速化を図るために素子間を分離するSTI(Shallow Trench Isolation)が設けられ、パワーMOSトランジスタやIGBTでは、オン抵抗の低減化やスイッチング特性向上等を図るためにトレンチ構造のゲートが設けられている(例えば、非特許文献1参照。)。そして、STIにはプラズマCVD(Chemical Vapor Deposition)法やTEOS(TetraEthyl Ortho Silicate)等による二酸化シリコン膜が埋め込まれ、トレンチパワーMOSトランジスタやトレンチIGBTには、基板を熱酸化した二酸化シリコン膜などのゲート絶縁膜及び高濃度多結晶シリコン膜などからなるゲート電極が埋め込まれている。
ところが、素子の微細化に伴って、素子分離工程や素子形成工程での熱処理により、トレンチ底部のコーナー部分ではシリコンと二酸化シリコンの熱膨張係数差やシリコン基板の酸化に起因する応力が発生する。この応力によりシリコン基板に結晶欠陥や転移が発生し、素子のリーク電流増大や素子の耐圧低下などが発生するという問題点がある。
また、パワーMOSトランジスタやIGBTのスイッチング特性向上を目的として、帰還容量を低減するためにトレンチ底部を厚く酸化して他の部分よりも二酸化シリコン膜を厚く形成すると、更にシリコン基板に結晶欠陥や転移が発生し、例えば、パワーMOSトランジスタではソース・ドレイン間ショートが発生するという問題点がある。
社団法人 電気学会編者[パワーデバイス・ICハンドブック](株)コロナ社1996年7月30日発行(P140 図6.2、P174 図7.36)
本発明は、基板に加わる応力を低減できるトレンチパワーMOSトランジスタやトレンチIGBT、或いはトレンチアイソレーションを有する半導体装置及びその製造方法を提供する。
本発明の一態様の半導体装置は、第1導電型の半導体基板と、前記半導体基板の第1主面に選択的に設けられた第2導電型の第1の半導体層と、前記第1の半導体層に選択的に設けられた第1導電型の第2の半導体層と、前記第2の半導体層及び前記第1の半導体層を貫いて前記半導体基板の途中の深さまで達するトレンチと、前記トレンチ内部に設けられたゲート絶縁膜と、前記トレンチ内底部に、前記ゲート絶縁膜と接して埋め込まれた誘電体の微粒子と、前記トレンチ内部に、側面が前記ゲート絶縁膜と接し、且つ底部が前記微粒子と接し、前記半導体基板の第1主面まで埋め込まれたゲート電極とを具備することを特徴とする。
更に、本発明の一態様の半導体装置の製造方法は、第1導電型の半導体基板の第1主面に第2導電型の第1の半導体層を選択的に形成する工程と、前記第1の半導体層の第1主面に第1導電型の第2の半導体層を選択的に形成する工程と、前記第2の半導体層及び前記第1の半導体層を貫いて前記半導体基板の途中の深さまで達するトレンチを形成する工程と、前記トレンチ内部にゲート絶縁膜を形成する工程と、誘電体の微粒子が分散された溶液を前記半導体基板の第1主面に塗布し、前記トレンチ底部に、前記ゲート絶縁膜と接する誘電体の微粒子を埋め込む工程と、前記トレンチ内部に、側面が前記ゲート絶縁膜と接し、且つ底部が前記微粒子と接し、前記半導体基板の第1主面近傍までゲート電極を埋め込む工程とを具備することを特徴とする。
本発明によれば、基板に加わる応力を低減できるトレンチパワーMOSトランジスタやトレンチIGBT、或いはトレンチアイソレーションを有する半導体装置及びその製造方法を提供することができる。
以下本発明の実施例について図面を参照しながら説明する。
まず、本発明の実施例1に係る半導体装置としてのNch トレンチパワーMOSトランジスタ及びその製造方法について、図面を参照して説明する。図1はNch トレンチパワーMOSトランジスタを示す断面図である。本実施例では、Nch パワーMOSトランジスタのゲートをトレンチ構造にしている。
図1に示すように、Nch トレンチパワーMOSトランジスタでは、N層1上にN層2が設けられ、ドレイン層としてのシリコン基板3を有している。このN層2の表面(第1主面)にはP層4が選択的に形成されている。このP層4の表面には、P層9が選択的に形成されている。このP層9の表面には、Nソース層5がP層9よりも浅く、選択的に形成されている。
そして、Nソース層5及びP層4を貫通分離し、N層4まで達するトレンチが形成されている。このトレンチの内側にゲート絶縁膜6が埋め込まれ、トレンチの底部にゲート絶縁膜6と接するシリカ微粒子7が設けられ、トレンチの上部にゲート絶縁膜6と接し、且つシリカ微粒子7と接してゲート電極8が埋め込まれている。
このゲート電極8を覆う絶縁膜10に、コンタクト開口部11がP層9及びその周辺のNソース層5の一部を露出するように設けられ、この露出されたP層9及びその周辺のNソース層5に、ソース電極12が形成されている。また、シリコン基板3のN層1の裏面(第2主面)には、ドレイン電極13が形成されている。ここで、トレンチゲートの側壁部分のP層4は、Nch トレンチパワーMOSトランジスタのチャネル領域となる。
次に、半導体装置の製造方法について、図2乃至図5を参照して説明する。図2乃至図5はNch トレンチパワーMOSトランジスタの製造工程を示す断面図である。
図2に示すように、まず、N層1上にN層2が形成されたシリコン基板3の表面に、選択的にP層4を形成する。次に、P層4の表面に、選択的にNソース層5を形成する。P層4及びNソース層5は、例えば、イオン注入法及び高温アニールを用いて形成する。
次に、図3に示すように、Nソース層5の中央部分を、例えば、RIE(Reactive Ion Ecthing)法などにより垂直にエッチングして、シリコン基板3のN層2に達する深溝(トレンチ)を形成する。ここで、トレンチの深さは例えば、約1μm、トレンチ底部の幅は例えば、0.4μmに形成する。
続いて、RIEによって発生したトレンチ部分のシリコン基板3のダメージを除去した後、高温酸化を行いシリコン酸化膜からなるゲート絶縁膜6を形成する。ここで、シリコン酸化膜の代わりに、シリコン酸化膜とシリコン窒化膜の積層膜をゲート絶縁膜に用いてもよい。
次に、シリカ微粒子7が分散された溶液を、例えば、スピンコート法を用いてシリカ微粒子(コロイダルシリカとも呼称される)7をトレンチ部分及びゲート絶縁膜6の表面部分に塗布する。なお、シリカ微粒子7の粒径は、トレンチ底部にシリカ微粒子7を均一に埋め込むために、0.004μm(4nm)から0.04μm(40nm)の範囲が好ましい。
続いて、図4に示すように、CMP(Chemical Mechanical Polishing)法を用いて、ゲート絶縁膜6の表面部分及びトレンチ上面部分のシリカ微粒子7を除去し、トレンチ底部のシリカ微粒子7を残置させる。なお、残置したトレンチ底部のシリカ微粒子7は、P層4とN層2の境界よりもトレンチ内部に設けるのが好ましい。
ここで、シリカ微粒子の粒径を0.04μm(40nm)以上にすると、トレンチ内部に均一にシリカ微粒子7の粒径を埋め込むことが困難となり、シリカ微粒子7の粒径を0.004μm(4nm)以下にすると、CMP処理中にシリカ微粒子7が飛散して、シリカ微粒子7をトレンチ底部に残置させるのが困難となる。なお、CMP法の代わりに、水を供給しながらブラシを回転させるブラシ洗浄装置などを用いてもよい。このとき、水に極微量のフッ化水素酸溶液を添加してもよい。フッ化水素酸溶液を用いた場合、ゲート絶縁膜6を再度熱酸化するのが好ましい。なお、シリカ微粒子7の粒径は、TEMや断面SEMなどを用いて確認している。
次に、高温熱処理を行い、トレンチ部分などに残留している溶媒を揮発除去し、シリカ微粒子7とゲート絶縁膜6とを固着させる。
そして、図5に示すように、CVD法によりゲート電極8となるN多結晶シリコン膜をシリコン基板3の表面に堆積する。ここで、シリカ微粒子7の粒径を比較的小さくしているので、N多結晶シリコン膜はシリカ微粒子7間の空隙に堆積されない。次に、CMP法を用いて、シリコン基板3の表面のN多結晶シリコン膜及びゲート絶縁膜6を剥離し、P層4及びN+ソース層5を露呈させる。続いて、後処理を行い、シリコン基板3の表面に残置している不純物などをエッチング除去し、シリコン基板3の表面を清浄化する。なお、ゲート絶縁膜6を剥離せずに残置しておいてもよい。
次に、Nソース層5の間に、Nソース層5と接するP層9を形成する。そして、周知の技術を用いて、層間絶縁膜形成、コンタクト開口、配線形成を行い、Nch トレンチパワーMOSトランジスタが完成する。
上述したように、本実施例の半導体装置では、トレンチ底部にシリカ微粒子7が埋め込まれ、トレンチ上部にゲート電極8が埋め込まれたNch トレンチパワーMOSトランジスタが設けられている。そして、シリカ微粒子7の空隙にはゲート電極8が形成されていない。このため、素子分離工程や素子形成工程での熱処理により、シリコンと二酸化シリコンの熱膨張係数差やシリコン基板の酸化に起因するトレンチ底部での応力発生を抑制し、シリコン基板に結晶欠陥や転移が発生するのを抑制することができる。したがって、素子のリーク電流増大や素子の耐圧低下などを従来よりも抑制することができる。
更に、トレンチ底部に絶縁物としてのシリカ微粒子7が埋め込まれ、シリカ微粒子7の空隙にはシリカ微粒子7よりも比誘電率の小さい空気などの気体が充満している。このため、Nch トレンチパワーMOSトランジスタのゲート・ドレイン間容量を低減でき、帰還容量を低減できる。したがって、Nch トレンチパワーMOSトランジスタのスイッチング特性を従来よりも向上することができる。
なお、本実施例では、シリカ微粒子7を用いているが、アルミナ微粒子やシリコンカーバイド微粒子などの誘電体の微粒子を用いてもよい。
次に、本発明の実施例2に係る半導体装置としてのNch MOSトランジスタ及びその製造方法について、図面を参照して説明する。図6はNch MOSトランジスタを示す断面図である。本実施例では、Nch MOSトランジスタの素子分離にSTIを用いている。
図6に示すように、Nch MOSトランジスタでは、P型シリコン基板3aの表面にNソース層5a、N層23、及びNドレイン層24が選択的に形成され、N層23はNソース層5aと接して形成されている。
そして、Nソース層5a間を貫通分離してトレンチが形成されている。このトレンチの内側にシリコン酸化膜21が埋め込まれ、トレンチの底部にシリコン酸化膜21と接するシリカ微粒子7が設けられ、トレンチの上部にシリコン酸化膜21と接し、且つシリカ微粒子7と接して二酸化シリコン膜22が埋め込まれている。
N層23間のシリコン基板3a上には、ゲート絶縁膜6a、ゲート電極8a、及びゲート電極保護膜25がN層23とオーバーラップして形成されている。ゲート電極8a及びゲート電極保護膜25の側面には、側壁絶縁膜26が形成され、Nソース層5a及びNドレイン層24は側壁絶縁膜26をマスクに形成されている。
このゲート電極8a及びゲート電極保護膜25を覆う絶縁膜10に、コンタクト開口部11がNソース層5a及びNドレイン層24の一部を露出するように設けられ、この露出されたNソース層5a及びNドレイン層24に、ビア27が形成され、ビア27を覆うようにビア27と接する配線28が選択的に形成されている。
次に、半導体装置の製造方法について、図7及び図8を参照して説明する。図7及び図8はNch MOSトランジスタの製造工程を示す断面図である。
図7に示すように、まず、P型のシリコン基板3aの表面を、例えば、RIE法などによりエッチングして、浅溝(浅いトレンチ)を形成する。ここで、トレンチの深さは、例えば、約0.3μm、トレンチ底部の幅は、例えば、0.15μmに形成する。続いて、RIEによって発生した浅いトレンチ部分のシリコン基板3aのダメージを除去した後、高温酸化を行い、シリコン酸化膜21を形成する。
そして、シリカ微粒子7を分散させた溶液を、例えば、スピンコート法を用いてシリカ微粒子7を塗布する。なお、シリカ微粒子7の粒径は、トレンチ底部にシリカ微粒子7を均一に埋め込むために、0.0015μm(1.5nm)から0.015μm(15nm)の範囲が好ましい。
次に、CMP法を用いて、シリコン酸化膜21の表面及び浅いトレンチ上面部分のシリカ微粒子7を除去し、浅いトレンチ底部のシリカ微粒子7を残置させる。
ここで、シリカ微粒子の粒径を0.015μm(15nm)以上にすると、浅いトレンチ内部に均一にシリカ微粒子7の粒径を埋め込むことが困難となり、シリカ微粒子7の粒径を0.0015μm(1.5nm)以下にすると、CMP処理中にシリカ微粒子7が飛散して、シリカ微粒子7を浅いトレンチ底部に残置させるのが困難となる。
次に、図8に示すように、CVD法により2酸化シリコン膜22をシリコン基板3aの表面に堆積する。ここで、シリカ微粒子7の粒径を比較的小さくしているので、二酸化シリコン膜22はシリカ微粒子7間の空隙に堆積されない。次に、CMP法を用いて、シリコン基板3aの表面の二酸化シリコン膜22及びシリコン酸化膜21の一部まで剥離し、浅いトレンチ部分に設けられた2酸化シリコン膜22を残置する。これにより、浅いトレンチアイソレーション(STI)が形成される。なお、残置したシリコン底部のシリカ微粒子7は、後述するN層、Nソース層、及びNドレイン層とシリコン基板3aの境界よりもトレンチ内部に設けるのが好ましい。
次に、周知の技術を用いて、Nch MOSトランジスタのゲート絶縁膜形成、ゲート電極形成、ソース・ドレイン形成、層間絶縁膜形成、コンタクト開口、配線形成などを行い、Nch MOSトランジスタが完成する。
上述したように、本実施例の半導体装置では、トレンチ底部にシリカ微粒子7が埋め込まれ、トレンチ上部に二酸化シリコン膜22が埋め込まれたMOSトランジスタが設けられている。そして、シリカ微粒子7の空隙には二酸化シリコン膜22が形成されていない。このため、素子分離工程や素子形成工程での熱処理により、シリコンと二酸化シリコンの熱膨張係数差やシリコン基板の酸化に起因するトレンチ底部での応力発生を抑制し、シリコン基板に結晶欠陥や転移が発生するのを抑制することができる。したがって、素子のリーク電流増大や素子の耐圧低下などを従来よりも抑制することができる。
本発明は、上記実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で、種々、変更してもよい。
例えば、実施例1では、Nch パワーMOSトランジスタのゲートをトレンチ構造にしているが、Pch パワーMOSトランジスタやIGBTのゲートをトレンチ構造にしてもよい。なお、トレンチIGBTの場合、N層の裏面(第2主面)にP層を接して形成したノンパンチスルー(NPT)形構造やN層の裏面(第2主面)にN層を形成し、N層の裏面(第2主面)にP層を形成したパンチスルー(PT)形構造のどちらの構造を用いてもよい。
本発明の実施例1に係るNch トレンチパワーMOSトランジスタを示す断面図。 本発明の実施例1に係るNch トレンチパワーMOSトランジスタの製造工程を示す断面図。 本発明の実施例1に係るNch トレンチパワーMOSトランジスタの製造工程を示す断面図。 本発明の実施例1に係るNch トレンチパワーMOSトランジスタの製造工程を示す断面図。 本発明の実施例1に係るNch トレンチパワーMOSトランジスタの製造工程を示す断面図。 本発明の実施例2に係るNch MOSトランジスタを示す断面図。 本発明の実施例2に係るNch MOSトランジスタの製造工程を示す断面図。 本発明の実施例2に係るNch MOSトランジスタの製造工程を示す断面図。
符号の説明
1 N
2 N
3、3a シリコン基板
4 P層
5、5a Nソース層
6、6a ゲート絶縁膜
7 シリカ微粒子
8、8a ゲート電極
9 P
10 絶縁膜
11 コンタクト開口部
12 ソース電極
13 ドレイン電極
21 シリコン酸化膜
22 二酸化シリコン膜
23 N層
24 Nドレイン層
25 ゲート電極保護膜
26 側壁絶縁膜
27 ビア
28 配線

Claims (5)

  1. 第1導電型の半導体基板と、
    前記半導体基板の第1主面に選択的に設けられた第2導電型の第1の半導体層と、
    前記第1の半導体層に選択的に設けられた第1導電型の第2の半導体層と、
    前記第2の半導体層及び前記第1の半導体層を貫いて前記半導体基板の途中の深さまで達するトレンチと、
    前記トレンチ内部に設けられたゲート絶縁膜と、
    前記トレンチ内底部に、前記ゲート絶縁膜と接して埋め込まれた誘電体の微粒子と、
    前記トレンチ内部に、側面が前記ゲート絶縁膜と接し、且つ底部が前記微粒子と接し、前記半導体基板の第1主面まで埋め込まれたゲート電極と
    を具備することを特徴とする半導体装置。
  2. 第1導電型の第1の半導体層及び前記第1の半導体層の第1主面に設けられた第2導電型の第2の半導体層を有する半導体基板と、
    前記第2の半導体層に選択的に設けられた第1導電型の第3の半導体層と、
    前記第3の半導体層に選択的に設けられた第2導電型の第4の半導体層と、
    前記第4の半導体層及び前記第3の半導体層を貫いて前記第2の半導体層の途中の深さまで達するトレンチと、
    前記トレンチ内部に設けられたゲート絶縁膜と、
    前記トレンチ内底部に、前記ゲート絶縁膜と接して埋め込まれた誘電体の微粒子と、
    前記トレンチ内部に、側面が前記ゲート絶縁膜と接し、且つ底部が前記微粒子と接し、前記半導体基板の第1主面まで埋め込まれたゲート電極と
    を具備することを特徴とする半導体装置。
  3. 第1導電型の半導体基板と、
    前記半導体基板の第1主面に設けられたトレンチと、
    前記トレンチ内側部に設けられたシリコン酸化膜と、
    前記トレンチ底部に、前記シリコン酸化膜と接して埋め込まれた誘電体の微粒子と、
    前記トレンチ内部に、側面が前記シリコン酸化膜と接し、且つ底面が前記微粒子と接し、前記半導体基板の第1主面まで埋め込まれた誘電体層と、
    前記シリコン酸化膜と接し、前記半導体基板の第1主面に選択的に設けられ、トランジスタのソース又はドレインである第2導電型の半導体層と
    を具備することを特徴とする半導体装置。
  4. 前記微粒子の粒径は、前記トレンチ底部の幅の1/100以上、1/10以下の範囲であることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。
  5. 第1導電型の半導体基板の第1主面に第2導電型の第1の半導体層を選択的に形成する工程と、
    前記第1の半導体層の第1主面に第1導電型の第2の半導体層を選択的に形成する工程と、
    前記第2の半導体層及び前記第1の半導体層を貫いて前記半導体基板の途中の深さまで達するトレンチを形成する工程と、
    前記トレンチ内部にゲート絶縁膜を形成する工程と、
    誘電体の微粒子が分散された溶液を前記半導体基板の第1主面に塗布し、前記トレンチ底部に、前記ゲート絶縁膜と接する誘電体の微粒子を埋め込む工程と、
    前記トレンチ内部に、側面が前記ゲート絶縁膜と接し、且つ底部が前記微粒子と接し、前記半導体基板の第1主面近傍までゲート電極を埋め込む工程と
    を具備することを特徴とする半導体装置の製造方法。
JP2004303442A 2004-10-18 2004-10-18 半導体装置及びその製造方法 Expired - Fee Related JP4791723B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004303442A JP4791723B2 (ja) 2004-10-18 2004-10-18 半導体装置及びその製造方法
US11/249,265 US20060081903A1 (en) 2004-10-18 2005-10-14 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303442A JP4791723B2 (ja) 2004-10-18 2004-10-18 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2006114853A true JP2006114853A (ja) 2006-04-27
JP4791723B2 JP4791723B2 (ja) 2011-10-12

Family

ID=36179833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303442A Expired - Fee Related JP4791723B2 (ja) 2004-10-18 2004-10-18 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US20060081903A1 (ja)
JP (1) JP4791723B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152551A (ja) * 2007-10-22 2009-07-09 Applied Materials Inc ボイドフリーギャップ充填に対する誘電体膜品質を向上させる方法及びシステム
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法
JP2011071292A (ja) * 2009-09-25 2011-04-07 Asahi Kasei E-Materials Corp エアギャップ構造体及びエアギャップ形成方法
JP2014082520A (ja) * 2014-01-06 2014-05-08 Rohm Co Ltd 半導体装置およびその製造方法
WO2019088241A1 (ja) * 2017-11-03 2019-05-09 株式会社デンソー 半導体装置
US10304969B2 (en) 2015-09-11 2019-05-28 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807574B (zh) * 2010-03-30 2012-02-29 无锡新洁能功率半导体有限公司 一种沟槽型功率mos器件及其制造方法
JP6426642B2 (ja) 2016-03-08 2018-11-21 株式会社東芝 半導体装置
CN106910774A (zh) * 2017-03-06 2017-06-30 北京世纪金光半导体有限公司 圆弧角u形槽栅结构的碳化硅功率mosfet器件及其制备方法
KR20200027816A (ko) * 2018-09-05 2020-03-13 삼성전자주식회사 소자분리층을 갖는 반도체 소자 및 그 제조 방법
CN117497605A (zh) * 2023-12-29 2024-02-02 深圳天狼芯半导体有限公司 一种高温下低导通电阻的pmos及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335582A (ja) * 1992-05-27 1993-12-17 Omron Corp 縦型mosfet装置およびその製造方法
JP2004031923A (ja) * 2002-04-30 2004-01-29 Toshiba Corp 半導体装置
JP2004039902A (ja) * 2002-07-04 2004-02-05 Renesas Technology Corp 半導体装置およびその製造方法
JP2004522305A (ja) * 2001-04-28 2004-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体デバイスおよびそれらの製造方法
JP2006510216A (ja) * 2002-12-14 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチ・ゲート型半導体デバイスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291298B1 (en) * 1999-05-25 2001-09-18 Advanced Analogic Technologies, Inc. Process of manufacturing Trench gate semiconductor device having gate oxide layer with multiple thicknesses
JP2002305304A (ja) * 2001-04-05 2002-10-18 Toshiba Corp 電力用半導体装置
US20040016962A1 (en) * 2002-04-30 2004-01-29 Hideki Okumura Semiconductor device
JP2004022941A (ja) * 2002-06-19 2004-01-22 Toshiba Corp 半導体装置
JP3875245B2 (ja) * 2004-07-26 2007-01-31 株式会社東芝 半導体装置
JP4116007B2 (ja) * 2005-03-04 2008-07-09 株式会社東芝 半導体装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335582A (ja) * 1992-05-27 1993-12-17 Omron Corp 縦型mosfet装置およびその製造方法
JP2004522305A (ja) * 2001-04-28 2004-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチゲート半導体デバイスおよびそれらの製造方法
JP2004031923A (ja) * 2002-04-30 2004-01-29 Toshiba Corp 半導体装置
JP2004039902A (ja) * 2002-07-04 2004-02-05 Renesas Technology Corp 半導体装置およびその製造方法
JP2006510216A (ja) * 2002-12-14 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トレンチ・ゲート型半導体デバイスの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152551A (ja) * 2007-10-22 2009-07-09 Applied Materials Inc ボイドフリーギャップ充填に対する誘電体膜品質を向上させる方法及びシステム
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法
JP2011071292A (ja) * 2009-09-25 2011-04-07 Asahi Kasei E-Materials Corp エアギャップ構造体及びエアギャップ形成方法
JP2014082520A (ja) * 2014-01-06 2014-05-08 Rohm Co Ltd 半導体装置およびその製造方法
US10304969B2 (en) 2015-09-11 2019-05-28 Kabushiki Kaisha Toshiba Semiconductor device
WO2019088241A1 (ja) * 2017-11-03 2019-05-09 株式会社デンソー 半導体装置
JP2019087591A (ja) * 2017-11-03 2019-06-06 株式会社デンソー 半導体装置
JP7009933B2 (ja) 2017-11-03 2022-01-26 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP4791723B2 (ja) 2011-10-12
US20060081903A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
KR100757125B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
TWI249774B (en) Forming method of self-aligned contact for semiconductor device
JP2004207564A (ja) 半導体装置の製造方法と半導体装置
JP2007103490A (ja) 半導体装置および半導体装置の製造方法
JP2005251973A (ja) 半導体装置の製造方法と半導体装置
US8592284B2 (en) Semiconductor device and manufacturing method thereof
JP2006269789A (ja) 半導体装置及びその製造方法
JP2010263129A (ja) 半導体装置およびその製造方法
JP2008533705A (ja) 高電圧コンポーネントを備えた、トレンチ絶縁されたsoi集積回路へのキャリア基板コンタクトの作製
JP4836416B2 (ja) 半導体装置の製造方法
US20060081903A1 (en) Semiconductor device and method of fabricating the same
JP2010027904A (ja) 半導体装置の製造方法
JP2003017555A (ja) 半導体集積回路装置およびその製造方法
TW201714209A (zh) 製造半導體裝置之方法
CN104217990A (zh) 一种形成接触孔的方法
JP2007184549A (ja) 半導体装置および半導体装置の製造方法
JP2007194333A (ja) 半導体装置の製造方法
JP2007019191A (ja) 半導体装置とその製造方法
JP2005353892A (ja) 半導体基板、半導体装置及びその製造方法
JP4899365B2 (ja) 半導体装置の製造方法
JP2012142505A (ja) 半導体装置およびその製造方法
JP2004153140A (ja) 半導体装置およびその製造方法
JP2007088369A (ja) 半導体装置の製造方法および半導体装置の製造装置
JP2004152851A (ja) 半導体装置の製造方法
JP2009164384A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120313

LAPS Cancellation because of no payment of annual fees