JP2007184549A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2007184549A
JP2007184549A JP2006302470A JP2006302470A JP2007184549A JP 2007184549 A JP2007184549 A JP 2007184549A JP 2006302470 A JP2006302470 A JP 2006302470A JP 2006302470 A JP2006302470 A JP 2006302470A JP 2007184549 A JP2007184549 A JP 2007184549A
Authority
JP
Japan
Prior art keywords
semiconductor layer
element isolation
semiconductor
semiconductor substrate
formation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006302470A
Other languages
English (en)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006302470A priority Critical patent/JP2007184549A/ja
Publication of JP2007184549A publication Critical patent/JP2007184549A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】素子分離領域に起因するストレスの増大を抑制しつつ、素子分離領域に必要な耐圧を確保する。
【解決手段】半導体基板1には、SOI形成領域R11およびバルク領域R12が設けられ、SOI形成領域R11およびバルク領域R12には、SOI形成領域R11およびバルク領域R12をそれぞれ素子分離する溝13を形成し、SOI形成領域R11とバルク領域R12との境界には、SOI形成領域R11とバルク領域R12とを素子分離する溝14を形成するとともに、Nウェル2およびPウェル3との境界には、Nウェル2とPウェル3とを素子分離する溝14を形成し、溝14の深さは溝13よりも深くする。
【選択図】図1

Description

本発明は半導体装置および半導体装置の製造方法に関し、特に、バルク構造とSOI(Silicon On Insulator)構造とが同一基板上に混載された半導体装置における素子分離構造に適用して好適なものである。
SOI基板上に形成された電界効果型トランジスタは、素子分離の容易性、ラッチアップフリー、ソース/ドレイン接合容量が小さいなどの点から、その有用性が注目されている。特に、完全空乏型SOIトランジスタは、低消費電力かつ高速動作が可能で、低電圧駆動が容易なため、SOIトランジスタを完全空乏モードで動作させるための研究が盛んに行われている。ここで、非特許文献1には、バルク基板上にSOI層を形成することで、SOIトランジスタを低コストで形成できる方法が開示されている。この非特許文献1に開示された方法では、Si基板上にSi/SiGe層を成膜し、SiとSiGeとのエッチングレートの違いを利用してSiGe層のみを選択的に除去することにより、Si基板とSi層との間に空洞部を形成する。そして、空洞部内に露出されたSiの熱酸化を行うことにより、Si基板とSi層との間にSiO2層を埋め込み、Si基板とSi層との間にBOX層を形成する。
T.Sakai et al."Separation by BondingSi Islands(SBSI) for LSI Application",Second International SiGe Technology and Device Meeting,Meeting Abstract,pp.230−231,May(2004)
しかしながら、SOIトランジスタの微細化に伴って素子分離溝を浅くすると、ゲート配線層と半導体基板との間の寄生容量が増大し、SOIトランジスタの高速化の妨げになったり、消費電力の増大を招いたりするという問題があった。一方、素子分離溝を一律に深くすると、SOI層やBOX層にかかるストレスが増大し、SOIトランジスタの特性の劣化や特性のバラツキが大きくなるという問題があった。
特に、バルク構造とSOI構造とを同一基板上に混載した場合、バルク構造には高耐圧デバイスが形成され、SOI構造には低耐圧デバイスが形成されることから、デバイス間の素子分離溝を深くし、電界に対する耐性を確保するために強固な絶縁体が埋め込まれる。ここで、低電圧・低電流駆動デバイスでは、デバイス素子サイズが小さく、アクティブ領域に比べて素子分離領域の面積が占める割合が大きいことから、Siと熱膨張係数の異なる強固な絶縁体を埋め込むと、SOI構造のアクティブ領域へのストレスが集中し、アクティブ領域の形状が変形したり、キャリアモビリテイーが劣化したり、結晶欠陥が誘発されたりして、製造歩留まりの低下や信頼性の劣化を招いたりするという問題があった。
そこで、本発明の目的は、素子分離領域に起因するストレスの増大を抑制しつつ、素子分離領域に必要な耐圧を確保することが可能な半導体装置および半導体装置の製造方法を提供することである。
上述した課題を解決するために、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、前記第1素子分離構造と前記第2素子分離構造とは比誘電率、厚さまたは深さのいずれか少なくとも一つが互いに異なることを特徴とする。
これにより、半導体層下に埋め込まれた埋め込み絶縁層にて半導体基板と半導体層とを絶縁することが可能となるとともに、バルク領域とSOI形成領域において、異なる構造、例えば、異なる深さや比誘電率からなる、2つの素子分離構造を有することができる。このため、素子分離領域に起因するストレスの増大を抑制しつつ、素子分離領域に必要な耐圧を確保することが可能となるとともに、SOI基板を用いることなく、半導体層上にSOIトランジスタを形成することが可能となる。この結果、SOIトランジスタの低価格化を実現することが可能となるとともに、バルク構造とSOI構造とが同一基板上に混載された場合においても、SOIトランジスタの特性のバラツキを抑制しつつ、SOIトランジスタの低消費電力化および高速化を図ることが可能となるとともに、バルクトランジスタの高耐圧化・高性能化を図ることができる。
また、本発明の一態様に係る半導体装置によれば、前記第1または第2デバイス形成領域に形成されるゲート電極に垂直な部分における前記第1素子分離構造の厚さまたは深さが、前記ゲート電極に平行な部分における前記第2素子分離構造の厚さまたは深さよりも大きいことを特徴とする。
これにより、素子分離領域の厚さまたは深さが大きい部分にゲート電極がかかるようにすることができ、ゲート電極の寄生容量を低減することが可能となるとともに、ゲート電極の寄生容量への寄与が小さい部分では、素子分離領域の厚さまたは深さを小さくすることができ、トランジスタにかかるストレスを抑制することができる。
また、本発明の一態様に係る半導体装置によれば、前記第1または第2デバイス形成領域に形成されるゲート電極に垂直な部分における前記第1素子分離構造の比誘電率が、前記ゲート電極に平行な部分における前記第2素子分離構造の比誘電率よりも小さいことを特徴とする。
これにより、比誘電率が小さい部分にゲート電極がかかるようにすることができ、ゲート電極の寄生容量を低減することが可能となるとともに、ゲート電極の寄生容量への寄与が小さい部分では、素子分離領域の比誘電率を大きくすることができ、素子分離溝に強固な材料を埋め込むことが可能となる。このため、トランジスタが微細化された場合においても、プロセスインテグレーションや熱的/機械的ストレスに対してSOI層やBOX層にミクロ的な変形が発生することを抑制することができ、トランジスタの特性のバラツキを抑制しつつ、トランジスタの低消費電力化および高速化を図ることが可能となる。
また、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造と、前記第1デバイス形成領域に形成されたSRAMセルとを備え、前記SRAMセルに接続されたビットライン下の素子分離領域の少なくとも一部領域には、第1素子分離構造が形成され、該第1素子分離領域の厚さまたは深さが、第2素子分離構造の厚さまたは深さよりも大きいか、或いは、第1素子分離構造の比誘電率が第2素子分離構造の比誘電率よりも小さいことを特徴とする。
これにより、バルク構造とSOI構造とが同一基板上に混載された場合においても、埋め込み絶縁層上に配置された半導体層にSRAMセルを形成することが可能となるとともに、素子分離領域に起因するストレスの増大を抑制しつつ、ビットラインの寄生容量を低減することが可能なり、SRAMセルの低消費電力化および高速化を図ることができる。
また、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第2デバイス形成領域に配置され前記半導体基板に形成されたウェルと、前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、前記ウェル間は第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする。
これにより、低電圧・低電流駆動デバイスを素子分離する少なくとも一部領域の溝の深さを浅く形成しつつ、ウェル間を素子分離する溝の深さを深くすることができる。このため、バルク構造とSOI構造とを同一基板上に混載した場合においても、高耐圧・高電圧駆動デバイスの耐圧の劣化を抑制しつつ、低電圧・低電流駆動デバイスへのストレスの集中を抑制することができ、低電圧・低電流駆動デバイスの低消費電力化および高速化に支障をきたすことなく、高耐圧・高電圧駆動デバイスを同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第2デバイス形成領域に形成された静電保護回路と前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、前記静電保護回路の少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする。
これにより、低電圧・低電流駆動デバイスを素子分離する少なくとも一部領域の溝の深さを浅く形成しつつ、静電保護回路を素子分離する溝の深さを深くすることができる。このため、バルク構造とSOI構造とを同一基板上に混載した場合においても、静電保護回路の耐圧の劣化を抑制しつつ、低電圧・低電流駆動デバイスへのストレスの集中を抑制することができ、低電圧・低電流駆動デバイスの低消費電力化および高速化に支障をきたすことなく、静電保護回路を同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第1デバイス形成領域に形成された低電圧駆動デバイスと、前記第2デバイス形成領域に形成された高電圧駆動デバイスと、前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、前記高電圧駆動デバイスの少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする。
これにより、低電圧・低電流駆動デバイスを素子分離する少なくとも一部領域の溝の深さを浅く形成しつつ、高耐圧・高電圧駆動デバイスを素子分離する溝の深さを深くすることができる。このため、バルク構造とSOI構造とを同一基板上に混載した場合においても、高耐圧・高電圧駆動デバイスの耐圧の劣化を抑制しつつ、低電圧・低電流駆動デバイスへのストレスの集中を抑制することができ、低電圧・低電流駆動デバイスの低消費電力化および高速化に支障をきたすことなく、高耐圧・高電圧駆動デバイスを同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置によれば、半導体基板上にエピタキシャル成長にて形成された半導体層と、前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、前記半導体層上に設けられた第1デバイス形成領域と、前記半導体基板上に設けられた第2デバイス形成領域と、前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、前記第1デバイス形成領域と前記第2デバイス形成領域を分離する少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする。
これにより、低電圧・低電流駆動デバイスを素子分離する少なくとも一部領域の溝の深さを浅く形成しつつ、低電圧・低電流駆動デバイスと高耐圧・高電圧駆動デバイスとを素子分離する溝の深さを深くすることができる。このため、バルク構造とSOI構造とを同一基板上に混載した場合においても、バルク構造デバイスとSOI構造デバイス間のクロストークノイズを抑制することができる。また、高耐圧・高電圧駆動デバイスの耐圧の劣化を抑制しつつ、低電圧・低電流駆動デバイスへのストレスの集中を抑制することができる。従って、低電圧・低電流駆動デバイスの低消費電力化および高速化に支障をきたすことなく、高耐圧・高電圧駆動デバイスを同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置の製造方法によれば、半導体基板上の第1領域に第1半導体層を形成する工程と、前記第1半導体層よりもエッチングレートが小さな第2半導体層を前記第1半導体層上に形成する工程と、前記第1半導体層および第2半導体層を貫通して前記半導体基板を露出させるとともに、前記半導体基板の第2領域を素子分離する第1溝を形成する工程と、前記第1溝を介して前記第2半導体層を前記半導体基板上で支持する支持体を形成する工程と、前記第1半導体層の一部を前記第2半導体層から露出させるとともに、前記第1溝と深さの異なる第2溝を形成する工程と、前記第2溝を介して前記第1半導体層を選択的にエッチングすることにより、前記第1半導体層が除去された空洞部を前記第2半導体層下に形成する工程と、前記空洞部内に埋め込まれた埋め込み絶縁層を形成する工程とを備えることを特徴とする。
これにより、第1半導体層上に第2半導体層が積層された場合においても、第2溝を介してエッチングガスまたはエッチング液を第1半導体層に接触させることが可能となり、第2半導体層を残したまま、第1および第2半導体層間のエッチングレートの違いを利用して第1半導体層を除去することが可能となるとともに、第2半導体層下の空洞部内に埋め込まれた埋め込み絶縁層を形成することができる。また、第2半導体層を半導体基板上で支持する支持体を設けることにより、第2半導体層下に空洞部が形成された場合においても、第2半導体層が半導体基板上に脱落することを防止することができる。さらに、第1溝と第2溝との深さを互いに異ならせることにより、バルク構造とSOI構造とを同一基板上に混載した場合においても、バルク領域とSOI形成領域には、異なる深さを有する第1素子分離構造と第2素子分離構造とを備えることができる。この時、第1溝と第2溝のいずれかひとつが、第1素子分離構造に対応し、残りが、第2素子分離構造に対応する。
このため、SOI基板を用いることなく、第2半導体層上にSOIトランジスタを形成することが可能となり、SOIトランジスタの低価格化を実現することが可能となるとともに、SOIトランジスタの低消費電力化および高速化に支障をきたすことなく、高耐圧トランジスタを同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置の製造方法によれば、半導体基板上の第1領域に第1半導体層を形成する工程と、前記第1半導体層よりもエッチングレートが小さな第2半導体層を前記第1半導体層上に形成する工程と、前記第1半導体層および第2半導体層を貫通して前記半導体基板を露出させるとともに、前記半導体基板の第2領域を素子分離する第1溝を形成する工程と、前記第1溝を介して前記第2半導体層を前記半導体基板上で支持する支持体を形成する工程と、前記第1半導体層の一部を前記第2半導体層から露出させる第2溝を形成する工程と、前記第2溝を介して前記第1半導体層を選択的にエッチングすることにより、前記第1半導体層が除去された空洞部を前記第2半導体層下に形成する工程と、前記空洞部内に埋め込まれた埋め込み絶縁層を形成する工程と、前記支持体と比誘電率の異なる絶縁体を前記第2溝に埋め込む工程とを備えることを特徴とする。
これにより、SOI基板を用いることなく、第2半導体層上にSOIトランジスタを形成することが可能となり、SOIトランジスタの低価格化を実現することが可能となるとともに、バルク構造とSOI構造とを同一基板上に混載した場合においても、バルク領域とSOI形成領域には、異なる比誘電率を有する第1素子分離構造と第2素子分離構造とを備えることができる。この時、第1溝と第2溝のいずれかひとつが、第1素子分離構造に対応し、残りが、第2素子分離構造に対応する。
このため、SOIトランジスタの低価格化を実現することが可能となるとともに、SOIトランジスタの低消費電力化および高速化に支障をきたすことなく、高耐圧トランジスタを同一基板上に混載することができる。
また、本発明の一態様に係る半導体装置の製造方法によれば、前記半導体基板上に下地酸化膜を介して酸化防止膜を形成する工程と、前記半導体基板上の第1領域に対応した開口部を前記下地酸化膜および酸化防止膜に形成する工程と、前記開口部が形成された酸化防止膜をマスクとして前記半導体基板の選択酸化を行うことにより、前記半導体基板上の第1領域に熱酸化膜を形成する工程と、前記半導体基板上の第1領域に形成された熱酸化膜を除去する工程と、前記開口部が形成された酸化防止膜を除去する工程と、前記開口部が形成された下地酸化膜をマスクとして選択エピタキシャル成長を行うことにより、前記半導体基板上の第1領域に第1半導体層および第2半導体層を順次形成する工程とを備えることを特徴とする。
これにより、半導体基板の熱酸化とウエットエッチングにて半導体基板に凹部を形成してから、半導体基板上の第1領域にSOI構造を形成することが可能となる。このため、半導体基板凹部表面のエッチングダメージを抑制しつつ、バルク構造とSOI構造との間の段差を低減することが可能となり、製造歩留まりの低下や信頼性の劣化を抑制しつつ、バルク構造とSOI構造とを同一基板上に同等の高さで混載することができる。
また、本発明の一態様に係る半導体装置の製造方法によれば、前記半導体基板および前記第2半導体層はSi、前記第1半導体層はSiGeであることを特徴とする。
これにより、半導体基板、第2半導体層および第1半導体層間の格子整合をとることを可能としつつ、半導体基板および第2半導体層半よりも第1半導体層のエッチングレートを大きくすることが可能となる。このため、結晶品質の良い第2半導体層を第1半導体層上に形成することが可能となり、第2半導体層の品質を損なうことなく、第2半導体層と半導体基板との間の絶縁を図ることが可能となる。
以下、本発明の実施形態に係る半導体装置の製造方法について図面を参照しながら説明する。
図1は、本発明の第1実施形態に係る半導体装置の概略構成を示す断面図である。
図1において、半導体基板1には、SOI形成領域R11およびバルク領域R12が設けられ、バルク領域R12には、Nウェル2およびPウェル3が形成されている。ここで、SOI形成領域R11およびバルク領域R12には、SOI形成領域R11およびバルク領域R12内の素子をそれぞれ素子分離する溝13が形成されている。また、SOI形成領域R11とバルク領域R12との境界には、SOI形成領域R11とバルク領域R12とを素子分離する溝14が形成されるとともに、Nウェル2およびPウェル3との境界には、Nウェル2とPウェル3とを素子分離する溝14が形成されている。ここで、溝14の深さは溝13よりも深くすることができる。そして、溝13内には、第2半導体層5を半導体基板1上で支持する支持体11が埋め込まれるとともに、溝14内には埋め込み絶縁体12が埋め込まれている。なお、溝13、14内にそれぞれ埋め込まれた支持体11および埋め込み絶縁体12の比誘電率は互いに異ならせることもでき、例えば、支持体11としてはシリコン酸化膜、埋め込み絶縁体12としてはシリコン窒化膜を用いることができる。
そして、SOI形成領域R11において、半導体基板1上には埋め込み絶縁層4が形成され、埋め込み絶縁層4上には、溝13及び溝14にて素子分離された第2半導体層5が積層されている。そして、第2半導体層5上には、ゲート絶縁膜6a、6bをそれぞれ介してゲート電極7a、7bが形成され、ゲート電極7a、7bの側壁にはサイドウォール8a、8bがそれぞれ形成されている。そして、第2半導体層5には、ゲート電極7aを挟み込むように配置されたソース層9aおよびドレイン層10aが形成されるとともに、ゲート電極7bを挟み込むように配置されたソース層9bおよびドレイン層10bが形成されている。
一方、バルク領域R12において、Nウェル2上には、ゲート絶縁膜6c、6dをそれぞれ介してゲート電極7c、7dが形成され、ゲート電極7c、7dの側壁にはサイドウォール8c、8dがそれぞれ形成されている。そして、Nウェル2には、ゲート電極7cを挟み込むように配置されたソース層9cおよびドレイン層10cが形成されるとともに、ゲート電極7dを挟み込むように配置されたソース層9dおよびドレイン層10dが形成されている。また、バルク領域R12において、Pウェル3上には、ゲート絶縁膜6eを介してゲート電極7eが形成され、ゲート電極7eの側壁にはサイドウォール8eが形成されている。そして、Pウェル3には、ゲート電極7eを挟み込むように配置されたソース層9eおよびドレイン層10eが形成されている。
これにより、第2半導体層5下に埋め込まれた埋め込み絶縁層4にて半導体基板1と第2半導体層5とを絶縁することが可能となるとともに、SOI形成領域R11とバルク領域R12には、異なる構造を有する第1素子分離構造と第2素子分離構造とを備えることができる。この時、溝13と溝14のいずれかひとつが、第1素子分離構造に対応し、残りが、第2素子分離構造に対応する。また、第1と第2素子分離構造とで深さや比誘電率を互いに異ならせることができる。このため、素子分離領域に起因するストレスの増大を抑制しつつ、素子分離領域に必要な耐圧を確保することが可能となるとともに、SOI基板を用いることなく、第2半導体層5上にSOIトランジスタを形成することが可能となる。この結果、SOIトランジスタの低価格化を実現することが可能となるとともに、SOI形成領域R11とバルク領域R12とが同一半導体基板1上に混載された場合においても、SOIトランジスタの特性のバラツキを抑制しつつ、SOIトランジスタの低消費電力化および高速化を図ることが可能となるとともに、バルクトランジスタの高耐圧化を図ることができる。
なお、上述した実施形態では、STI(Shallow Trench Isolation)構造にてSOI形成領域R11およびバルク領域R12を素子分離する方法について説明したが、SOI形成領域R11およびバルク領域R12をLOCOS(Local Oxdation Of Silicon)構造にて素子分離するようにしてもよい。
また、SOI形成領域R11には低電圧・低電流駆動デバイスを形成し、バルク領域R12には高耐圧・高電圧駆動デバイスを形成することができる。これにより、SOI形成領域R11内で低電圧・低電流駆動デバイスをゲート電極と平行方向に素子分離する溝13の深さを浅く形成しつつ、低電圧・低電流駆動デバイスを有するSOI形成領域R11と高耐圧・高電圧駆動デバイスを有するR12とを素子分離する溝14やバルク領域のウエル間を分離する溝14の深さを深くすることができる。このため、バルク構造とSOI構造とを同一半導体基板1上に混載した場合においても、高耐圧・高電圧駆動デバイス(バルク構造デバイス)と低電圧・低電流駆動デバイス(SOI構造デバイス)との間のクロストークノイズを抑制することができる。また、高耐圧・高電圧駆動デバイスの耐圧の劣化を抑制しつつ、低電圧・低電流駆動デバイスへのストレスの集中を抑制することができ、低電圧・低電流駆動デバイスの低消費電力化および高速化に支障をきたすことなく、高耐圧・高電圧駆動デバイスを同一半導体基板1上に混載することができる。あるいは、SOI形成領域R11にはロジック回路やSRAMを形成し、バルク領域R12には静電保護回路やアナログ回路やバイポーラトランジスタを形成するようにしてもよい。
図2は、本発明の第2実施形態に係る半導体装置の概略構成を示す断面図である。
図2において、半導体基板21には、SOI形成領域R21およびバルク領域R22が設けられ、バルク領域R22には、Nウェル22およびPウェル23が形成されている。ここで、SOI形成領域R21には、SOI形成領域R21内の素子を素子分離する溝48及び溝49が形成されている。また、SOI形成領域R21とバルク領域R22との境界には、SOI形成領域R21とバルク領域R22とを素子分離する溝48が形成されるとともに、Nウェル22およびPウェル23との境界には、Nウェル22とPウェル23とを素子分離する溝48が形成されている。ここで、溝48の深さは溝49よりも深くすることができる。そして、溝48内には、第2半導体層25を半導体基板21上で支持する支持体32が埋め込まれるとともに、溝49内には埋め込み絶縁体31が埋め込まれている。なお、溝48、49内にそれぞれ埋め込まれた支持体32および埋め込み絶縁体31の比誘電率は互いに異ならせることもでき、例えば、支持体32としてはシリコン酸化膜、埋め込み絶縁体31としてはシリコン窒化膜を用いることができる。
そして、SOI形成領域R21において、半導体基板21上には埋め込み絶縁層24が形成され、埋め込み絶縁層24上には、溝48と溝49にて素子分離された第2半導体層25が積層されている。そして、第2半導体層25上には、ゲート絶縁膜26a、26bをそれぞれ介してゲート電極27a、27bが形成され、ゲート電極27a、27bの側壁にはサイドウォール28a、28bがそれぞれ形成されている。そして、第2半導体層25には、ゲート電極27aを挟み込むように配置されたソース層29aおよびドレイン層30aが形成されるとともに、ゲート電極27bを挟み込むように配置されたソース層29bおよびドレイン層30bが形成されている。
一方、バルク領域R22において、PウエルとNウエルとの間は、溝48にて素子分離されている。Nウェル22上には、チャネル領域を隔てるようにしてLOCOS構造33が形成されている。そして、チャネル領域上にはゲート絶縁膜26dを介してゲート電極27dが形成され、ゲート電極27dの側壁にはサイドウォール28dが形成されている。そして、Nウェル22には、チャネル領域を挟み込むように配置されたソース層29dおよびドレイン層30dがLOCOS構造33下に形成されている。図には示されていないが、ソース層29d及びドレイン層30dにおいて、配線とコンタクトを取る領域がLOCOS33より広げて形成される。また、バルク領域R22において、Pウェル23上には、チャネル領域を隔てるようにしてLOCOS構造33が形成されている。そして、チャネル領域上にはゲート絶縁膜26cを介してゲート電極27cが形成され、ゲート電極27cの側壁にはサイドウォール28cが形成されている。そして、Pウェル23には、チャネル領域を挟み込むように配置されたソース層29cおよびドレイン層30cがLOCOS構造33下に形成されている。図には示されていないが、ソース層29c及びドレイン層30cは、配線とのコンタクトを取る領域がLOCOS33より広げて形成してある。
これにより、バルク領域R22に形成されるトランジスタの高耐圧化を図りつつ、バルク構造とSOI構造とを同一半導体基板21上に混載することが可能となるとともに、SOI形成領域R21およびバルク領域R22には、異なる構造を有する第1素子分離構造と第2素子分離構造とを備えることができる。この時、溝48と溝49のいずれかひとつが、第1素子分離構造に対応し、残りが、第2素子分離構造に対応する。第1と第2素子分離構造とで深さや比誘電率を互いに異ならせることができる。従って、SOIトランジスタの低消費電力化および高速化を図ることが可能となるとともに、バルクトランジスタの高耐圧化を図ることができる。
図3〜図13は、本発明の第3実施形態に係る半導体装置の製造方法を示す断面図である。
図3において、半導体基板21の熱酸化を行うことにより半導体基板21上にパッド酸化膜41を形成した後、CVDなどの方法にて酸化防止膜42をパッド酸化膜41上に堆積する。なお、酸化防止膜42としては、例えば、シリコン窒化膜を用いることができる。そして、酸化防止膜42をパターニングし、パターニングされた酸化防止膜42をマスクとして半導体基板21を選択酸化することにより、半導体基板21にLOCOS構造33を形成する。ここで、LOCOS構造33は、SOI形成領域R21、ソース層29c、29dおよびドレイン層30c、30dの配置位置に形成することができる。
次に、図4に示すように、CVDなどの方法にて半導体基板21上の全面に保護膜43を積層する。なお、保護膜43としては、例えば、シリコン窒化膜を用いることができる。そして、半導体基板21にAs、PなどのN型不純物のイオン注入を選択的に行った後、半導体基板21の熱処理を行うことによりNウェル22を半導体基板21に形成する。さらに、半導体基板21にB、BF2などのP型不純物のイオン注入を選択的に行った後、半導体基板21の熱処理を行うことによりPウェル23を半導体基板21に形成する。
次に、図5に示すように、Nウェル22上のLOCOS構造33下にB、BF2などのP型不純物のイオン注入を選択的に行った後、半導体基板21の熱処理を行うことによりNウェル22上のLOCOS構造33下にソース層29dおよびドレイン層30dを形成する。さらに、Pウェル23上のLOCOS構造33下にAs、PなどのN型不純物のイオン注入を選択的に行った後、半導体基板21の熱処理を行うことによりPウェル23上のLOCOS構造33下にソース層29cおよびドレイン層30cを形成する。
次に、図6に示すように、保護膜43を除去した後、フォトリソグラフィー技術およびHFを用いたウエットエッチング技術を用いてSOI形成領域R21のLOCOS構造33を除去することにより、SOI形成領域R21の半導体基板21に凹部44を形成する。
次に、図7に示すように、SOI形成領域R21の凹部44が第1半導体層45および第2第2半導体層25にて順次埋め込まれるようにして、第1半導体層45および第2第2半導体層25を選択的エピタキシャル成長にて半導体基板21上に順次形成する。ここで、半導体基板21の熱酸化とウエットエッチングにて半導体基板21に凹部44を形成してから、半導体基板21のSOI形成領域R21に第1半導体層45および第2第2半導体層25を順次成膜することにより、半導体基板21の凹部44表面のエッチングダメージを抑制しつつ、SOI形成領域R21とバルク領域R22との間の表面段差を低減することが可能となり、製造歩留まりの低下や信頼性の劣化を抑制しつつ、バルク構造とSOI構造とを同一半導体基板21上に同等の高さで混載することができる。
なお、第1半導体層45は、半導体基板21および第2半導体層25よりもエッチングレートが大きな材質を用いることができ、半導体基板21、第1半導体層45および第2半導体層25の材質としては、例えば、Si、Ge、SiGe、SiC、SiSn、PbS、GaAs、InP、GaP、GaNまたはZnSeなどの中から選択された組み合わせを用いることができる。特に、半導体基板21がSiの場合、第1半導体層45としてSiGe、第2半導体層25としてSiを用いることが好ましい。これにより、第1半導体層45と第2半導体層25との間の格子整合をとることを可能としつつ、第1半導体層45と第2半導体層25との間のエッチング選択比を確保することができる。また、第1半導体層45としては、単結晶半導体層の他、多孔質単結晶半導体層を用いるようにしてもよい。また、第1半導体層45の代わり、単結晶半導体層をエピタキシャル成長にて成膜可能なγ−酸化アルミニウムなどの金属酸化膜を用いるようにしてもよい。また、第1半導体層45および第2半導体層25の膜厚は、例えば、1nm〜200nm程度とすることができる。
次に、図8に示すように、第2半導体層25の熱酸化により第2半導体層25の表面に下地酸化膜46を形成する。そして、CVDなどの方法により、下地酸化膜46上の全面に酸化防止膜47を形成する。なお、酸化防止膜47としては、例えば、シリコン窒化膜を用いることができる。そして、フォトリソグラフィー技術およびエッチング技術を用いて、酸化防止膜47、下地酸化膜46、第2半導体層25、第1半導体層45および半導体基板21をパターニングすることにより、半導体基板21の一部を露出させる溝48を形成する。なお、溝48は、SOI形成領域R21とバルク領域R22との境界およびNウェル22およびPウェル23との境界の素子分離領域に配置することができる。また、溝48の深さはPウェル23よりも深くなるように設定することもできる。
続いて、CVDなどの方法により基板全面が覆われるようにして溝48内に埋め込まれた支持体32を成膜する。なお、支持体32は、溝48内における第1半導体層45および第2半導体層25の側壁にも成膜され、第2半導体層25を半導体基板21上で支持することができる。なお、支持体32の材質としては、シリコン酸化膜、シリコン窒化膜あるいはシリコン酸窒化膜などの絶縁体を用いることができる。
次に、図9に示すように、フォトリソグラフィー技術およびエッチング技術を用いて支持体32、酸化防止膜47、下地酸化膜46、第2半導体層25および第1半導体層45をパターニングすることにより、第1半導体層45の一部を露出させる溝49を形成する。なお、溝49の深さは溝48よりも浅くなるように設定することができる。また、溝49の配置位置はSOI形成領域R21及びバルク領域R22の素子分離領域に対応させることができる。
次に、図10に示すように、溝49を介してエッチングガスまたはエッチング液を第1半導体層45に接触させることにより、第1半導体層45を選択的にエッチング除去し、半導体基板21と第2半導体層25との間に空洞部50を形成する。バルク領域R22の素子分離領域に、溝49が配置された場合、溝49周囲は半導体基板21にて覆われているため、前記第1半導体層選択的エッチング時には、溝49周囲の半導体基板のエッチングは進まない。
ここで、溝48内に支持体32を設けることにより、第1半導体層45が除去された場合においても、第2半導体層25を半導体基板21上で支持することが可能となるとともに、溝48とは別に溝49を設けることにより、第2半導体層25下の第1半導体層45にエッチングガスまたはエッチング液を接触させることが可能となる。このため、第2半導体層25の結晶品質を損なうことなく、第2半導体層25と半導体基板21との間の絶縁を図ることが可能となる。
なお、半導体基板21、第2半導体層25および支持体32がSi、第1半導体層45がSiGeの場合、第1半導体層45のエッチング液としてフッ硝酸(フッ酸、硝酸、水の混合液)を用いることが好ましい。これにより、SiとSiGeの選択比として1:100〜1000程度を得ることができ、半導体基板21、第2半導体層25および支持体32のオーバーエッチングを抑制しつつ、第1半導体層45を除去することが可能となる。また、第1半導体層45のエッチング液としてフッ硝酸過水、アンモニア過水、あるいはフッ酢酸過水などを用いても良い。
また、第1半導体層45をエッチング除去する前に、陽極酸化などの方法により第1半導体層45を多孔質化するようにしてもよいし、第2半導体層25形成後、第1半導体層45にイオン注入を行うことにより、第1半導体層45をアモルファス化するようにしてもよい。また、半導体基板21としてP型半導体基板を用いるようにしてもよい。これにより、第1半導体層45のエッチングレートを増大させることが可能となり、第1半導体層45のエッチング面積を拡大することができる。
次に、図11に示すように、半導体基板21および第2半導体層25の熱酸化を行うことにより、半導体基板21と第2半導体層25との間の空洞部50に埋め込み絶縁層24を形成する。なお、半導体基板21および第2半導体層25の熱酸化にて埋め込み絶縁層24を形成する場合、埋め込み性を向上させるために、反応律速となる低温のウェット酸化を用いることが好ましい。
また、空洞部50に埋め込み絶縁層24を形成した後、1100℃以上の高温アニールを行うようにしてもよい。これにより、埋め込み絶縁層24をリフローさせることが可能となり、埋め込み絶縁層24のストレスを緩和させることが可能となるとともに、第2半導体層25との境界における界面準位を減らすことができる。また、埋め込み絶縁層24は空洞部50を全て埋めるように形成しても良いし、空洞部50が一部残るように形成しても良い。
また、図11の方法では、半導体基板21および第2半導体層25の熱酸化を行うことにより、半導体基板21と第2半導体層25との間の空洞部50に埋め込み絶縁層24を形成する方法について説明したが、CVD法にて半導体基板21と第2半導体層25との間の空洞部50に絶縁膜を成膜させることにより、半導体基板21と第2半導体層25との間の空洞部50を埋め込み絶縁層24で埋め込むようにしてもよい。これにより、第2半導体層25の膜減りを防止しつつ、半導体基板21と第2半導体層25との間の空洞部50を酸化膜以外の材料で埋め込むことが可能となる。このため、第2半導体層25の裏面側に配置される埋め込み絶縁層24の厚膜化を図ることが可能となるとともに、誘電率を低下させることが可能となり、第2半導体層25の裏面側の寄生容量を低減させることができる。
なお、埋め込み絶縁層24の材質としては、例えば、シリコン酸化膜の他、FSG(フッ化シリケートグラス)膜などLow−K膜やシリコン窒化膜などHigh−K膜を用いるようにしてもよい。また、埋め込み絶縁層11として、SOG(Spin On Glass)膜の他、PSG膜、BPSG膜、PAE(poly aryleneether)系膜、HSQ(hydrogen silsesquioxane)系膜、MSQ(methyl silsesquioxane)系膜、PCB系膜、CF系膜、SiOC系膜、SiOF系膜などの有機Low−K膜、或いはこれらのポーラス膜を用いるようにしてもよい。
また、第2半導体層25上に酸化防止膜47を設けることで、第2半導体層25の表面が熱酸化されることを防止しつつ、第2半導体層25の裏面側に埋め込み絶縁層24を形成することが可能となり、第2半導体層25の膜減りを抑制することが可能となる。
また、溝48、49の配置位置を第2半導体層25の素子分離領域とバルク領域の素子分離領域に対応させることにより、第2半導体層25の横方向および縦方向の素子分離とバルク領域の素子分離とを一括して行うことが可能となるとともに、溝48内に支持体32を埋め込むことにより、第2半導体層25を半導体基板21上で支持する支持体32をアクティブ領域に確保する必要がなくなる。このため、工程増を抑制しつつ、SOIトランジスタとバルクトランジスタを同一バルク基板上に形成することが可能となるとともに、チップサイズの増大を抑制することができ、SOIトランジスタとバルクトランジスタとを混載した半導体装置のコストダウンを図ることが可能となる。
続いて、CVDなどの方法により溝49内に埋め込み絶縁体31を埋め込んだ後、CMPまたはエッチバックなどの方法にて埋め込み絶縁体31および支持体32を薄膜化するとともに、酸化防止膜47をストッパー層として、CMPによる平坦化を止める。続いて、パッド酸化膜41、下地酸化膜46および酸化防止膜47を除去することにより、第2半導体層25および半導体基板21の表面を露出させる。なお、埋め込み絶縁体31としては、例えば、シリコン酸化膜、シリコン窒化膜あるいはシリコン酸窒化膜などの絶縁体を用いることができる。
次に、図12に示すように、第2半導体層25と半導体基板21の表面の熱酸化を行うことにより、第2半導体層と半導体基板21の表面に熱酸化膜26a',26b'、26c'、26d'を形成する。そして、フォトリソグラフィー技術およびエッチング技術を用いて第2半導体層25の表面の熱酸化26a',26b'を選択的に除去した後、第2半導体層25と半導体基板21の表面の熱酸化を再び行うことにより、第2半導体層25と半導体基板21の表面に、最終的なゲート絶縁膜26a、26b、26c、26dを形成する。なお、ゲート絶縁膜26c、26dの膜厚はゲート絶縁膜26a、26bの膜厚よりも厚く形成される。
次に、図13に示すように、CVDなどの方法により、半導体基板21および第2半導体層25上の全面に多結晶シリコン層を形成する。そして、フォトリソグラフィー技術およびエッチング技術を用いて多結晶シリコン層をパターニングすることにより、第2半導体層25上にゲート電極27a、27bを形成するとともに、LOCOS構造33に端部がかかるように配置されたゲート電極27c、27dを半導体基板21上に形成する。
次に、CVDなどの方法により、半導体基板21および第2半導体層25上の全面に絶縁層を形成し、RIEなどの異方性エッチングを用いて絶縁層をエッチバックすることにより、ゲート電極27a〜27dの側壁にサイドウォール28a〜28dをそれぞれ形成する。そして、ゲート電極27a、27bおよびサイドウォール28a、28bをマスクとして、As、P、Bなどの不純物を第2半導体層25内にイオン注入することにより、サイドウォール28a、28bの側方にそれぞれ配置されたソース29a、29bおよびドレイン層30a、30bを第2半導体層25に形成する。
これにより、SOI基板を用いることなく、第2半導体層25上にSOIトランジスタを形成することが可能となり、SOIトランジスタの低価格化を実現することが可能となるとともに、バルク構造とSOI構造とを同一半導体基板21上に混載した場合においても、バルク領域とSOI形成領域には、深さや比誘電率の異なる素子分離を配置することが可能となる。このため、SOIトランジスタの低価格化を実現することが可能となるとともに、SOIトランジスタの低消費電力化および高速化に支障をきたすことなく、高耐圧トランジスタを同一半導体基板21上に混載することができる。
なお、上述した実施形態では、SOIトランジスタを第2半導体層25に形成する方法について説明したが、CMOSインバータやSRAMセルなど、種々の回路ブロックを第2半導体層25に形成するようにしてもよい。
また、上述した実施形態では、埋め込み絶縁層24を形成する際に、第2半導体層25の表面の熱酸化を防止するために、第2半導体層25上に酸化防止膜47を形成する方法について説明したが、第2半導体層25上に酸化防止膜47を形成することなく、埋め込み絶縁層24を形成するようにしてもよい。この場合、埋め込み絶縁層24の形成時に第2半導体層25の表面に形成された酸化膜は、エッチングまたは研磨により除去するようにしてもよい。
また、上述した実施形態では、STI(Shallow Trench Isolation)法にて素子分離を行う方法について説明したが、LOCOS(Local Oxdation of Silicon)法にて素子分離を行うようにしてもよい。
また、ゲート電極27a〜27dを配置する場合、ゲート電極27a〜27dに垂直な部分における素子分離溝の深さが、ゲート電極27a〜27dに平行な部分における素子分離溝よりも深いことが好ましい。これにより、ゲート電極27a〜27dの寄生容量を低減することが可能となるとともに、ゲート電極27a〜27dの寄生容量への寄与が小さい素子分離部分では、溝の深さを浅くすることができ、第2半導体層25に形成されるトランジスタにかかる素子分離からのストレスを抑制することができる。
また、ゲート電極27a〜27dを配置する場合、ゲート電極27a〜27dに垂直な部分における支持体32または埋め込み絶縁体31からなる素子分離領域の比誘電率が、ゲート電極27a〜27dに平行な部分における素子分離領域の比誘電率よりも低いことが好ましい。これにより、ゲート電極27a〜27dの寄生容量を低減することが可能となるとともに、ゲート電極27a〜27dの寄生容量への寄与が小さい部分では、支持体32または埋め込み絶縁体31の比誘電率を大きくすることができ、SOI層やBOX層を強固な材料で支持することが可能となる。このため、トランジスタが微細化された場合においても、プロセスインテグレーションや熱的/機械的ストレスに対してSOI層やBOX層にミクロ的な変形が発生することを抑制することができ、トランジスタの特性のバラツキを抑制しつつ、トランジスタの低消費電力化および高速化を図ることができる。
本発明の第1実施形態に係る半導体装置の概略構成を示す断面図。 本発明の第2実施形態に係る半導体装置の概略構成を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。 本発明の第3実施形態に係る半導体装置の製造方法を示す断面図。
符号の説明
R11,R21…SOI形成領域、R12,R22…バルク領域、1,21…半導体基板、2,22…Nウェル、3,23…Pウェル、4,24…埋め込み絶縁層、45…第1第2半導体層5、25…第2半導体層、6a〜6e,26a〜26d…ゲート絶縁膜、7a〜7e,27a〜27d…ゲート電極、8a〜8e,28a〜28d…サイドウォールスペーサ、9a〜9e,29a〜29d…ソース層、10a〜10e,30a〜30d…ドレイン層、11,12,31…埋め込み絶縁体、32…支持体、13,14,48,49…素子分離用溝、33…LOCOS構造、41…パット酸化膜、43…保護膜、44…凹部、46…下地酸化膜、47…酸化防止膜、50…空洞部。

Claims (12)

  1. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造とを備え、
    前記第1素子分離構造と前記第2素子分離構造とは比誘電率、厚さまたは深さのいずれか少なくとも一つが互いに異なることを特徴とする半導体装置。
  2. 前記第1または第2デバイス形成領域に形成されるゲート電極に垂直な部分における前記第1素子分離構造の厚さまたは深さが、前記ゲート電極に平行な部分における前記第2素子分離構造の厚さまたは深さよりも大きいことを特徴とする請求項1に記載の半導体装置。
  3. 前記第1または第2デバイス形成領域に形成されるゲート電極に垂直な部分における前記第1素子分離構造の比誘電率が、前記ゲート電極に平行な部分における前記第2素子構造の比誘電率よりも小さいことを特徴とする請求項1または2に記載の半導体装置。
  4. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子分離構造と第2素子分離構造と、
    前記第1デバイス形成領域に形成されたSRAMセルとを備え、
    前記SRAMセルに接続されたビットライン下の素子分離領域の少なくとも一部領域には、第1素子分離構造が形成され、該第1素子分離領域の厚さまたは深さが、第2素子分離構造の厚さまたは深さよりも大きいか、或いは、第1素子分離構造の比誘電率が第2素子分離構造の比誘電率よりも小さいことを特徴とする半導体装置。
  5. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第2デバイス形成領域に配置され前記半導体基板に形成されたウェルと、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子
    分離構造と第2素子分離構造とを備え、
    前記ウェル間は第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする半導体装置。
  6. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第2デバイス形成領域に形成された静電保護回路と、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子
    分離構造と第2素子分離構造とを備え、
    前記静電保護回路の少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする半導体装置。
  7. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第1デバイス形成領域に形成された低電圧駆動デバイスと、
    前記第2デバイス形成領域に形成された高電圧駆動デバイスと、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子
    分離構造と第2素子分離構造とを備え、
    前記高電圧駆動デバイスの少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする半導体装置。
  8. 半導体基板上にエピタキシャル成長にて形成された半導体層と、
    前記半導体基板と前記半導体層との間に埋め込まれた埋め込み絶縁層と、
    前記半導体層上に設けられた第1デバイス形成領域と、
    前記半導体基板上に設けられた第2デバイス形成領域と、
    前記第1デバイス形成領域及び前記第2デバイス形成領域には、素子分離する第1素子
    分離構造と第2素子分離構造とを備え、
    前記第1デバイス形成領域と前記第2デバイス形成領域を分離する少なくとも一部の領域は、第1素子分離構造にて分離され、第1素子分離構造溝の深さは、第2素子分離構造の溝の深さよりも深いことを特徴とする半導体装置。
  9. 半導体基板上の第1領域に第1半導体層を形成する工程と、
    前記第1半導体層よりもエッチングレートが小さな第2半導体層を前記第1半導体層上に形成する工程と、
    前記第1半導体層および第2半導体層を貫通して前記半導体基板を露出させるとともに、前記半導体基板の第2領域を素子分離する第1溝を形成する工程と、
    前記第1溝を介して前記第2半導体層を前記半導体基板上で支持する支持体を形成する工程と、
    前記第1半導体層の一部を前記第2半導体層から露出させるとともに、前記第1溝と深さの異なる第2溝を形成する工程と、
    前記第2溝を介して前記第1半導体層を選択的にエッチングすることにより、前記第1半導体層が除去された空洞部を前記第2半導体層下に形成する工程と、
    前記空洞部内に埋め込まれた埋め込み絶縁層を形成する工程とを備えることを特徴とする半導体装置の製造方法。
  10. 半導体基板上の第1領域に第1半導体層を形成する工程と、
    前記第1半導体層よりもエッチングレートが小さな第2半導体層を前記第1半導体層上に形成する工程と、
    前記第1半導体層および第2半導体層を貫通して前記半導体基板を露出させるとともに、前記半導体基板の第2領域を素子分離する第1溝を形成する工程と、
    前記第1溝を介して前記第2半導体層を前記半導体基板上で支持する支持体を形成する工程と、
    前記第1半導体層の一部を前記第2半導体層から露出させる第2溝を形成する工程と、
    前記第2溝を介して前記第1半導体層を選択的にエッチングすることにより、前記第1半導体層が除去された空洞部を前記第2半導体層下に形成する工程と、
    前記空洞部内に埋め込まれた埋め込み絶縁層を形成する工程と、
    前記支持体と比誘電率の異なる絶縁体を前記第2溝に埋め込む工程とを備えることを特徴とする半導体装置の製造方法。
  11. 前記半導体基板上に下地酸化膜を介して酸化防止膜を形成する工程と、
    前記半導体基板上の第1領域に対応した開口部を前記下地酸化膜および酸化防止膜に形成する工程と、
    前記開口部が形成された酸化防止膜をマスクとして前記半導体基板の選択酸化を行うことにより、前記半導体基板上の第1領域に熱酸化膜を形成する工程と、
    前記半導体基板上の第1領域に形成された熱酸化膜を除去する工程と、
    前記開口部が形成された酸化防止膜を除去する工程と、
    前記開口部が形成された下地酸化膜をマスクとして選択エピタキシャル成長を行うことにより、前記半導体基板上の第1領域に第1半導体層および第2半導体層を順次形成する工程とを備えることを特徴とする請求項9または10に記載の半導体装置の製造方法。
  12. 前記半導体基板および前記第2半導体層はSi、前記第1半導体層はSiGeであることを特徴とする請求項9から11のいずれか一項に記載の半導体装置の製造方法。
JP2006302470A 2005-12-07 2006-11-08 半導体装置および半導体装置の製造方法 Withdrawn JP2007184549A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302470A JP2007184549A (ja) 2005-12-07 2006-11-08 半導体装置および半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005353031 2005-12-07
JP2006302470A JP2007184549A (ja) 2005-12-07 2006-11-08 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007184549A true JP2007184549A (ja) 2007-07-19

Family

ID=38340331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302470A Withdrawn JP2007184549A (ja) 2005-12-07 2006-11-08 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007184549A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004016A (ja) * 2008-03-17 2010-01-07 Toshiba Corp Sramデバイスにおけるhotプロセスstiおよび製造方法
EP2317554A1 (en) * 2009-10-30 2011-05-04 Imec Method of manufacturing an integrated semiconductor substrate structure
US8445356B1 (en) 2012-01-05 2013-05-21 International Business Machines Corporation Integrated circuit having back gating, improved isolation and reduced well resistance and method to fabricate same
CN103187351A (zh) * 2011-12-27 2013-07-03 中芯国际集成电路制造(上海)有限公司 集成电路的制作方法
US9368385B2 (en) 2012-03-01 2016-06-14 Renesas Electronics Corporation Manufacturing method for semiconductor integrated circuit device
TWI622165B (zh) * 2017-03-06 2018-04-21 Powerchip Technology Corporation 影像感測器及其製作方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004016A (ja) * 2008-03-17 2010-01-07 Toshiba Corp Sramデバイスにおけるhotプロセスstiおよび製造方法
EP2317554A1 (en) * 2009-10-30 2011-05-04 Imec Method of manufacturing an integrated semiconductor substrate structure
JP2011101007A (ja) * 2009-10-30 2011-05-19 Imec 集積半導体基板構造の製造方法
US8487316B2 (en) 2009-10-30 2013-07-16 Imec Method of manufacturing an integrated semiconductor substrate structure with device areas for definition of GaN-based devices and CMOS devices
CN103187351A (zh) * 2011-12-27 2013-07-03 中芯国际集成电路制造(上海)有限公司 集成电路的制作方法
US8445356B1 (en) 2012-01-05 2013-05-21 International Business Machines Corporation Integrated circuit having back gating, improved isolation and reduced well resistance and method to fabricate same
US9202864B2 (en) 2012-01-05 2015-12-01 Globalfoundries Inc. Integrated circuit having back gating, improved isolation and reduced well resistance and method to fabricate same
US9368385B2 (en) 2012-03-01 2016-06-14 Renesas Electronics Corporation Manufacturing method for semiconductor integrated circuit device
TWI622165B (zh) * 2017-03-06 2018-04-21 Powerchip Technology Corporation 影像感測器及其製作方法

Similar Documents

Publication Publication Date Title
JP4644577B2 (ja) 半導体装置および半導体装置の製造方法
US8877606B2 (en) Low cost fabrication of double box back gate silicon-on-insulator wafers with subsequent self aligned shallow trench isolation
JP2006253181A (ja) 半導体装置および半導体装置の製造方法
CN110957257B (zh) 绝缘体上半导体衬底、其形成方法以及集成电路
JP2007184549A (ja) 半導体装置および半導体装置の製造方法
KR100861523B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP2005116744A (ja) 半導体装置およびその製造方法
JP2007043069A (ja) 半導体装置および半導体装置の製造方法
JP4367357B2 (ja) 半導体装置の製造方法
JP2012142505A (ja) 半導体装置およびその製造方法
JP4696640B2 (ja) 半導体装置の製造方法
JP4894245B2 (ja) 半導体装置の製造方法
JP2006253182A (ja) 半導体装置および半導体装置の製造方法
JP4797495B2 (ja) 半導体装置の製造方法
JP2007042915A (ja) 半導体装置の製造方法
JP2007305942A (ja) 半導体装置及びその製造方法
JP2007123689A (ja) 半導体装置および半導体装置の製造方法
JP2007207825A (ja) 半導体装置および半導体装置の製造方法
JP5098178B2 (ja) 半導体装置の製造方法
JP2006344769A (ja) 半導体装置および半導体装置の製造方法
KR100798826B1 (ko) 반도체 기판과 반도체 장치, 및 이들의 제조 방법, 반도체기판의 설계 방법
JP4670490B2 (ja) 半導体装置および半導体装置の製造方法
JP2007194315A (ja) 半導体装置および半導体装置の製造方法
JP2007035675A (ja) 半導体装置および半導体装置の製造方法
JP2007042877A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070406

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202