JP2006061683A - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
JP2006061683A
JP2006061683A JP2005208828A JP2005208828A JP2006061683A JP 2006061683 A JP2006061683 A JP 2006061683A JP 2005208828 A JP2005208828 A JP 2005208828A JP 2005208828 A JP2005208828 A JP 2005208828A JP 2006061683 A JP2006061683 A JP 2006061683A
Authority
JP
Japan
Prior art keywords
fluorescence
signal
distance
light
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005208828A
Other languages
English (en)
Other versions
JP5461753B2 (ja
Inventor
Yasunari Ishihara
康成 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005208828A priority Critical patent/JP5461753B2/ja
Priority to US11/190,316 priority patent/US8606350B2/en
Publication of JP2006061683A publication Critical patent/JP2006061683A/ja
Application granted granted Critical
Publication of JP5461753B2 publication Critical patent/JP5461753B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters

Abstract

【課題】 励起光照射部と被検体との距離に係わらず病変部等の状態を定量的に観察し、正確な診断が行える内視鏡装置を提供することを目的とする。
【解決手段】 励起光を発生するレーザ光源25と、先端部45に励起光の照射部53を有する内視鏡スコープ3と、励起光によって被検体47に発生した蛍光を検出するインテンシファイア内臓CCD73と、インテンシファイア内臓CCD73からの蛍光信号S2をもとに蛍光画像信号S5を生成する蛍光画像生成手段85と、照射部53と被検体47との距離に相当する距離信号S3を生成する距離測定手段81と、蛍光信号S2を距離信号S3により補正して距離の変動に影響されない蛍光量を算出する蛍光量算出手段83と、を備える内視鏡装置1を提供する。
【選択図】 図2

Description

本発明は、体腔または内臓の内腔を直接観察する内視鏡装置、特に、被検体に励起光を照射し、被検体が発生する蛍光により、疾患部位を観察、診断する内視鏡装置に関するものである。
内視鏡装置により被検体からの自家蛍光や、被検体へ薬物等を注入し、その薬物が生じる蛍光を検出して蛍光画像を生成し、この蛍光画像から、生体組織の変性や癌等の疾患状態を診断する技術がある。
従来、蛍光画像観察を行う内視鏡装置としては、例えば、特許文献1および特許文献2に示すものが提案されている。
特許文献1に示される内視鏡装置は、通常の内視鏡画像と蛍光画像とが蛍光画像の光量に応じて選択的に表示される構造のものである。これにより、内視鏡画像と蛍光画像とは簡単に切り替えられるとともに、病変部と正常部とは蛍光画像の光量で区分され、病変部の蛍光観察が確実に行われる。
特許文献2に示される内視鏡装置は、通常の内視鏡画像と蛍光画像とを観察でき、かつ、励起光用照射部と被検体との距離を測定し、その測定結果に応じて励起光源の出力が調整される構造のものである。これにより、励起光照射部と被検体との距離に係わらず、蛍光検出手段は一定のゲインで蛍光観察が行われる。
特開平7−155285号公報(段落[0009]〜[0018],及び図1〜図2) 特開平10−243920号公報(段落[0019]〜[0029],及び図1)
ところで、特許文献1に示される内視鏡装置は、励起光源の出力が一定であるので、励起光照射部と被検体との距離により例えば蛍光画像の輝度またはサイズが変化し、病変部の定量的な判断は困難である。
また、特許文献2に示される内視鏡装置は、励起光照射部と被検体との距離が長くなれば、励起光源の出力を大きくして蛍光が検出できる大きさになるようにし、距離が短くなれば出力を小さくして蛍光検出器が飽和しないようにするものである。すなわち、蛍光量を蛍光検出手段が検出できる範囲に収めるということに留まり、病変部の定量的な判断を行うには不十分である。
本発明は、上記問題点に鑑み、励起光照射部と被検体との距離に係わらず病変部等の状態を定量的に観察し、正確な診断が行える内視鏡装置を提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、少なくとも1つの光源を搭載し、照明光と励起光とを発生する光源装置と、先端部分に前記照明光および前記励起光の照射部を有する内視鏡スコープと、前記照明光が被検体に反射した反射光を検出する反射光撮像手段と、該反射光撮像手段からの反射光信号をもとに内視鏡画像信号を生成する内視鏡画像生成手段と、前記励起光によって前記被検体に発生した蛍光を検出する蛍光検出手段と、該蛍光検出手段からの蛍光信号をもとに蛍光画像信号を生成する蛍光画像生成手段と、前記照射部と前記被検体との距離に相当する距離信号を生成する距離測定手段と、前記蛍光信号あるいは前記蛍光画像信号を、前記距離信号により補正して前記距離の変動に影響されない前記蛍光の特性値を算出する特性値算出手段と、を備える内視鏡装置を提供する。
本発明によれば、光源装置で発生された照明光は、内視鏡スコープの照射部から被検体に向けて照射される。該照明光は、被検体において反射または拡散等して反射光となり、反射光撮像手段へ入射する。この反射光撮像手段で検出された反射光により、内視鏡画像生成手段が内視鏡画像信号を生成する。
一方、光源装置で発生された励起光は、内視鏡スコープの照射部から被検体に向けて照射される。照射された励起光は、例えば病変部に含まれる薬剤による蛍光色素等の蛍光物質を励起して蛍光を発生させる。蛍光検出手段がこの発生した蛍光を検出して蛍光量に応じた蛍光信号を生成する。蛍光画像生成手段がこの蛍光信号をもとにして蛍光画像信号を生成し、例えば、モニタに表示する。
この時、蛍光量あるいはサイズ等の特性値は、同じ被検体を対象としても内視鏡スコープの照射部と被検体との距離により異なる値となる。本発明では、距離測定手段により照射部と被検体との距離に相当する距離信号が生成される。そして、特性値算出手段で、この距離信号により蛍光信号あるいは蛍光画像信号を補正して照射部と被検体との距離に影響されない蛍光の特性値を算出することとした。このように、距離に影響されない特性値が示されるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
なお、距離測定手段は、使用環境から非接触で測定できるものが好適である。
また、上記発明においては、前記特性値が蛍光量であることが好ましい。
このようにすることにより、例えば、癌等の病変部に存在する蛍光を発生するものの量を定量的に把握できるので、病変の程度を正確に診断できる。
また、上記発明においては、前記特性値が蛍光画像のサイズであることが好ましい。
このようにすることにより、例えば、癌等の病変部に存在する蛍光を発生するものの範囲を定量的に把握できるので、病変の拡がり程度を正確に診断できる。
また、本発明は、少なくとも1つの光源を搭載し、照明光と励起光とを発生する光源装置と、先端部分に前記照明光および前記励起光の照射部を有する内視鏡スコープと、前記照明光が被検体に反射した反射光を検出する反射光撮像手段と、該反射光撮像手段からの反射光信号をもとに内視鏡画像信号を生成する内視鏡画像生成手段と、前記励起光によって前記被検体に発生した蛍光を検出する蛍光検出手段と、該蛍光検出手段からの蛍光信号をもとに蛍光画像信号を生成する蛍光画像生成手段と、前記照射部と前記被検体との距離に相当する距離信号を生成する距離測定手段と、前記蛍光検出手段へ蛍光を伝達する伝達手段の先端と前記照射部とを支持し、前記内視鏡スコープに対して光軸方向に移動可能に取り付けられた先端光学系ユニットと、前記距離測定手段からの前記距離信号に応じて前記先端光学系ユニットを移動させる駆動手段と、を備える内視鏡装置を提供する。
本発明によれば、光源装置で発生された照明光は、内視鏡スコープの照射部から被検体に向けて照射される。該照明光は、被検体において反射または拡散等して反射光となり、反射光撮像手段へ入射する。この反射光撮像手段で検出された反射光により、内視鏡画像生成手段が内視鏡画像信号を生成する。
一方、光源装置で発生された励起光は、内視鏡スコープの照射部から被検体に向けて照射される。照射された励起光は、例えば病変部に含まれる薬剤による蛍光色素等の蛍光物質を励起して蛍光を発生させる。蛍光検出手段がこの発生した蛍光を検出して蛍光量に応じた蛍光信号を生成する。蛍光画像生成手段がこの蛍光信号をもとにして蛍光画像信号を生成し、例えば、モニタに表示する。
この時、蛍光量あるいはサイズ等の特性値は、同じ被検体を対象としても内視鏡スコープの照射部と被検体との距離により異なる値となる。本発明では、距離測定手段により照射部と被検体との距離に相当する距離信号が生成される。この距離信号により、駆動手段が、蛍光を伝達する伝達手段の先端と照射部とを支持する先端光学系ユニットを移動させ、照射部と被検体との距離が常時一定の距離を維持する。このように、常に一定の距離において蛍光観察が行われるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
また、上記発明においては、前記内視鏡画像信号と前記蛍光画像信号とを合成する画像合成手段を備えることが好ましい。
このように、画像合成手段が内視鏡画像信号と蛍光画像信号とを合成するので、通常の外観を示す内視鏡画像に例えば病変部を示す蛍光画像が重畳されて表示できる。このため、被検体における病変が存在する位置は外観と関連付けて表示されるので、その位置を正確に把握することができる。
また、上記発明において、前記距離測定手段が、前記反射光信号の強度と予め設定した所定距離時の反射光強度との比により前記距離信号を生成することが好ましい。
本発明によれば、反射光の強度は、照射部と被検体との距離に応じて変化する。この距離に応じて変化する反射光の強度と基準となる所定距離時の反射光強度との比を取ることにより、照射部と被検体との現時点での距離が、基準となる所定距離に対する比率として距離信号を発生する。
このように、所定距離時の反射光強度を設定するだけで被検体からの反射光の強度により照射部と被検体との距離に相当する信号が得られるので、距離測定用に付加する機器が省略できる。したがって、内視鏡スコープの構造が簡単となり、安価に製造できる。
また、上記発明において、前記距離測定手段が、超音波を利用することが好ましい。
さらに、上記発明において、前記距離測定手段が、マイクロ波を利用することが好ましい。
また、上記発明において、前記距離測定手段が、被検体から反射される超音波の出力を検出し、該出力と距離との関係を予め設定した較正データにより被検体との距離を算出することが好ましい。
さらに、上記発明において、前記距離測定手段が、光を利用することが好ましい。
このようにすることにより、非接触で距離が測定できるので、体腔内で使用するのに障害が少ない。
また、上記発明において、前記内視鏡スコープの前記被検体に対する角度を算出する角度算出手段を備えることが好ましい。
このように、内視鏡スコープの被検体に対する角度を算出する角度算出手段を備えるので、角度算出手段で算出された角度信号によって蛍光信号あるいは蛍光画像信号を補正し内視鏡スコープの傾斜に影響されない画像を得ることができる。内視鏡スコープの被検体に対する影響を排除できるので、より正確な定量を行なうことができる。
また、上記発明において、前記距離測定手段が、内視鏡スコープ毎に設定された前記較正データを格納し、使用する内視鏡スコープを特定するスコープ認識手段を備えることが好ましい。
本発明によれば、前記距離測定手段が、個々の内視鏡スコープによって較正データが異なるが、使用する内視鏡スコープ毎の全較正データを格納する。そして、スコープ認識手段が使用する内視鏡スコープを特定し、その内視鏡スコープの較正データを用いて距離測定を行うものである。
このため、使用対象、目的等に応じて複数の内視鏡スコープを容易に使い分けることができる。
また、上記発明において、前記特性値算出手段が、前記蛍光信号あるいは前記蛍光画像信号を、蛍光薬剤を投与してからの経過時間に基づいて補正する薬剤投与後時間補正手段を備えることが好ましい。
このようにすることにより、例えば蛍光薬剤を投与してその影響が被検体に行き渡るまでに測定しても、行き渡った状態に補正することができるので、診断を迅速に行うことができる。また、診断精度が向上できる。
また、上記発明において、前記蛍光信号あるいは前記蛍光画像信号を、前記励起光を発生する光源の光強度により補正する光源強度揺らぎ補正手段を備えることが好ましい。
このようにすることにより、光源の光強度が揺らぎ、その影響で例えば蛍光量が変動しても、蛍光信号あるいは蛍光画像信号を光源の光強度で補正するので、光源の光強度の揺らぎの影響を除去できる。これにより、蛍光の測定精度が向上でき、診断精度が向上できる。
また、本発明において、前記特性値算出手段により算出された前記特性値に応じて異なる視覚効果で表示することが好ましい。
このようすることにより、特性値の多いところと少ないところが一目で判断できるので、病変の状況をより良く診断できる。
本発明によれば、内視鏡装置により蛍光観察を行い、病変を診断する際に、励起光の照射部と被検体との距離を測定し、その測定結果である距離信号に基づき蛍光の特性値を補正あるいは距離を変動させ、距離に影響されない蛍光観察が行えるので、病変を定量的に観察でき、正確な診断を行えるという効果を奏する。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態に係る内視鏡装置について、図1ないし図3を用いて説明する。
本実施形態では、薬剤として蛍光色素を用いる。
蛍光色素には、例えば5−ALAやインドシアニングリーン誘導体標識抗体などがある。
5−ALAは、正常細胞よりも腫瘍細胞においてその吸収や排泄の速度が異なることを利用し、正常細胞と腫瘍細胞とで濃度差が生じたところでその発する蛍光を測定し、病変部と特定する。
インドシアニングリーン誘導体標識抗体は、細胞内あるいは細胞表面などに存在する標的分子と結合する。したがって、癌細胞に多く含まれているような物質をターゲットとすれば、病変部に対する親和性が増し、病変部に多く集積することを利用して病変部を特定する。
これらを利用して、通常の内視鏡観察では発見が困難な早期癌などを検出することが可能となる。
図1は、本実施形態に係る内視鏡装置1の全体概略構成を示す構成図である。
内視鏡装置1は、図1に示すように、体腔内または内臓の内腔内に挿入される内視鏡スコープ3と、照明光および励起光を発生して内視鏡スコープ3へ供給する光源装置5と、内視鏡3により得られた反射光および蛍光を信号処理する画像プロセッサ7と、画像プロセッサ7により信号処理された内視鏡像および蛍光画像を表示するモニタ9と、を備えている。
内視鏡スコープ3には、体腔内または内臓の内腔内に挿入される挿入部11と、挿入部11の基端に設けられた操作部13と、操作部13から延出したユニバーサルケーブル15とが備えられている。ユニバーサルケーブル15の延出端側は、2つに分岐され、その各端部には、それぞれ光源装置5と画像プロセッサ7とへ接続されるコネクタ17,19が取り付けられている。
モニタ9には、画像を表示する画面21と、特性値を表示する表示部23と、が備えられている。
図3は、光源装置5の構成を示すブロック図である。
光源装置5には、照明光を発生する白色光源25と、励起光を発生するレーザ光源27と、コリメートレンズ29と、ダイクロイックミラー31とが備えられている。
白色光源25としては、例えばキセノンランプ、が用いられている。レーザ光源としては、例えば波長675nmの半導体レーザが用いられている。
白色光源25からの白色光路33と、レーザ光源27からのレーザ光路35とは、直交しており、その交差位置にダイクロイックミラー31が配置されている。
ダイクロイックミラー31は、波長675nm近傍の光を通過させ、その他の波長の光は反射するように構成されている。
白色光路33のダイクロイックミラー31の上流側には、上流側からRGBフィルタ37とオンオフフィルタ39とが備えられている。
RGBフィルタ37は、白色光路33の光軸と平行な軸線回りに回転されるように構成されている。RGBフィルタ37には、白色光路33が通過する半径方向位置に、周方向にR(赤)、G(緑)、B(青)の各波長帯域の光をそれぞれ透過するRフィルタ37a、Gフィルタ37b、Bフィルタ37cがこの順序で2組設けられている。
オンオフフィルタ39は、白色光路33の光軸と平行な軸線回りに回転されるように構成されている。オンオフフィルタ39には、白色光路33が通過する半径方向位置に、周方向に光を遮光させる遮光部39aと光を通過させる通光部39bとが2等分するように設けられている。
レーザ光路35のダイクロイックミラー31の上流側には、オンオフフィルタ41が備えられている。
オンオフフィルタ41は、レーザ光路35の光軸と平行な軸線回りに回転されるように構成されている。オンオフフィルタ41には、レーザ光路35が通過する半径方向位置に、周方向に光を遮断させる遮光部41aと光を通過させる通光部41bとが2等分するように設けられている。
オンオフフィルタ39とオンオフフィルタ41とは、オンオフフィルタ39の遮光部39aが白色光路33を遮光している時、オンオフフィルタ41の通光部41bがレーザ光路35の位置にあるようにタイミングをとって回転される。すなわち、白色光源からの照明光とレーザ光源からの励起光とは、交互にダイクロイックミラー31に入光するように構成されている。
白色光源25から発せられた照明光は、コリメートレンズ29で平行光にされ、RGBフィルタ37で赤、緑、青の波長範囲の光に分割された後、順次ダイクロイックミラー31により反射され、出口コリメートレンズ30によって後述される照明ファイババンドル43の一端に集光されるようになっている。
また、レーザ光源27から発せられた励起光は、コリメートレンズ29によって一旦平行光にされた後、ダイクロイックミラー31を透過させられて、出口コリメートレンズ30によって後述する照明ファイババンドル43の一端に集光させられるようになっている。
図2は、内視鏡装置1の全体構成を示すブロック図である。図2により光源装置5以外の構成について説明する。
内視鏡スコープ3の内部には、光源装置5からの照明光および励起光を伝送する照明ファイババンドル43と、挿入部11の先端部45に配置された被検体47からの反射光等を受光する対物光学系49と、対物光学系49で分離された蛍光を伝送する蛍光ファイババンドル51とが備えられている。
照明ファイババンドル43は、光源装置5へのコネクタ17、ユニバーサルケーブル15および挿入部11を挿通して設けられ、光源装置5から供給される照明光および励起光を伝送し、挿入部11の先端部(先端部分)45に形成された照射部53から外部に向けて照明光および励起光を照射するように構成されている。この照明ファイババンドル43は、例えば多成分系ガラスファイバ、石英ファイバ等で形成される。
対物光学系49には、対物レンズ55と、励起光により励起された蛍光と通常の反射光とを分離する蛍光フィルタ57と、バリアフィルタ59と、反射光集光レンズ61と、蛍光集光レンズ63とが備えられている。なお、波長675nmの励起光で励起された蛍光の波長は690nmである。
対物レンズ55は、挿入部11の先端部45に取り付けられ、被検体47からの反射光と蛍光とを受光して平行光にする。
蛍光フィルタ57は、対物レンズ55より入射した反射光及び蛍光のうち蛍光の領域の光(波長690nm近傍の光)を直角方向に反射し、その他の反射光の領域の光を透過することで、蛍光と反射光とを分離する光学素子である。
バリアフィルタ59は、蛍光フィルタ57の入射光軸後方に配設され、波長675nmの励起光がカットされる。
なお、反射光に含まれる反射した励起光をカットするには、バリアフィルタ59の位置にオンオフフィルタ39と同様な構造のオンオフフィルタを配置し、オンオフフィルタ39と同じタイミングで遮光、投光するようにしてもよい。
バリアフィルタ59の後方には、反射光集光レンズ61が配置され、蛍光フィルタ57およびバリアフィルタ59を透過した反射光をCCD(反射光撮像手段)65に集光させている。
CCD65では、撮像面に集光された反射光が電気信号に変換され反射光信号S1が生成される。反射光信号S1は、信号ケーブル77により画像プロセッサ7へ伝送される。
蛍光集光レンズ63は、蛍光フィルタ57の入射光軸の直交方向に配置され、蛍光フィルタ57で反射された蛍光を蛍光フィババンドル51の一端67に集光させている。
蛍光ファイババンドル51の他端69に伝送された蛍光は、レンズ71を介しイメージインテンシファイヤ内臓CCD73に集光される。なお、イメージインテンシファイヤ内臓CCD73に替えて熱雑音を減少させた冷却CCD(Cooled CCD)を用いてもよい。
イメージインテンシファイヤ内臓CCD73では、微弱な蛍光を増幅して電気信号に変換することで、蛍光信号S2が生成される。蛍光信号S2は信号ケーブル75により画像プロセッサ7へ伝送される。
画像プロセッサ7には、距離測定手段81と、蛍光量算出手段(特性値算出手段)83と、画像処理手段85と、存在量算出手段87とが備えられている。
距離測定手段81には、内視鏡スコープ3の先端部45と被検体47との距離が所定距離時における反射光の強度信号S0を設定する基準値設定手段89と、距離演算手段91とが備えられている。距離演算手段91では、基準値設定手段89で設定された所定距離時の反射光の強度信号S0を、信号ケーブル77で伝送される測定された反射光信号S1の平均値で除算した距離信号S3が演算される。
測定される反射光の強度すなわち反射光量は、距離に略反比例するので、例えば、測定時の距離が所定距離より小さい場合、測定される反射光の強度である反射光信号S1は設定された強度信号S0より大きくなる。そのため、距離演算手段91で演算される距離信号S3は1より小さくなり、測定時の距離が所定距離より小さいことが示される。
蛍光量算出手段83では、距離信号S3に信号ケーブル75で伝送される蛍光信号S2を乗算して補正蛍光信号S4が演算される。
測定される蛍光の強度(蛍光量)は、距離に略反比例するので、例えば測定時の距離が小さい場合には、蛍光信号S2は実際より大きな値を示すことになる。この大きな値に1より小さい値を持つ距離信号S3を乗算することにより得られる補正蛍光信号S4は、距離が小さいことを補正されたことになる。
反対に測定時の距離が大きい場合には、補正蛍光信号S4は測定された蛍光信号S2より大きくなるように補正される。
すなわち、所定距離時における反射光の強度信号S0を適宜設定することにより、補正蛍光信号S4は内視鏡スコープ3の先端部45と被検体47との距離に係わらず実際の蛍光量が示されることになる。
画像処理手段85には、蛍光画像生成手段93と、内視鏡画像生成手段95と、スーパーインポーザ(画像合成手段)97とが備えられている。
蛍光画像生成手段93では、蛍光量算出手段83からの補正蛍光信号S4により蛍光画像信号S5が生成される。
内視鏡画像生成手段95では、光源装置5からのトリガ信号STによりタイミングを取って、反射光信号S1から内視鏡画像信号S6が生成される。
蛍光画像信号S5および内視鏡画像信号S6は、スーパーインポーザ97に入力される。スーパーインポーザ97では、例えば一方を親画像とし他方をその親画像にスーパーインポーズさせた子画像とした合成画像信号S7が生成される。
スーパーインポーザ97で生成された合成画像信号S7がモニタ9に出力され、画面21に合成画像を表示させるようになっている。
なお、モニタ9に表示させる画像は上記の合成画像に限らず、どちらか一方のみの画像を表示させることが可能であり、親画像と子画像の切り換えや一方のみの表示等の指示は、画像プロセッサ7に設けられた図示しないスイッチにより容易に行うことができる。
また、存在量算出手段87では、蛍光画像信号S5から蛍光量に基づいて標的物質の存在量が算出され、これらの値はモニタ9の表示部23に表示されるようになっている。
このように構成された本実施形態に係る内視鏡装置1の作用について以下に説明する。
まず、被検体47に蛍光色素である5−ALAやインドシアニングリーン誘導標識抗体などを投入した後、所定時間を置いて内視鏡装置1による診断を開始する。
この時、癌細胞の存在する病変部48では、癌細胞でより多く集積している5−ALAやインドシアニングリーン誘導標識抗体などが蛍光を発する。
オンオフフィルタ39の通光部39bが白色光路33の位置にある時、白色光源25から発せられた照明光は、コリメートレンズ29で平行光にされ、RGBフィルタ37に入光される。RGBフィルタ37では、回転によりRフィルタ39a、Gフィルタ39bおよびBフィルタ39cが順次白色光路33を通過し、照明光を赤、緑、青の波長範囲の光に分割する。この分割された光は、順次ダイクロイックミラー31により反射され、出口コリメートレンズ30によって照明ファイババンドル43の一端に集光される。
この集光された光は、照明ファイババンドル43で伝送され先端部45に設けられた照射部53から被検体47に照射される。
そして、被検体47により反射された反射光は、対物レンズ55で平行光にされ蛍光フィルタ57を透過し、集光レンズ61によりCCD65に集光される。CCD65では、撮像面に集光された反射光が電気信号に変換され反射光信号S1が生成される。反射光信号S1は、信号ケーブル77により距離演算手段91と内視鏡画像生成手段95へ伝送される。
内視鏡画像生成手段95にて、反射光信号S1から内視鏡画像信号S6が生成される。この内視鏡画像信号S6によると、照明光が可視領域を概ね青色、緑色、赤色の3つの波長領域に分割した幅広のバンド光であるため、色再現性が良好で、しかも明るいカラー画像を得ることができる。
一方、オンオフフィルタ41の通光部41bがレーザ光路35の位置にある時、レーザ光源27から発せられた励起光は、コリメートレンズ29によって一旦平行光にされ、ダイクロイックミラー31を透過し、出口コリメートレンズ30によって照明ファイババンドル43の一端に集光される。この集光された励起光は、照明ファイババンドル43で伝送され先端部45に設けられた照射部53から被検体に照射される。
この励起光の照射により、癌細胞内に集積された5−ALAやインドシアニングリーン誘導標識抗体などが励起されて蛍光を発生する。この蛍光は対物レンズ55に入射して平行光にされ、蛍光フィルタ57で反射され、集光レンズ63により蛍光ファイババンドル51の一端67に集光される。
この集光された蛍光は、蛍光ファイババンドル51により伝送され、他端69からレンズ71を介してイメージインテンシファイヤ内臓CCD73に集光される。イメージインテンシファイヤ内臓CCD73では、微弱な蛍光を増幅して電気信号に変換して、蛍光信号S2が生成される。蛍光信号S2は信号ケーブル75により蛍光量算出手段83へ伝送される。
照明光および励起光のこのような作用は、オンオフフィルタ39、41の作動タイミングにより交互に行われる。
距離演算手段81には、信号ケーブル77により反射光信号S1が伝送されるとともに基準値設定手段89に格納されている所定距離時の反射光の強度信号S0が伝送される。距離演算手段81では、強度信号S0は、平均値を演算された反射信号S1で除算されて、距離信号S3が出力される。距離信号S3は、設定された所定距離に対する測定時の距離を比率の形で示している。
このように、所定距離時の反射光強度S0を設定するだけで、被検体47からの反射光の強度である反射光信号S1により、照射部53と被検体47との距離に相当する距離信号S3が得られるので、距離測定用に付加する機器が省略できる。したがって、内視鏡スコープ3の構造が簡単となり、安価に製造できる。
距離信号S3は、蛍光量算出手段83に伝送され、蛍光量算出手段83では、信号ケーブル75により伝送される蛍光信号S2に乗算され、補正蛍光信号S4が出力される。これにより、反射光および蛍光はともに光であり、距離による減衰率は略同一であるので、蛍光信号S2は距離信号S3で補正されたことになる。
なお、本実施形態では、反射光により距離信号S3を生成したが、これに限定されるものではなく、例えば所定距離時の蛍光強度を設定して蛍光信号S2を用いて距離信号S3を生成してもよい。
補正蛍光信号S4は、蛍光画像生成手段93に伝送される。蛍光画像生成手段93にて補正蛍光信号S4により蛍光画像信号S5が生成される。
蛍光画像信号S5および内視鏡画像信号S6は、スーパーインポーザ97に入力される。スーパーインポーザ97では、例えば一方を親画像とし他方をその親画像にスーパーインポーズさせた子画像とした合成画像信号S7が生成される。
スーパーインポーザ97で生成された合成画像信号S7はモニタ9に出力され、画面21に合成画像を表示させるようになっている。
このように、本実施形態では、蛍光量を示す蛍光信号S2が、距離信号S3で補正されることにより、照射部53と被検体47との距離に影響されない補正蛍光信号S4が生成される。そして、この補正蛍光信号S4に基づいて蛍光画像がモニタ9に表示されるので、照射部53と被検体47との距離に影響されない蛍光量がモニタ9に表示されることになる。このように、距離に影響されない蛍光量がモニタ9に示されるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
また、本実施形態によれば、スーパーインポーザ97が内視鏡画像信号S6と蛍光画像信号S5とを合成するので、通常の外観を示す内視鏡画像に例えば病変部を示す蛍光画像が重畳されて表示できる。このため、被検体47における病変が存在する位置は外観と関連付けて表示されるので、その位置を正確に把握することができる。
また、蛍光画像は、距離に影響されない蛍光量が示されるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
なお、蛍光画像信号S5をモニタ9の画面21に表示する場合に、蛍光強度の強弱によって、異なる視覚効果で表示することが好ましい。
異なる視覚効果とは、例えば、色の濃淡をつけた表示、異なる色での表示、および点滅させその点滅速度を変化させた表示等がある。
このようにすると、蛍光強度の大きいところ、すなわち、例えば、癌細胞が多いところがモニタ9を見ることで容易に判断できる。このため、例えば、癌の転移の危険性や進達度の診断等をモニタ9上で行うことができる。
また、存在量算出手段87により、蛍光画像信号S5から蛍光量に基づいて標的物質の存在量を算出し、これらの値をモニタ9の表示部23に表示させることができる。
さらに、蛍光量や癌のサイズ等を併せて表示するようにしてもよい。
このようにすると、例えば、癌の大きさを具体的な数値で把握できるので、診断精度を向上できる。
なお、本実施形態の画像プロセッサ7に、図4に示すように、画像記憶手段98と、画像マッチング手段99とを追加しても良い。
また、モニタ9には、画面21、22が並設されている。
画像記憶手段98は、必要な合成画像信号S7を格納保存するものである。必要な合成画像信号S7とは、例えば、病変部の可能性がある部位の画像の信号である。
画像マッチング手段99は、画像記憶手段98に保存された合成画像信号S7の中から選択された1個の合成画像信号(旧合成画像信号という)S8と現在スーパーインポーザ97で生成中の合成画像信号S7とを、形状変化の少ない内視鏡画像信号S6を使用してストラクチャ抽出によりマッチングするものである。
旧合成画像信号S8は、画像記憶手段98から画像マッチング手段99とモニタ9に伝送され、モニタの画面22に表示されている。合成画像信号S7は、スーパーインポーザ97から、画像マッチング手段99とモニタ9に伝送され、モニタ9の画面21に表示されている。
画像マッチング手段99では、旧合成画像信号S8と逐次変化する合成画像信号S7とが逐次マッチングされており、一致した場合には音声、点灯等適宣手段で術者に知らせるように構成されている。
このようにすると、画像記憶手段98に格納された部位は容易に再現できるので、内視鏡スコープ3が動いた場合や、薬剤による蛍光の発光がなくなった場合にも容易に復旧して処置をすることができる。また、モニタ9を見て術前術後の状態を比較できるので、例えば治療の効果を評価することができる。
[第二実施形態]
次に、本発明の第二実施形態について、図5〜図7を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第一実施形態と同様であるが、第一実施形態とは、距離測定手段の構成および蛍光画像信号を生成する構成が相違している。
以下、主としてこの相違点について説明する。
なお、第一実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図5は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。図7は内視鏡スコープ3の光源装置5への取付状態を示す正面図である。
本実施形態に係る内視鏡装置1の距離測定手段100について説明する。距離測定手段100には、内視鏡スコープ3の挿入部11の先端部45に設けられた超音波発生器101と超音波検出器103と、光源装置5内に設けられた超音波信号処理装置105と、距離演算装置107とが備えられている。
超音波発生器101および超音波検出器103は、挿入部11およびユニバーサルケーブル15を挿通して設けられた信号ケーブル102により超音波信号処理装置105に接続されている。信号ケーブル102は、内視鏡スコープ3のコネクタ17を光源装置5に差し込むことで連通する。超音波信号処理装置105は、距離演算装置107に信号ケーブル104で接続されている。
超音波信号処理装置105は、超音波発生器101および超音波検出器103での超音波の受発信を制御するとともに超音波検出器103で検出した検出器出力信号S9を距離演算装置107へ出力する。
ここで、検出器出力信号S9は、例えば、検出された超音波の強度や、あるいは超音波を発してから戻ってくるまでの時間に比例した信号である。
距離演算装置107は、図6に示すような、被検体47との距離と、超音波検出器出力との関係を示す較正データ117を備えており、この較正データ117を使用して超音波信号処理装置105からの検出器出力信号S9により先端部45と被検体47との距離を算出し、距離信号S10を出力する。較正データ117は、当該内視鏡スコープ3であらかじめ距離と検出器出力との関係を測定し、プロットしておいたものである。
較正データ117は各内視鏡スコープ3で異なるので、距離演算装置107には、内視鏡装置1で使用する複数の内視鏡スコープ3に関する全ての較正データ117が格納されている。各内視鏡スコープ3のコネクタ17には、内視鏡スコープ3を特定するデータを格納したICチップ113が取り付けられている。光源装置5には、このICチップ113のデータを読み取り、使用する較正データ117を特定する読取部(スコープ認識手段)115が設けられている。
画像処理手段85において、蛍光画像生成手段93とスーパーインポーザ97との間に蛍光量算出手段109が備えられ、蛍光画像生成手段93には、蛍光信号S2が直接入力されている点が前記第一実施形態と異なる。
蛍光画像生成手段93では、入力された蛍光信号S2から蛍光画像信号S5が生成され、蛍光量算出手段109へ出力される。
蛍光量算出手段109には、距離補正手段111が備えられている。距離補正手段111は、距離演算装置107からの距離信号S10により蛍光画像信号S5を補正して補正蛍光画像信号S11を生成する。
補正蛍光画像信号S11は、スーパーインポーザ97に伝送される。
このように構成された本実施形態に係る内視鏡装置1の作用について以下に説明する。
本実施形態における薬剤の投入、照明光および励起光の照射、反射光および蛍光の検出、反射光信号S1および蛍光信号S2の生成、ならびにモニタ9での表示については、前記第一実施形態と同様であるので、重複した説明を省略する。
観察に使用する内視鏡スコープ3のコネクタ17を光源装置5に装着すると、読取部115がコネクタ17に取り付けられたICチップ113に格納されたデータを読み取り、そのデータに対応する較正データ117を選択する。
超音波信号処理装置105の制御により、超音波発生器101は、超音波信号を被検体47に照射する。そして、超音波検出器103が被検体47により反射されて戻る超音波信号を検出して、検出器出力信号S9に変換して超音波信号処理装置105に伝送する。
検出器出力信号S9は、超音波信号処理装置105から距離演算装置107に伝送される。距離演算装置107では、この検出器出力信号S9から選択された較正データ117により先端部45から被検体47までの距離が算出され、距離信号S10として出力される。
蛍光画像生成手段93にて、蛍光信号S2から蛍光画像信号S5が生成され蛍光量算出手段109に伝送される。
蛍光量算出手段109において、距離補正手段111が蛍光画像信号S5を距離演算装置107から伝送された距離信号S10により補正して補正蛍光画像信号S11を生成する。補正蛍光画像信号S11は、内視鏡画像生成手段95で生成された内視鏡画像信号S6とともにスーパーインポーザ97に入力され、合成画像信号S7が生成される。
スーパーインポーザ97で生成された合成画像信号S7がモニタ9に出力され、画面21に合成画像を表示する。
このように、本実施形態によれば、蛍光量を示す蛍光信号S2より生成された蛍光画像信号S5が、距離信号S10で補正されて被検体47との距離に影響されない補正蛍光画像信号S11が生成される。そして、この補正蛍光画像信号S11に基づいて蛍光画像がモニタ9に表示されるので、照射部53と被検体47との距離に影響されない蛍光量がモニタ9に表示されることになる。このように、距離に影響されない蛍光量が示されるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
なお、本実施形態では、距離測定手段100に超音波を利用しているが、本発明はこれに限定されるものではなく、例えばマイクロ波を利用してもよい。
すなわち、内視鏡スコープ3の挿入部11の先端部45に、マイクロ波発生器と反射波を受信するアンテナを取付け、マイクロ波発生器からマイクロ波を被検体47へ発信して、被検体47からの反射波をアンテナが受信するまでの時間差で距離を測定する。
このようにすると、マイクロ波は超音波に比べて減衰が少なく、時間分解能が高いので、超音波に比べてより正確に距離を測定できる。
また、本実施形態(第一実施形態参照)では、反射光および蛍光の検出を1つの対物光学系49で行っているが、図10に示すように各々別々の対物光学系で検出するようにしてもよい。
すなわち、対物光学系49の蛍光フィルタ57と集光レンズ63をなくし、蛍光対物光学系121を追加している。
蛍光対物光学系121には、蛍光対物レンズ123と、蛍光のみを透過する励起光カットフィルタ125と、スキャンミラー127と、集光レンズ129と、光ファイバ131と、レンズ133と、光電子増倍管(PMT)135と、スキャンミラー127を駆動するスキャンミラー駆動装置137とが備えられている。
蛍光対物レンズ123に入光した蛍光は、励起光カットフィルタ125を透過し、スキャンミラー127でスキャンされ、集光レンズ129で光ファイバ131の一端に集光される。光ファイバ131を通過した蛍光は、光ファイバ131の他端からレンズ133を通って光電子増倍管135に集光され、光電子増倍管135で蛍光信号S2に変換される。
このように、スキャンミラー127を用いて走査するため、CCDのようなアレイ状に形成された光検出器が不要となることから、高価なイメージインテンシファイヤ内臓CCDを使う必要がなくなる。このため、比較的安価な光電子増倍管135を使用することができるので、内視鏡装置1が安価に製造できる。
[第三実施形態]
次に、本発明の第三実施形態について、図8を用いて説明する。
本実施形態に係る内視鏡装置1の構成は、第二実施形態とは、画像処理手段85の構成が若干相違している以外は同じである。
以下、主としてこの相違点について説明する。
なお、前記各実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図8は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。
画像処理手段85には、画像のサイズを算出する画像サイズ算出手段119が備えられている点が第二実施形態とは異なる。
画像サイズ算出手段119には、スーパーインポーザ97からの合成画像信号S12と、距離演算装置107からの距離信号S10とが入力される。
画像サイズ算出手段119は、合成画像信号S12の画像サイズを所定距離時のスケールで算出し、その算出値を距離信号S10で補正して、実際のサイズを算出して、サイズ信号S13としてモニタ9に伝送するものである。そして、モニタ9の表示部23に画像サイズを数値で表示する。
このように、本実施形態によれば、合成画像の実際のサイズが表示されるので、蛍光画像の大きさも定量的に把握できる。したがって、例えば、癌等の病変部に存在する蛍光を発生するものの範囲を定量的に把握できるので、病変の拡がり程度を正確に診断できる。
なお、本実施形態では、合成画像の画像サイズを表示部23に数値で表示するようにしたが、本発明はこれに限定されるものではない。
例えば、画像サイズ算出手段119において、所定距離時のスケールを距離信号S10で補正した補正スケールで、合成画像信号S12を補正し、モニタ9に伝送して、図9に示すように、モニタ9の画面表示サイズを補正するようにしてもよい。また、補正スケールを画面21に表示してもよい。
図9の左側の画面21は、内視鏡スコープ3の先端部45が、所定距離よりも被検体47に近づいた時の全体的に大きくなっている画像を示している。右側の画面22は、前記サイズ補正を行った後の表示であり、全体的に小さくなったことが示されている。
さらに、第三実施形態の数値表示と画面表示サイズの補正とは、合わせて行うようにしてもよい。
このようにすると、より診断精度が向上できる。
[第四実施形態]
次に、本発明の第四実施形態について、図11を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第二実施形態と同様であるが、第二実施形態とは、挿入部11の先端部分の構成、蛍光検出の構成および画像処理手段85の構成が相違している。
以下、主としてこの相違点について説明する。
なお、前記各実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図11は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。
内視鏡スコープ3の挿入部11内の先端部には、光軸方向に摺動可能に支持された先端光学系ユニット141と、先端光学系ユニット141を光軸方向に駆動するアクチュエータ143とが備えられている。
先端光学系ユニット141には、照明ファイババンドル43の先端部分が取り付けられて、照明対物光学系145と、蛍光対物光学系147とが備えられている。
照明ファイババンドル43の端部は、先端光学系ユニット141の先端に形成された照射部149から外部に向けて照明光および励起光を照射するように構成されている。
照明対物光学系145には、被検体47からの反射光を受光して平行光にする反射光対物レンズ151と、励起光より長波長の光をカットするバリアフィルタ153と、反射光を後記するCCD(反射光撮像手段)157に集光させる反射光集光レンズ155と、撮像面に集光された反射光を電気信号に変換して反射光信号S1を生成するCCD157とが備えられている。
蛍光対物光学系147には、蛍光対物レンズ159と、蛍光のみ透過させる励起光フィルタ161と、蛍光集光レンズ163とが備えられている。先端光学系ユニット141の後端側に蛍光ファイババンドル51の先端部分が取り付けられている。蛍光集光レンズ163は蛍光ファイババンドル51の一端67に蛍光を集光させている。
アクチュエータ143としては、各種のリニアアクチュエータが採用される。このアクチュエータ143は、アクチュエータ駆動装置165により駆動される。
位置検出装置167は、先端光学系ユニット141の移動を追跡し、超音波発信器101と照射部149との距離Lを常時検出している。
移動量算出装置(距離測定手段)169は、距離演算装置107からの距離信号S10と距離Lとから被検体と照射部149との距離を算出し、距離信号SLをアクチュエータ駆動装置165に出力する。
アクチュエータ駆動装置165は、距離信号SLと設定した所定距離との差分が0となるようにアクチュエータ143を駆動するように構成されている。
本実施形態の画像処理手段85には、第二実施形態で備えられていた蛍光量算出手段109が備えられていない。したがって、蛍光画像信号S5が直にスーパーインポーザ97へ入力される。
このように構成された本実施形態に係る内視鏡装置1の作用について以下に説明する。
本実施形態における薬剤の投入、照明光および励起光の照射、ならびにモニタ9での表示については、前記第一実施形態と同様であり、超音波信号による距離信号S10の算出については前記第二実施形態と同様であるので、重複した説明を省略する。
距離演算装置107は、被検体47により反射されて戻る超音波信号による距離測定を行い、距離信号S10を出力する。そして、距離演算装置107は、この距離信号S10を移動量算出装置169へ伝送する。移動量算出装置169は、距離信号S10と位置検出装置167からの距離Lとを加算して距離信号SLを算出して、アクチュエータ駆動装置165へ出力する。アクチュエータ駆動装置165は、距離信号SLと設定した所定距離を比較して差分があると、その差分をなくす方向にアクチュエータ143を駆動して、先端光学系ユニット141を光軸方向に移動させる。そして、アクチュエータ駆動装置165は、この差分がなくなったところで、アクチュエータ143の駆動を停止する。
この状態で、蛍光観察に入る。
照射部149は、光源装置5で発生された照明光および励起光を照射する。そして、被検体47から反射された反射光は、反射光対物レンズ151で平行光にされ、バリアフィルタ153を透過する。このとき、反射光の内、励起光の波長以上の波長の光がカットされる。その余の光が集光レンズ155によりCCD157に集光される。CCD157では、撮像面に集光された反射光が電気信号に変換され反射光信号S1が生成される。反射光信号S1は、信号ケーブル77により内視鏡画像生成手段95へ伝送される。
また、反射光は蛍光対物レンズ159に入射して平行光にされ、励起光フィルタ161で蛍光のみが透過され、蛍光集光レンズ163により蛍光ファイババンドル51の一端67に集光される。
この集光された蛍光は、蛍光ファイババンドル51により伝送され、他端69からレンズ71を介してイメージインテンシファイヤ内臓CCD73に集光される。イメージインテンシファイヤ内臓CCD73では、微弱な蛍光が増幅されて電気信号に変換され、蛍光信号S2が生成される。蛍光信号S2は信号ケーブル75により蛍光画像生成手段93へ伝送される。
蛍光画像生成手段93にて、蛍光信号S2から蛍光画像信号S5が生成され蛍光量算出手段109に伝送される。
蛍光画像信号S5は、内視鏡画像生成手段95で生成された内視鏡画像信号S6とともにスーパーインポーザ97に入力され、合成画像信号S7が生成される。
スーパーインポーザ97で生成された合成画像信号S7がモニタ9に出力され、画面21に合成画像が表示される。
このように、本実施形態によれば、移動量算出手段169により照射部149と被検体47との距離に相当する距離信号SLが生成される。この距離信号SLにより、アクチュエータ143が、蛍光ファイババンドル51の先端と照射部149とを支持する先端光学系ユニット141を移動させることにより、照射部149と被検体47との距離が常時一定の距離を維持することができる。このように、常に一定の距離において蛍光観察が行われるので、病変部の定量的な診断を行うことができ、診断精度を向上できる。
[第五実施形態]
次に、本発明の第五実施形態について、図12を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第1の実施の形態と同様であるが、第一実施形態とは、蛍光信号S2を補正する構成が相違している。
以下、主としてこの相違点について説明する。
なお、第一実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図12は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。
レーザ光源25には、レーザ光源25から発生する励起光の強度を測定する励起光強度測定装置171が備えられている。
また、白色光源27には、白色光源27から発生する照明光の強度を測定する照明光強度測定装置173が備えられている。
画像プロセッサ7には、光源強度揺らぎ補正手段175が備えられている。
光源強度揺らぎ補正手段175には、蛍光量算出手段83から補正蛍光信号S4が入力され、励起光強度測定装置171から励起光強度信号S15が入力され、照明光強度測定装置173から照明光強度信号S14が入力されている。
光源強度揺らぎ補正手段175では、補正蛍光信号S4に励起光強度信号S15を除算し、照明光強度信号S14を乗算して、揺らぎ補正蛍光信号S16を算出し、蛍光画像生成手段93に伝送している。
蛍光画像生成手段93では、揺らぎ補正蛍光信号S16から蛍光画像信号S5を生成して、スーパーインポーザ97を介してモニタ9の画面に合成画像を表示している。
測定される蛍光の強度は、励起光の強度に略比例するので、補正蛍光信号S4に励起光強度信号S15を除算することで、励起光の揺らぎによる影響は除去されることになる。一方、距離算出手段91では、所定距離時の反射光量S0を、測定した反射光信号S1で除算している。反射光信号S1には、照明光の揺らぎが影響しているので、補正蛍光信号S4を照明光強度信号S14で乗算すれば、照明光の揺らぎによる影響は除去されることになる。
このように、本実施形態によれば、励起光および照明光の光強度が揺らぎ、その影響で例えば蛍光量および反射光が変動しても、光源強度揺らぎ補正手段175で補正蛍光信号S4が励起光強度信号S15および照明光強度信号S14で補正されるので、励起光および照明光の光強度の揺らぎの影響を除去できる。これにより、蛍光の測定精度が向上でき、診断精度が向上できる。
なお、このような補正は、影響の大きい励起光についてのみ行っても相当な効果がある。
[第六実施形態]
次に、本発明の第六実施形態について、図13および図14を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第二実施形態と同様であるが、第二実施形態とは、蛍光量算出手段109の構成が部分的に相違している。
以下、主としてこの相違点について説明する。
なお、第二実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図13は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。図14は、薬剤を投与した時、投与後の時間と薬剤の集積量との関係を一般的に示した相関図である。図14を見るように、薬剤投与後、一定時間経過して薬剤が集積し始め、時間の経過とともに集積量が比例的に増加し、しばらくピークを維持した後、低下するという傾向にあるのが一般的である。
蛍光量算出手段には、薬剤投与後時間補正手段177が備えられている。薬剤投与後時間補正手段177には、各種薬剤について図14に示すような相関図が格納保管されていて、図示しない設定手段で、対象薬剤を指示すればその薬剤に対応する相関図を選択できるようになっている。
また、時間設定手段179が備えられており、術者が時間を入力することにより、時間信号Tを薬剤投与後時間補正手段177に入力するように構成されている。
薬剤投与後時間補正手段177は、時間設定手段179から入力された時間により、選択した相関図から薬剤の集積量(ピーク時を1とした場合の割合)を算出して、蛍光画像信号S5を補正する。
例えば、図14に示すように投与後T0時間経過している場合、その時の集積割合Aで蛍光画像信号S5を除算することで、ピーク時の状態に補正するようになっている。
このように本実施形態によれば、例えば蛍光薬剤を投与してその影響が被検体に行き渡るまでに測定しても、行き渡った状態に補正することができるので、診断を迅速に行うことができる。また、診断精度が向上できる。
[第七実施形態]
次に、本発明の第七実施形態について、図15〜図17を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第一実施形態と同様であるが、第一実施形態とは、距離測定手段の構成、挿入部11の先端部分の構成および画像処理手段85の構成が相違している。
以下、主としてこの相違点について説明する。
なお、第一実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図15は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。図16は内視鏡スコープ3の先端面を示す正面図である。
本実施形態に係る内視鏡装置1の距離測定手段181について説明する。距離測定手段181には、内視鏡スコープ3の挿入部11の先端部45に設けられたレーザ発生器183と、レーザ光検出器185と、距離演算装置107と、が備えられている。
レーザ発生器183は、図示しない電源によってレーザ光を発射するものである。
レーザ光検出器185は、レーザ発生器183からのレーザ光が反射したレーザ反射光を受信するもので、例えば、分割フォトダイオードで形成されている。レーザ光検出器185の先端面は、略矩形状をし、縦横に2分割され略等面積を有する4面の分割面187に分割されている。レーザ発生器183およびレーザ光検出器185は、両者を結ぶ線が対物光学系49の対物レンズ55を通るように配置されている。
なお、光源としてレーザ発生器183に換えてLEDを用いてもよい。
レーザ光検出器185と距離演算装置107とは、信号ケーブル189により接続されている。
レーザ光検出器185は、各分割面187毎に、受信した光によって検出信号S17を発信する。発信された検出信号S17は信号ケーブル189によって距離演算装置107に伝送される。
距離演算装置107では、各分割面187からの検出信号S17の平均明るさによって予め求められたデータと比較して内視鏡スコープ3と被検体47との距離を算出する。
距離演算装置107で算出された距離信号S10は、距離補正手段111へ伝送される。
検出信号S17は、信号ケーブル189から分岐された信号ケーブル193によって角度演算手段191に伝送される。
角度演算手段191は、信号S17からレーザ光検出器185の各分割面187が受光するレーザ反射光の量を演算し、それらの偏差から内視鏡スコープ3の被検体47に対する傾斜角度(角度)を算出する。
角度演算手段191で算出された角度信号S10は、角度補正手段195へ伝送される。
本実施形態では、照明光および励起光を伝送する照明ファイババンドル43(図示省略)は2セット設けられている。照明ファイババンドルで伝送される照明光および励起光を照射する照射部53は、対物光学系49の対物レンズ55を挟んで対称となる位置に設けられている。
対物光学系49には、対物レンズ55と、励起光により励起された蛍光と通常の反射光とを分離する蛍光フィルタ57と、蛍光フィルタ57で反射された反射光が集光されるCCD197と、蛍光フィルタ57を透過した反射光が集光されるCCD199とが設けられている。
蛍光フィルタ57は、対物レンズ55より入射した反射光及び蛍光のうち蛍光の領域の光(波長690nm近傍の光)を透過し、その他の反射光の領域の光を直角方向に反射することで、蛍光と反射光とを分離する光学素子である。
CCD197では、撮像面に集光された反射光が電気信号に変換され反射光信号S1が生成される。反射光信号S1は、信号ケーブル77により内視鏡画像生成手段95へ伝送される。
CCD199では、撮像面に集光された蛍光を増幅して電気信号に変換することで、蛍光信号S2が生成される。蛍光信号S2は信号ケーブル75により蛍光画像生成手段93へ伝送される。
画像処理手段85において、蛍光画像生成手段93とスーパーインポーザ97との間に蛍光量算出手段109が備えられている。
蛍光画像生成手段93では、入力された蛍光信号S2から蛍光画像信号S5が生成され、蛍光量算出手段109へ出力される。
蛍光量算出手段109には、距離補正手段111および角度補正手段195が備えられている。距離補正手段111は、距離演算装置107からの距離信号S10により蛍光画像信号S5を補正する。角度補正手段195は、角度算出手段191からの角度信号S18により蛍光画像信号S5を補正する。このようにして、蛍光量算出手段109は、補正蛍光画像信号S11を生成する。
補正蛍光画像信号S11は、スーパーインポーザ97に伝送される。
このように構成された本実施形態に係る内視鏡装置1の作用について以下に説明する。
本実施形態における薬剤の投入、照明光および励起光の照射、反射光および蛍光の検出、ならびにモニタ9での表示については、前記第一実施形態と同様であるので、重複した説明を省略する。
光源から伝送された光は、先端部45に設けられた2箇所の照射部53から被検体47に照射される。
被検体47により反射された反射光は、対物レンズ55に入射され蛍光フィルタ57で反射し、CCD197に集光される。CCD197では、撮像面に集光された反射光が電気信号に変換され反射光信号S1が生成される。反射光信号S1は、信号ケーブル77により内視鏡画像生成手段95へ伝送される。内視鏡画像生成手段95では、反射光信号S1から内視鏡画像信号S6が生成される。
一方、照射部53から被検体47照射された励起光によって、癌細胞内に集積された5−ALAやインドシアニングリーン誘導標識抗体などが励起されて蛍光を発生する。
この蛍光は対物レンズ55に入射し、蛍光フィルタ57を透過し、CCD199に集光される。
CCD199では、蛍光を電気信号に変換して、蛍光信号S2が生成される。蛍光信号S2は信号ケーブル75により蛍光画像生成手段93へ伝送される。蛍光画像生成手段93にて、蛍光信号S2から蛍光画像信号S5が生成され蛍光量算出手段109に伝送される。
レーザ発生器183から発射されたレーザ光が被検体47に反射され、被検体47からの反射レーザ光がレーザ光検出器185に入射される。
この時、内視鏡スコープ3が被検体47に対して正対している(傾斜していない)と図17に実線で示すように、反射レーザ光の中心部201はレーザ光検出器185の中心に位置するので、各分割面187が受ける光量は略同等となる。
一方、内視鏡スコープ3が被検体47に対して傾斜していると図17に一点鎖線で示すように、反射レーザ光の中心部201はレーザ光検出器185の中心から傾斜状態に対応した位置にずれるので、各分割面187が受ける光量は異なる。
レーザ光検出器185は、これらの各分割面187が受光した光量を検出信号S17として、距離演算装置107および角度算出手段191へ伝送する。
距離演算装置107では、各分割面187からの検出信号S17からそれらの平均光量あるいは総光量を算出し、予め求めていた較正データから内視鏡スコープ3と被検体47との距離を演算し、距離信号S10を生成する。
角度算出手段191では、各分割面187からの検出信号S17を用いて内視鏡スコープ3の被検体47に対する傾斜角度を算出する。例えば、受光量は距離の二乗に反比例するので、受光量の差は距離の差を表している。各分割面187の受光量の比率から距離の関係を算出し、その距離の関係から内視鏡スコープ3の傾斜状態を算出する。これにより、内視鏡スコープ3の傾斜角度を算出し、角度信号S18を生成する。
距離演算装置107および角度算出手段191で生成された距離信号S10および角度信号S18が蛍光量算出手段109に伝送される。
蛍光量算出手段109では、距離補正手段111および角度補正手段195が蛍光画像信号S5を距離信号S10および角度信号S18により補正され、補正蛍光画像信号S11を生成する。
補正蛍光画像信号S11は、内視鏡画像生成手段95で生成された内視鏡画像信号S6とともにスーパーインポーザ97に入力され、合成画像信号S7が生成される。
スーパーインポーザ97で生成された合成画像信号S7がモニタ9に出力され、画面21に合成画像を表示する。
このように、本実施形態によれば、蛍光量を示す蛍光信号S2より生成された蛍光画像信号S5が、距離信号S10および角度信号S18で補正されて被検体47との距離および内視鏡スコープ3の傾斜角度に影響されない補正蛍光画像信号S11が生成される。
そして、この補正蛍光画像信号S11に基づいて蛍光画像がモニタ9に表示されるので、照射部53と被検体47との距離および内視鏡スコープ3の傾斜に影響されない蛍光量がモニタ9に表示されることになる。
このように、照射部53と被検体47との距離および内視鏡スコープ3の傾斜に影響されない蛍光量が示されるので、病変部の定量的な診断を行うことができ、診断精度を一層向上できる。
なお、本実施形態では、レーザ発生器183とレーザ光検出器185を一対一としているが、図18および図19に示すように一個のレーザ光発生器183に対して複数のレーザ光検出器185を設けるようにしてもよい。
図18に示されるものは、レーザ発生器183は内視鏡スコープ3の先端部45の中心部の近傍に設置し、複数の略円形をしたレーザ光検出器185を先端部45の周縁部に周方向に間隔を空けて設置する。
このようにすると、各レーザ光検出器185の受光量の比を一層明確に検出することができ、角度の算出を一層正確に行なえる。
図19に示されるものは、本実施形態で用いた四分割された受光面を有するレーザ光検出器185が、対物レンズ55を挟んで対称となる位置に設置され、レーザ発生器183が内視鏡スコープ3の先端部45の中心部の近傍に設置されている。
このようにすると、反射レーザ光の検出に偏りがないようにでき、角度の算出を一層正確に行なえる。
なお、本実施形態では、反射レーザ光の各分割面187に入射される光量により、距離を求めるようにしているが、これは、反射時間により距離を求めるようにしてもよい。
また、本実施形態では、距離測定手段181にレーザ光を利用しているが、本発明はこれに限定されるものではなく、例えば、第一実施形態から第六実施形態で説明したものを利用してもよい。
[第八実施形態]
次に、本発明の第八実施形態について、図20および図21を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第七実施形態と同様であるので、第七実施形態との相違点について主として説明する。
なお、第七実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図20は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。図21は内視鏡スコープ3の先端面を示す正面図である。
本実施形態では、内視鏡スコープ3の先端部45の外周に着脱可能に取り付けられたキャップ203が備えられている。
キャップ203は、ドーナツ形状をし、その先端部にはレーザ発生器183および複数のレーザ光検出器185が周方向に略等間隔に設置されている。
レーザ発生器183には、キャップ203に内蔵されたレーザ用電源205が接続されている。
なお、光源としてレーザ発生器183に換えてLEDを用いてもよい。
各レーザ光検出器185には、それぞれキャップ203に内蔵された信号送信機207が接続されている。
レーザ光検出器185は、受信した光によって検出信号S17を生成する。生成された検出信号S17は信号送信機207から発信される。
画像プロセッサ7には、この検出信号を受信する信号受信機209が備えられている。
信号受信機209で受信された検出信号S17は、距離演算装置107および角度算出手段191に信号ケーブルによって伝送される。
このように、レーザ発生器183およびレーザ光検出器185は、内視鏡スコープ3の外側に着脱可能に取り付けられるキャップ203に備えられているので、内視鏡スコープ3の内部における改造が不要である。
このため、内視鏡スコープ3の大幅な設計変更を省略することができるし、既存の内視鏡スコープ3にも容易に取付けることができる。
[第九実施形態]
次に、本発明の第九実施形態について、図22〜図24を用いて説明する。
本実施形態に係る内視鏡装置1の基本構成は、第七実施形態と同様であるが、第七実施形態とは、距離演算装置107および角度算出手段191で算出に用いる信号が相違している。
以下、主としてこの相違点について説明する。
なお、第七実施形態と構成を共通とする箇所に同一符号を付して説明を簡略化する。
図22は、本実施形態に係る内視鏡装置1の全体概略構成を示すブロック図である。図23は、距離演算装置107および角度算出手段191の概略較正を示すブロック図である。図24は、モニタ9の画面21への表示例を示す正面図である。
本実施形態では、距離演算装置107および角度算出手段191で算出に用いる信号として、内視鏡画像信号S6を利用している。
角度算出装置191では、画面を複数、例えば4個の領域に分割し、内視鏡画像信号S6を各領域A,B,C,Dに相当する信号に分割している。
角度算出装置191には、領域Aの平均明るさを算出するA算出手段211と、領域Bの平均明るさを算出するB算出手段213と、領域Cの平均明るさを算出するC算出手段215と、領域Dの平均明るさを算出するD算出手段217と、角度決定手段219とが備えられている。
角度決定手段219は、例えば、次のようにして角度を決定する。
反射光画像が、図24に示すように、領域Cから領域Aに向かうに連れて明るくなっているとすると、内視鏡スコープ3の先端部45と領域Aとは比較的近接しており、領域Cとは比較的離隔していることになる。
明るさの差は距離の二乗に反比例するので、各領域A,B,C,Dの平均明るさによって相対的な距離の関係が算出できる。その距離の関係から内視鏡スコープ3の傾斜状態を算出し、傾斜角度を算出する。
また、種々の内視鏡スコープ3が傾斜した状態における各領域A,B,C,Dの明るさの分布についての較正データを予め準備しておき、算出された各領域A,B,C,Dの明るさの分布に合致する傾斜角度を選定するようにしてもよい。
距離演算装置107には、全反射光の平均明るさを算出する平均算出手段221と、距離決定手段223とが備えられている。
対物レンズ55の入射角が一定であるとすると、同じ距離であっても内視鏡スコープ3が傾斜した場合の方が距離の長い領域からの反射光が入射してくるため、画面が暗くなる。すなわち、同じ明るさでも、内視鏡スコープ3が被検体47に対して傾斜している場合は、被検体47までの距離が長くなる。
距離決定手段223は、平均算出手段221で算出された全反射光の平均明るさと角度決定手段219で決定された傾斜角度とから距離を決定する。
本実施形態では、前述の第七実施形態の作用、効果に加えて、反射光を用いて照射部53と被検体47との距離および内視鏡スコープ3の傾斜角度が得られるので、これらを得るために付加する機器が省略できる。したがって、内視鏡スコープ3の構造が簡単となり、安価に製造できる。
本発明の第一実施形態に係る内視鏡装置の全体概略構成を示す構成図である。 本発明の第一実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第一実施形態に係る光源装置の構成を示すブロック図である。 本発明の第一実施形態に係る画像プロセッサの別の実施形態を示すブロック図である。 本発明の第二実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第二実施形態に係る較正データを示す説明図である。 本発明の第二実施形態に係る光源装置部の構成を示すブロック図である。 本発明の第三実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第三実施形態の画面を示す正面図である。 本発明の第一実施形態に係る内視鏡装置の別の実施形態を示すブロック図である。 本発明の第四実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第五実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第六実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第六実施形態における薬剤投与後の時間と薬剤集積量との相関図である。 本発明の第七実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第七実施形態に係る内視鏡スコープの先端部を示す正面図である。 本発明の第七実施形態に係るレーザ光検出器の正面図である。 本発明の第七実施形態に係る内視鏡スコープの別の実施態様を示す正面図である。 本発明の第七実施形態に係る内視鏡スコープのさらに別の実施態様を示す正面図である。 本発明の第八実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第八実施形態に係る内視鏡スコープの先端部を示す正面図である。 本発明の第九実施形態に係る内視鏡装置の全体構成を示すブロック図である。 本発明の第九実施形態に係る角度算出手段の構成を示すブロック図である。 本発明の第九実施形態に係るモニターを示す正面図である。
符号の説明
1 内視鏡装置
3 内視鏡スコープ
5 光源装置
45 先端部
47 被検体
51 蛍光ファイババンドル
53 照射部
65 CCD
73 インテンシファイア内臓CCD
81 距離測定手段
83 蛍光量算出手段
93 蛍光画像生成手段
95 内視鏡画像生成手段
97 スーパーインポーザ
100 距離測定手段
109 蛍光量算出手段
113 ICチップ
115 読取部
117 較正データ
141 先端光学系
169 移動量算出装置
191 角度算出手段
S1 反射光信号
S2 蛍光信号
S3 距離信号
S5 蛍光画像信号
S6 内視鏡画像信号
S10 距離信号
SL 距離信号

Claims (15)

  1. 少なくとも1つの光源を搭載し、照明光と励起光とを発生する光源装置と、
    先端部分に前記照明光および前記励起光の照射部を有する内視鏡スコープと、
    前記照明光が被検体に反射した反射光を検出する反射光撮像手段と、
    該反射光撮像手段からの反射光信号をもとに内視鏡画像信号を生成する内視鏡画像生成手段と、
    前記励起光によって前記被検体に発生した蛍光を検出する蛍光検出手段と、
    該蛍光検出手段からの蛍光信号をもとに蛍光画像信号を生成する蛍光画像生成手段と、
    前記照射部と前記被検体との距離に相当する距離信号を生成する距離測定手段と、
    前記蛍光信号あるいは前記蛍光画像信号を、前記距離信号により補正して前記距離の変動に影響されない前記蛍光の特性値を算出する特性値算出手段と、
    を備える内視鏡装置。
  2. 前記特性値が蛍光量である請求項1に記載の内視鏡装置。
  3. 前記特性値が蛍光画像のサイズである請求項1に記載の内視鏡装置。
  4. 少なくとも1つの光源を搭載し、照明光と励起光とを発生する光源装置と、
    先端部分に前記照明光および前記励起光の照射部を有する内視鏡スコープと、
    前記照明光が被検体に反射した反射光を検出する反射光撮像手段と、
    該反射光撮像手段からの反射光信号をもとに内視鏡画像信号を生成する内視鏡画像生成手段と、
    前記励起光によって前記被検体に発生した蛍光を検出する蛍光検出手段と、
    該蛍光検出手段からの蛍光信号をもとに蛍光画像信号を生成する蛍光画像生成手段と、
    前記照射部と前記被検体との距離に相当する距離信号を生成する距離測定手段と、
    前記蛍光検出手段へ蛍光を伝達する伝達手段の先端と前記照射部とを支持し、前記内視鏡スコープに対して光軸方向に移動可能に設けられた先端光学系ユニットと、
    前記距離測定手段からの前記距離信号に応じて前記先端光学系ユニットを移動させる駆動手段と、
    を備える内視鏡装置。
  5. 前記内視鏡画像信号と前記蛍光画像信号とを合成する画像合成手段を備える請求項1から請求項4のいずれかに記載の内視鏡装置。
  6. 前記距離測定手段が、前記反射光信号の強度と予め設定した所定距離時の反射光強度との比により前記距離信号を生成する請求項1から請求項5のいずれかに記載の内視鏡装置。
  7. 前記距離測定手段が、超音波を利用する請求項1から請求項5のいずれかに記載の内視鏡装置。
  8. 前記距離測定手段が、マイクロ波を利用する請求項1から請求項5のいずれかに記載の内視鏡装置。
  9. 前記距離測定手段が、光を利用する請求項1から請求項5のいずれかに記載の内視鏡装置。
  10. 前記内視鏡スコープの前記被検体に対する角度を算出する角度算出手段を備える請求項1から請求項5のいずれかに記載の内視鏡装置。
  11. 前記距離測定手段が、被検体から反射される超音波の出力を検出し、該出力と距離との関係を予め設定した較正データにより被検体との距離を算出する請求項7に記載の内視鏡装置。
  12. 前記距離測定手段が、内視鏡スコープ毎に設定された前記較正データを格納し、使用する内視鏡スコープを特定するスコープ認識手段を備える請求項11に記載の内視鏡装置。
  13. 前記特性値算出手段が、前記蛍光信号あるいは前記蛍光画像信号を、蛍光薬剤を投与してからの経過時間に基づいて補正する薬剤投与後時間補正手段を備える請求項1から請求項12のいずれかに記載の内視鏡装置。
  14. 前記蛍光信号あるいは前記蛍光画像信号を、前記励起光を発生する光源の光強度により補正する光源強度揺らぎ補正手段を備える請求項1から請求項13のいずれかに記載の内視鏡装置。
  15. 前記特性値算出手段により算出された前記特性値に応じて異なる視覚効果で表示する請求項1から請求項14のいずれかに記載の内視鏡装置。
JP2005208828A 2004-07-30 2005-07-19 内視鏡装置 Expired - Fee Related JP5461753B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005208828A JP5461753B2 (ja) 2004-07-30 2005-07-19 内視鏡装置
US11/190,316 US8606350B2 (en) 2004-07-30 2005-07-27 Endoscope apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004223861 2004-07-30
JP2004223861 2004-07-30
JP2005208828A JP5461753B2 (ja) 2004-07-30 2005-07-19 内視鏡装置

Publications (2)

Publication Number Publication Date
JP2006061683A true JP2006061683A (ja) 2006-03-09
JP5461753B2 JP5461753B2 (ja) 2014-04-02

Family

ID=35733294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208828A Expired - Fee Related JP5461753B2 (ja) 2004-07-30 2005-07-19 内視鏡装置

Country Status (2)

Country Link
US (1) US8606350B2 (ja)
JP (1) JP5461753B2 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082769A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp 試料分析装置
JP2008048787A (ja) * 2006-08-22 2008-03-06 Olympus Corp 内視鏡装置、及び内視鏡プローブ
WO2008072579A1 (ja) * 2006-12-11 2008-06-19 Olympus Corporation 蛍光内視鏡
JP2008142346A (ja) * 2006-12-11 2008-06-26 Olympus Corp 蛍光内視鏡
WO2008114725A1 (ja) * 2007-03-16 2008-09-25 Olympus Corporation 内視鏡観察装置および内視鏡観察方法
JP2008229025A (ja) * 2007-03-20 2008-10-02 Olympus Corp 蛍光観察装置
JP2009066121A (ja) * 2007-09-12 2009-04-02 Sanyo Electric Co Ltd 撮像装置
JP2009279170A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光画像取得方法および蛍光画像取得装置
JP2010005095A (ja) * 2008-06-26 2010-01-14 Fujinon Corp 内視鏡装置における距離情報取得方法および内視鏡装置
JP2010158414A (ja) * 2009-01-08 2010-07-22 Hoya Corp 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP2011062378A (ja) * 2009-09-18 2011-03-31 Fujifilm Corp 内視鏡システム
JP2011101771A (ja) * 2009-11-12 2011-05-26 Fujifilm Corp 画像表示装置
WO2011115095A1 (ja) * 2010-03-18 2011-09-22 オリンパス株式会社 蛍光観察装置および蛍光観察方法
WO2011126065A1 (ja) * 2010-04-07 2011-10-13 オリンパス株式会社 蛍光観察装置
WO2011129255A1 (ja) * 2010-04-12 2011-10-20 オリンパス株式会社 蛍光観察装置および蛍光画像処理方法
WO2012002312A1 (ja) * 2010-06-30 2012-01-05 オリンパス株式会社 蛍光観察装置
WO2012056970A1 (ja) * 2010-10-28 2012-05-03 オリンパス株式会社 蛍光観察装置
WO2012081336A1 (ja) 2010-12-13 2012-06-21 オリンパスメディカルシステムズ株式会社 医療装置
JP2012170641A (ja) * 2011-02-22 2012-09-10 Olympus Corp 蛍光観察装置
WO2012124228A1 (ja) 2011-03-15 2012-09-20 オリンパスメディカルシステムズ株式会社 医療装置
WO2012124227A1 (ja) 2011-03-15 2012-09-20 オリンパスメディカルシステムズ株式会社 医療装置
US8606350B2 (en) 2004-07-30 2013-12-10 Olympus Corporation Endoscope apparatus
WO2015045703A1 (ja) * 2013-09-27 2015-04-02 富士フイルム株式会社 内視鏡システム及びプロセッサ装置並びに作動方法並びに距離測定装置
WO2015072744A1 (ko) * 2013-11-12 2015-05-21 계명대학교 산학협력단 거리 측정 모듈을 포함하는 내시경 장치, 이를 이용한 병변 크기 측정 시스템 및 방법
WO2016104408A1 (ja) * 2014-12-22 2016-06-30 富士フイルム株式会社 内視鏡用のプロセッサ装置、及びその作動方法、並びに制御プログラム
KR101640202B1 (ko) * 2016-04-04 2016-07-21 스페클립스 주식회사 레이저 조사 장치를 이용한 질병 진단 장치 및 질병 진단용 탈부착 핸드피스
JPWO2014091964A1 (ja) * 2012-12-13 2017-01-05 オリンパス株式会社 蛍光観察装置
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
KR101782784B1 (ko) * 2016-02-26 2017-09-28 스페클립스 주식회사 레이저 유도 방전 스펙트로스코피 장치 및 고감도 핸드피스
KR20170114225A (ko) * 2016-04-04 2017-10-13 스페클립스 주식회사 레이저 시스템에서의 발생 광의 세기를 증강시키기 위한 디바이스
JP2019088771A (ja) * 2017-10-03 2019-06-13 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc Oct−nirafマルチモダリティプローブの較正
US11079279B2 (en) 2019-03-22 2021-08-03 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607041B1 (en) 2004-06-17 2008-01-16 Cadent Ltd. Method for providing data associated with the intraoral cavity
WO2008066911A2 (en) * 2006-11-30 2008-06-05 Newton Laboratories, Inc. Spectroscopically enhanced imaging
JP2008220430A (ja) * 2007-03-08 2008-09-25 Olympus Medical Systems Corp 医療器具
ATE555711T1 (de) * 2007-12-19 2012-05-15 Kantonsspital Aarau Ag Verfahren zur analyse und bearbeitung von fluoreszenzbildern
DE102008018636B4 (de) * 2008-04-11 2011-01-05 Storz Endoskop Produktions Gmbh Vorrichtung und Verfahren zur endoskopischen 3D-Datenerfassung
US20100249607A1 (en) * 2008-09-26 2010-09-30 Massachusetts Institute Of Technology Quantitative spectroscopic imaging
JP2010102196A (ja) * 2008-10-24 2010-05-06 Olympus Corp 顕微鏡画像の自動調整方法、顕微鏡システム
JP5271062B2 (ja) * 2008-12-09 2013-08-21 富士フイルム株式会社 内視鏡装置およびその作動方法
JP5242479B2 (ja) * 2009-03-26 2013-07-24 オリンパス株式会社 画像処理装置、画像処理プログラムおよび画像処理装置の作動方法
DE102009024943A1 (de) * 2009-06-10 2010-12-16 W.O.M. World Of Medicine Ag Bildgebungssystem und Verfahren zur fluoreszenz-optischen Visualisierung eines Objekts
US9946058B2 (en) * 2010-06-11 2018-04-17 Nikon Corporation Microscope apparatus and observation method
JP5592715B2 (ja) * 2010-07-02 2014-09-17 オリンパス株式会社 画像処理装置および画像処理方法
JP2014039571A (ja) * 2010-12-27 2014-03-06 Olympus Corp 蛍光内視鏡装置
JP5335017B2 (ja) * 2011-02-24 2013-11-06 富士フイルム株式会社 内視鏡装置
EP2564760A1 (en) * 2011-08-29 2013-03-06 Fujifilm Corporation Endoscopic diagnosis system
DE102011119608B4 (de) 2011-11-29 2021-07-29 Karl Storz Se & Co. Kg Vorrichtung und Verfahren zur endoskopischen 3D-Datenerfassung
KR102028199B1 (ko) * 2012-08-28 2019-10-04 한국전자통신연구원 의료 진단장치 및 그 조작방법
FR3036195B1 (fr) 2015-05-12 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede d’observation d’un objet, avec prise en compte de la distance entre le dispositif et l’objet.
FR3036187B1 (fr) 2015-05-12 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de correction d’une image de fluorescence
JP6173647B1 (ja) * 2015-09-18 2017-08-02 オリンパス株式会社 第1信号処理装置および内視鏡システム
JP6961603B2 (ja) 2016-02-12 2021-11-05 マサチューセッツ インスティテュート オブ テクノロジー 切断されていない組織検体を撮像するための方法及び装置
US20170296037A1 (en) * 2016-04-14 2017-10-19 Olympus Corporation Endoscope apparatus
WO2018008136A1 (ja) * 2016-07-07 2018-01-11 オリンパス株式会社 画像処理装置および画像処理装置の作動方法
US10485629B2 (en) * 2017-02-24 2019-11-26 Sony Olympus Medical Solutions Inc. Endoscope device
IL254896B (en) * 2017-10-03 2019-03-31 Visionsense Ltd Fluorescent camera with limited variable praise
JP7015385B2 (ja) * 2018-05-15 2022-02-02 富士フイルム株式会社 内視鏡画像処理装置、内視鏡装置の作動方法、及びプログラム
US11892617B2 (en) 2021-12-21 2024-02-06 Karl Storz Imaging, Inc. Endoscope system with adaptive lighting control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065581A (ja) * 2000-08-25 2002-03-05 Fuji Photo Film Co Ltd 内視鏡装置
JP2003036436A (ja) * 2001-04-27 2003-02-07 Fuji Photo Film Co Ltd 規格化画像生成方法および装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2764148A (en) * 1950-07-11 1956-09-25 Sheldon Edward Emannel Endoscope means for the internal examination of the human body
US4489727A (en) 1981-03-22 1984-12-25 Olympus Optical Co., Ltd. Device for diagnosing body cavity interior with supersonic waves
JPS59196483A (ja) * 1983-04-21 1984-11-07 Kobe Steel Ltd 電磁波による測距方法
US5697885A (en) * 1989-01-30 1997-12-16 Olympus Optical Co., Ltd. Endoscope for recording and displaying time-serial images
US5219345A (en) * 1990-03-30 1993-06-15 Health Research, Inc. Backscatter monitoring system
US6450950B2 (en) 1992-11-12 2002-09-17 Karl Storz Gmbh & Co. Kg Endoscope having stereo-lateral-view optics
JP3283128B2 (ja) 1993-12-03 2002-05-20 オリンパス光学工業株式会社 蛍光観察内視鏡装置
US5749830A (en) 1993-12-03 1998-05-12 Olympus Optical Co., Ltd. Fluorescent endoscope apparatus
JPH07299029A (ja) 1994-03-11 1995-11-14 Olympus Optical Co Ltd 内視鏡装置
US5863504A (en) * 1995-03-16 1999-01-26 Bio-Rad Laboratories, Inc. Fluorescence imaging instrument utilizing fish
JPH08254659A (ja) 1995-03-17 1996-10-01 Olympus Optical Co Ltd 撮像装置
AP931A (en) * 1995-10-23 2001-02-02 Cytometrics Inc Method and apparatus for reflected imaging analysis.
US6301004B1 (en) * 2000-05-31 2001-10-09 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
JPH11148897A (ja) 1997-11-14 1999-06-02 Olympus Optical Co Ltd 光イメージング装置
JPH1189843A (ja) 1997-09-22 1999-04-06 Fuji Photo Optical Co Ltd 経内視鏡的に挿入される超音波検査装置
JP3309276B2 (ja) * 1999-03-17 2002-07-29 エーカポット・パンナチェート 蛍光電子内視鏡システム
JP2002263055A (ja) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd 内視鏡先端フード
US7123756B2 (en) * 2001-04-27 2006-10-17 Fuji Photo Film Co., Ltd. Method and apparatus for standardized fluorescence image generation
US6701181B2 (en) * 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
US6749561B2 (en) * 2001-08-23 2004-06-15 Smith & Nephew, Inc. Autofocusing endoscopic system
EP1455656A1 (en) * 2001-12-20 2004-09-15 Rex Medical, L.P. Apparatus and method for treating gastroesophageal reflux disease
EP1338236B1 (en) 2002-02-25 2005-08-17 Olympus Corporation Endoscope apparatus with cooling means
US7289139B2 (en) * 2002-03-12 2007-10-30 Karl Storz Imaging, Inc. Endoscope reader
JP2003334161A (ja) 2002-05-20 2003-11-25 Pentax Corp 電荷増幅型固体撮像素子を備えた電子内視鏡装置
JP4412896B2 (ja) 2002-12-06 2010-02-10 Hoya株式会社 診断補助用装置
JP4343594B2 (ja) 2003-06-23 2009-10-14 オリンパス株式会社 内視鏡装置
JP2005118133A (ja) 2003-10-14 2005-05-12 Olympus Corp 超音波内視鏡、観察プローブ及び内視鏡観察装置
JP5461753B2 (ja) 2004-07-30 2014-04-02 オリンパス株式会社 内視鏡装置
JP5044126B2 (ja) 2006-02-23 2012-10-10 オリンパス株式会社 内視鏡観察装置および画像形成を行う内視鏡の作動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065581A (ja) * 2000-08-25 2002-03-05 Fuji Photo Film Co Ltd 内視鏡装置
JP2003036436A (ja) * 2001-04-27 2003-02-07 Fuji Photo Film Co Ltd 規格化画像生成方法および装置

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606350B2 (en) 2004-07-30 2013-12-10 Olympus Corporation Endoscope apparatus
JP4647449B2 (ja) * 2005-09-22 2011-03-09 富士フイルム株式会社 試料分析装置
JP2007082769A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp 試料分析装置
JP2008048787A (ja) * 2006-08-22 2008-03-06 Olympus Corp 内視鏡装置、及び内視鏡プローブ
WO2008072579A1 (ja) * 2006-12-11 2008-06-19 Olympus Corporation 蛍光内視鏡
JP2008142346A (ja) * 2006-12-11 2008-06-26 Olympus Corp 蛍光内視鏡
JP5097715B2 (ja) * 2006-12-11 2012-12-12 オリンパス株式会社 蛍光内視鏡
WO2008114725A1 (ja) * 2007-03-16 2008-09-25 Olympus Corporation 内視鏡観察装置および内視鏡観察方法
JP2008228810A (ja) * 2007-03-16 2008-10-02 Olympus Corp 内視鏡観察装置、観察装置および内視鏡観察方法
JP2008229025A (ja) * 2007-03-20 2008-10-02 Olympus Corp 蛍光観察装置
JP2009066121A (ja) * 2007-09-12 2009-04-02 Sanyo Electric Co Ltd 撮像装置
JP2009279170A (ja) * 2008-05-22 2009-12-03 Fujinon Corp 蛍光画像取得方法および蛍光画像取得装置
JP2010005095A (ja) * 2008-06-26 2010-01-14 Fujinon Corp 内視鏡装置における距離情報取得方法および内視鏡装置
JP2010158414A (ja) * 2009-01-08 2010-07-22 Hoya Corp 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP2011062378A (ja) * 2009-09-18 2011-03-31 Fujifilm Corp 内視鏡システム
JP2011101771A (ja) * 2009-11-12 2011-05-26 Fujifilm Corp 画像表示装置
US8481972B2 (en) 2010-03-18 2013-07-09 Olympus Corporation Fluoroscopy apparatus and fluoroscopy method
JP5860802B2 (ja) * 2010-03-18 2016-02-16 オリンパス株式会社 蛍光観察装置および蛍光観察装置の作動方法
WO2011115095A1 (ja) * 2010-03-18 2011-09-22 オリンパス株式会社 蛍光観察装置および蛍光観察方法
JP2011217886A (ja) * 2010-04-07 2011-11-04 Olympus Corp 蛍光観察装置
US8818062B2 (en) 2010-04-07 2014-08-26 Olympus Corporation Fluoroscopy device
WO2011126065A1 (ja) * 2010-04-07 2011-10-13 オリンパス株式会社 蛍光観察装置
WO2011129255A1 (ja) * 2010-04-12 2011-10-20 オリンパス株式会社 蛍光観察装置および蛍光画像処理方法
US8421034B2 (en) 2010-04-12 2013-04-16 Olympus Corporation Fluoroscopy apparatus and fluorescence image processing method
JP2011218003A (ja) * 2010-04-12 2011-11-04 Olympus Corp 蛍光観察装置および蛍光画像処理方法
WO2012002312A1 (ja) * 2010-06-30 2012-01-05 オリンパス株式会社 蛍光観察装置
JP2012010862A (ja) * 2010-06-30 2012-01-19 Olympus Corp 蛍光観察装置
WO2012056970A1 (ja) * 2010-10-28 2012-05-03 オリンパス株式会社 蛍光観察装置
JP2012090889A (ja) * 2010-10-28 2012-05-17 Olympus Corp 蛍光観察装置
CN103200857A (zh) * 2010-10-28 2013-07-10 奥林巴斯株式会社 荧光观察装置
US9313388B2 (en) 2010-10-28 2016-04-12 Olympus Corporation Fluorescence observation device
WO2012081336A1 (ja) 2010-12-13 2012-06-21 オリンパスメディカルシステムズ株式会社 医療装置
US8868160B2 (en) 2010-12-13 2014-10-21 Olympus Medical Systems Corp. Medical apparatus
JP2012170641A (ja) * 2011-02-22 2012-09-10 Olympus Corp 蛍光観察装置
US8554310B2 (en) 2011-03-15 2013-10-08 Olympus Medical Systems Corp. Medical apparatus
WO2012124227A1 (ja) 2011-03-15 2012-09-20 オリンパスメディカルシステムズ株式会社 医療装置
WO2012124228A1 (ja) 2011-03-15 2012-09-20 オリンパスメディカルシステムズ株式会社 医療装置
US8825143B2 (en) 2011-03-15 2014-09-02 Olympus Medical Systems Corp. Medical apparatus for control of excitation light based on image sensor position and fluorescent drug information
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
JPWO2014091964A1 (ja) * 2012-12-13 2017-01-05 オリンパス株式会社 蛍光観察装置
JP2015066127A (ja) * 2013-09-27 2015-04-13 富士フイルム株式会社 内視鏡システム及びプロセッサ装置並びに作動方法並びに距離測定装置
US10463240B2 (en) 2013-09-27 2019-11-05 Fujifilm Corporation Endoscope system, processor device, operation method, and distance measurement device
EP3050486A4 (en) * 2013-09-27 2016-09-07 Fujifilm Corp ENDOSCOPY SYSTEM, PROCESSOR DEVICE, OPERATING METHOD AND SPACING MEASURING DEVICE
WO2015045703A1 (ja) * 2013-09-27 2015-04-02 富士フイルム株式会社 内視鏡システム及びプロセッサ装置並びに作動方法並びに距離測定装置
KR101542354B1 (ko) * 2013-11-12 2015-08-07 계명대학교 산학협력단 거리 측정 모듈을 포함하는 내시경 장치, 이를 이용한 병변 크기 측정 시스템 및 방법
WO2015072744A1 (ko) * 2013-11-12 2015-05-21 계명대학교 산학협력단 거리 측정 모듈을 포함하는 내시경 장치, 이를 이용한 병변 크기 측정 시스템 및 방법
WO2016104408A1 (ja) * 2014-12-22 2016-06-30 富士フイルム株式会社 内視鏡用のプロセッサ装置、及びその作動方法、並びに制御プログラム
JP2016116741A (ja) * 2014-12-22 2016-06-30 富士フイルム株式会社 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム
KR101782784B1 (ko) * 2016-02-26 2017-09-28 스페클립스 주식회사 레이저 유도 방전 스펙트로스코피 장치 및 고감도 핸드피스
WO2017175913A1 (ko) * 2016-04-04 2017-10-12 스페클립스 주식회사 레이저 조사 장치를 이용한 질병 진단 장치 및 질병 진단용 탈부착 핸드피스
KR20170114225A (ko) * 2016-04-04 2017-10-13 스페클립스 주식회사 레이저 시스템에서의 발생 광의 세기를 증강시키기 위한 디바이스
US9907472B2 (en) 2016-04-04 2018-03-06 Speclipse, Inc. Disease diagnosis and skin age measurement apparatus using laser irradiation device and detachable handpiece used in the same
KR101640202B1 (ko) * 2016-04-04 2016-07-21 스페클립스 주식회사 레이저 조사 장치를 이용한 질병 진단 장치 및 질병 진단용 탈부착 핸드피스
JP2019088771A (ja) * 2017-10-03 2019-06-13 キヤノン ユーエスエイ, インコーポレイテッドCanon U.S.A., Inc Oct−nirafマルチモダリティプローブの較正
US11147453B2 (en) 2017-10-03 2021-10-19 Canon U.S.A., Inc. Calibration for OCT-NIRAF multimodality probe
US11079279B2 (en) 2019-03-22 2021-08-03 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11326949B2 (en) 2019-03-22 2022-05-10 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11422033B2 (en) 2019-03-22 2022-08-23 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same
US11892353B2 (en) 2019-03-22 2024-02-06 Speclipse, Inc. Diagnosis method using laser induced breakdown spectroscopy and diagnosis device performing the same

Also Published As

Publication number Publication date
JP5461753B2 (ja) 2014-04-02
US8606350B2 (en) 2013-12-10
US20060025692A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP5461753B2 (ja) 内視鏡装置
KR100411631B1 (ko) 형광 내시경 장치 및 그 장치를 이용한 진단부위 조상 방법
US8188446B2 (en) Fluorescence imaging apparatus
US8169470B2 (en) Optical imaging device having illumination light filter section
EP1705477B1 (en) Fluorescence detecting system
JP5118867B2 (ja) 内視鏡観察装置および内視鏡の作動方法
JP4585050B1 (ja) 蛍光観察装置
US20080007716A1 (en) Raman scattering light observation apparatus and endoscope apparatus
US20060052710A1 (en) Endoscope apparatus and fluorescence detection method using endoscope apparatus
US7102142B2 (en) Method of apparatus for generating fluorescence diagnostic information
US20060247537A1 (en) Endoscope apparatus
JP5208430B2 (ja) 生体組織用蛍光観察装置
US20090266999A1 (en) Apparatus and method for fluorescent imaging
US9241615B2 (en) Image acquisition and display method and image capturing and display apparatus
EP2533682A1 (en) Method and device for multi-spectral photonic imaging
JP5555002B2 (ja) 蛍光内視鏡装置
US20110012025A1 (en) Fluorescence observation apparatus
EP1728464A1 (en) Endoscope image pickup system
JP2018089109A (ja) 内視鏡装置及び内視鏡装置の作動方法
JP4731225B2 (ja) 蛍光観察装置及び光源装置
JP2011005002A (ja) 内視鏡装置
JP2006340796A (ja) センチネルリンパ節検出システム
US20030216626A1 (en) Fluorescence judging method and apparatus
JP5489806B2 (ja) 蛍光内視鏡装置
JP4109132B2 (ja) 蛍光判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121016

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R151 Written notification of patent or utility model registration

Ref document number: 5461753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees