WO2008072579A1 - 蛍光内視鏡 - Google Patents

蛍光内視鏡 Download PDF

Info

Publication number
WO2008072579A1
WO2008072579A1 PCT/JP2007/073712 JP2007073712W WO2008072579A1 WO 2008072579 A1 WO2008072579 A1 WO 2008072579A1 JP 2007073712 W JP2007073712 W JP 2007073712W WO 2008072579 A1 WO2008072579 A1 WO 2008072579A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
unit
insertion portion
signal
body cavity
Prior art date
Application number
PCT/JP2007/073712
Other languages
English (en)
French (fr)
Inventor
Toshiaki Watanabe
Atsushi Okawa
Yasushige Ishihara
Ryo Karasawa
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2008549287A priority Critical patent/JP5097715B2/ja
Priority to US12/518,377 priority patent/US20100020163A1/en
Publication of WO2008072579A1 publication Critical patent/WO2008072579A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Definitions

  • the present invention relates to a fluorescence endoscope.
  • a balloon is provided at the tip of the probe. During the above examination, the balloon was inflated and brought into close contact with the blood vessel wall.
  • a distance measuring means that generates a distance signal corresponding to the distance between the excitation light irradiation unit and the subject, and a fluorescence signal or
  • a technique for diagnosing a lesion using a characteristic value calculation unit that corrects a fluorescent image signal is also known (for example, see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-219130
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-61638
  • the present invention has been made to solve the above-described problems, and in fluorescence observation using a side-view endoscope, the inner periphery of a body cavity as a subject is observed in multiple directions.
  • a fluorescence endoscope is provided that makes it easy to discriminate whether the body cavity tissue in the observation region is benign tissue or malignant tissue force even if the observation distance between the entire inner peripheral surface of the body cavity and the insertion part changes. The purpose is to do.
  • the present invention provides the following means.
  • the present invention relates to the positioning of the insertion portion relative to the body cavity in the radial direction of the insertion portion by contacting the insertion portion inserted into the body cavity and the inner wall of the body cavity located in the radial direction of the insertion portion.
  • a balloon for performing excitation, and exciting light emitted to the inner wall is emitted radially outward of the insertion portion, and fluorescence generated from the inner wall is emitted from a plurality of different radial directions of the insertion portion to the insertion portion.
  • a correction signal calculation unit for calculating a correction signal for correcting the imaging signal output from the imaging unit, and based on the correction signal, the intensity of the imaging signal is corrected based on the correction signal and corrected imaging.
  • the balloon comes into contact with the inner wall of the body cavity located in the radial direction of the insertion portion, thereby positioning the insertion portion at the approximate center of the body cavity.
  • the balloon can force the distances between the partial regions of the inner wall of the body cavity in the radial direction of the insertion portion and the insertion portion to be equal.
  • the light emission introduction part emits excitation light radially outward of the insertion part, and Irradiate the inner wall of the body cavity with the same distance from the insertion part by the Thereby, fluorescence is generated from the inner wall irradiated with the excitation light. Fluorescence generated from the inner wall of the body cavity is introduced into the insertion part by the light emission introduction part.
  • each fluorescence is introduced into the insertion portion from a plurality of different radial directions of the insertion portion.
  • an imaging part images the fluorescence introduce
  • the correction signal calculation unit calculates a correction signal for correcting the imaging signal output from the imaging unit based on the distance between the contact surface of the balloon with the inner wall and the insertion portion. That is, different correction signals are calculated in the correction signal calculation unit in accordance with the change in the distance between the contact surface of the balloon with the inner wall and the insertion portion.
  • the signal processing unit corrects the intensity of the image pickup signal output from the image pickup unit based on the correction signal calculated by the correction signal calculation unit, and generates an image signal from the corrected image pickup signal.
  • the light emitting and introducing portion emits the excitation light radially outward of the insertion portion, and the fluorescence generated by the inner wall force is transmitted along the central axis of the insertion portion.
  • a reflection part that is arranged so as to be rotatable about the central axis, and the image pickup part picks up the fluorescence reflected from the reflection part.
  • the excitation light is emitted radially outward of the insertion portion from the irradiation portion provided in the light emission introduction portion, and is irradiated on the inner wall of the body cavity. Fluorescence is generated from the inner wall of the body cavity irradiated with the excitation light, and the fluorescence is introduced into the insertion portion. The fluorescence introduced into the insertion portion is reflected toward the central axis of the insertion portion by the reflection portion provided in the light emission introduction portion.
  • the reflecting part Since the reflecting part is arranged so as to be rotatable around the central axis, the fluorescence generated by the inner wall force of the body cavity located in a plurality of different radial directions of the insertion part is reflected toward the central axis direction of the insertion part.
  • the fluorescence reflected from the reflection unit is imaged by the imaging unit. Therefore, according to the present invention, it is possible to acquire an image of fluorescence generated from the inner wall of a body cavity located in a plurality of different radial directions of the insertion portion.
  • the reflecting part transmits light having a wavelength unnecessary for diagnosis of the body cavity (for example, excitation light emitted from the irradiating part) that reflects only the fluorescence generated by the inner wall force. Good.
  • a rotation drive unit that rotates the reflection unit may be provided! /.
  • the fluorescence generated from the partial regions of the inner wall of the body cavity located in the plurality of different radial directions of the insertion portion is reflected toward the imaging portion, and is reflected on the imaging portion. It is good also as imaging fluorescence.
  • the rotation drive unit may rotate only the reflection unit, or rotate the light emission introduction unit including the reflection unit, for example, a tube-like one provided with the light emission introduction unit. Further, it may be arranged so as to be rotatable with respect to the insertion portion.
  • the light emission introducing portion is disposed at least inside the distal end portion of the insertion portion, and a rotation portion that is rotatably arranged around a central axis of the insertion portion;
  • An irradiating unit that is provided in the rotating unit and emits the excitation light radially outward of the insertion unit, and a reflecting unit that is provided in the rotating unit and reflects the fluorescence generated by the inner wall force toward the central axis direction
  • the imaging unit is provided in the rotating unit, and images the fluorescence reflected from the reflecting unit.
  • the excitation light is emitted radially outward of the insertion portion from the irradiation portion provided in the rotating portion, and is irradiated on the inner wall of the body cavity. Fluorescence is generated from the inner wall of the body cavity irradiated with the excitation light, and the fluorescence passes through the insertion part and is introduced into the rotating part.
  • the fluorescence introduced into the inside of the rotating part is reflected toward the center axis of the insertion part by the reflecting part provided in the rotating part.
  • the fluorescence reflected from the reflection unit is imaged by the imaging unit, and the imaging unit acquires an image of the partial region of the inner wall located in the radial direction of the insertion unit.
  • the rotating part is disposed inside the insertion part so as to be rotatable around the central axis of the insertion part, the fluorescence is introduced into the insertion part by a plurality of different radial forces of the insertion part. Is possible.
  • the light emission introducing portion is disposed at least inside the distal end portion of the insertion portion, and the rotation portion is disposed so as to be rotatable around the central axis of the insertion portion;
  • An irradiation unit that is provided in the rotation unit and emits the excitation light radially outward of the insertion unit, and the imaging unit may image the fluorescence introduced into the rotation unit.
  • the excitation light is emitted radially outward of the insertion part from the irradiation part provided in the rotating part, and is applied to the inner wall of the body cavity. Fluorescence is generated from the inner wall of the body cavity irradiated with the excitation light, and the fluorescence passes through the insertion part and is introduced into the rotating part.
  • the fluorescence introduced into the rotating unit is imaged by an imaging unit provided in the rotating unit.
  • the rotating part is disposed in the insertion part so as to be rotatable around the central axis of the insertion part, it is possible to introduce fluorescence into the insertion part from a plurality of different radial directions of the insertion part. Is possible. Therefore, according to the present invention, it is possible to image fluorescence generated from the inner wall of a body cavity located in a plurality of different radial directions of the insertion portion.
  • the light emitting and introducing section includes an irradiation section that emits the excitation light radially outward of the insertion section, and the fluorescence generated by the inner wall force in the direction of the central axis of the insertion section.
  • a conical mirror that reflects toward the screen, and the imaging unit images the fluorescence reflected from the conical mirror.
  • the excitation light is emitted from the irradiating portion outward in the radial direction of the insertion portion, and irradiated to the inner wall of the body cavity.
  • the inner wall force fluorescence of the body cavity irradiated with the excitation light is generated, and the fluorescence is introduced from the light emission introduction part into the insertion part.
  • the fluorescence introduced into the light emission introduction part is reflected toward the central axis of the insertion part by a conical mirror provided in the light emission introduction part, and is imaged by the imaging part.
  • the conical mirror can introduce fluorescence into the insertion portion from a plurality of different radial directions of the insertion portion. As a result, it is possible to take an image of fluorescence generated from the inner wall of the body cavity located in a plurality of different radial directions of the insertion portion.
  • the moving distance of the imaging unit relative to the body cavity is measured by the penetration length measuring unit.
  • a signal related to the insertion length output from the insertion length measuring unit is input to the image processing unit.
  • the fluorescent image signal output from the imaging unit and the signal relating to the insertion length output from the insertion length measurement unit are input to the image processing unit, and the imaging signal is processed based on both signals. Is called.
  • the imaging signal output from the imaging unit is a signal related to a fluorescent image of the entire inner peripheral surface of the inner wall reflected on the conical mirror
  • the image processing unit outputs a signal related to the fluorescent image reflected on the conical mirror.
  • the signal can be converted into a signal related to the fluorescence image in a state where the body cavity is expanded.
  • An inflow part for allowing fluid to flow into the balloon, a flow rate measuring part for measuring a flow rate of the fluid flowing into the balloon, and a flow rate signal output from the flow rate measuring part A calculation unit for obtaining a distance between a contact surface of the balloon with the inner wall and the insertion portion, and the correction signal calculation unit is obtained by the calculation unit.
  • the correction signal may be calculated based on the distance.
  • fluid flows into the balloon through the inflow portion.
  • the balloon inflated by the fluid that has flowed in comes into contact with the inner wall of the body cavity located in the radial direction of the insertion section, thereby positioning the insertion section at the approximate center of the body cavity.
  • the volume of the inflated balloon can be calculated from the flow rate of the fluid flowing into the balloon. Therefore, based on the flow rate signal measured by the flow rate measurement unit, the calculation unit can easily calculate the distance between the contact surface of the balloon with the inner wall and the insertion portion.
  • the correction signal calculation unit calculates the correction signal based on the distance obtained by the calculation unit based on the distance obtained by the calculation unit, so that the distance from the inner wall to the imaging unit becomes a predetermined constant distance. It is possible to generate an image signal similar to the case where the image is kept.
  • a fluorescent agent is disposed on a contact surface of the balloon with the inner wall, and a fluorescence detection unit that detects the intensity of the fluorescence generated from the fluorescent agent is provided. Is the correction signal based on the distance obtained by the calculation unit. May be calculated.
  • the excitation light emitted outward in the radial direction of the insertion portion is applied to the fluorescent agent disposed on the contact surface of the balloon with the inner wall. Fluorescence is generated from the fluorescent material irradiated with the excitation light. The fluorescence intensity of the generated fluorescence is detected by the fluorescence detection unit.
  • the fluorescence intensity signal output from the fluorescence detection unit can be regarded as a signal related to the distance between the fluorescent agent and the fluorescence detection unit. .
  • the correction signal calculation unit calculates the correction signal based on the fluorescence intensity signal, thereby generating an image signal similar to the case where the distance from the inner wall to the imaging unit is maintained at a predetermined constant distance. Can do.
  • the ultrasonic signal generator for generating ultrasonic waves toward the contact surface of the balloon with the inner wall, wherein the fluid flowing into the balloon is a liquid
  • controlling the ultrasonic signal detector for detecting the ultrasonic wave reflected from the contact surface and the ultrasonic signal generator, and based on the detection signal output from the ultrasonic signal detector, the balloon
  • a control unit for obtaining a distance between the contact surface with the inner wall and the insertion portion, and the correction signal calculation unit outputs the correction signal based on the distance obtained by the control unit. It may be calculated.
  • ultrasonic waves are generated from the ultrasonic signal generator toward the contact surface of the balloon and propagate in the balloon filled with liquid.
  • the attenuation rate of the ultrasonic wave is lower than that in the case where the gas is filled.
  • the ultrasonic wave propagated in the balloon is reflected on the contact surface and detected by the ultrasonic signal detector.
  • the control unit controls the ultrasonic wave generated by controlling the ultrasonic signal generation unit, and the detection signal output from the ultrasonic signal detector is input to the control unit. For this reason, the control unit determines whether the contact surface and the insertion unit are based on the phase difference between the phase of the ultrasonic wave generated from the ultrasonic signal generation unit and the phase of the ultrasonic wave detected by the ultrasonic signal detector. The distance to can be obtained.
  • the correction signal calculation unit corrects the correction signal based on the distance obtained by the control unit.
  • the correction signal calculation unit calculates, it is possible to generate an image signal similar to the case where the distance from the inner wall to the imaging unit is maintained at a predetermined constant distance.
  • a microwave signal generator that generates a microwave toward the contact surface of the balloon with the inner wall, and a microwave signal detector that detects the microwave reflected from the contact surface; And controlling the microwave signal generator and determining a distance between the contact surface of the balloon with the inner wall and the insertion portion based on a detection signal output from the microwave signal detector.
  • a control unit, and the correction signal calculation unit may calculate the correction signal based on the distance obtained by the calculation unit.
  • microwaves are generated from the microwave signal generator toward the contact surface of the balloon and propagate in the balloon.
  • the microwave propagates in the balloon at a low rate and attenuation rate compared to the ultrasonic wave.
  • the microwave propagated in the balloon is reflected on the contact surface and detected by the microwave signal detector.
  • the control unit controls the microwave generated by controlling the microwave signal generator, and the detection signal output from the microwave signal detector is input to the control unit. For this reason, the control unit determines whether the contact surface and the insertion unit are based on the phase difference between the phase of the microwave generated from the microwave signal generation unit and the phase of the microwave detected by the microwave signal detector. The distance can be determined.
  • the correction signal calculation unit calculates the correction signal based on the distance obtained by the control unit, so that the same image signal as when the distance from the inner wall to the imaging unit is maintained at a predetermined constant distance. Can be generated.
  • the fluorescence endoscope of the present invention even if the observation distance between the entire inner peripheral surface of the body cavity that is the subject and the insertion portion changes, the gap between the entire inner peripheral surface of the body cavity and the insertion portion is maintained. Since an image signal similar to that in the case of being maintained at a predetermined distance can be generated, it is possible to easily discriminate whether the body cavity tissue is a benign tissue or a malignant tissue.
  • FIG. 1 is a schematic diagram illustrating the configuration of a fluorescence endoscope according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the configuration of the insertion portion in FIG. 1.
  • 3 is a perspective view for explaining the configuration of the irradiation lens in FIG. 2.
  • FIG. 2 is a schematic diagram for explaining the configuration of the insertion portion in FIG. 1.
  • 3 is a perspective view for explaining the configuration of the irradiation lens in FIG. 2.
  • FIG. 4 A perspective view illustrating the configuration of the reflecting mirror in FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA for explaining the configuration of the holding portion of FIG.
  • FIG. 6 is a flowchart illustrating a method for controlling the actuator of FIG. 1.
  • FIG. 7 is a flowchart for explaining a processing method in the fluorescence signal processing unit of FIG. 1.
  • FIG. 8] A schematic diagram illustrating the configuration of the fluorescence endoscope in the first modification of the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram illustrating the configuration of the conical mirror in FIG.
  • FIG. 9 is a diagram illustrating a fluorescent image captured by the image sensor of FIG.
  • FIG. 12 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to the second modification of the first embodiment of the present invention.
  • FIG. 13 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • FIG. 14 A schematic diagram illustrating the configuration of a fluorescence endoscope according to a third modification of the first embodiment of the present invention.
  • FIG. 15 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • FIG. 16 A schematic diagram illustrating the configuration of a fluorescence endoscope according to a fourth modification of the first embodiment of the present invention.
  • FIG. 17 is a schematic diagram for explaining the structure of the insertion portion in FIG.
  • FIG. 18 is a front view for explaining the structure of the insertion portion in FIG.
  • FIG. 19 A schematic diagram illustrating the configuration of a fluorescence endoscope according to a fifth modification of the first embodiment of the present invention.
  • FIG. 20 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • FIG. 21 A schematic diagram illustrating the configuration of the fluorescence endoscope in the sixth modification of the first embodiment of the present invention.
  • FIG. 22 is a schematic diagram illustrating another configuration of the fluorescence endoscope of FIGS. 1 to 21.
  • FIG. 23 A schematic diagram illustrating still another configuration of the fluorescence endoscope of FIGS.
  • FIG. 24 A schematic diagram illustrating still another configuration of the fluorescence endoscope of FIGS. 1 to 21. 25] A schematic diagram illustrating the configuration of the fluorescence endoscope according to the second embodiment of the present invention. [26] [26] FIG. 26 is a schematic diagram illustrating the configuration of the insertion portion in FIG.
  • FIG. 27 is a schematic diagram illustrating a configuration of a fluorescence endoscope according to a first modification of the second embodiment of the present invention.
  • FIG. 28 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • FIG. 29 A schematic diagram illustrating the configuration of a fluorescence endoscope according to a second modification of the second embodiment of the present invention.
  • FIG. 30 is a schematic diagram for explaining the structure of the insertion portion in FIG.
  • Ultrasonic wave generation measurement unit (ultrasonic signal generator, ultrasonic signal detector)
  • Microwave generation measuring unit (microwave signal generator, microwave signal detector) BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram illustrating the configuration of the fluorescence endoscope of the present embodiment.
  • the fluorescence endoscope 1 includes a insertion portion 5 inserted into a body cavity 3 of a subject, a light source 7 that emits excitation light, and a distance between the insertion portion 5 and the inner wall of the body cavity 3.
  • FIG. 2 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • the insertion part 5 is inserted into the body cavity 3 of the subject and observes the fluorescence generated from the inner wall of the body cavity 3.
  • the insertion section 5 includes an outer tube 13, a balloon 15, a light emitting section (light emitting introduction section) 17, a light introducing section (light emitting introducing section) 19, and an imaging section. 21 and are provided.
  • the outer tube 13 is a tube constituting the outer peripheral surface of the insertion portion 5.
  • An excitation light window 25 through which excitation light is transmitted and a fluorescence window 27 through which fluorescence is transmitted are provided at the insertion side end of the outer tube 13 (the left end in FIG. 2).
  • Balloons 15 are arranged on the outer peripheral surfaces of 25 and the fluorescent window 27.
  • a light emitting part 17, a light introducing part 19, an imaging part 21, and a holding part 45 are arranged inside the outer tube 13.
  • the fluorescence window 27 is disposed at a position near the insertion side end of the outer tube 13.
  • the excitation light window 25 is a member formed in a substantially cylindrical shape, and the excitation light emitted from the light source 7 is It is formed from a transparent material.
  • the fluorescent window 27 is a member formed in a substantially cylindrical shape, and is formed from a material that transmits fluorescence generated from the body cavity 3.
  • the balloon 15 is inflated in the body cavity 3 to fix the insertion part 5 to the body cavity 3, and to position the insertion side end of the insertion part 5 at the approximate center of the body cavity channel. .
  • the balloon 15 is disposed on the outer peripheral surface of the excitation light window 25 and the fluorescence window 27 in the outer tube 13, and transmits the excitation light and the fluorescence window 27 that pass through the excitation light window 25. It is formed from a material that transmits fluorescence.
  • the balloon 15 is connected to an air supply pump 49 of the measurement control unit 9 to be described later!
  • the balloon 15 before being inflated is indicated by a solid line, and the inflated balloon 15 is indicated by a two-dot chain line.
  • FIG. 3 is a perspective view illustrating the configuration of the irradiation lens of FIG.
  • FIG. 4 is a perspective view for explaining the configuration of the reflection mirror of FIG.
  • the light emitting unit 17 emits the excitation light emitted from the light source 7 toward the inner wall of the body cavity 3.
  • the light emitting unit 17 includes a light guide 29, an irradiation lens 31, and an irradiation mirror (irradiation unit) 33.
  • the light emission part 17 can radiate
  • the light guide 29 guides the excitation light emitted from the light source 7 to the irradiation lens 31 arranged at the insertion side end of the insertion unit 5.
  • the light guide 29 is composed of a bundle of fibers for guiding excitation light, and is formed in a substantially cylindrical shape.
  • the irradiation lens 31 is a lens that irradiates the entire observation region of the body cavity 3 with excitation light.
  • the irradiation lens 31 is the insertion side end of the insertion portion 5 and is disposed between the light guide 29 and the irradiation mirror 33.
  • the irradiation lens 31 is a lens having an annular shape as shown in FIG. 3 and a concave groove formed on the surface facing the light guide 29.
  • the irradiation mirror 33 is a mirror that reflects the excitation light emitted in the direction of the central axis of the insertion portion 5 to the outside in the radial direction of the insertion portion 5.
  • the irradiation mirror 33 is disposed inside the outer tube 13 and at a position facing the excitation light window 25.
  • the irradiation mirror 33 is a mirror that is formed in a substantially conical shape and has a conical surface as a reflection surface, and is a mirror in which a through hole is formed along the central axis. Mira for irradiation One 33 is held by the mirror holding part 34.
  • the light introducing unit 19 reflects the fluorescence generated from the body cavity 3 toward the imaging unit 21.
  • the light introducing unit 19 includes a dichroic mirror (reflecting unit) 35, a drive motor (rotational driving unit) 37, and a motor control unit 39.
  • the dichroic mirror 35 reflects the fluorescence that has passed through the fluorescence window 27 in the direction along the central axis of the insertion portion 5, and transmits light having a wavelength other than the fluorescence imaged by the imaging portion 21. Is.
  • the dichroic mirror 35 is disposed in the outer tube 13 at a position facing the fluorescent window 27 so as to be rotatable about the central axis of the insertion portion 5.
  • the dichroic mirror 35 is formed in a rectangular parallelepiped shape, and reflects fluorescence generated from a partial region of the body cavity 3 toward the imaging unit 21.
  • the dichroic mirror 35 is held by a dichroic mirror holding unit 36.
  • the dichroic mirror 35 can be a known one, and is not particularly limited.
  • the drive motor 37 rotates the dichroic mirror 35 around the center axis of the insertion portion 5 as the rotation center.
  • the drive motor 37 is disposed at the tip of the insertion portion 5 and is connected to the motor control portion 39. Note that a known motor can be used as the drive motor 37 and is not particularly limited.
  • the motor control unit 39 controls the rotation of the dichroic mirror 35 by controlling the rotation of the drive motor 37.
  • the phase signal of the dichroic mirror 35 is output from the motor control unit 39 to the fluorescence signal processing unit 57, and the control signal is output from the motor control unit 39 to the drive motor 37.
  • the imaging unit 21 captures an image of fluorescence generated from the body cavity 3.
  • the imaging unit 21 includes an imaging lens system 41 and an imaging element 43 as shown in FIG.
  • the imaging lens system 41 forms an image of the fluorescence reflected by the dichroic mirror 35 on the light receiving surface of the imaging device 43.
  • the imaging lens system 41 is disposed between the dichroic mirror 35 and the imaging element 43 and is disposed inside the irradiation mirror 33, in other words, on the central axis of the insertion portion 5.
  • the description will be applied to the case of the imaging lens system 41 composed of a plurality of lenses.
  • the configuration of the imaging lens system 41 is not particularly limited. Absent.
  • the image sensor 43 captures an image of fluorescence generated from the body cavity 3.
  • the image sensor 43 is arranged inside the irradiation lens 31, in other words, on the central axis of the insertion part 5 and connected to the fluorescence signal processing part 57 of the display part 11.
  • the imaging element 43 may be a known element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and is not particularly limited.
  • FIG. 5 is a cross-sectional view taken along the line AA for explaining the configuration of the holding portion of FIG.
  • the holding unit 45 holds the irradiation lens 31, the imaging lens system 41, and the imaging element 43, and prevents excitation light emitted from the irradiation lens 31 from directly entering the imaging element 43. Is. As shown in FIG. 5, the holding portion 45 has a groove portion 46 through which a signal line for transmitting a control signal from the motor control portion 39 to the drive motor 37 is formed.
  • the light source 7 irradiates the body cavity 3 and emits excitation light that generates fluorescence from the body cavity 3. In particular, it emits excitation light that generates strong fluorescence from the lesion T in the body cavity 3.
  • the excitation light emitted from the light source 7 is incident on the light guide 29 of the insertion part 5.
  • the measurement control unit 9 measures the distance between the insertion unit 5 and the inner wall of the body cavity 3.
  • the measurement control section 9 includes an air supply pump (inflow section) 49, a flow meter (flow measurement section) 51, and a distance measurement section (calculation section) 53.
  • the air supply pump 49 inflates the balloon 15 by supplying air (fluid).
  • the air supplied from the air supply pump 49 is sent to the balloon 15 through the air supply tube 55 disposed on the outer peripheral surface of the outer skin tube 13.
  • the flow signal of the air pump 49 is output to the flow meter 51.
  • a known pump can be used as the air supply pump 49, and is not particularly limited.
  • the flow meter 51 measures the flow rate of the air supplied from the air supply pump 49 to the balloon 15. Specifically, the air flow rate is measured based on the flow rate signal of the air supply pump 49.
  • the flow rate signal is information necessary for obtaining the flow rate of the supplied air, and examples include the driving time of the air supply pump 49 and the rotational speed of the pump.
  • a signal related to the air flow rate measured by the flow meter 51 is output to the distance measuring unit 53.
  • the distance measuring unit 53 measures the distance between the insertion portion 5 and the inner wall of the body cavity 3.
  • a signal related to the air flow rate is input from the flow meter 51 to the distance measuring unit 53, and the distance measuring unit 53 can obtain the distance between the insertion unit 5 and the inner wall of the body cavity 3 based on the signal.
  • a distance signal related to the distance between the insertion part 5 and the inner wall of the body cavity 3 is output from the distance measurement part 53 to the fluorescence signal processing part 57.
  • the display unit 11 displays the fluorescent image captured by the imaging unit 21. As shown in FIG. 1, the display unit 11 includes a fluorescence signal processing unit (correction signal calculation unit, signal processing unit) 57 and a monitor 59.
  • a fluorescence signal processing unit correction signal calculation unit, signal processing unit
  • the fluorescence signal processing unit 57 converts the image signal output from the image sensor 43 into an image signal to be displayed on the monitor 59.
  • the fluorescence signal processing unit 57 includes an imaging signal output from the imaging device 43, a phase signal of the dichroic mirror 35 output from the motor control unit 39, and a distance signal output from the distance measurement unit 53. Have been entered. An image signal is output from the fluorescence signal processing unit 57 to the monitor 59.
  • the insertion portion 5 of the fluorescence endoscope 1 is inserted into the body cavity 3.
  • the balloon 15 is shrunk so as not to obstruct the insertion, and is in a state of being in close contact with the outer peripheral surface of the insertion portion 5.
  • the insertion side end of the insertion portion 5 When the insertion side end of the insertion portion 5 reaches the examination region of the body cavity 3, air is supplied from the air supply pump 49 to the balloon 15, and the balloon 15 is inflated and pressed against the inner wall of the body cavity 3.
  • the insertion part 5 is fixed to the body cavity 3 by the balloon 15, and the insertion side end of the insertion part 5 is arranged at the approximate center of the duct in the body cavity 3.
  • the air supply pump 49 continues air supply until the pressure in the balloon 15 reaches a predetermined pressure, and stops air supply after the pressure reaches the predetermined pressure.
  • FIG. 6 is a flowchart illustrating a method for controlling the actuator of FIG.
  • the flow meter 51 measures the air flow rate based on the flow signal output from the air supply pump 49, and outputs information related to the air flow rate to the distance measurement unit 53 (step S1).
  • the distance measuring unit 53 measures the distance between the insertion part 5 and the inner wall of the body cavity 3 by obtaining the outer diameter of the balloon 15 based on the input information relating to the air flow rate (step S2).
  • the distance measuring unit 53 includes a lookup tape relating to the flow rate of the air sent to the balloon 15 and the distance between the insertion portion 5 and the inner wall of the body cavity 3 corresponding to the flow rate.
  • the distance measurement unit 53 can obtain the distance between the insertion unit 5 and the inner wall of the body cavity 3 by referring to the lookup table.
  • the data constituting the look-up table can be obtained by, for example, actually measuring in advance by experiments.
  • the distance measuring unit 53 generates a distance signal to be output to the fluorescence signal processing unit 57 based on the obtained distance between the insertion unit 5 and the inner wall of the body cavity 3. That is, the actuator driving unit 53 controls the relative position of the holding unit 45 with respect to the outer tube 13 so that the distance between the imaging element 43 and the inner wall of the body cavity 3 is a predetermined constant distance.
  • the distance measuring unit 53 first determines the distance from the inner wall of the body cavity 3 to the dichroic mirror 35 obtained from the obtained distance between the insertion part 5 and the inner wall of the body cavity 3, and the outer skin.
  • the dichroic mirror 35 force obtained based on the relative position of the holding portion 45 with respect to the tube 13 and the distance to the image sensor 43 and the force are obtained from the current inner wall of the body cavity 3 to the image sensor 43.
  • the distance measuring unit 53 obtains a difference between the obtained distance and the predetermined constant distance (Step S3), and outputs a signal (distance signal) related to the difference to the fluorescence signal processing unit 57 (Step S3). S4).
  • the distance measuring unit 53 when the obtained distance is longer than the predetermined constant distance, the distance measuring unit 53 has positive sign information, an absolute value of a difference between the obtained distance and the predetermined constant distance, A distance signal including is output.
  • the calculated distance is shorter than the predetermined constant distance, a distance signal including negative sign information and an absolute value of a difference between the calculated distance and the predetermined constant distance is obtained. Output.
  • excitation light is emitted from the light source 7, and the excitation light is emitted from the light guide 29 to the outer tube.
  • Excitation light enters from light guide 29
  • the light is emitted in a direction along the central axis of the part 5, passes through the irradiation lens 31, and enters the irradiation mirror 33.
  • the excitation light incident on the irradiation mirror 33 is reflected toward the outside in the radial direction of the insertion portion 5, passes through the excitation light window 25 and the balloon 15, and enters the body cavity 3.
  • the excitation light passes through the irradiation lens 31 and is applied with the force S to illuminate the entire observation region in the body cavity 3.
  • Fluorescence is generated from the body cavity 3 where the excitation light is incident.
  • the amount of fluorescent light generated from the lesion T is larger than the amount of fluorescent light generated from the normal body cavity 3.
  • the fluorescence passes through the balloon 15 and the fluorescence window 27 and enters the outer tube 13.
  • the fluorescence incident on the dichroic mirror 35 is reflected in the direction of the central axis of the insertion portion 5.
  • Light having a wavelength other than the fluorescence incident on the dichroic mirror 35 passes through the dichroic mirror 35 without being reflected.
  • the fluorescence reflected by the dichroic mirror 35 is imaged on the light receiving surface of the image sensor 43 by the imaging lens system 41.
  • the imaging element 43 outputs an imaging signal to the fluorescence signal processing unit 57 based on the formed fluorescent image.
  • the rotation of the dichroic mirror 35 is controlled by the motor control unit 39.
  • the motor control unit 39 controls the phase of the dichroic mirror 35 by controlling the rotation of the drive motor 37. Fluorescence generated from the entire inner wall of the body cavity 3 is incident on the image sensor 43 when the dichroic mirror 35 is controlled to rotate about the central axis of the insertion portion 5.
  • the motor control unit 39 outputs a signal related to the rotational phase of the dichroic mirror 35 to the fluorescence signal processing unit 57.
  • FIG. 7 is a flowchart for explaining the processing method in the fluorescence signal processing unit in FIG. 1.
  • the fluorescence signal processing unit 57 receives the distance signal input from the distance measurement unit 53 and the image sensor 43. An image signal is calculated based on the imaging signal and a signal related to the rotational phase input from the motor control unit 39.
  • the fluorescence signal processing unit 57 first generates a correction signal based on the distance signal input from the correction signal calculation unit 53 (step S5). For example, positive sign information is included in the distance signal If so, the fluorescence signal processing unit 57 calculates a correction signal that controls the degree of amplification of the fluorescence intensity included in the image signal, based on the absolute value of the difference included in the distance signal. On the other hand, when the negative sign information is included in the distance signal, the fluorescent signal processing unit 57 determines the degree of decrease in the fluorescent intensity included in the image signal based on the absolute value of the difference included in the distance signal. A correction signal to be controlled is calculated.
  • the fluorescence signal processing unit 57 performs a correction process on the imaging signal based on the calculated correction signal to generate an image signal (step S6).
  • the fluorescence signal processing unit 57 performs a correction process on all the signals related to the fluorescence intensity included in the imaging signal based on the correction signal to generate an image signal. That is, the fluorescence signal processing unit 57 generates an image signal related to the fluorescence intensity obtained when imaging is performed at the predetermined constant distance, regardless of the distance from the actual inner wall of the body cavity 3 to the image sensor 43.
  • the imaging signal input from the imaging device 43 is a signal related to an image that rotates as the dichroic mirror 35 rotates.
  • the fluorescence signal processing unit 57 converts the imaging signal, which is a signal related to the rotating image, into an image signal related to the still image.
  • the image signal that has been corrected and converted in the fluorescence signal processing unit 57 is output from the fluorescence signal processing unit 57 to the monitor 59 and displayed on the monitor 59.
  • the balloon 15 can be positioned substantially at the center of the body cavity 3 by contacting the inner wall of the body cavity 3 positioned in the radial direction of the insertion part 5. That is, the balloon 15 can equalize the distance between all the partial regions of the inner wall of the body cavity 3 and the insertion portion 5 in the radial direction of the insertion portion 5.
  • the light emitting portion 17 can emit excitation light radially outward of the insertion portion 5 and irradiate the inner wall of the body cavity 3 with the same distance from the insertion portion 5 by the balloon 15. Thereby, fluorescence is generated from the inner wall irradiated with the excitation light.
  • Fluorescence generated from the inner wall of the body cavity 3 passes through the balloon 15, travels radially inward of the insertion part 5, and is introduced into the insertion part 5 by the light introduction part 19.
  • each fluorescence is introduced into the insertion portion from a plurality of different radial directions of the insertion portion 5.
  • the imaging element 43 of the imaging unit 21 can image the fluorescence introduced from the light introducing unit 19 into the insertion unit 5.
  • the fluorescence signal processing unit 57 calculates a correction signal for correcting the imaging signal output from the imaging unit 21 based on the distance between the contact surface of the balloon 15 with the inner wall and the insertion unit 5. That power S.
  • a different correction signal is calculated in the fluorescence signal processing unit 57 in accordance with a change in the distance between the contact surface of the balloon 15 with the inner wall and the insertion portion 5. Then, based on the correction signal calculated in the fluorescence signal processing unit 57, the intensity of the imaging signal output from the imaging element 43 of the imaging unit 21 can be corrected, and an image signal can be generated from the corrected imaging signal. .
  • the excitation light is emitted radially outward of the insertion portion 5 by the irradiation mirror 33 provided in the light emitting portion 17 and is applied to the inner wall of the body cavity 3 in contact with the balloon 15. Fluorescence is generated from the inner wall of the body cavity 3 irradiated with the excitation light, and the fluorescence is introduced into the insertion portion 5.
  • the fluorescence introduced into the insertion portion 5 is reflected toward the central axis of the insertion portion 5 by the dichroic mirror 35 provided in the light introduction portion 19.
  • the dichroic mirror 35 Since the dichroic mirror 35 is arranged so as to be rotatable about the central axis, the inner wall force of the body cavity 3 located in a plurality of different radial directions of the insertion part 5 The generated fluorescence is directed toward the central axis of the insertion part 5. Reflected. The fluorescence reflected from the dichroic mirror 35 is picked up by the image pickup device 43 of the image pickup unit 21, and the image pickup device 43 can acquire an image of a partial region of the inner wall located in the radial direction of the insertion portion 5.
  • the dichroic mirror 35 By rotating the dichroic mirror 35, the partial region force of the inner wall of the body cavity 3 located in a plurality of different radial directions of the insertion portion 5 is reflected toward the image sensor 43, and the image sensor 43 can image fluorescence.
  • FIG. 8 shows the configuration of the fluorescence endoscope in this modification. It is a schematic diagram to explain. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fluorescence endoscope 101 includes a insertion part 105 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, the insertion part 5, and the inner wall of the body cavity 3.
  • a measurement control unit 9 for measuring the distance between the display unit and a display unit 111 for displaying the captured fluorescent image.
  • the insertion portion 105 includes an outer tube 13, a nolane 15, a light emission portion (light emission introduction portion) 17, a light introduction portion (light emission introduction portion) 119, An imaging unit 21 is provided.
  • the light introducing unit 119 reflects the fluorescence generated from the body cavity 3 toward the imaging unit 21.
  • the light introducing unit 119 includes a conical mirror (reflecting unit) 135.
  • FIG. 9 is a schematic diagram illustrating the configuration of the conical mirror in FIG.
  • the conical mirror 135 reflects the fluorescence transmitted through the fluorescence window 27 in a direction along the central axis of the insertion portion 5.
  • the conical mirror 135 is disposed inside the outer tube 13 and at a position facing the fluorescent window 27.
  • the conical mirror 135 is a mirror having a conical shape and a conical surface as a reflecting surface. Therefore, the conical mirror 135 reflects the fluorescence generated from the entire inner wall of the body cavity 3 toward the imaging unit 21.
  • the conical mirror 135 is disposed at the tip of the insertion part 105.
  • the conical mirror 135 may have a truncated cone shape as long as it has a predetermined reflective surface area.
  • the display unit 111 displays the fluorescent image captured by the imaging unit 21.
  • the display unit 111 includes a fluorescence signal processing unit (correction signal calculation unit, signal processing unit, image processing unit) 157, a monitor 59, an image sensor (insertion length measuring unit) 161, It is equipped with.
  • the fluorescence signal processing unit 157 displays the image signal output from the image sensor 43 on the monitor 59.
  • the image signal is converted into an image signal.
  • the fluorescence signal processing unit 157 receives the image signal output from the image sensor 43 and the distance signal output from the distance measurement unit 53. An image signal is output from the fluorescence signal processing unit 157 to the monitor 59.
  • the image sensor 161 measures the insertion length of the insertion part 5 with respect to the body cavity 3.
  • the image sensor 161 measures the insertion length of the insertion portion 5 by taking an image of a scale provided in the insertion portion 5.
  • a signal related to the insertion length is output from the image sensor 161 to the fluorescence signal processing unit 157.
  • a known sensor or the like can be used as the image sensor 161, and a known method can be used as a method for calculating the insertion length, which is not particularly limited.
  • the fluorescence generated from the body cavity 3 passes through the balloon 15 and the fluorescence window 27 and enters the outer tube 13.
  • the incident fluorescence is reflected by the conical mirror 135 in the direction of the central axis of the insertion portion 105. That is, the fluorescence generated from the entire inner peripheral surface of the body cavity 3, which is a region facing the fluorescence window 27, enters the conical mirror 135 and is reflected in the direction of the image sensor 43.
  • the fluorescence reflected by the conical mirror 135 is imaged on the light receiving surface by the imaging lens system 41 on the imaging device 43.
  • the imaging element 43 outputs an imaging signal to the fluorescence signal processing unit 157 based on the formed fluorescence image.
  • FIG. 10 is a diagram showing a fluorescent image captured by the image sensor of FIG.
  • FIG. 11 is a diagram showing an image after being converted by the fluorescent signal processing unit of FIG.
  • the fluorescence signal processing unit 157 generates an image signal based on the image signal input from the image sensor 43 and the signal relating to the insertion length input from the image sensor 161.
  • the image related to the imaging signal input from the imaging device 43 is an image of the inner wall of the body cavity 3 reflected on the circumferential surface of the conical mirror 135, as shown in FIG.
  • the fluorescence signal processing unit 157 depends on the insertion length. Based on the received signal, processing such as expansion processing and expansion processing is performed on the imaging signal to generate an image signal related to the image in which the body cavity 3 is expanded as shown in FIG.
  • the generated image signal is output to the monitor 59 and displayed on the monitor 59 as shown in FIG.
  • the excitation light is emitted from the irradiation mirror 33 outward in the radial direction of the insertion portion 105, and is applied to the inner wall of the body cavity 3 in contact with the balloon 15. Fluorescence is generated from the inner wall of the body cavity 3 irradiated with the excitation light, and the fluorescence is introduced into the insertion portion 105.
  • the fluorescent light introduced into the light introduction part 119 is reflected toward the central axis of the insertion part 105 by the conical mirror 135 provided in the light introduction part 119.
  • the fluorescent light reflected from the conical mirror 135 is picked up by the image pickup device 43 of the image pickup unit 21, and the image pickup device 43 can acquire an image of the partial region of the inner wall located in the radial direction of the insertion portion 105.
  • the basic configuration of the fluorescence endoscope of the present modification is the same as that of the first embodiment, but the configuration of the insertion portion is different from that of the first embodiment. Therefore, in this modification, only the vicinity of the insertion portion will be described with reference to FIGS. 12 and 13, and description of other components will be omitted.
  • FIG. 12 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to this modification. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fluorescence endoscope 201 includes an insertion portion 205 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion portion 205, and an inner wall of the body cavity 3.
  • a measurement control unit 9 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • FIG. 13 is a schematic diagram illustrating the configuration of the insertion portion in FIG.
  • the insertion part 205 is provided with an outer insertion part (insertion part) 213A and an inner insertion part (light emission introduction part, rotation part) 213B.
  • the outer insertion portion 213A is a tube constituting the outer peripheral surface of the insertion portion 205.
  • Outer insertion part A balloon 15 is arranged on the outer peripheral surface of the insertion side end portion (the left end portion in FIG. 13) in 213A.
  • the outer insertion portion 213A may be formed as a insertion portion of a so-called rigid endoscope that does not bend. By doing so, the inner insertion portion 213B inserted inside can be easily rotated with respect to the outer insertion portion 213A.
  • the inner insertion portion 213B is inserted into the outer insertion portion 213A.
  • the inner insertion portion 213B includes an excitation light window 225, a fluorescence window 227, a light emission portion (light emission introduction portion) 217, a light introduction portion (light emission introduction portion) 219, and an imaging portion 21. Is provided.
  • the excitation light window 225 is a window through which excitation light is emitted from the inner insertion portion 213B toward the outer side.
  • the excitation light window 225 is formed in the vicinity of the end on the tip side of the inner insertion portion 213B, and is formed so that the circumferential length of the inner insertion portion 213B is about 1/4 of the circumference. ing.
  • the fluorescence window 227 is a window through which the fluorescence enters the inner insertion portion 213B from the outside to the inside.
  • the fluorescent window 227 is formed in the vicinity of the end on the tip side of the inner insertion portion 213B, and is formed so that the circumferential length of the inner insertion portion 213B is about 1/4 of the circumference. Yes.
  • the fluorescence window 227 is formed on the tip side of the inner insertion portion 213B with respect to the excitation light window 225.
  • the circumferential lengths of the excitation light window 225 and the fluorescence window 227 may be about 1/4 of the circumference as described above, or may be less than that. However, it is not particularly limited.
  • the light emitting unit 217 emits the excitation light emitted from the light source 7 toward the inner wall of the body cavity 3. As shown in FIG. 13, the light emitting unit 217 includes a light guide 229, an irradiation lens 231 and an irradiation mirror (irradiation unit) 233.
  • the light guide 229 guides the excitation light emitted from the light source 7 to the irradiation lens 231 disposed at the insertion side end of the inner insertion portion 213B.
  • the light guide 229 is composed of a bundle of fibers that guide the excitation light.
  • the irradiation lens 231 is a lens that irradiates the entire observation region of the body cavity 3 with excitation light.
  • the irradiation lens 231 is the insertion side end of the inner insertion portion 213B and is disposed between the light guide 229 and the irradiation mirror 233.
  • the irradiation lens 231 is a lens in which the surface facing the light guide 229 is formed in a concave shape.
  • the irradiation mirror 233 is a mirror that reflects the excitation light emitted from the irradiation lens 231 in the central axis direction of the insertion portion 5 to the radially outer side of the inner insertion portion 213B.
  • the irradiation mirror 233 is disposed inside the inner insertion portion 213B and at a position facing the excitation light window 225.
  • the irradiation mirror 233 is a mirror having a three-dimensional shape in which the cross section cut by a plane including the central axis of the inner insertion portion 213B is triangular, and the cross sectional shape is rotated about the central axis as a rotation axis.
  • the irradiation mirror 233 is held by the mirror holding unit 234.
  • the light introducing unit 219 reflects the fluorescence generated from the body cavity 3 toward the imaging unit 21.
  • the light introducing section 219 includes a dichroic mirror (reflecting section) 35 as shown in FIG.
  • the dichroic mirror 35 is directly fixed to the tip of the inner insertion portion 213B.
  • the outer insertion portion 213A of the fluorescent endoscope 201 is inserted into the body cavity 3.
  • the insertion into the body cavity may be performed in a state where a direct-viewing endoscope (not shown) is placed inside the outer insertion portion 213A. During insertion, you can see the front, making insertion easy.
  • the direct view endoscope is pulled out and the inner insertion part 213B is inserted.
  • the balloon 15 is shrunk so as not to obstruct the insertion, and is brought into close contact with the outer peripheral surface of the outer insertion portion 213A!
  • the insertion side end portion of the outer insertion portion 213A When the insertion side end portion of the outer insertion portion 213A reaches the examination region of the body cavity 3, air is supplied from the air supply pump 49 to the balloon 15, and the balloon 15 is inflated and pressed against the inner wall of the body cavity 3.
  • the outer insertion portion 213A is fixed to the body cavity 3 by the balloon 15, and the insertion side end portion of the outer insertion portion 213A is disposed substantially in the center of the duct in the body cavity 3.
  • the inner insertion portion 213B is inserted into the outer insertion portion 213A.
  • excitation light is emitted from the light source 7, and the excitation light is guided by the light guide 229 into the inner insertion portion.
  • the excitation light is emitted from the light guide 229 in the direction along the central axis of the inner insertion portion 213B, passes through the irradiation lens 231 and enters the irradiation mirror 233.
  • the excitation light incident on the irradiation mirror 233 is reflected toward the radially outer side of the inner insertion part 213B, passes through the excitation light window 225, the outer insertion part 213A, and the balloon 15 and enters the body cavity 3.
  • the excitation light can illuminate the entire observation region in the body cavity 3 by passing through the irradiation lens 231.
  • Fluorescence is generated from the body cavity 3 where the excitation light is incident.
  • the amount of fluorescent light generated from the lesion T is larger than the amount of fluorescent light generated from the normal body cavity 3.
  • the fluorescence passes through the balloon 15, the outer insertion portion 213A and the fluorescent window 227 and enters the inner insertion portion 213B.
  • the fluorescence incident on the dichroic mirror 35 is reflected in the direction of the central axis of the inner insertion portion 213B.
  • Light having a wavelength other than the fluorescence incident on the dichroic mirror 35 passes through the dichroic mirror 35 without being reflected.
  • An image is formed on the light receiving surface at 43.
  • the imaging element 43 outputs an imaging signal to the fluorescence signal processing unit 57 based on the formed fluorescent image.
  • the fluorescence signal processing unit 57 generates an image signal based on the image signal input from the image sensor 43.
  • the image signal is output from the fluorescence signal processing unit 57 to the monitor 59 and displayed on the monitor 59.
  • the inner insertion portion 213B is disposed so as to be rotatable around the central axis with respect to the outer insertion portion 213A. Therefore, by rotating the inner insertion portion 213B, the inner insertion portion 213B can be removed from a predetermined inner wall of the body cavity 3. The generated fluorescence can be observed.
  • the excitation light is also emitted from the irradiation mirror 233 provided in the inner insertion portion 213B radially outward of the insertion portion 205 and is in contact with the balloon 15. Is irradiated.
  • the inner wall force fluorescence of the body cavity irradiated with the excitation light is generated, and the fluorescence is transmitted through the insertion part 205 and introduced into the inner insertion part 213B.
  • the fluorescence introduced into the inner insertion part 213B is inserted by the dichroic mirror 35 provided in the inner insertion part 213B.
  • the light is reflected toward the central axis of the portion 205.
  • the fluorescent light reflected from the dichroic mirror 35 is picked up by the image pickup device 43 of the image pickup unit 21, and the image pickup device 43 can acquire an image of a partial region of the inner wall located in the radial direction of the insertion portion 205.
  • the inner insertion portion 213B is disposed inside the insertion portion 205 so as to be rotatable around the central axis of the insertion portion 205, a plurality of different radial forces, e.g. ⁇ It can be introduced inside the insertion section 205. Therefore, the image sensor 43 can image fluorescence generated by the inner wall force of the body cavity located in the plurality of different radial directions of the insertion portion 205.
  • the basic configuration of the fluorescence endoscope of this modification is the same as that of the second modification of the first embodiment. 1S
  • the first embodiment is different from the first embodiment in the structure of the rotary insertion portion. Therefore, in this modification, only the periphery of the rotary insertion portion will be described using FIG. 14 and FIG. 15, and description of other components will be omitted.
  • FIG. 14 is a schematic diagram illustrating the configuration of the fluorescence endoscope in the present modification. Note that the same components as those of the second modification of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fluorescence endoscope 901 includes an insertion portion 905 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion portion 905, and the inner wall of the body cavity 3.
  • a measurement control unit 9 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • FIG. 15 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • the insertion portion 905 includes an outer insertion portion 213A and a rotation insertion portion (light emission introduction portion, rotation portion) 913B.
  • the rotary insertion portion 913B is disposed inside the tip portion of the outer insertion portion 213A so as to be rotatable around the central axis of the insertion portion 905.
  • the rotary insertion unit 913B is provided with an excitation light window 225, a fluorescence window 227, a light emission unit 217, a light introduction unit 219, and an imaging unit 21.
  • the rotary insertion portion 913B is provided with an optical rotary joint 915, a signal rotary joint 917, and a insertion portion drive motor 919.
  • the optical rotary joint 915 is a joint that guides excitation light from the outer insertion portion 213A to the rotation insertion portion 913B that rotates in the outer insertion portion 213A.
  • the optical rotary joint 915 is disposed on the central axis of the insertion part 905 and is arranged so as to connect the light guide 229 in the outer insertion part 213A and the light guide 229 of the rotary insertion part 913B.
  • the optical rotary joint 915 is provided with lenses 916A and 916B arranged to face each other, the lens 916A is arranged in the outer insertion portion 213A, and the lens 916B is arranged in the rotation insertion portion 913B. Therefore, the excitation light emitted from the light guide 229 in the outer insertion portion 213A passes through the lens 916A and the lens 916B and enters the light guide 229 of the rotary insertion portion 913B.
  • a known optical rotary joint can be used as the optical rotary joint 915, and the present invention is not limited to the optical rotary joint of the aspect exemplified in the present embodiment.
  • the signal rotary joint 917 is a joint that electrically connects the outer insertion portion 213A and the rotary insertion portion 913B that rotates in the outer insertion portion 213A.
  • the signal rotary joint 917 is provided with an imaging current collecting ring 921 and an imaging brush 923 that guide the imaging signal output from the imaging device 43 to the fluorescence signal processing unit 57.
  • the current collecting ring 921 for imaging is an annular or cylindrical member provided in the rotary insertion portion 913B, and both the current collection rings 921 are arranged so that the center axis line coincides with the central axis line of the rotary insertion portion 913B. Has been.
  • the imaging current collecting ring 921 is electrically connected to the imaging element 43.
  • the imaging brush 923 is a brush provided in the outer insertion portion 213A.
  • the imaging brush 923 is slidably disposed on the circumferential surface or the cylindrical surface of the imaging current collecting ring 921, and is electrically connected to the fluorescence signal processing unit 57.
  • a known current collector such as a slip ring can be used as the signal rotary joint 917, and the present invention is not limited to the signal rotary joint of the aspect exemplified in the present embodiment.
  • the insertion portion drive motor 919 is disposed in the outer insertion portion 213A, and rotates the rotary insertion portion 913B in the outer insertion portion 213A.
  • the insertion portion drive motor 919 is arranged to rotationally drive the rotation insertion portion 913B via a gear (not shown) and the like. Connected to the data control unit 39!
  • a known motor can be used, and is not particularly limited.
  • the excitation light incident on the lens 916B is condensed on the light guide 229 of the rotary insertion portion 913B.
  • the condensed excitation light is emitted through the irradiation lens 231.
  • the action of the excitation light illuminating the body cavity 3 is the same as that of the second modification example, and thus the description thereof is omitted.
  • the imaging device 43 Based on the formed fluorescent image, the imaging device 43 outputs an imaging signal to the signal rotary joint 917.
  • the imaging signal from the imaging device 43 is input to the fluorescence signal processing unit 57 from the current collecting ring 921 for imaging of the signal rotary joint 917 through the imaging brush 923.
  • the central axis of the current collecting ring 921 for imaging coincides with the central axis of the rotary insertion portion 913B. Therefore, even if the rotary insertion portion 913B is rotationally driven by the insertion portion drive motor 919, the imaging current collecting ring 921 and the imaging brush 923 can be kept in sliding contact without being separated. Therefore, the current collecting ring 921 for imaging and the brush 923 for imaging can be kept electrically connected.
  • the excitation light is emitted radially outward of the insertion portion 905 from the light emitting portion 217 provided in the rotation insertion portion 913B and is applied to the inner wall of the body cavity 3 in contact with the balloon 15 Irradiated. Fluorescence is generated from the inner wall of the body cavity 3 irradiated with the excitation light, and the fluorescence passes through the outer insertion portion 213A and is introduced into the rotation insertion portion 913B.
  • the fluorescence introduced into the rotary insertion portion 913B is imaged by the image sensor 43 provided in the rotation insertion portion 913B.
  • the rotation insertion portion 913B is located inside the outer insertion portion 213A and the center of the insertion portion 905. Since it is arranged so as to be rotatable around the axis, it is possible to introduce fluorescence into a plurality of different radial forces of the insertion part 905, the inside of the rotation insertion part 913B.
  • the basic configuration of the fluorescence endoscope of this modification is the same as that of the second modification of the first embodiment, and the configuration of the inner insertion portion is different from that of the first embodiment. Therefore, in this modification, only the periphery of the inner insertion portion will be described with reference to FIGS. 16 to 18 and description of other components will be omitted.
  • FIG. 16 is a schematic diagram illustrating the configuration of the fluorescence endoscope in the present modification. Note that the same components as those of the second modification of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fluorescence endoscope 301 includes an insertion part 30 5 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion part 305, and the inner wall of the body cavity 3.
  • a measurement control unit 9 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • FIG. 17 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • the insertion portion 305 includes an outer insertion portion 213A and an inner insertion portion (light emission introduction portion, rotation portion) 313B.
  • FIG. 18 is a front view for explaining the configuration of the insertion portion in FIG.
  • the inner insertion portion 313B is inserted into the outer insertion portion 213A.
  • the inner insertion part 313B includes an excitation light window 225, a fluorescence window 227, a light emission part (light emission introduction part) 217, a light introduction part (light emission introduction part) 219, an imaging part 21,
  • the forceps hole 325 is a through hole provided in the inner insertion portion 313B through which the direct-view scope 327, forceps, and the like are passed.
  • the forceps hole 325 is a through hole formed in the vicinity of the outer peripheral surface of the inner insertion portion 313B (see FIG. 18) along the central axis.
  • the direct-view scope 327 is passed through the forceps hole 325, and the distal end of the direct-view scope 327 protrudes from the distal end side end of the inner insertion portion 313B.
  • the direct-view scope 327 an image in the central axis direction of the insertion portion 305 can be acquired.
  • medical treatment of the body cavity 3 can be performed by passing various forceps through the forceps hole 325.
  • the basic configuration of the fluorescence endoscope of the present modification is the same as that of the first embodiment, but the configuration of the insertion portion is different from that of the first embodiment. Therefore, in this modification, only the vicinity of the insertion portion will be described using FIG. 19 and FIG. 20, and description of other components will be omitted.
  • FIG. 19 is a schematic diagram illustrating the configuration of the fluorescence endoscope in the present modification. Note that the same components as those in the first embodiment are denoted by the same reference numerals and explanations thereof are omitted. I will omit the description.
  • the fluorescence endoscope 401 includes a insertion part 405 inserted into the body cavity 3 of the subject, a power source 407 for supplying power, the insertion part 405, and the inner wall of the body cavity 3.
  • a measurement control unit 9 for measuring the distance between the display unit 11 and a display unit 11 for displaying the captured fluorescent image.
  • FIG. 20 is a schematic diagram for explaining the configuration of the insertion portion in FIG.
  • the insertion part 405 is provided with an outer insertion part 413A and an inner insertion part (light emission introduction part, rotation part) 413B.
  • the outer insertion portion 413A is a tube constituting the outer peripheral surface of the insertion portion 405. Outer insertion part
  • a balloon 15 is disposed on the outer peripheral surface of the insertion side end portion (left end portion in FIG. 20) in 413A. At least the region where the balloon 15 of the outer insertion portion 413A is disposed and the region facing the window portion 425, which will be described later, is formed of a material that transmits excitation light and fluorescence that pass through the window portion 425. It is good. It is desirable that the outer insertion portion 413A be formed as a insertion portion of a so-called rigid endoscope that does not bend. In this way, the inner insertion portion 413B inserted inside can be easily rotated with respect to the outer insertion portion 413A.
  • the inner insertion portion 413B is inserted into the outer insertion portion 413A.
  • the inner insertion portion 413B includes an outer tube 413, a light emission portion (light emission introduction portion) 417, an imaging portion 421, and a window portion 425 through which excitation light and fluorescence are transmitted. Is provided.
  • the outer tube 413 is a tube constituting the outer peripheral surface of the inner insertion portion 413B.
  • a window portion 425 through which excitation light and fluorescence are transmitted is provided at the insertion side end portion (the left end portion in FIG. 20) of the outer tube 413, and a balloon 15 is disposed on the outer peripheral surface of the window portion 425.
  • a light emitting unit 417, an imaging unit 421, and a holding unit 445 are arranged inside the outer tube 413.
  • the window 425 is formed of a material that transmits the excitation light emitted from the light source 7 and the fluorescence generated from the body cavity 3.
  • the light emitting unit 417 emits excitation light toward the inner wall of the body cavity 3. Light emitting part
  • 417 includes an LED (Light Emitting Diode) (irradiation unit) 429.
  • LED Light Emitting Diode
  • LED429 emits excitation light when power is supplied from power supply 407. is there.
  • the LED 429 is arranged so as to emit excitation light toward the window 425 side, which is outside the insertion portion 405 in the radial direction.
  • the LED 429 and the power source 407 are connected by a power wiring 430.
  • the LED 429 may be used as described above, or any other element that emits excitation light may be used.
  • the image capturing unit 421 captures an image of fluorescence generated from the body cavity 3.
  • the imaging unit 421 includes an imaging lens system 441 and an imaging element 443 as shown in FIG.
  • the imaging lens system 441 forms an image of fluorescence transmitted through the window 425 on the light receiving surface of the imaging device 443.
  • the imaging lens system 441 is disposed between the window 425 and the imaging element 443.
  • the optical axis of the imaging lens system 441 is arranged to be parallel to the radial direction of the inner insertion portion 413B.
  • the image sensor 443 captures an image of fluorescence generated from the body cavity 3.
  • the image sensor 443 is arranged so as to image fluorescence incident from the window 425.
  • the image sensor 443 is arranged so as to image fluorescence incident from the radially outer side of the inner insertion portion 413B.
  • the image sensor 443 is connected to the fluorescence signal processing unit 57 of the display unit 11 from the signal spring 444, and is connected.
  • 3 ⁇ 4 445 holds the LED 429 and the image sensor 443.
  • the outer insertion portion 413A of the fluorescent endoscope 401 is inserted into the body cavity 3.
  • the insertion into the body cavity may be performed with a direct-viewing endoscope (not shown) inside the outer insertion portion 413 ⁇ .
  • a direct-viewing endoscope (not shown) inside the outer insertion portion 413 ⁇ .
  • the direct view type endoscope is pulled out and the inner insertion portion 413B is inserted.
  • the balloon 15 is shrunk so as not to obstruct the insertion, and is brought into close contact with the outer peripheral surface of the outer insertion portion 413!
  • the insertion side end of the outer insertion portion 413 When the insertion side end of the outer insertion portion 413 reaches the examination region of the body cavity 3, air is supplied from the air supply pump 49 to the balloon 15, and the balloon 15 is inflated and pressed against the inner wall of the body cavity 3.
  • the outer insertion portion 413A is fixed to the body cavity 3 by the balloon 15, and the insertion side end portion of the outer insertion portion 413A is disposed substantially at the center of the duct in the body cavity 3. Thereafter, the inner insertion portion 413B is inserted into the outer insertion portion 413A.
  • Fluorescence is generated from the body cavity 3 where the excitation light is incident.
  • the fluorescence passes through the balloon 15 and the window portion 425 and enters the inner insertion portion 413B.
  • the incident fluorescence is imaged on the light receiving surface by the imaging lens system 441 on the imaging device 443.
  • the imaging device 443 outputs an imaging signal to the fluorescence signal processing unit 57 based on the formed fluorescent image.
  • the LED 429 provided in the inner insertion portion 413B can emit excitation light radially outward of the insertion portion 405.
  • excitation light is applied to the inner wall of the body cavity 3 that is in contact with the balloon 15, and fluorescence is generated from the inner wall of the body cavity 3 irradiated with the excitation light.
  • the generated fluorescence passes through the insertion part 405 and is introduced into the inner insertion part 413B.
  • the image sensor 443 provided in the inner insertion part 413B can image the fluorescence introduced into the inner insertion part 413B.
  • the inner insertion portion 413B is arranged inside the insertion portion 405 and is rotatable around the central axis, so that the fluorescence is emitted from a plurality of different radial directions of the insertion portion 405. It can be introduced into the insertion part 405. Therefore, the imaging element 443 of the imaging unit 421 can image fluorescence generated from the inner wall of the body cavity 3 located in the plurality of different radial directions of the insertion unit 405.
  • FIG. 1 The basic configuration of the fluorescence endoscope of the present modification is the same as that of the first embodiment, but the configuration of the insertion portion is different from that of the first embodiment. Therefore, in this modification, FIG. Only the periphery of the insertion portion will be described, and description of other components will be omitted.
  • FIG. 21 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to this modification. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fluorescence endoscope 501 includes an insertion part 50 5 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion part 505, and the inner wall of the body cavity 3.
  • a measurement control unit 9 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • the insertion part 505 is inserted into the body cavity 3 of the subject and observes the fluorescence generated from the inner wall of the body cavity 3.
  • the insertion section 505 includes an outer tube 513, a balloon 15, a light emission section (light emission introduction section) 517, a light introduction section (light emission introduction section) 19, and an imaging section 521. I have.
  • the outer tube 513 is a tube constituting the outer peripheral surface of the insertion portion 505.
  • a window portion 525 through which excitation light and fluorescence are transmitted is provided at the insertion end portion (the left end portion in FIG. 21) of the outer tube 513, and a balloon 15 is disposed on the outer peripheral surface of the window portion 525.
  • a light emitting unit 517, an imaging unit 521, and a holding unit 545 are arranged inside the outer tube 513.
  • the window 525 is formed in a cylindrical shape, and is formed of a material that transmits the excitation light emitted from the light source 7 and the fluorescence generated from the body cavity 3.
  • the light emitting unit 517 emits the excitation light emitted from the light source 7 (see FIG. 1) toward the inner wall of the body cavity 3. As shown in FIG. 21, the light emitting unit 517 includes a light guide 29, an irradiation lens 531, and an irradiation mirror (irradiation unit) 533.
  • the irradiation lens 531 is a lens that irradiates the entire observation region of the body cavity 3 with excitation light.
  • the irradiation lens 531 is the insertion side end of the insertion portion 505 and is disposed between the light guide 29 and the irradiation mirror 533.
  • the irradiation lens 531 is a lens formed in an annular shape, and a surface facing the irradiation mirror 533 is formed in a convex shape.
  • the irradiation mirror 533 is a mirror that reflects excitation light emitted from the irradiation lens 531 in the direction of the central axis of the insertion portion 505 to the outside in the radial direction of the insertion portion 505.
  • the irradiation mirror 533 is disposed inside the insertion portion 505 and at a position facing the window portion 525.
  • the illumination mirror 533 is a mirror formed in a substantially conical shape and having a conical surface as a reflection surface. That is, the mirror has a through hole formed along the central axis.
  • the conical surface is formed as a curved surface that protrudes outward as shown in the figure.
  • the cross section cut by a plane including the central axis of the insertion portion 505 is a triangle, and the mirror has a three-dimensional shape in which the cross-sectional shape is rotated about the central axis as a rotation axis.
  • the irradiation mirror 533 is held by the distal end portion 534 of the insertion portion 505.
  • the image capturing unit 521 captures an image of fluorescence generated from the body cavity 3.
  • the imaging unit 521 includes an imaging lens system 541 and an imaging element 43 as shown in FIG.
  • the imaging lens system 541 forms an image of the fluorescence reflected by the dichroic mirror 35 on the light receiving surface of the imaging device 43.
  • the imaging lens system 541 is disposed between the dichroic mirror 35 and the imaging element 43.
  • the holding unit 545 holds the irradiation lens 531, the imaging lens system 541, and the imaging element 43.
  • Excitation light is emitted from the light source 7, and the excitation light passes through the insertion portion 505 by the light guide 29 and is guided to the distal end side end portion of the insertion portion 5.
  • Excitation light is emitted from the light guide 29 in a direction along the central axis of the insertion portion 5, passes through the irradiation lens 531, and enters the irradiation mirror 33.
  • the excitation light is emitted as parallel light from the irradiation lens 531.
  • the excitation light that has entered the irradiation mirror 533 is reflected toward the outside in the radial direction of the insertion portion 505, passes through the excitation light window 25 and the balloon 15, and enters the body cavity 3.
  • the excitation light can illuminate the entire observation region in the body cavity 3 because the reflecting surface of the irradiation mirror 533 is a convex curved surface.
  • the lens diameter of the imaging lens system 541 that forms an image of fluorescence on the imaging device 43 can be increased as compared with the first embodiment.
  • the amount of fluorescence to be imaged can be increased. In other words, it is brighter than the first embodiment.
  • fluorescent images can be taken.
  • FIG. 22 is a schematic diagram for explaining another configuration of the fluorescence endoscope shown in FIGS. 1 to 21.
  • FIG. 23 is a schematic diagram for explaining still another configuration of the fluorescence endoscope of FIGS.
  • FIG. 24 is a schematic diagram for explaining still another configuration of the fluorescence endoscope shown in FIGS.
  • the excitation light is irradiated onto the observation region through the balloon 15, and the fluorescence generated in the observation region force is transmitted through the balloon 15.
  • the force shown in FIG. 22 can be avoided by irradiating the observation region with the excitation light by avoiding the balloon 15, and observing the fluorescence generated from the observation region by avoiding the balloon 15.
  • Well not particularly limited.
  • the distance between the measurement distance and the observation distance is large even if the position of the northern 15 is different from the observation area. There is no difference and observation is not hindered.
  • the balloon 15 is avoided to irradiate the observation region with excitation light, and the balloon 15 avoids 15 and observes the fluorescence generated from the observation region.
  • the fluorescence endoscope shown in FIG. 23 by placing the balloon 15 on the distal end side from the observation window 25, the observation area is irradiated with the excitation light while avoiding the balloon 15 and the observation is performed while avoiding the balloon 15. The fluorescence emitted from the region is observed.
  • the balloon 15 is arranged on the proximal side and the distal end side from the observation window 25, so that the observation region is irradiated with the excitation light by avoiding the balloon 15, and the balloon 15 is avoided.
  • the fluorescent light with the observed area force is observed.
  • FIG. 25 and FIG. 26 The basic configuration of the fluorescence endoscope of the present embodiment is the same as that of the second modification of the first embodiment, but differs from the second modification of the first embodiment in the configuration of the insertion portion. Yes. So book In the embodiment, only the vicinity of the insertion portion will be described with reference to FIGS. 25 and 26, and description of other components and the like will be omitted.
  • FIG. 25 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to the present embodiment.
  • the fluorescence endoscope 601 includes an insertion portion 60 5 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion portion 605, and the inner wall of the body cavity 3.
  • a measurement control unit 609 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • FIG. 26 is a schematic diagram illustrating the configuration of the insertion portion in FIG.
  • the insertion part 605 is provided with an outer insertion part (insertion part) 613A and an inner insertion part (light emission introduction part, rotation part) 613B.
  • the outer insertion portion 613A is a tube constituting the outer peripheral surface of the insertion portion 605.
  • a balloon 615 is disposed on the outer peripheral surface of the insertion side end portion (the left end portion in FIG. 26) of the outer insertion portion 613A.
  • it is formed of a material that transmits fluorescence that passes through the window 227.
  • a fluorescent agent that generates fluorescence On the outer peripheral surface of the balloon 615 that contacts the body cavity 3, a fluorescent agent that generates fluorescence is disposed.
  • the fluorescent agent generates fluorescence when irradiated with excitation light emitted from the light source 7.
  • the fluorescence generated from the fluorescent agent is fluorescence having a wavelength different from that of the fluorescence generated from the body cavity 3 and is not reflected by the dichroic mirror 35.
  • the fluorescent agent may be applied to the balloon 615, or may be contained as a part of the component of the film constituting the nolane 615, and is not particularly limited.
  • the inner insertion portion 613B is inserted into the outer insertion portion 613A. As shown in FIG. 26, the inner insertion portion 613B includes an excitation light window 225, a fluorescence window 227, a light emission portion (light emission introduction portion) 217, and a light introduction portion (light emission introduction portion). An imaging unit 21, a fluorescence detection unit 624, and a force S are provided.
  • the fluorescence detection unit 624 is configured to increase the intensity of fluorescence generated from the fluorescent agent disposed in the balloon 615. The degree is detected.
  • the fluorescence detection unit 624 is disposed at a position facing the fluorescence window 227 so that the dichroic mirror 35 is sandwiched between the fluorescence detection unit 624 and the fluorescence window 227.
  • the signal related to the fluorescence intensity detected by the fluorescence detection unit 624 is output to the distance measurement unit 653 as shown in FIG.
  • the measurement control unit 609 measures the distance between the insertion unit 605 and the inner wall of the body cavity 3. As shown in FIG. 25, the measurement control unit 609 includes an air supply pump 49 and a distance measurement unit (calculation unit) 653.
  • the distance measuring unit 653 measures the distance between the insertion portion 605 and the inner wall of the body cavity 3 and controls the distance between the image sensor 43 and the inner wall of the body cavity 3 to a predetermined constant distance.
  • the distance measurement unit 653 receives a signal related to the fluorescence intensity from the fluorescence detection unit 624, and based on the signal, the distance measurement unit 653 obtains the distance between the insertion unit 605 and the inner wall of the body cavity 3, and sets the distance.
  • the distance signal can be output to the fluorescence signal processing unit 57.
  • the method of fixing the outer insertion portion 613A to the body cavity 3 by the balloon 615 and the operation until the excitation light is irradiated from the light source 7 to the body cavity 3 are the same as those in the first embodiment. Description is omitted.
  • the excitation light is applied to the body cavity 3
  • the excitation light is also applied to the fluorescent agent of the balloon 615 at the same time. Therefore, fluorescence is generated from the body cavity 3 and the fluorescent agent.
  • Fluorescence generated from the fluorescent agent passes through the outer insertion portion 613A and the fluorescent window 227 and enters the inner insertion portion 613B.
  • the incident fluorescence passes through the dichroic mirror 35 and enters the fluorescence detection unit 624.
  • the fluorescence detection unit 624 outputs a signal related to the fluorescence intensity to the distance measurement unit 653 based on the fluorescence intensity of the incident fluorescence.
  • the distance measuring unit 653 first obtains the distance from the outer peripheral surface of the balloon 615 to the fluorescence detecting unit 624, based on the input signal relating to the fluorescence intensity. Then, the distance measuring unit 653 calculates the distance from the inner wall of the body cavity 3 to the imaging device 43 based on the distance from the outer peripheral surface of the balloon 615 to the fluorescence detecting unit 624, and based on the calculated distance, the above-mentioned distance Calculate the distance signal. [0167] On the other hand, the method for imaging fluorescence generated from the body cavity 3 is the same as that in the second modification of the first embodiment, and thus the description thereof is omitted.
  • the excitation light emitted radially outward of the insertion portion 605 is applied to the fluorescent agent disposed on the contact surface of the balloon 615 with the inner wall. Fluorescence is generated from the fluorescent agent irradiated with the excitation light. The fluorescence intensity of the generated fluorescence is detected by the fluorescence detection unit 624.
  • the fluorescence intensity signal output from the fluorescence detection unit 624 is regarded as a signal related to the distance between the fluorescent agent and the fluorescence detection unit 624. Can do.
  • the fluorescence signal processing unit 57 outputs an image signal similar to the case where the distance from the inner wall to the imaging device 43 of the imaging unit 21 is maintained at a predetermined constant distance. Can be generated.
  • the basic configuration of the fluorescence endoscope of the present modification is the same as that of the second embodiment, but the configuration of the insertion portion is different from that of the second embodiment. Therefore, in this modification, only the vicinity of the insertion portion will be described using FIGS. 27 and 28, and description of other components and the like will be omitted.
  • FIG. 27 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to this modification. Note that the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the fluorescence endoscope 701 includes an insertion part 705 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion part 705, and an inner wall of the body cavity 3 A measurement control unit 709 that measures the distance to the display unit, and a display unit 11 that displays the captured fluorescent image.
  • FIG. 28 is a schematic diagram illustrating the configuration of the insertion portion in FIG.
  • the insertion part 705 is provided with an outer insertion part (insertion part) 713A and an inner insertion part (light emission introduction part, rotation part) 713B.
  • the outer insertion portion 713A is a tube constituting the outer peripheral surface of the insertion portion 705.
  • Outer insertion part A balloon 15 is disposed on the outer peripheral surface of the insertion side end (left end in FIG. 28) of 713A.
  • the material is formed of a material that transmits fluorescence that passes through the window 227 for use.
  • the outer insertion part 713A is preferably made of a hard material with good ultrasonic transmission.
  • the inner insertion portion 713B is inserted into the outer insertion portion 713A.
  • the inner insertion portion 713B includes an excitation light window 225, a fluorescence window 227, a light emission portion (light emission introduction portion) 217, and a light introduction portion (light emission introduction portion).
  • the ultrasonic wave generation measuring unit 724 is used for measuring the distance from the inner insertion portion 713B to the contact surface of the balloon 15 with the body cavity 3.
  • the ultrasonic generation measuring unit 724 generates ultrasonic waves toward the outside of the inner insertion portion 713B, and measures ultrasonic waves that have propagated into the inner insertion portion 713B.
  • the ultrasonic generation measurement unit 724 receives a control signal for controlling the force of the control unit 754, which will be described later, and the phase of the ultrasonic wave generated by the ultrasonic generation measurement unit 724, and the ultrasonic generation measurement unit 724 performs measurement to the control unit 754.
  • a measurement signal related to the phase of the ultrasonic wave is output.
  • the ultrasonic wave generation measuring unit 724 is arranged on the radially outer side of the tip end side of the inner insertion portion 713B!
  • a cover 725 that constitutes a part of the outer peripheral surface of the inner insertion portion 713B is disposed at a position adjacent to the ultrasonic wave generation measurement unit 724.
  • the cover 725 is preferably made of a hard material having good ultrasonic transmission properties.
  • Measurement control unit 709 measures the distance between insertion portion 605 and the inner wall of body cavity 3. As shown in FIG. 28, the measurement control unit 709 includes a pump (inflow unit) 749, a distance measurement unit (calculation unit) 753, and a control unit 754.
  • the pump 749 inflates the balloon 15 by pumping a liquid (for example, water).
  • the pumped liquid from pump 749 is sent to balloon 15 through pumping tube 755.
  • a known pump can be used as the pump 749, and is not particularly limited.
  • the distance measurement unit 753 calculates the distance to the ultrasonic wave generation measurement unit 724 for the inner wall force of the body cavity 3 as well. That is, the distance measuring unit 753 generates a distance signal related to the distance to the inner wall force ultrasonic wave generating / measuring unit 724 of the body cavity 3 based on a signal related to a phase difference described later.
  • a signal related to the phase difference is input from the control unit 754 to the distance measuring unit 753, and a distance signal is output from the distance measuring unit 753 to the fluorescence signal processing unit 57.
  • the calculation method of the distance from the inner wall of the body cavity 3 to the ultrasonic wave generation and measurement unit 724 can use a known calculation method, and is not particularly limited.
  • the control unit 754 controls the ultrasonic wave generation / measurement unit 724 and outputs a signal related to a phase difference described later to the distance measurement unit 753.
  • the control unit 754 outputs a control signal for controlling the generation and stop of the ultrasonic wave and the phase of the generated ultrasonic wave to the ultrasonic wave generation and measurement unit 724, and also transmits an ultrasonic wave to the control unit 754.
  • a measurement signal such as an ultrasonic phase measured from the generation measurement unit 724 is input.
  • the control unit 754 determines the phase difference between the ultrasonic wave generated by the ultrasonic wave generation and measurement unit 724 and the ultrasonic wave measured by the ultrasonic wave generation and measurement unit 724. And outputs a signal related to the phase difference.
  • the control unit 754 In a state where the outer insertion part 713A is fixed to the body cavity 3 by the balloon 15, the control unit 754 outputs a control signal for generating an ultrasonic wave to the ultrasonic wave generation measuring unit 724.
  • the ultrasonic wave generation control unit 754 to which the control signal is input generates an ultrasonic wave based on the control signal.
  • the ultrasonic wave propagates through the liquid in the cover 725, the outer insertion portion 713A, and the balloon 15, and is reflected on the outer peripheral surface, which is the contact surface between the balloon 15 and the body cavity 3.
  • the reflected ultrasound propagates through the liquid in the balloon 15, the outer insertion 713A and the cover 725. It is detected by the ultrasonic generation measurement unit 724.
  • the ultrasonic generation measurement unit 724 outputs a measurement signal including information such as the phase of the reflected ultrasonic wave to the control unit 754.
  • the control unit 754 generates an ultrasonic signal generated from the ultrasonic wave generation measurement unit 724 based on the measurement signal input from the ultrasonic wave generation measurement unit 724 and the control signal output to the ultrasonic wave generation measurement unit 724.
  • the phase difference between the sound wave and the ultrasonic wave measured by the ultrasonic wave generation and measurement unit 724 is calculated.
  • a signal related to the calculated phase difference is output from the control unit 854 to the distance measurement unit 753.
  • the distance measurement unit 753 calculates the distance from the inner wall of the body cavity 3 to the ultrasonic wave generation measurement unit 724 based on the input signal related to the phase difference.
  • the distance signal related to the calculated distance is output to the fluorescence signal processing unit 57.
  • ultrasonic waves are generated from the ultrasonic wave generation and measurement unit 724 toward the contact surface of the balloon 15, and propagate through the balloon 15 filled with liquid.
  • the attenuation rate of the ultrasonic wave is lower than in the case where the gas is filled! /.
  • the ultrasonic wave propagated in the balloon 15 is reflected by the contact surface and is detected by the ultrasonic wave generation measuring unit 724.
  • the distance between the contact surface and the insertion portion 705 is based on the phase difference between the phase of the ultrasonic wave generated from the ultrasonic wave generation and measurement unit 724 and the phase of the ultrasonic wave detected by the ultrasonic wave generation and measurement unit 724. Requested by control unit 754.
  • the fluorescence signal processing unit 57 is the same as the case where the distance to the inner wall force imaging unit 21 is maintained at a predetermined constant distance. An image signal can be generated.
  • the basic configuration of the fluorescence endoscope of the present modification is the same as that of the second embodiment, but the configuration of the insertion portion is different from that of the second embodiment. Therefore, in this modification, only the vicinity of the insertion portion will be described using FIG. 29 and FIG. 30, and description of other components will be omitted.
  • FIG. 29 is a schematic diagram illustrating the configuration of the fluorescence endoscope according to this modification. Note that the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the fluorescence endoscope 801 includes an insertion portion 805 inserted into the body cavity 3 of the subject, a light source 7 that emits excitation light, an insertion portion 805, and the inner wall of the body cavity 3 A measurement control unit 809 that measures the distance between the display unit 11 and a display unit 11 that displays the captured fluorescent image.
  • FIG. 30 is a schematic diagram illustrating the configuration of the insertion portion in FIG.
  • the insertion portion 805 is provided with an outer insertion portion (insertion portion) 813A and an inner insertion portion (light emission introduction portion, rotation portion) 813B.
  • the outer insertion portion 813A is a tube constituting the outer peripheral surface of the insertion portion 805. Outer insertion part
  • a balloon 15 is disposed on the outer peripheral surface of the insertion side end (the left end in FIG. 30) of 813A. At least the region where the balloon 15 of the outer insertion portion 813A is disposed, and the region facing the excitation light window 225 and the fluorescence window 227, which will be described later, is excitation light and fluorescence transmitted through the excitation light window 225. It is desirable that the material is formed of a material that transmits fluorescence that passes through the window 227 for use.
  • the outer insertion portion 813A is preferably formed from a material having good microwave transmission.
  • the inner insertion portion 813B is inserted into the outer insertion portion 813A.
  • the inner insertion portion 813B includes an excitation light window 225, a fluorescence window 227, a light emission portion (light emission introduction portion) 217, and a light introduction portion (light emission introduction portion).
  • the microwave generation measurement unit 824 is used to measure the distance from the inner insertion portion 813B to the contact surface of the balloon 15 with the body cavity 3.
  • the microwave generation measurement unit 824 generates microwaves toward the outside of the inner insertion portion 813B and measures the microwave propagated inside the inner insertion portion 813B.
  • the microwave generation measurement unit 824 receives a control signal for controlling the phase and the like of the generated microwave from the control unit 854, which will be described later, and performs measurement from the microwave generation measurement unit 824 to the control unit 854.
  • a measurement signal related to the phase of the microwave is output.
  • the microwave generation measurement unit 824 is disposed on the radially outer side of the end portion on the inner side insertion portion 813B.
  • Microwave At a position adjacent to the raw measurement unit 824, a cover 825 constituting a part of the outer peripheral surface of the inner insertion portion 813B is disposed. Kanoichi 825 is preferably made from a material with good microwave transmission.
  • Measurement control unit 809 measures the distance between insertion portion 805 and the inner wall of body cavity 3. As shown in FIG. 30, the measurement control unit 809 includes an air supply pump 49, a distance measurement unit (calculation unit) 853, and a control unit 854.
  • the distance measurement unit 853 calculates the distance from the inner wall of the body cavity 3 to the microwave generation measurement unit 824. That is, the distance measurement unit 853 generates a distance signal related to the distance from the inner wall of the body cavity 3 to the microwave generation measurement unit 824 based on a signal related to a phase difference described later. A signal related to the phase difference is input from the control unit 854 to the distance measuring unit 853, and a distance signal is output from the distance measuring unit 853 to the fluorescence signal processing unit 57.
  • the calculation method of the distance from the inner wall of the body cavity 3 to the microwave generation measurement unit 824 may be a known calculation method, and is not particularly limited.
  • the control unit 854 controls the microwave generation measurement unit 824 and outputs a signal related to a phase difference described later to the distance measurement unit 753.
  • the control unit 854 outputs a control signal for controlling the generation and stop of the microwave and the phase of the generated ultrasonic wave to the microwave generation measurement unit 824, and the control unit 854 receives the microwave.
  • a measurement signal such as an ultrasonic phase measured from the generation measurement unit 824 is input.
  • the control unit 854 obtains the phase difference between the microwave generated from the microwave generation measurement unit 824 and the microwave measured by the microwave generation measurement unit 824 based on the input control signal and measurement signal.
  • a signal related to the phase difference is output.
  • the control unit 854 In a state where the outer insertion portion 813 A is fixed to the body cavity 3 by the balloon 15, the control unit 854 outputs a control signal for generating a microwave to the microwave generation measurement unit 824.
  • the microwave generation measurement unit 824 to which the control signal is input generates a microwave based on the control signal.
  • the microwave propagates in the canopy 825, the outer insertion portion 813A and the balloon 15, and is reflected on the outer peripheral surface which is the contact surface between the balloon 15 and the body cavity 3.
  • the reflected microwave propagates through the balloon 15, the outer insertion portion 813 A, and the cover 825, and is detected by the microwave generation measurement unit 824.
  • the microwave generation measurement unit 824 outputs a measurement signal including information such as the phase of the reflected microphone mouth wave to the control unit 854.
  • the control unit 854 Based on the measurement signal input from the microwave generation measurement unit 824 and the control signal output to the microwave generation measurement unit 824, the control unit 854 generates a microwave generated from the microwave generation measurement unit 824. And the phase difference between the microwave measured by the microwave generation measurement unit 824 and the microwave. A signal related to the calculated phase difference is output from the control unit 854 to the distance measurement unit 853.
  • the distance measurement unit 853 calculates the distance from the inner wall of the body cavity 3 to the microwave generation measurement unit 824 based on the input signal related to the phase difference. A distance signal related to the calculated distance is output to the fluorescence signal processing unit 57.
  • the microwave is also generated toward the contact surface of the balloon 15 by the microwave generation measurement unit 824, and propagates in the balloon 15.
  • the microwave propagates in the balloon 15 with a lower attenuation rate than the ultrasonic wave.
  • the microwave propagated in the balloon 15 is reflected at the contact surface and detected by the microwave generation measurement unit 824.
  • the control unit 854 controls the microwave generated by controlling the microwave generation measurement unit 824, and the detection signal output from the microwave generation measurement unit 824 is input to the control unit 854. The Therefore, the control unit 854 controls the contact surface based on the phase difference between the phase of the microwave generated from the microwave generation measurement unit 824 and the phase of the microwave detected by the microwave generation measurement unit 824. And the distance between the insertion part 805 can be obtained. As described above, based on the distance obtained by the control unit 854, the fluorescence signal processing unit 57 has the same inner wall force as that in the case where the distance from the imaging unit 21 to the imaging device 43 is kept at a predetermined constant distance. Image signals can be generated.
  • the technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • an ultrasonic wave is applied to the distal end portion of the measurement insertion portion.
  • a generation measuring unit can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 被検体である体腔の内周面全面から発生する蛍光を観察する場合に、観察領域における体腔組織が良性組織か悪性組織かを判別しやすくできる蛍光内視鏡を提供する。体腔(3)内に挿入される挿入部(5)と、挿入部(5)の半径方向に位置する体腔(3)の内壁と接触することにより、挿入部(5)の半径方向において体腔(3)に対する挿入部(5)の位置決めを行うバルーン(15)と、内壁に対して照射される励起光を挿入部(5)の半径方向外方に出射するとともに、内壁から発生した蛍光を挿入部(5)の複数の異なる半径方向から挿入部(5)の内部に導入する光出射導入部(17,19)と、光出射導入部(17,19)から導入された蛍光を撮像する撮像部(21)と、バルーン(15)における内壁との接触面と、挿入部(5)と、の間の距離に基づいて撮像部(21)から出力された撮像信号を補正する補正信号を算出する補正信号算出部(57)と、補正信号に基づいて撮像信号の強度を補正し、補正された撮像信号から画像信号を生成する信号処理部(57)と、が設けられたことを特徴とする。

Description

明 細 書
蛍光内視鏡
技術分野
[0001] 本発明は、蛍光内視鏡に関する。
背景技術
[0002] 近年、癌等の疾患部へ集積するとともに、励起光により蛍光を発する薬剤を用いて 生体組織の癌等の疾患状態を診断する技術が開発されている。特に、上記薬剤を 生体に注入した状態で蛍光内視鏡等から励起光を生体に照射することで、蛍光内視 鏡等により疾患部に集積した薬物から発する蛍光を 2次元画像として検出し、検出さ れた蛍光強度から疾患部を診断する技術が知られている。
しかしながら、検出される蛍光の強度は検出部と疾患部との距離の 2乗に反比例す るため、上記距離を一定に保たなければ、検出された蛍光強度から疾患部を診断す ることは困難であった。内視鏡を用いた他の疾患部の診断方法においても、疾患部 と検出部等との距離を所定距離に保つことは、正確な診断を行う上で重要であった。 そのため、内視鏡において疾患部と検出部等との距離を一定に保つ様々な技術が 提案されている。
[0003] 血管の内部から血管組織を検査する際に、血管内部にプローブを揷入してプロ一 ブから照明光を血管組織に照射することにより、検査を行う技術が知られている(例え ば、特許文献 1参照。)。
この技術においては、プローブの先端にバルーンが設けられている。上述の検査を 行う際に、上記バルーンを膨らませて血管壁に密着させていた。
[0004] さらに、蛍光を用いて診断を行う内視鏡において、励起光の照射部と被検体との距 離に相当する距離信号を生成する距離測定手段と、距離信号に基づいて蛍光信号 や蛍光画像信号を補正する特性値算出手段とを用いて、病変部の診断を行う技術も 知られている(例えば、特許文献 2参照。)。
この技術によれば、距離測定手段と特性値算出手段とにより、照射部と被検体との 距離に影響されないで病変部の診断を行うことができた。 特許文献 1 :特開 2002— 219130号公報
特許文献 2 :特開 2006— 61638号公報
発明の開示
[0005] 側視型内視鏡において揷入された管腔の全周または複数方向を蛍光観察する場 合には、被検体と内視鏡との観察距離が変化すると、内視鏡により得られる蛍光量が 大きく変化してしまい、蛍光の強度による病変の診断が難しいという問題があった。 管腔の内径は一定ではないので、観察位置を変えた際に管腔の内径の変化によ つて管腔の面と内視鏡の検出部との距離を一定距離に保つことはできなかった。
[0006] 本発明は、上記の課題を解決するためになされたものであって、側視型内視鏡を 用いた蛍光観察において、被検体である体腔の内周を複数方向において蛍光観察 する場合に、被検体である体腔の内周面全面と揷入部との観察距離が変化しても、 観察領域における体腔組織が良性組織か悪性組織力、を判別しやすくできる蛍光内 視鏡を提供することを目的とする。
[0007] 上記目的を達成するために、本発明は、以下の手段を提供する。
本発明は、体腔内に挿入される揷入部と、前記揷入部の半径方向に位置する前記 体腔の内壁と接触することにより、前記揷入部の半径方向において前記体腔に対す る前記揷入部の位置決めを行うバルーンと、前記内壁に対して照射される励起光を 前記揷入部の半径方向外方に出射するとともに、前記内壁から発生した蛍光を前記 揷入部の複数の異なる半径方向から前記揷入部の内部に導入する光出射導入部と 、前記光出射導入部から導入された蛍光を撮像する撮像部と、前記バルーンにおけ る前記内壁との接触面と、前記揷入部と、の間の距離に基づいて前記撮像部から出 力された撮像信号を補正する補正信号を算出する補正信号算出部と、前記補正信 号に基づ!/、て前記撮像信号の強度を補正し、補正された撮像信号から画像信号を 生成する信号処理部と、が設けられた蛍光内視鏡を提供する。
[0008] 本発明によれば、バルーンは、揷入部の半径方向に位置する体腔の内壁と接触す ることにより、揷入部を体腔の略中心に位置させる。つまり、バルーンは、揷入部の半 径方向における体腔の内壁の全ての部分領域と揷入部との間の距離を等しくするこ と力できる。光出射導入部は、励起光を揷入部の半径方向外方に出射して、バル一 ンにより揷入部からの距離を等しくされた体腔の内壁に対して照射する。これにより、 励起光が照射された内壁から蛍光が発生する。体腔の内壁から発生した蛍光は、光 出射導入部により揷入部の内部に導入される。ここで、体腔の内壁の複数箇所から 蛍光が発生した場合は、それぞれの蛍光が、揷入部の複数の異なる半径方向から 揷入部の内部に導入される。そして、撮像部は、光出射導入部から揷入部内に導入 された蛍光を撮像する。
[0009] 補正信号算出部は、バルーンにおける内壁との接触面と、揷入部との間の距離に 基づいて、撮像部から出力された撮像信号を補正する補正信号を算出する。すなわ ち、バルーンにおける内壁との接触面と、揷入部との間の距離の変化に応じて、補正 信号算出部において異なる補正信号が算出される。そして、信号処理部は、補正信 号算出部において算出された補正信号に基づいて撮像部から出力された撮像信号 の強度を補正し、補正された撮像信号から画像信号を生成する。
[0010] これにより、接触面と揷入部との間が所定距離に保たれた場合と同様の画像信号 を生成すること力 Sできる。この画像信号を用いることにより、接触面と揷入部との間の 距離が変化しても、体腔の内壁を常に所定距離で観察した場合と同様の蛍光画像 が得られるので、体腔組織が良性組織か悪性組織かを判別しやすくできる。
[0011] 上記発明においては、前記光出射導入部が、前記励起光を前記揷入部の半径方 向外方に出射する照射部と、前記内壁力 発生した蛍光を、前記揷入部の中心軸 線方向に向けて反射するとともに、前記中心軸線回りに回転可能に配置された反射 部と、を備え、前記撮像部が、前記反射部から反射した蛍光を撮像する構成でもよい
[0012] このようにすることにより、励起光は光出射導入部に設けられた照射部から揷入部 の半径方向外方に出射され、体腔の内壁に照射される。励起光が照射された体腔の 内壁から蛍光が発生し、蛍光は揷入部の内部に導入される。揷入部の内部に導入さ れた蛍光は、光出射導入部に設けられた反射部により揷入部の中心軸線方向に向 けて反射される。反射部は中心軸線回りに回転可能に配置されているため、揷入部 の複数の異なる半径方向に位置する体腔の内壁力 発生した蛍光は揷入部の中心 軸線方向に向けて反射される。反射部から反射した蛍光は撮像部により撮像される。 よって、本発明によれば、揷入部の複数の異なる半径方向に位置する体腔の内壁か ら発生した蛍光の像を取得することができる。
なお、反射部は、上記内壁力 発生した蛍光のみを反射することとしてもよぐ体腔 の診断に不必要な波長の光 (例えば、照射部から出射された励起光など)を透過す ることとしてあよい。
[0013] 上記構成におレ、ては、前記反射部を回転させる回転駆動部が設けられてもよ!/、。
このようにすることにより、反射部を回転させることにより、揷入部の複数の異なる半 径方向に位置する体腔の内壁の部分領域から発生した蛍光を撮像部に向けて反射 させて、撮像部に蛍光を撮像させることとしてもよい。
なお、回転駆動部は、反射部のみを回転させるものであってもよいし、反射部を含 む光出射導入部を回転させるもの、例えば、光出射導入部を備えたチューブ状のも のであって、揷入部に対して回転可能に配置されたものであってもよい。
[0014] 上記発明においては、前記光出射導入部が、前記揷入部の少なくとも先端部の内 部に配置されるとともに、前記揷入部の中心軸線回りに回転可能に配置された回転 部と、該回転部に設けられ、前記励起光を前記揷入部の半径方向外方に出射する 照射部と、前記回転部に設けられ、前記内壁力 発生した蛍光を前記中心軸線方向 に向けて反射する反射部と、を備え、前記撮像部が、前記回転部に設けられ、前記 反射部から反射した蛍光を撮像してもょレ、。
[0015] このようにすることにより、励起光は回転部に設けられた照射部から揷入部の半径 方向外方に出射され、体腔の内壁に照射される。励起光が照射された体腔の内壁か ら蛍光が発生し、蛍光は揷入部を透過して回転部の内部に導入される。
回転部の内部に導入された蛍光は、回転部に設けられた反射部により揷入部の中 心軸線方向に向けて反射される。反射部から反射した蛍光は撮像部により撮像され 、撮像部は揷入部の半径方向に位置する内壁の部分領域の像を取得する。ここで、 回転部は、揷入部の内部に、揷入部の中心軸線回りに回転可能に配置されている ため、蛍光を揷入部の複数の異なる半径方向力、ら揷入部の内部に導入することが可 能である。よって、本発明によれば、揷入部の複数の異なる半径方向に位置する体 腔の内壁力 発生した蛍光を撮像できる。 [0016] 上記発明においては、前記光出射導入部が、前記揷入部の少なくとも先端部の内 部に配置されるとともに、前記揷入部の中心軸線回りに回転可能に配置された回転 部と、前記回転部に設けられ、前記励起光を前記揷入部の半径方向外方に出射す る照射部と、を備え、前記撮像部が、前記回転部の内部に導入された蛍光を撮像し てもよい。
[0017] このようにすることにより、励起光は回転部に設けられた照射部から揷入部の半径 方向外方に出射され、体腔の内壁に照射される。励起光が照射された体腔の内壁か ら蛍光が発生し、蛍光は揷入部を透過して回転部の内部に導入される。
回転部の内部に導入された蛍光は、回転部に設けられた撮像部により撮像される。 ここで、回転部は、揷入部の内部に、揷入部の中心軸線回りに回転可能に配置され ているため、蛍光を揷入部の複数の異なる半径方向から揷入部の内部に導入するこ とが可能である。よって、本発明によれば、揷入部の複数の異なる半径方向に位置 する体腔の内壁から発生した蛍光を撮像できる。
[0018] 上記発明においては、前記光出射導入部は、前記励起光を前記揷入部の半径方 向外方に出射する照射部と、前記内壁力 発生した蛍光を前記揷入部の中心軸線 方向に向けて反射する円錐ミラーと、を備え、前記撮像部が、前記円錐ミラーから反 射した蛍光を撮像してもょレ、。
[0019] このようにすることにより、励起光は照射部から揷入部の半径方向外方に出射され 、体腔の内壁に照射される。励起光が照射された体腔の内壁力 蛍光が発生し、蛍 光は光出射導入部から揷入部の内部に導入される。
光出射導入部の内部に導入された蛍光は、光出射導入部に設けられた円錐ミラー により揷入部の中心軸線方向に向けて反射され、撮像部により撮像される。ここで、 円錐ミラーは、蛍光を揷入部の複数の異なる半径方向から揷入部の内部に導入する ことが可能である。この結果、揷入部の複数の異なる半径方向に位置する体腔の内 壁から発生した蛍光を撮像できる。
[0020] 上記発明にお!/、ては、前記体腔に対する前記揷入部の挿入長さを計測する揷入 長計測部と、前記撮像部から出力される撮像信号と、前記挿入長計測部から出力さ れる揷入長さに係る信号と、に基づいて前記撮像信号の展開処理を行う画像処理部 と、が設けられてもよい。
[0021] このようにすることにより、体腔に対する撮像部の移動距離は、揷入長計測部により 計測される。揷入長計測部から出力された揷入長さに係る信号は、画像処理部に入 力される。画像処理部には、撮像部から出力された蛍光画像信号と、揷入長計測部 から出力された揷入長さに係る信号とが入力され、両信号に基づいて撮像信号の処 理が行われる。
例えば、撮像部から出力された撮像信号が、円錐ミラーに映った内壁の全内周面 の蛍光画像に係る信号である場合には、画像処理部は円錐ミラーに映った蛍光画像 に係る信号を、体腔を展開した状態の蛍光画像に係る信号に変換処理することがで きる。
[0022] 上記発明にお!/、ては、前記バルーンに流体を流入させる流入部と、前記バルーン に流入した流体の流量を計測する流量計測部と、該流量計測部から出力された流量 信号に基づいて、前記バルーンにおける前記内壁との接触面と、前記揷入部と、の 間の距離を求める演算部と、が設けられ、前記補正信号算出部が、前記演算部によ り求められた距離に基づいて前記補正信号を算出してもよい。
[0023] このようにすることにより、バルーン内には、流入部により流体が流入される。流入し た流体により膨張したバルーンは、揷入部の半径方向に位置する体腔の内壁と接触 することにより、揷入部を体腔の略中心に位置させる。バルーンに流入した流体の流 量からは、膨張したバルーンの体積を算出できる。したがって、流量計測部により計 測された流量信号に基づいて、演算部が、バルーンにおける上記内壁との接触面と 、揷入部と、の間の距離を容易に算出することができる。
そして、演算部により求められた距離に基づいて補正信号算出部が演算部により 求められた距離に基づいて補正信号を算出することにより、上記内壁から撮像部ま での距離が所定の一定距離に保たれた場合と同様の画像信号を生成することがで きる。
[0024] 上記発明においては、前記バルーンにおける前記内壁との接触面には蛍光剤が 配置され、該蛍光剤から発生した蛍光の強度を検出する蛍光検出部が設けられ、前 記補正信号算出部が、前記演算部により求められた距離に基づいて前記補正信号 を算出してもよい。
[0025] このようにすることにより、揷入部の半径方向外方に出射された励起光はバルーン における内壁との接触面に配置された蛍光剤に照射される。励起光が照射された蛍 光剤からは、蛍光が発生される。発生された蛍光は蛍光検出部により蛍光強度が検 出される。ここで、蛍光強度は蛍光剤からの距離の 2乗に反比例するため、蛍光検出 部から出力される蛍光強度信号は蛍光剤と蛍光検出部との間の距離に係る信号とみ なすこと力 Sできる。
したがって、補正信号算出部が、蛍光強度信号に基づいて補正信号を算出するこ とにより、上記内壁から撮像部までの距離が所定の一定距離に保たれた場合と同様 の画像信号を生成することができる。
[0026] 上記発明にお!/、ては、前記バルーンに流入する流体が液体であって、前記バル一 ンにおける前記内壁との接触面に向かって超音波を発生させる超音波信号発生器と 、前記接触面から反射した超音波を検出する超音波信号検出器と、前記超音波信 号発生器を制御するとともに、前記超音波信号検出器から出力される検出信号に基 づいて、前記バルーンにおける前記内壁との接触面と、前記揷入部と、の距離を求 める制御部と、が設けられ、前記補正信号算出部が、前記制御部により求められた 距離に基づいて前記補正信号を算出してもよい。
[0027] このようにすることにより、超音波は、超音波信号発生器からバルーンの上記接触 面に向かって発生され、液体が満たされたバルーン内を伝搬する。ここで、バルーン 内に液体が満たされているため、気体が満たされている場合と比較して、超音波の減 衰率が低くなる。バルーン内を伝搬した超音波は、上記接触面において反射し、超 音波信号検出器により検出される。
[0028] 制御部は、超音波信号発生部を制御することにより発生される超音波を制御すると ともに、制御部には、超音波信号検出器から出力される検出信号が入力される。その ため、制御部は、超音波信号発生部から発生される超音波の位相と、超音波信号検 出器に検出された超音波の位相との位相差に基づいて、上記接触面と揷入部との 距離を求めることができる。
このように、補正信号算出部が制御部により求められた距離に基づいて補正信号 を算出することにより、上記内壁から撮像部までの距離が所定の一定距離に保たれ た場合と同様の画像信号を生成することができる。
[0029] 上記発明においては、前記バルーンにおける前記内壁との接触面に向かってマイ クロ波を発生させるマイクロ波信号発生器と、前記接触面から反射したマイクロ波を 検出するマイクロ波信号検出器と、前記マイクロ波信号発生器を制御するとともに、 前記マイクロ波信号検出器から出力される検出信号に基づいて、前記バルーンにお ける前記内壁との接触面と、前記揷入部と、の距離を求める制御部と、が設けられ、 前記補正信号算出部が、前記演算部により求められた距離に基づいて前記補正信 号を算出してもよい。
[0030] このようにすることにより、マイクロ波は、マイクロ波信号発生器からバルーンの上記 接触面に向かって発生され、バルーン内を伝搬する。ここで、マイクロ波は、超音波と 比較して低レ、減衰率でバルーン内を伝搬する。バルーン内を伝搬したマイクロ波は、 上記接触面において反射し、マイクロ波信号検出器により検出される。
[0031] 制御部は、マイクロ波信号発生器を制御することにより発生されるマイクロ波を制御 するとともに、制御部には、マイクロ波信号検出器から出力される検出信号が入力さ れる。そのため、制御部は、マイクロ波信号発生部から発生されるマイクロ波の位相と 、マイクロ波信号検出器に検出されたマイクロ波の位相との位相差に基づいて、上記 接触面と揷入部との距離を求めることができる。
このように、補正信号算出部が制御部により求められた距離に基づいて補正信号 を算出することにより、上記内壁から撮像部までの距離が所定の一定距離に保たれ た場合と同様の画像信号を生成することができる。
[0032] 本発明の蛍光内視鏡によれば、被検体である体腔の内周面全面と揷入部との観察 距離が変化しても、体腔の内周面全面と揷入部との間が所定距離で保たれた場合と 同様の画像信号を生成することができるので、体腔組織が良性組織か悪性組織かを 判別しやすくできるとレ、う効果を奏する。
図面の簡単な説明
[0033] [図 1]本発明の第 1の実施形態の蛍光内視鏡の構成を説明する模式図である。
[図 2]図 1の揷入部の構成を説明する模式図である。 [図 3]図 2の照射用レンズの構成を説明する斜視図である。
園 4]図 2の反射ミラーの構成を説明する斜視図である。
[図 5]図 2の保持部の構成を説明する A— A断面図である。
[図 6]図 1のァクチユエータの制御方法を説明するフローチャートである。
[図 7]図 1の蛍光信号処理部における処理方法を説明するフローチャートである。 園 8]本発明の第 1実施形態の第 1変形例における蛍光内視鏡の構成を説明する模 式図である。
[図 9]図 8の円錐ミラーの構成を説明する模式図である。
園 10]図 8の撮像素子に撮像された蛍光像を示す図である。
[図 11]図 8の蛍光信号処理部により変換処理された後の画像を示す図である。 園 12]本発明の第 1の実施形態の第 2変形例における蛍光内視鏡の構成を説明す る模式図である。
園 13]図 12の揷入部の構成を説明する模式図である。
園 14]本発明の第 1の実施形態の第 3変形例における蛍光内視鏡の構成を説明す る模式図である。
園 15]図 14の揷入部の構成を説明する模式図である。
園 16]本発明の第 1の実施形態の第 4変形例における蛍光内視鏡の構成を説明す る模式図である。
園 17]図 16の揷入部の構成を説明する模式図である。
園 18]図 17の揷入部の構成を説明する正面視図である。
園 19]本発明の第 1の実施形態の第 5変形例における蛍光内視鏡の構成を説明す る模式図である。
園 20]図 19の揷入部の構成を説明する模式図である。
園 21]本発明の第 1の実施形態の第 6変形例における蛍光内視鏡の構成を説明す る模式図である。
園 22]図 1から図 21の蛍光内視鏡の別の構成を説明する模式図である。
園 23]図 1から図 21の蛍光内視鏡のさらに別の構成を説明する模式図である。 園 24]図 1から図 21の蛍光内視鏡のさらに別の構成を説明する模式図である。 園 25]本発明の第 2の実施形態における蛍光内視鏡の構成を説明する模式図であ 園 26]図 25の揷入部の構成を説明する模式図である。
園 27]本発明の第 2の実施形態の第 1変形例における蛍光内視鏡の構成を説明す る模式図である。
園 28]図 27の揷入部の構成を説明する模式図である。
園 29]本発明の第 2の実施形態の第 2変形例における蛍光内視鏡の構成を説明す る模式図である。
園 30]図 29の揷入部の構成を説明する模式図である。
符号の説明
1 , 101 , 201 , 301 , 401 , 501 , 601 , 701 , 801 , 901 蛍光内視鏡
3 体腔
5, 105, 205, 305, 405, 505, 605, 705, 805, 905 揷入部
15 ノ ノレーン
17, 217, 417, 517 光出射部(光出射導入部)
19, 119, 219 光導入部(光出射導入部)
21 , 421 , 521 撮像部
33, 233 照射用ミラー(照射部)
35 ダイクロイツクミラー(反射部)
37 駆動モータ(回転駆動部)
49 送気ポンプ (流入部)
51 流量計 (流量計測部)
53, 653 距離測定部 (演算部)
57 蛍光信号処理部 (補正信号算出部、信号処理部)
135 円錐ミラー(反射部)
157 蛍光信号処理部 (補正信号算出部、信号処理部、画像処理部)
161 画像センサ (揷入長計測部)
213A, 613A, 713A, 813A 外側揷入部(挿入部) 213B, 313B, 413B, 613B, 713B, 813B, 913B 内側揷入部(光出射導入部 ,回転部)
533 照射用ミラー(照射部)
624 蛍光検出部
724 超音波発生測定部 (超音波信号発生器、超音波信号検出器)
749 ポンプ (流入部)
754, 854 制御部
824 マイクロ波発生測定部(マイクロ波信号発生器、マイクロ波信号検出器) 発明を実施するための最良の形態
[0035] 〔第 1の実施形態〕
以下、本発明の第 1の実施形態に係る蛍光内視鏡ついて図 1から図 7を参照して説 明する。
図 1は、本実施形態の蛍光内視鏡の構成を説明する模式図である。
蛍光内視鏡 1は、図 1に示すように、被検体の体腔 3内に挿入される揷入部 5と、励 起光を出射する光源 7と、揷入部 5と体腔 3の内壁との距離を測定する測定制御部 9 と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0036] 図 2は、図 1の揷入部の構成を説明する模式図である。
揷入部 5は、被検体の体腔 3内に挿入されるとともに、体腔 3の内壁から発生する蛍 光を観察するものである。揷入部 5には、図 2に示すように、外皮チューブ 13と、バル ーン 15と、光出射部 (光出射導入部) 17と、光導入部 (光出射導入部) 19と、撮像部 21と、が設けられている。
[0037] 外皮チューブ 13は、揷入部 5の外周面を構成するチューブである。外皮チューブ 1 3における揷入側端部(図 2の左側端部)には、励起光が透過する励起光用窓 25と、 蛍光が透過する蛍光用窓 27とが設けられ、励起光用窓 25および蛍光用窓 27の外 周面にはバルーン 15が配置されている。外皮チューブ 13の内部には、光出射部 17 や光導入部 19や撮像部 21や保持部 45が配置されている。励起光用窓 25に対して 蛍光用窓 27は、外皮チューブ 13の揷入側端部に近い位置に配置されている。励起 光用窓 25は、略円筒状に形成された部材であって、光源 7から出射された励起光を 透過する材料から形成されたものである。蛍光用窓 27は、略円筒状に形成された部 材であって、体腔 3から発生した蛍光を透過する材料から形成されたものである。
[0038] バルーン 15は、体腔 3内で膨張されることにより、揷入部 5を体腔 3に固定するととも に揷入部 5の揷入側端部を体腔管路の略中央に位置させるものである。バルーン 15 は、図 2に示すように、外皮チューブ 13における励起光用窓 25および蛍光用窓 27 の外周面に配置され、励起光用窓 25を透過する励起光および蛍光用窓 27を透過 する蛍光を透過する材料から形成されたものである。バルーン 15には後述する測定 制御部 9の送気ポンプ 49が接続されて!/、る。
図 2には、膨張される前のバルーン 15が実線で表示され、膨張されたバルーン 15 が二点鎖線で表示されてレ、る。
[0039] 図 3は、図 2の照射用レンズの構成を説明する斜視図である。図 4は、図 2の反射ミ ラーの構成を説明する斜視図である。
光出射部 17は、光源 7から出射された励起光を体腔 3の内壁に向けて出射させる ものである。光出射部 17は、図 2に示すように、ライトガイド 29と、照射用レンズ 31と、 照射用ミラー(照射部) 33とを備えている。なお、光出射部 17は、上記内壁の全周面 に対して一度に励起光を出射できることが好ましい。
[0040] ライトガイド 29は、光源 7から出射された励起光を揷入部 5の揷入側端部に配置さ れた照射用レンズ 31まで導くものである。ライトガイド 29は、励起光を導くファイバの 束から構成されたものであって、略円筒状に形成されている。
照射用レンズ 31は、励起光を体腔 3の観察領域全体に照射させるレンズである。照 射用レンズ 31は、揷入部 5の揷入側端部であって、ライトガイド 29と照射用ミラー 33 との間に配置されている。照射用レンズ 31は、図 3に示すように円環状に形成されて いるとともに、ライトガイド 29と対向する面に凹状の溝が形成されたレンズである。
[0041] 照射用ミラー 33は、照射用レンズ 31カも揷入部 5の中心軸線方向に出射された励 起光を、揷入部 5の半径方向外側に反射するミラーである。照射用ミラー 33は、外皮 チューブ 13の内部であって、励起光用窓 25と対向する位置に配置されている。照射 用ミラー 33は、図 4に示すように、略円錐状に形成されるとともに円錐面が反射面とさ れたミラーであって、中心軸線に沿って貫通孔が形成されたミラーである。照射用ミラ 一 33は、ミラー保持部 34により保持されている。
[0042] 光導入部 19は、体腔 3から発生した蛍光を撮像部 21に向けて反射するものである 。光導入部 19は、図 2に示すように、ダイクロイツクミラー(反射部) 35と、駆動モータ( 回転駆動部) 37と、モータ制御部 39と、を備えている。
ダイクロイツクミラー 35は、蛍光用窓 27を透過した蛍光を揷入部 5の中心軸線に沿 う方向へ反射させるものであって、撮像部 21で撮像される蛍光以外の波長の光は透 過するものである。ダイクロイツクミラー 35は、外皮チューブ 13の内部であって蛍光 用窓 27と対向する位置に、揷入部 5の中心軸線を回転中心として回転可能に配置さ れている。ダイクロイツクミラー 35は直方体状に形成され、体腔 3の一部領域から発 生した蛍光を撮像部 21に向けて反射するものである。ダイクロイツクミラー 35は、ダイ クロイツクミラー保持部 36により保持されている。なお、ダイクロイツクミラー 35としては 、公知のものを用いることができ、特に限定するものではない。
[0043] 駆動モータ 37は、ダイクロイツクミラー 35を揷入部 5の中心軸線を回転中心として 回転駆動させるものである。駆動モータ 37は揷入部 5の先端部に配置され、モータ 制御部 39と接続されている。なお、駆動モータ 37としては、公知のモータを用いるこ とができ、特に限定するものではない。
モータ制御部 39は、駆動モータ 37の回転を制御することにより、ダイクロイツクミラ 一 35の回転を制御するものである。モータ制御部 39から蛍光信号処理部 57にダイ クロイツクミラー 35の位相信号が出力されているとともに、モータ制御部 39から駆動 モータ 37に制御信号が出力されている。
[0044] 撮像部 21は、体腔 3から発生した蛍光の像を撮像するものである。撮像部 21は、 図 2に示すように、撮像用レンズ系 41と、撮像素子 43とを備えている。
撮像用レンズ系 41は、ダイクロイツクミラー 35に反射された蛍光の像を撮像素子 43 の受光面に結像させるものである。撮像用レンズ系 41は、ダイクロイツクミラー 35と撮 像素子 43との間に配置されるとともに、照射用ミラー 33の内側、言い換えると、揷入 部 5の中心軸線上に配置されている。本実施形態においては、図 2に示すように、複 数のレンズから構成された撮像用レンズ系 41の場合に適用して説明するが、特に撮 像用レンズ系 41の構成について限定するものではない。 [0045] 撮像素子 43は、体腔 3から発生した蛍光の像を撮像するものである。撮像素子 43 は、照射用レンズ 31の内側、言い換えると、揷入部 5の中心軸線上に配置され、表 示部 11の蛍光信号処理部 57と接続されている。なお、撮像素子 43としては、 CCD ( Charge Coupled Devices)や、 CMOS (Complementary Metal Oxide Se miconductor)などの公知な素子を用いることができ、特に限定するものではない。
[0046] 図 5は、図 2の保持部の構成を説明する A— A断面図である。
保持部 45は、照射用レンズ 31と撮像用レンズ系 41と撮像素子 43とを保持するとと もに、照射用レンズ 31から出射された励起光が撮像素子 43に直接入射することを防 止するものである。保持部 45には、図 5に示すように、モータ制御部 39から駆動モー タ 37へ制御信号を伝達する信号線が通る溝部 46が形成されている。
[0047] 光源 7は、図 1に示すように、体腔 3に照射されるとともに、体腔 3から蛍光を発生さ せる励起光を出射させるものである。特に、体腔 3の病変部 Tから強い蛍光を発生さ せる励起光を出射させるものである。光源 7から出射された励起光は、揷入部 5のライ トガイド 29に入射されている。
[0048] 測定制御部 9は、揷入部 5と体腔 3の内壁との距離を測定するものである。測定制 御部 9は、図 1に示すように、送気ポンプ (流入部) 49と、流量計(流量計測部) 51と 距離測定部 (演算部) 53とを備えてレ、る。
[0049] 送気ポンプ 49は、空気(流体)を送気することによりバルーン 15を膨張させるもので ある。送気ポンプ 49から送気された空気は外皮チューブ 13の外周面に配置された 送気チューブ 55を通ってバルーン 15に送られる。送気ポンプ 49の流量信号は流量 計 51に出力されている。なお、送気ポンプ 49としては、公知のポンプを用いることが でき、特に限定するものではない。
[0050] 流量計 51は、送気ポンプ 49からバルーン 15に送気された空気の流量を計測する ものである。具体的には、送気ポンプ 49の流量信号に基づいて上記空気流量を計 測するものである。流量信号としては、送気された空気流量を求めるのに必要な情報 であって、送気ポンプ 49の駆動時間やポンプの回転速度などを例示することができ る。流量計 51により計測された空気流量に係る信号は、距離測定部 53に出力されて いる。 [0051] 距離測定部 53は、揷入部 5と体腔 3の内壁との距離を測定するものである。距離測 定部 53には、流量計 51から空気流量に係る信号が入力され、当該信号に基づいて 距離測定部 53は、揷入部 5と体腔 3の内壁との距離を求めることができる。距離測定 部 53から蛍光信号処理部 57に、揷入部 5と体腔 3の内壁との距離に係る距離信号 が出力されている。
[0052] 表示部 11は、撮像部 21により撮像された蛍光像を表示するものである。表示部 11 は、図 1に示すように、蛍光信号処理部 (補正信号算出部、信号処理部) 57と、モニ タ 59とを備えている。
[0053] 蛍光信号処理部 57は、撮像素子 43から出力された撮像信号をモニタ 59に表示す る画像信号に変換処理するものである。蛍光信号処理部 57には、撮像素子 43から 出力された撮像信号と、モータ制御部 39から出力されたダイクロイツクミラー 35の位 相信号と、距離測定部 53から出力された距離信号と、が入力されている。蛍光信号 処理部 57からモニタ 59には、画像信号が出力されている。
[0054] 次に、上記の構成からなる蛍光内視鏡 1による体腔 3の内壁の撮像方法について 説明する。
まず、蛍光内視鏡 1の揷入部 5が、体腔 3の内部に揷入される。このとき、バルーン 15は、図 2に実線で示されるように、揷入の邪魔にならないように縮められ、揷入部 5 の外周面に密着した状態とされている。
[0055] 揷入部 5の揷入側端部が体腔 3の検査領域に到達すると、送気ポンプ 49から空気 がバルーン 15に送気され、バルーン 15は膨張して体腔 3の内壁に押し付けられる。 揷入部 5は、バルーン 15により体腔 3に対して固定されるとともに、揷入部 5の揷入側 端部は体腔 3における管路の略中央に配置される。送気ポンプ 49は、バルーン 15 内の圧力が所定圧力に達するまで送気を継続し、上記圧力が所定圧力に到達した 後に送気を中止する。
[0056] バルーン 15内には所定圧力の空気が満たされているため、バルーン 15は体腔 3の 内壁を半径方向外側に向けて押圧する。例えば、大腸のように体腔 3の内壁にヒダ がある場合には、ヒダは、バルーン 15に押圧されることにより押し広げられる。そのた め、体腔 3内壁のヒダを伸ばして、ヒダの間に隠れた領域を観察することができる。 [0057] 図 6は、図 1のァクチユエータの制御方法を説明するフローチャートである。
流量計 51は、送気ポンプ 49から出力される流量信号に基づいて上記空気流量を 計測し、上記空気流量に係る情報を距離測定部 53に出力する (ステップ S l)。距離 測定部 53は、入力された上記空気流量に係る情報に基づいて、バルーン 15の外径 を求めることにより、揷入部 5と体腔 3の内壁との距離を測定する(ステップ S2)。
[0058] 具体的には、距離測定部 53には、バルーン 15に送気された空気の流量と、当該 流量に対応する揷入部 5と体腔 3の内壁との間の距離とに関するルックアップテープ ルが記憶されており、当該ルックアップテーブルを参照することにより、距離測定部 5 3は揷入部 5と体腔 3の内壁との間の距離を求めることができる。上記ルックアップテ 一ブルを構成するデータは、例えば、予め実験などにより実測して取得することがで きる。
[0059] 距離測定部 53は、求めた揷入部 5と体腔 3の内壁との間の距離に基づいて、蛍光 信号処理部 57に対して出力する距離信号を生成する。つまり、ァクチユエータ駆動 部 53は、撮像素子 43と体腔 3の内壁との間の距離が所定の一定距離となるように、 保持部 45における外皮チューブ 13に対する相対位置を制御している。
[0060] 具体的には、距離測定部 53は、まず、求められた揷入部 5と体腔 3の内壁との間の 距離から求められる体腔 3の内壁からダイクロイツクミラー 35までの距離と、外皮チュ ーブ 13に対する保持部 45の相対位置に基づいて求められるダイクロイツクミラー 35 力も撮像素子 43までの距離と、力も現在の体腔 3の内壁から撮像素子 43までの距離 を求める。そして、距離測定部 53は、求められた距離と上記所定の一定距離との差 を求め (ステップ S3)、当該差に係る信号 (距離信号)を蛍光信号処理部 57に出力し ている(ステップ S4)。例えば、距離測定部 53は、上記求められた距離が上記所定 の一定距離より長い場合には、正の符号情報と、上記求められた距離と上記所定の 一定距離との差分の絶対値と、を含む距離信号を出力する。一方、上記求められた 距離が上記所定の一定距離より短い場合には、負の符号情報と、上記求められた距 離と上記所定の一定距離との差分の絶対値と、を含む距離信号を出力する。
[0061] その後、光源 7から励起光が出射され、励起光はライトガイド 29により外皮チューブ
13内を通って、揷入部 5の先端側端部に導かれる。励起光はライトガイド 29から揷入 部 5の中心軸線に沿う方向に出射され、照射用レンズ 31を透過して照射用ミラー 33 に入射する。照射用ミラー 33に入射した励起光は、揷入部 5の半径方向外側に向か つて反射され、励起光用窓 25およびバルーン 15を透過して体腔 3に入射する。励起 光は、照射用レンズ 31を透過することにより、体腔 3における観察領域全面を照明す ること力 Sでさる。
[0062] 励起光が入射した体腔 3からは蛍光が発生する。特に、病変部 Tから発生する蛍光 の光量は、正常な体腔 3から発生する蛍光の光量より大きくなる。蛍光はバルーン 15 および蛍光用窓 27を透過して外皮チューブ 13内に入射する。入射した蛍光の内、 ダイクロイツクミラー 35に入射した蛍光は、揷入部 5の中心軸線方向に反射される。 ダイクロイツクミラー 35に入射した上記蛍光以外の波長を有する光は、反射されること なくダイクロイツクミラー 35を透過する。
[0063] ダイクロイツクミラー 35により反射された蛍光は、撮像用レンズ系 41により撮像素子 43の受光面に結像される。撮像素子 43は、結像された蛍光像に基づいて撮像信号 を蛍光信号処理部 57に出力する。
[0064] 一方、ダイクロイツクミラー 35は、モータ制御部 39により回転制御されている。具体 的には、モータ制御部 39は、駆動モータ 37の回転を制御することにより、ダイクロイ ックミラー 35の位相を制御している。体腔 3の内壁全面から発生する蛍光は、ダイク口 イツクミラー 35が揷入部 5の中心軸線回りに回転制御されることにより、撮像素子 43 に入射される。
同時に、モータ制御部 39は、ダイクロイツクミラー 35の回転位相に係る信号を蛍光 信号処理部 57に出力している。
[0065] 図 7は、図 1の蛍光信号処理部における処理方法を説明するフローチャートである 蛍光信号処理部 57は、距離測定部 53から入力された距離信号と、撮像素子 43か ら入力された撮像信号と、モータ制御部 39から入力された回転位相に係る信号とに 基づいて、画像信号を算出する。
[0066] 蛍光信号処理部 57は、まず、補正信号算出部 53から入力された距離信号に基づ いて、補正信号を生成する (ステップ S5)。例えば、距離信号に正の符号情報が含ま れていた場合には、蛍光信号処理部 57は、距離信号に含まれる差分の絶対値に基 づいて、画像信号に含まれる蛍光強度の増幅の程度を制御する補正信号を算出す る。一方、距離信号に負の符号情報が含まれていた場合には、蛍光信号処理部 57 は、距離信号に含まれる差分の絶対値に基づいて、画像信号に含まれる蛍光強度 の減少の程度を制御する補正信号を算出する。
[0067] その後、蛍光信号処理部 57は、算出した補正信号に基づいて、撮像信号に補正 処理を施して画像信号を生成する (ステップ S6)。蛍光信号処理部 57は、撮像信号 に含まれる全ての蛍光強度に係る信号について、補正信号に基づいて補正処理を 施して画像信号を生成する。つまり、蛍光信号処理部 57は、実際の体腔 3の内壁か ら撮像素子 43までの距離に係わらず、上記所定の一定距離において撮像したら得 られる蛍光強度に係る画像信号を生成する。
[0068] 一方、撮像素子 43から入力される撮像信号は、ダイクロイツクミラー 35の回転に伴 い回転する像に係る信号である。蛍光信号処理部 57は、上記回転位相に係る信号 に基づいて、回転する像に係る信号である撮像信号を、静止した像に係る画像信号 に変換処理する。
蛍光信号処理部 57において、補正処理および変換処理された画像信号は、蛍光 信号処理部 57からモニタ 59に出力され、モニタ 59において表示される。
[0069] 上記の構成によれば、バルーン 15は、揷入部 5の半径方向に位置する体腔 3の内 壁と接触することにより、揷入部 5を体腔 3の略中心に位置させることができる。つまり 、バルーン 15は、揷入部 5の半径方向における体腔 3の内壁の全ての部分領域と揷 入部 5との間の距離を等しくすることができる。光出射部 17は、励起光を揷入部 5の 半径方向外方に出射して、バルーン 15により揷入部 5からの距離を等しくされた体腔 3の内壁に対して照射することができる。これにより、励起光が照射された内壁から蛍 光が発生される。体腔 3の内壁から発生した蛍光は、バルーン 15を透過して揷入部 5 の半径方向内方に向かい、光導入部 19により揷入部 5の内部に導入される。ここで、 体腔 3の内壁の複数箇所から蛍光が発生した場合は、それぞれの蛍光が、揷入部 5 の複数の異なる半径方向から揷入部の内部に導入される。そして、撮像部 21の撮像 素子 43は、光導入部 19から揷入部 5内に導入された蛍光を撮像することができる。 [0070] 蛍光信号処理部 57は、バルーン 15における内壁との接触面と、揷入部 5との間の 距離に基づいて、撮像部 21から出力された撮像信号を補正する補正信号を算出す ること力 Sできる。すなわち、バルーン 15における内壁との接触面と、揷入部 5との間の 距離の変化に応じて、蛍光信号処理部 57において異なる補正信号が算出される。 そして、蛍光信号処理部 57において算出された補正信号に基づいて撮像部 21の撮 像素子 43から出力された撮像信号の強度を補正し、補正された撮像信号から画像 信号を生成することができる。
[0071] これにより、接触面と揷入部 5との間が所定距離に保たれた場合と同様の画像信号 を生成すること力 Sできる。この画像信号を用いることにより、接触面と揷入部 5との間 の距離が変化しても、体腔 3の内壁を常に所定距離で観察した場合と同様の蛍光画 像が得られるので、体腔組織が良性組織化悪性組織化を判別しやすくできる。
[0072] 励起光は光出射部 17に設けられた照射用ミラー 33により揷入部 5の半径方向外方 に出射され、バルーン 15と接触している体腔 3の内壁に照射される。励起光が照射さ れた体腔 3の内壁から蛍光が発生し、蛍光は揷入部 5の内部に導入される。揷入部 5 の内部に導入された蛍光は、光導入部 19に設けられたダイクロイツクミラー 35により 揷入部 5の中心軸線方向に向けて反射される。ダイクロイツクミラー 35は中心軸線回 りに回転可能に配置されているため、揷入部 5の複数の異なる半径方向に位置する 体腔 3の内壁力 発生した蛍光は揷入部 5の中心軸線方向に向けて反射される。ダ ィクロイツクミラー 35から反射した蛍光は撮像部 21の撮像素子 43により撮像され、撮 像素子 43は揷入部 5の半径方向に位置する内壁の部分領域の像を取得することが できる。
[0073] ダイクロイツクミラー 35を回転させることにより、揷入部 5の複数の異なる半径方向に 位置する体腔 3の内壁の部分領域力 発生した蛍光を撮像素子 43に向けて反射さ せて、撮像素子 43に蛍光を撮像させることができる。
[0074] 〔第 1の実施形態の第 1変形例〕
次に、本発明の第 1の実施形態の第 1変形例について図 8から図 1 1を参照して説 明する。
本変形例の蛍光内視鏡の基本構成は、第 1の実施形態と同様であるが、第 1の実 施形態とは、反射部の構成が異なっている。よって、本変形例においては、図 8から 図 11を用いて反射部の周辺のみを説明し、その他の構成要素等の説明を省略する 図 8は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0075] 蛍光内視鏡 101は、図 8に示すように、被検体の体腔 3内に挿入される揷入部 105 と、励起光を出射する光源 7と、揷入部 5と体腔 3の内壁との距離を測定する測定制 御部 9と、撮像された蛍光像を表示する表示部 111と、を備えている。
[0076] 揷入部 105には、図 8に示すように、外皮チューブ 13と、ノ ノレーン 15と、光出射部( 光出射導入部) 17と、光導入部(光出射導入部) 119と、撮像部 21と、とが設けられ ている。
光導入部 119は、体腔 3から発生した蛍光を撮像部 21にむけて反射するものであ る。光導入部 119は、円錐ミラー(反射部) 135を備えている。
[0077] 図 9は、図 8の円錐ミラーの構成を説明する模式図である。
円錐ミラー 135は、蛍光用窓 27を透過した蛍光を揷入部 5の中心軸線に沿う方向 へ反射させるものである。円錐ミラー 135は、外皮チューブ 13の内部であって蛍光用 窓 27と対向する位置に配置されている。図 9に示すように、円錐ミラー 135は円錐状 に形成されるとともに、円錐面が反射面とされたミラーである。そのため、円錐ミラー 1 35は、体腔 3の内壁全面から発生した蛍光を撮像部 21に向けて反射するものである 。円錐ミラー 135は、揷入部 105の先端部に配置されている。
円錐ミラー 135は、所定の反射面の表面積を有していれば、円錐台の形状であつ てもよい。
[0078] 表示部 111は、図 8に示すように、撮像部 21により撮像された蛍光像を表示するも のである。表示部 111は、図 8に示すように、蛍光信号処理部(補正信号算出部、信 号処理部、画像処理部) 157と、モニタ 59と、画像センサ(揷入長計測部) 161と、を 備えている。
[0079] 蛍光信号処理部 157は、撮像素子 43から出力された撮像信号をモニタ 59に表示 する画像信号に変換処理するものである。蛍光信号処理部 157には、撮像素子 43 から出力された撮像信号と、距離測定部 53から出力された距離信号と、が入力され ている。蛍光信号処理部 157からモニタ 59には、画像信号が出力されている。
[0080] 画像センサ 161は、体腔 3に対する揷入部 5の揷入長さを測定するものである。画 像センサ 161は、揷入部 5に設けられた目盛りの画像を撮像することにより、揷入部 5 の揷入長さを測定するものである。揷入長さに係る信号は、画像センサ 161から蛍光 信号処理部 157へ出力されている。なお、画像センサ 161としては公知のセンサ等 を用いることができ、揷入長さの算出方法としても公知の方法を用いることができ、特 に限定するものではない。
[0081] 次に、上記の構成からなる蛍光内視鏡 101による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15による揷入部 5の固定方法は、第 1の実施形態と同様であるので 、その説明を省略する。
光源 7から出射された励起光を体腔 3に照射するまでの作用についても、第 1の実 施形態と同様であるので、その説明を省略する。
[0082] 体腔 3から発生した蛍光は、バルーン 15および蛍光用窓 27を透過して外皮チュー ブ 13内に入射する。入射した蛍光は円錐ミラー 135により、揷入部 105の中心軸線 方向に反射される。つまり、蛍光用窓 27と対向する領域である体腔 3の全内周面から 発生した蛍光が円錐ミラー 135に入射し、撮像素子 43方向に反射される。
円錐ミラー 135に反射された蛍光は、撮像用レンズ系 41により撮像素子 43に受光 面に結像される。撮像素子 43は、結像された蛍光像に基づいて撮像信号を蛍光信 号処理部 157に出力する。
[0083] 図 10は、図 8の撮像素子に撮像された蛍光像を示す図である。図 11は、図 8の蛍 光信号処理部により変換処理された後の画像を示す図である。
蛍光信号処理部 157は、撮像素子 43から入力された撮像信号と、画像センサ 161 から入力された揷入長さに係る信号に基づいて、画像信号を生成する。ここで、撮像 素子 43から入力された撮像信号に係る画像は、図 10に示すように、円錐ミラー 135 の円周面に映った体腔 3の内壁の像である。蛍光信号処理部 157は、揷入長さに係 る信号に基づいて、上記撮像信号に対して展開処理や伸張処理などの処理を行い 、図 11に示すような、体腔 3を展開した画像に係る画像信号を生成する。生成された 画像信号は、図 8に示すように、モニタ 59に出力され、モニタ 59において表示される
[0084] 上記の構成によれば、励起光は照射用ミラー 33から揷入部 105の半径方向外方 に出射され、バルーン 15と接触している体腔 3の内壁に照射される。励起光が照射さ れた体腔 3の内壁から蛍光が発生し、蛍光は揷入部 105の内部に導入される。光導 入部 119の内部に導入された蛍光は、光導入部 119に設けられた円錐ミラー 135に より揷入部 105の中心軸線方向に向けて反射される。円錐ミラー 135から反射した蛍 光は撮像部 21の撮像素子 43により撮像され、撮像素子 43は揷入部 105の半径方 向に位置する内壁の部分領域の像を取得することができる。
[0085] 〔第 1の実施形態の第 2変形例〕
次に、本発明の第 1の実施形態の第 2変形例について図 12および図 13を参照し て説明する。
本変形例の蛍光内視鏡の基本構成は、第 1の実施形態と同様であるが、第 1の実 施形態とは、揷入部の構成が異なっている。よって、本変形例においては、図 12お よび図 13を用いて揷入部の周辺のみを説明し、その他の構成要素等の説明を省略 する。
図 12は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0086] 蛍光内視鏡 201は、図 12に示すように、被検体の体腔 3内に挿入される揷入部 20 5と、励起光を出射する光源 7と、揷入部 205と体腔 3の内壁との距離を測定する測 定制御部 9と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0087] 図 13は、図 12の揷入部の構成を説明する模式図である。
揷入部 205には、図 12に示すように、外側揷入部(挿入部) 213Aと、内側揷入部( 光出射導入部、回転部) 213Bと、が設けられている。
[0088] 外側揷入部 213Aは揷入部 205の外周面を構成するチューブである。外側揷入部 213Aにおける揷入側端部(図 13の左側端部)の外周面にはバルーン 15が配置さ れている。少なくとも、外側揷入部 213Aのバルーン 15が配置されている領域であつ て、後述する励起光用窓 225および蛍光用窓 227と対向する領域は、励起光用窓 2 25を透過する励起光および蛍光用窓 227を透過する蛍光を透過する材料から形成 されていることが望ましい。外側揷入部 213Aは、曲がらない、いわゆる硬性内視鏡 の揷入部として形成されることとしてもよい。このようにすることで、内部に揷入された 内側揷入部 213Bを外側揷入部 213Aに対して回転容易にできる。
[0089] 内側揷入部 213Bは外側揷入部 213Aの内部に揷入されるものである。内側揷入 部 213Bには、励起光用窓 225と、蛍光用窓 227と、光出射部(光出射導入部) 217 と、光導入部(光出射導入部) 219と、撮像部 21とが設けられている。
励起光用窓 225は、励起光が内側揷入部 213Bの内側から外側に向力、つて出射 する窓である。励起光用窓 225は、内側揷入部 213Bの先端側端部の近傍に形成さ れており、内側揷入部 213Bにおける円周方向の長さが円周の 1/4程度になるよう に形成されている。
[0090] 蛍光用窓 227は、蛍光が内側揷入部 213Bの外側から内側に向力、つて入射する窓 である。蛍光用窓 227は、内側揷入部 213Bの先端側端部の近傍に形成されており 、内側揷入部 213Bにおける円周方向の長さが円周の 1/4程度になるように形成さ れている。蛍光用窓 227は、励起光用窓 225よりも内側揷入部 213Bの先端側に形 成されている。
[0091] なお、励起光用窓 225および蛍光用窓 227における円周方向の長さは、上述のよ うに円周の 1/4程度であってもよいし、それ以上であっても以下あってもよぐ特に限 定するものではない。
[0092] 光出射部 217は、光源 7から出射された励起光を体腔 3の内壁に向けて出射させる ものである。光出射部 217は、図 13に示すように、ライトガイド 229と、照射用レンズ 2 31と、照射用ミラー(照射部) 233とを備えて!/、る。
ライトガイド 229は、光源 7から出射された励起光を内側揷入部 213Bの揷入側端 部に配置された照射用レンズ 231まで導くものである。ライトガイド 229は、励起光を 導くファイバの束から構成されたものである。 [0093] 照射用レンズ 231は、励起光を体腔 3の観察領域全体に照射させるレンズである。 照射用レンズ 231は、内側揷入部 213Bの揷入側端部であって、ライトガイド 229と 照射用ミラー 233との間に配置されている。照射用レンズ 231は、ライトガイド 229と 対向する面が凹状に形成されたレンズである。
[0094] 照射用ミラー 233は、照射用レンズ 231から揷入部 5の中心軸線方向に出射された 励起光を、内側揷入部 213Bの半径方向外側に反射するミラーである。照射用ミラー 233は、内側揷入部 213Bの内部であって、励起光用窓 225と対向する位置に配置 されている。照射用ミラー 233は、内側揷入部 213Bの中心軸線を含む面により切断 した断面が三角形状になるとともに、上記断面形状を、上記中心軸線を回転軸として 回転させた立体形状からなるミラーである。照射用ミラー 233は、ミラー保持部 234に より保持されている。
[0095] 光導入部 219は、体腔 3から発生した蛍光を撮像部 21に向けて反射するものであ る。光導入部 219は、図 13に示すように、ダイクロイツクミラー(反射部) 35を備えてい る。ダイクロイツクミラー 35は、内側揷入部 213Bの先端部に直接固定されている。
[0096] 次に、上記の構成からなる蛍光内視鏡 201による体腔 3の内壁の撮像方法につい て説明する。
まず、蛍光内視鏡 201の外側揷入部 213A力 体腔 3の内部に揷入される。外側揷 入部 213Aの内部に図示しない直視型内視鏡を入れた状態で、体腔への揷入を行 つてもよい。揷入の際、前方を見ることができるので挿入が楽に行える。観察位置に 到達したら直視型内視鏡を抜いて内側揷入部 213Bを揷入する。このとき、バルーン 15は、揷入の邪魔にならないように縮められ、外側揷入部 213Aの外周面に密着し た状態とされて!/、る。外側揷入部 213Aの揷入側端部が体腔 3の検査領域に到達す ると、送気ポンプ 49から空気がバルーン 15に送気され、バルーン 15は膨張して体腔 3の内壁に押し付けられる。外側揷入部 213Aは、バルーン 15により体腔 3に対して 固定されるとともに、外側揷入部 213Aの揷入側端部は体腔 3における管路の略中 央に配置される。
その後、内側揷入部 213Bが外側揷入部 213 Aの内部に挿入される。
[0097] なお、バルーン 15における作用については、第 1の実施形態と同様であるので、そ の説明を省略する。
[0098] その後、光源 7から励起光が出射され、励起光はライトガイド 229により内側揷入部
213B内を通って、内側揷入部 213Bの先端側端部に導かれる。励起光はライトガイ ド 229から内側揷入部 213Bの中心軸線に沿う方向に出射され、照射用レンズ 231 を透過して照射用ミラー 233に入射する。照射用ミラー 233に入射した励起光は、内 側揷入部 213Bの半径方向外側に向かって反射され、励起光用窓 225、外側揷入 部 213Aおよびバルーン 15を透過して体腔 3に入射する。励起光は、照射用レンズ 2 31を透過することにより、体腔 3における観察領域全面を照明することができる。
[0099] 励起光が入射した体腔 3からは蛍光が発生する。特に、病変部 Tから発生する蛍光 の光量は、正常な体腔 3から発生する蛍光の光量より大きくなる。蛍光はバルーン 15 、外側揷入部 213Aおよび蛍光用窓 227を透過して内側揷入部 213B内に入射する 。入射した蛍光の内、ダイクロイツクミラー 35に入射した蛍光は、内側揷入部 213Bの 中心軸線方向に反射される。ダイクロイツクミラー 35に入射した上記蛍光以外の波長 を有する光は、反射されることなくダイクロイツクミラー 35を透過する。
[0100] ダイクロイツクミラー 35により反射された蛍光は、撮像用レンズ系 41により撮像素子
43に受光面に結像される。撮像素子 43は、結像された蛍光像に基づいて撮像信号 を蛍光信号処理部 57に出力する。
蛍光信号処理部 57は、撮像素子 43から入力された撮像信号に基づいて、画像信 号を生成する。画像信号は、蛍光信号処理部 57からモニタ 59に出力され、モニタ 5 9において表示される。
[0101] 一方、内側揷入部 213Bは、外側揷入部 213Aに対して、中心軸線回りに回転可 能に配置されているため、内側揷入部 213Bを回転させることにより、体腔 3の所定の 内壁から発生した蛍光を観察することができる。
[0102] 上記の構成によれば、励起光は内側揷入部 213Bに設けられた照射用ミラー 233 カも揷入部 205の半径方向外方に出射され、バルーン 15と接触している体腔の内 壁に照射される。励起光が照射された体腔の内壁力 蛍光が発生し、蛍光は揷入部 205を透過して内側揷入部 213Bの内部に導入される。内側揷入部 213Bの内部に 導入された蛍光は、内側揷入部 213Bに設けられたダイクロイツクミラー 35により揷入 部 205の中心軸線方向に向けて反射される。ダイクロイツクミラー 35から反射した蛍 光は撮像部 21の撮像素子 43により撮像され、撮像素子 43は揷入部 205の半径方 向に位置する内壁の部分領域の像を取得することができる。
[0103] ここで、内側揷入部 213Bは、揷入部 205の内部に、揷入部 205の中心軸線回りに 回転可能に配置されているため、蛍光を揷入部 205の複数の異なる半径方向力、ら揷 入部 205の内部に導入することが可能である。よって、撮像素子 43は、揷入部 205 の複数の異なる半径方向に位置する体腔の内壁力 発生した蛍光を撮像できる。
[0104] 〔第 1の実施形態の第 3変形例〕
次に、本発明の第 1の実施形態の第 3変形例について図 14および図 15を参照し て説明する。
本変形例の蛍光内視鏡の基本構成は、第 1の実施形態の第 2変形例と同様である 1S 第 1の実施形態とは、回転揷入部の構成が異なっている。よって、本変形例にお いては、図 14および図 15を用いて回転揷入部の周辺のみを説明し、その他の構成 要素等の説明を省略する。
図 14は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態の第 2変形例と同一の構成要素については、同一の符号を 付してその説明を省略する。
[0105] 蛍光内視鏡 901は、図 14に示すように、被検体の体腔 3内に挿入される揷入部 90 5と、励起光を出射する光源 7と、揷入部 905と体腔 3の内壁との距離を測定する測 定制御部 9と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0106] 図 15は、図 14の揷入部の構成を説明する模式図である。
揷入部 905は、図 15に示すように、外側揷入部 213Aと、回転揷入部(光出射導入 部,回転部) 913Bと、を備えている。
[0107] 回転揷入部 913Bは外側揷入部 213Aにおける先端部分の内部に、揷入部 905の 中心軸回りに回転可能に配置されるものである。回転揷入部 913Bには、励起光用 窓 225と、蛍光用窓 227と、光出射部 217と、光導入部 219と、撮像部 21とが設けら れている。さらに、回転揷入部 913Bには、光ロータリジョイント 915と、信号ロータリジ ョイント 917と、揷入部駆動モータ 919とが設けられている。 [0108] 光ロータリジョイント 915は、外側揷入部 213Aから外側揷入部 213A内で回転する 回転揷入部 913Bへ、励起光を導くジョイントである。光ロータリジョイント 915は、揷 入部 905の中心軸線上に配置されているとともに、外側揷入部 213A内のライトガイ ド 229と、回転揷入部 913Bのライトガイド 229とを繋ぐように配置されている。光ロー タリジョイント 915には、対向配置されたレンズ 916A, 916Bが備えられ、レンズ 916 Aは外側揷入部 213Aに配置され、レンズ 916Bは回転揷入部 913Bに配置されて いる。そのため、外側揷入部 213A内のライトガイド 229から出射した励起光は、レン ズ 916Aおよびレンズ 916Bを透過して回転揷入部 913Bのライトガイド 229に入射す
[0109] なお、本実施形態においては、光ロータリジョイント 915として公知の光ロータリジョ イントを用いることができ、本実施形態で例示した態様の光ロータリジョイントに限定 するものではない。
[0110] 信号ロータリジョイント 917は、外側揷入部 213Aと、外側揷入部 213A内で回転す る回転揷入部 913Bとの間を電気的に接続するジョイントである。信号ロータリジョイン ト 917には、撮像素子 43から出力された撮像信号を蛍光信号処理部 57に導く撮像 用集電環 921および撮像用ブラシ 923が備えられている。
撮像用集電環 921は、回転揷入部 913Bに設けられた円環または円筒状の部材で あって、両集電環 921は、中心軸線が回転揷入部 913Bの中心軸線と一致するよう に配置されている。撮像用集電環 921は撮像素子 43に電気的に接続されている。
[0111] 撮像用ブラシ 923は、外側揷入部 213Aに設けられたブラシである。撮像用ブラシ 923は、撮像用集電環 921の円周面または円筒面に摺動可能に配置されているとと もに、蛍光信号処理部 57と電気的に接続されている。
なお、本実施形態においては、信号ロータリジョイント 917として公知のスリップリン グ等の集電装置を用いることができ、本実施形態で例示した態様の信号ロータリジョ イントに限定するものではない。
[0112] 揷入部駆動モータ 919は、外側揷入部 213A内に配置され、外側揷入部 213A内 で回転揷入部 913Bを回転するものである。揷入部駆動モータ 919はギヤ(図示せ ず)などを介して回転揷入部 913Bを回転駆動するように配置されているとともに、モ ータ制御部 39と接続されて!/、る。
なお、揷入部駆動モータ 919としては、公知のモータを用いることができ、特に限定 するものではない。
[0113] 次に、上記の構成からなる蛍光内視鏡 901による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15による揷入部 905の固定、および、体腔 3の内壁から撮像素子 4 3までの距離の制御方法は、第 1の実施形態と同様であるので、その説明を省略する
[0114] ここで、本変形例の特徴部である光ロータリジョイント 915の作用について説明する 光源 7から出射された励起光は、ライトガイド 229により外側揷入部 213A内を通つ て、光ロータリジョイント 915に導かれる。励起光は、外側揷入部 213Aのライトガイド 229からレンズ 916Aに向けて出射される。レンズ 916Aに入射した励起光は平行光 となりレンズ 916Bに入射する。
[0115] レンズ 916A, 916Bの光軸は回転揷入部 913Bの中心軸線と一致しているため、 揷入部駆動モータ 919により回転揷入部 913Bが回転駆動されていても、レンズ 916 Aから出射した励起光は全て回転揷入部 913Bとともに回転するレンズ 916Bに入射 する。
[0116] レンズ 916Bに入射した励起光は、回転揷入部 913Bのライトガイド 229に集光する 。集光された励起光は、照射用レンズ 231を通って出射される。以後、励起光が体腔 3を照明する作用は、第 2変形例と同様であるのでその説明を省略する。
[0117] 次に、本変形例の別の特徴部である信号ロータリジョイント 917の作用について説 明する。なお、体腔 3から発生した蛍光が撮像素子 43に結像するまでの作用は、第 2 変形例と同様であるので、その説明を省略する。
結像された蛍光像に基づいて、撮像素子 43は撮像信号を信号ロータリジョイント 9 17に出力する。撮像素子 43からの撮像信号は、信号ロータリジョイント 917の撮像用 集電環 921から撮像用ブラシ 923を通って、蛍光信号処理部 57に入力される。
[0118] 撮像用集電環 921の中心軸線は、回転揷入部 913Bの中心軸線と一致しているた め、揷入部駆動モータ 919により回転揷入部 913Bが回転駆動されていても、撮像 用集電環 921と撮像用ブラシ 923は離れることなく摺動接触し続けることができる。そ のため、撮像用集電環 921と撮像用ブラシ 923は電気的接続し続けることができる。
[0119] 上記の構成によれば、励起光は回転揷入部 913Bに設けられた光出射部 217から 揷入部 905の半径方向外方に出射され、バルーン 15と接触している体腔 3の内壁に 照射される。励起光が照射された体腔 3の内壁から蛍光が発生し、蛍光は外側揷入 部 213Aを透過して回転揷入部 913Bの内部に導入される。回転揷入部 913Bの内 部に導入された蛍光は、回転揷入部 913Bに設けられた撮像素子 43により撮像され ここで、回転揷入部 913Bは、外側揷入部 213Aの内部に、揷入部 905の中心軸 線回りに回転可能に配置されているため、蛍光を揷入部 905の複数の異なる半径方 力、ら回転揷入部 913Bの内部に導入することが可能である。
[0120] 〔第 1の実施形態の第 4変形例〕
次に、本発明の第 1の実施形態の第 4変形例について図 16から図 18を参照して説 明する。
本変形例の蛍光内視鏡の基本構成は、第 1の実施形態の第 2変形例と同様である 力 S、第 1の実施形態とは、内側揷入部の構成が異なっている。よって、本変形例にお いては、図 16から図 18を用いて内側揷入部の周辺のみを説明し、その他の構成要 素等の説明を省略する。
図 16は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態の第 2変形例と同一の構成要素については、同一の符号を 付してその説明を省略する。
[0121] 蛍光内視鏡 301は、図 16に示すように、被検体の体腔 3内に挿入される揷入部 30 5と、励起光を出射する光源 7と、揷入部 305と体腔 3の内壁との距離を測定する測 定制御部 9と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0122] 図 17は、図 16の揷入部の構成を説明する模式図である。
揷入部 305には、図 17に示すように、外側揷入部 213Aと、内側揷入部(光出射導 入部、回転部) 313Bと、を備えている。 [0123] 図 18は、図 17の揷入部の構成を説明する正面視図である。
内側揷入部 313Bは外側揷入部 213 Aの内部に挿入されるものである。内側揷入 部 313Bには、励起光用窓 225と、蛍光用窓 227と、光出射部(光出射導入部) 217 と、光導入部(光出射導入部) 219と、撮像部 21と、鉗子孔 325と、が設けられている 鉗子孔 325は、内側揷入部 313Bに設けられた、直視スコープ 327や鉗子などが 揷通される貫通孔である。鉗子孔 325は、内側揷入部 313Bの外周面の近傍に(図 1 8参照。)、中心軸線に沿って形成された貫通孔である。
[0124] 次に、上記の構成からなる蛍光内視鏡 301による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15による外側揷入部 213Aの固定、および、内側揷入部 313Bによ る体腔 3の蛍光撮像の方法は、第 1の実施形態の第 2変形例と同様であるので、その 説明を省略する。
[0125] つぎに、内側揷入部 313Bの鉗子孔 325の使用方法について説明する。
例えば、鉗子孔 325には直視スコープ 327が揷通され、内側揷入部 313Bの先端 側端部から、直視スコープ 327の先端が突出させる。このように直視スコープ 327を 用いることにより、揷入部 305の中心軸線方向の画像を取得することができる。
あるいは、鉗子孔 325に種々の鉗子を揷通させることにより、体腔 3への医療処置 を施すことができる。
[0126] 〔第 1の実施形態の第 5変形例〕
次に、本発明の第 1の実施形態の第 5変形例について図 19および図 20を参照し て説明する。
本変形例の蛍光内視鏡の基本構成は、第 1の実施形態と同様であるが、第 1の実 施形態とは、揷入部の構成が異なっている。よって、本変形例においては、図 19お よび図 20を用いて揷入部の周辺のみを説明し、その他の構成要素等の説明を省略 する。
図 19は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0127] 蛍光内視鏡 401は、図 19に示すように、被検体の体腔 3内に挿入される揷入部 40 5と、電力を供給する電源 407と、揷入部 405と体腔 3の内壁との距離を測定する測 定制御部 9と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0128] 図 20は、図 19の揷入部の構成を説明する模式図である。
揷入部 405には、図 20に示すように、外側揷入部 413Aと、内側揷入部(光出射導 入部、回転部) 413Bと、が設けられている。
[0129] 外側揷入部 413Aは揷入部 405の外周面を構成するチューブである。外側揷入部
413Aにおける揷入側端部(図 20の左側端部)の外周面にはバルーン 15が配置さ れている。少なくとも、外側揷入部 413Aのバルーン 15が配置されている領域であつ て、後述する窓部 425と対向する領域は、窓部 425を透過する励起光および蛍光を 透過する材料から形成されていることとしてもよい。外側揷入部 413Aは、曲がらない 、いわゆる硬性内視鏡の揷入部として形成されることが望ましい。このようにすること で、内部に揷入された内側揷入部 413Bを外側揷入部 413Aに対して回転容易にで きる。
[0130] 内側揷入部 413Bは外側揷入部 413Aの内部に揷入されるものである。内側揷入 部 413Bには、図 20に示すように、外皮チューブ 413と、光出射部(光出射導入部) 4 17と、撮像部 421と、励起光および蛍光が透過する窓部 425とが設けられている。
[0131] 外皮チューブ 413は、内側揷入部 413Bの外周面を構成するチューブである。外 皮チューブ 413における揷入側端部(図 20の左側端部)には、励起光および蛍光が 透過する窓部 425が設けられ、窓部 425の外周面にはバルーン 15が配置されてい る。外皮チューブ 413の内部には、光出射部 417や撮像部 421や保持部 445が配 置されている。窓部 425は、光源 7から出射された励起光および体腔 3から発生した 蛍光を透過する材料から形成されたものである。
[0132] 光出射部 417は、励起光を体腔 3の内壁に向けて出射させるものである。光出射部
417は、図 20に示すように、 LED (Light Emitting Diode) (照射部) 429を備え ている。
LED429は、電源 407から電力が供給されることにより、励起光を出射するもので ある。 LED429は、揷入部 405の半径方向外側であって、窓部 425側に励起光を出 射するように配置されている。 LED429と電源 407とは、電力配線 430により接続さ れている。なお、光出射部 417としては、上述のように LED429を用いてもよいし、そ の他の励起光を出射する素子を用いてもよぐ特に限定するものではない。
[0133] 撮像部 421は、体腔 3から発生した蛍光の像を撮像するものである。撮像部 421は 、図 20に示すように、撮像用レンズ系 441と、撮像素子 443とを備えている。
撮像用レンズ系 441は、窓部 425を透過した蛍光の像を撮像素子 443の受光面に 結像させるものである。撮像用レンズ系 441は、窓部 425と撮像素子 443との間に配 置されている。撮像用レンズ系 441の光軸は、内側揷入部 413Bの半径方向に平行 となるように配置されている。
[0134] 撮像素子 443は、体腔 3から発生した蛍光の像を撮像するものである。撮像素子 4 43は、窓部 425から入射した蛍光を撮像できるように配置されている。言い換えると、 撮像素子 443は、内側揷入部 413Bの半径方向外側から入射した蛍光を撮像できる ように配置されている。撮像素子 443は、表示部 11の蛍光信号処理部 57と信号配 泉 444 ίこより接続されて!/、る。
保持] ¾445は、 LED429と撮像素子 443とを保持するものである。
[0135] 次に、上記の構成からなる蛍光内視鏡 401による体腔 3の内壁の撮像方法につい て説明する。
まず、蛍光内視鏡 401の外側揷入部 413A力 体腔 3の内部に揷入される。外側揷 入部 413Αの内部に図示しない直視型内視鏡を入れた状態で体腔への揷入を行つ てもよい。揷入の際、前方を見ることができるので挿入が楽に行える。観察位置に到 達したら、直視型内視鏡を抜いて内側揷入部 413Bを揷入する。このとき、バルーン 15は、揷入の邪魔にならないように縮められ、外側揷入部 413Αの外周面に密着し た状態とされて!/、る。外側揷入部 413Αの揷入側端部が体腔 3の検査領域に到達す ると、送気ポンプ 49から空気がバルーン 15に送気され、バルーン 15は膨張して体腔 3の内壁に押し付けられる。外側揷入部 413Aは、バルーン 15により体腔 3に対して 固定されるとともに、外側揷入部 413Aの揷入側端部は体腔 3における管路の略中 央に配置される。 その後、内側揷入部 413Bが外側揷入部 413Aの内部に挿入される。
[0136] なお、バルーン 15による外側揷入部 413Aの固定、および、体腔 3の内壁から撮像 素子 443までの距離の測定方法は、第 1の実施形態と同様であるので、その説明を 省略する。
[0137] その後、電源 407から LED429に電力が供給され、 LED429から励起光が出射さ れる。励起光は内側揷入部 413Bの半径方向外側に向けて出射され、窓部 425およ びバルーン 15を透過して体腔 3に入射する。
[0138] 励起光が入射した体腔 3からは蛍光が発生する。蛍光はバルーン 15および窓部 4 25を透過して内側揷入部 413B内に入射する。入射した蛍光は、撮像用レンズ系 44 1により撮像素子 443に受光面に結像される。撮像素子 443は、結像された蛍光像 に基づいて撮像信号を蛍光信号処理部 57に出力する。
蛍光信号処理部 57以後の信号処理は第 1の実施形態と同様であるので、その説 明を省略する。
[0139] 上記の構成によれば、内側揷入部 413Bに設けられた LED429は、励起光を揷入 部 405の半径方向外方に出射することができる。これにより、バルーン 15と接触して いる体腔 3の内壁に励起光が照射されて、励起光が照射された体腔 3の内壁から蛍 光が発生される。発生した蛍光は、揷入部 405を透過して内側揷入部 413Bの内部 に導入される。内側揷入部 413Bに設けられた撮像素子 443は、内側揷入部 413B に導入された蛍光を撮像することができる。
[0140] ここで、内側揷入部 413Bは、揷入部 405の内部に配置されているとともに、中心軸 線回りに回転可能とされているため、蛍光を揷入部 405の複数の異なる半径方向か ら揷入部 405の内部に導入することが可能である。よって、撮像部 421の撮像素子 4 43は、揷入部 405の複数の異なる半径方向に位置する体腔 3の内壁から発生した 蛍光を撮像できる。
[0141] 〔第 1の実施形態の第 6変形例〕
次に、本発明の第 1の実施形態の第 6変形例について図 21を参照して説明する。 本変形例の蛍光内視鏡の基本構成は、第 1の実施形態と同様であるが、第 1の実 施形態とは、揷入部の構成が異なっている。よって、本変形例においては、図 21を 用いて揷入部の周辺のみを説明し、その他の構成要素等の説明を省略する。
図 21は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 1の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0142] 蛍光内視鏡 501は、図 21に示すように、被検体の体腔 3内に挿入される揷入部 50 5と、励起光を出射する光源 7と、揷入部 505と体腔 3の内壁との距離を測定する測 定制御部 9と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0143] 揷入部 505は、被検体の体腔 3内に挿入されるとともに、体腔 3の内壁から発生す る蛍光を観察するものである。揷入部 505は、図 21に示すように、外皮チューブ 513 と、バルーン 15と、光出射部(光出射導入部) 517と、光導入部(光出射導入部) 19 と、撮像部 521とを備えている。
[0144] 外皮チューブ 513は、揷入部 505の外周面を構成するチューブである。外皮チュ ーブ 513における揷入側端部(図 21の左側端部)には、励起光および蛍光が透過 する窓部 525が設けられ、窓部 525の外周面にはバルーン 15が配置されている。外 皮チューブ 513の内部には、光出射部 517や撮像部 521や保持部 545が配置され ている。窓部 525は、円筒状に形成されているとともに、光源 7から出射された励起光 および体腔 3から発生した蛍光を透過する材料から形成されているものである。
[0145] 光出射部 517は、光源 7 (図 1参照。)から出射された励起光を体腔 3の内壁に向け て出射させるものである。光出射部 517は、図 21に示すように、ライトガイド 29と、照 射用レンズ 531と、照射用ミラー(照射部) 533とを備えている。
照射用レンズ 531は、励起光を体腔 3の観察領域全体に照射させるレンズである。 照射用レンズ 531は、揷入部 505の揷入側端部であって、ライトガイド 29と照射用ミ ラー 533との間に配置されている。照射用レンズ 531は、円環状に形成されたレンズ であって、照射用ミラー 533と対向する面が凸状に形成されたレンズである。
[0146] 照射用ミラー 533は、照射用レンズ 531から揷入部 505の中心軸線方向に出射さ れた励起光を、揷入部 505の半径方向外側に反射するミラーである。照射用ミラー 5 33は、揷入部 505の内部であって、窓部 525と対向する位置に配置されている。照 射用ミラー 533は、略円錐状に形成されるとともに円錐面が反射面とされたミラーであ つて、中心軸線に沿って貫通孔が形成されたミラーである。円錐面は、図に示すよう に外側へ凸なる曲面に形成されている。揷入部 505の中心軸線を含む面により切断 した断面が三角形状になるとともに、上記断面形状を、上記中心軸線を回転軸として 回転させた立体形状からなるミラーである。照射用ミラー 533は、揷入部 505の先端 部 534により保持されている。
[0147] 撮像部 521は、体腔 3から発生した蛍光の像を撮像するものである。撮像部 521は 、図 21に示すように、撮像用レンズ系 541と、撮像素子 43とを備えている。
撮像用レンズ系 541は、ダイクロイツクミラー 35に反射された蛍光の像を撮像素子 4 3の受光面に結像させるものである。撮像用レンズ系 541は、ダイクロイツクミラー 35と 撮像素子 43との間に配置されている。
[0148] 保持部 545は、照射用レンズ 531と撮像用レンズ系 541と撮像素子 43とを保持す るものである。
[0149] 次に、上記の構成からなる蛍光内視鏡 501による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15による揷入部 505の固定方法は、第 1の実施形態と同様である ので、その説明を省略する。
[0150] 光源 7から励起光が出射され、励起光はライトガイド 29により揷入部 505内を通って 、揷入部 5の先端側端部に導かれる。励起光はライトガイド 29から揷入部 5の中心軸 線に沿う方向に出射され、照射用レンズ 531を透過して照射用ミラー 33に入射する。 励起光は、照射用レンズ 531から平行光として出射される。照射用ミラー 533に入射 した励起光は、揷入部 505の半径方向外側に向かって反射され、励起光用窓 25お よびバルーン 15を透過して体腔 3に入射する。なお、励起光は、照射用ミラー 533の 反射面は凸状の曲面であるため、体腔 3における観察領域全面を照明することがで きる。
以後の作用効果は、第 1の実施形態と同様であるため、その説明を省略する。
[0151] 上記の構成によれば、第 1の実施形態と比較して、撮像素子 43に蛍光を結像させ る撮像用レンズ系 541のレンズ径を大きくすることができ、撮像素子 43に結像させる 蛍光の蛍光量を大きくすることができる。つまり、第 1の実施形態と比較して、より明る V、蛍光画像を撮像することができる。
[0152] 図 22は、図 1から図 21の蛍光内視鏡の別の構成を説明する模式図である。図 23 は、図 1から図 21の蛍光内視鏡のさらに別の構成を説明する模式図である。図 24は 、図 1から図 21の蛍光内視鏡のさらに別の構成を説明する模式図である。
[0153] なお、上述の第 1の実施形態およびその各変形例において説明したように、バル一 ン 15越しに励起光を観察領域に照射するとともに、観察領域力も発生した蛍光をバ ルーン 15越しに観察してもよいし、図 22力も図 24に示すように、バルーン 15を回避 して励起光を観察領域に照射し、バルーン 15を回避して観察領域から発生した蛍光 を観察してもよく、特に限定するものではない。
[0154] このようにすることで、バルーン 15越しに蛍光を観察する方法と比較して、バルーン 15における蛍光のロスが回避されるため、検出される蛍光強度を高めることができる
さらに、例えば、内壁に襞が存在しない管腔臓器の内壁を観察する場合には、ノ ルーン 15の位置と、観察領域とが異なっていても、測定距離と観察距離との間に大 きな違いが生じず、観察に支障が生じない。
[0155] 具体的には、図 22に示す蛍光内視鏡では、観察窓 25より手元側にバルーン 15を 配置することにより、バルーン 15を回避して励起光を観察領域に照射するとともに、 バルーン 15を回避して観察領域から発生した蛍光を観察している。図 23に示す蛍 光内視鏡では、観察窓 25より先端側にバルーン 15を配置することにより、バルーン 1 5を回避して励起光を観察領域に照射するとともに、バルーン 15を回避して観察領 域から発生した蛍光を観察している。図 25に示す蛍光内視鏡では、観察窓 25より手 元側および先端側にバルーン 15が配置することにより、バルーン 15を回避して励起 光を観察領域に照射するとともに、バルーン 15を回避して観察領域力も発生した蛍 光を観察している。
[0156] 〔第 2の実施形態〕
次に、本発明の第 2の実施形態について図 25および図 26を参照して説明する。 本実施形態の蛍光内視鏡の基本構成は、第 1の実施形態の第 2変形例と同様であ るが、第 1の実施形態の第 2変形例とは、揷入部の構成が異なっている。よって、本 実施形態においては、図 25および図 26を用いて揷入部の周辺のみを説明し、その 他の構成要素等の説明を省略する。
図 25は、本実施形態における蛍光内視鏡の構成を説明する模式図である。
なお、第 1の実施形態の第 2変形例と同一の構成要素については、同一の符号を 付してその説明を省略する。
[0157] 蛍光内視鏡 601は、図 25に示すように、被検体の体腔 3内に挿入される揷入部 60 5と、励起光を出射する光源 7と、揷入部 605と体腔 3の内壁との距離を測定する測 定制御部 609と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0158] 図 26は、図 25の揷入部の構成を説明する模式図である。
揷入部 605には、図 25に示すように、外側揷入部(挿入部) 613Aと、内側揷入部( 光出射導入部、回転部) 613Bと、が設けられている。
[0159] 外側揷入部 613Aは揷入部 605の外周面を構成するチューブである。外側揷入部 613Aにおける揷入側端部(図 26の左側端部)の外周面にはバルーン 615が配置さ れている。少なくとも、外側揷入部 613Aのバルーン 615が配置されている領域であ つて、後述する励起光用窓 225および蛍光用窓 227と対向する領域は、励起光用窓 225を透過する励起光および蛍光用窓 227を透過する蛍光を透過する材料から形 成されていることが望ましい。
[0160] バルーン 615における体腔 3と接触する外周面には、蛍光を発生する蛍光剤が配 置されている。上記蛍光剤は、光源 7から出射される励起光が照射されると、蛍光を 発生させるものである。上記蛍光剤から発生される蛍光は、体腔 3から発生される蛍 光とは異なる波長の蛍光であって、ダイクロイツクミラー 35において反射されない波 長の蛍光である。蛍光剤は、バルーン 615に塗布されていてもよいし、ノ ノレーン 615 を構成する膜の成分の一部として含まれていてもよぐ特に限定するものではない。
[0161] 内側揷入部 613Bは外側揷入部 613Aの内部に揷入されるものである。内側揷入 部 613Bには、図 26に示すように、励起光用窓 225と、蛍光用窓 227と、光出射部( 光出射導入部) 217と、光導入部(光出射導入部) 219と、撮像部 21と、蛍光検出部 624と、力 S設けられている。
[0162] 蛍光検出部 624は、バルーン 615に配置された蛍光剤から発生した蛍光の蛍光強 度を検出するものである。蛍光検出部 624は、蛍光用窓 227と対向する位置であつ て、蛍光検出部 624と蛍光用窓 227との間にダイクロイツクミラー 35が挟まれるように 配置されている。蛍光検出部 624が検出した蛍光強度に係る信号は、図 25に示すよ うに、距離測定部 653に出力されている。
[0163] 測定制御部 609は、揷入部 605と体腔 3の内壁との距離を測定するものである。測 定制御部 609は、図 25に示すように、送気ポンプ 49と、距離測定部(演算部) 653と 、を備えている。
距離測定部 653は、揷入部 605と体腔 3の内壁との距離を測定するとともに、撮像 素子 43と体腔 3の内壁との距離を所定の一定距離に制御するものである。距離測定 部 653には、蛍光検出部 624から蛍光強度に係る信号が入力され、当該信号に基 づいて距離測定部 653は、揷入部 605と体腔 3の内壁との距離を求め、当該距離に 係る距離信号を蛍光信号処理部 57に出力することができる。
[0164] 次に、上記の構成からなる蛍光内視鏡 601による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 615により外側揷入部 613Aを体腔 3に固定する方法、および、光 源 7から励起光が体腔 3に照射されるまでの作用は、第 1の実施形態と同様であるの で、その説明を省略する。
[0165] 励起光が体腔 3に照射されると、同時にバルーン 615の蛍光剤にも励起光が照射 される。そのため、体腔 3および上記蛍光剤からそれぞれ蛍光が発生される。
上記蛍光剤から発生した蛍光は、外側揷入部 613Aおよび蛍光用窓 227を透過し て内側揷入部 613B内に入射する。入射した蛍光は、ダイクロイツクミラー 35を透過し て蛍光検出部 624に入射する。蛍光検出部 624は、入射した蛍光の蛍光強度に基 づいた、蛍光強度に係る信号を距離測定部 653に出力する。
[0166] 距離測定部 653は、まず、入力された蛍光強度に係る信号に基づいて、バルーン 6 15の外周面から蛍光検出部 624までの距離を求める。そして、距離測定部 653は、 バルーン 615の外周面から蛍光検出部 624までの距離に基づいて、体腔 3の内壁か ら撮像素子 43までの距離を算出し、当該算出された距離に基づいて上記距離信号 を算出する。 [0167] 一方、体腔 3から発生した蛍光の撮像方法は、第 1の実施形態の第 2変形例と同様 であるので、その説明を省略する。
[0168] 上記の構成によれば、揷入部 605の半径方向外方に出射された励起光はバル一 ン 615における内壁との接触面に配置された蛍光剤に照射される。励起光が照射さ れた蛍光剤からは、蛍光が発生される。発生された蛍光は蛍光検出部 624により蛍 光強度が検出される。ここで、蛍光強度は蛍光剤からの距離の 2乗に反比例するた め、蛍光検出部 624から出力される蛍光強度信号は蛍光剤と蛍光検出部 624との間 の距離に係る信号とみなすことができる。
[0169] したがって、蛍光強度信号に基づくことにより、蛍光信号処理部 57は、上記内壁か ら撮像部 21の撮像素子 43までの距離が所定の一定距離に保たれた場合と同様の 画像信号を生成することができる。
[0170] 〔第 2の実施形態の第 1変形例〕
次に、本発明の第 2の実施形態の第 1変形例について図 27および図 28を参照し て説明する。
本変形例の蛍光内視鏡の基本構成は、第 2の実施形態と同様であるが、第 2の実 施形態とは、揷入部の構成が異なっている。よって、本変形例においては、図 27お よび図 28を用いて揷入部の周辺のみを説明し、その他の構成要素等の説明を省略 する。
図 27は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0171] 蛍光内視鏡 701は、図 27に示すように、被検体の体腔 3内に挿入される揷入部 70 5と、励起光を出射する光源 7と、揷入部 705と体腔 3の内壁との距離を測定する測 定制御部 709と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0172] 図 28は、図 27の揷入部の構成を説明する模式図である。
揷入部 705には、図 27に示すように、外側揷入部(挿入部) 713Aと、内側揷入部( 光出射導入部,回転部) 713Bと、が設けられている。
[0173] 外側揷入部 713Aは揷入部 705の外周面を構成するチューブである。外側揷入部 713Aにおける揷入側端部(図 28の左側端部)の外周面にはバルーン 15が配置さ れている。少なくとも、外側揷入部 713Aのバルーン 15が配置されている領域であつ て、後述する励起光用窓 225および蛍光用窓 227と対向する領域は、励起光用窓 2 25を透過する励起光および蛍光用窓 227を透過する蛍光を透過する材料から形成 されていることが望ましい。外側揷入部 713Aは、硬質で超音波透過性のよい材料か ら形成されてレ、ることが望ましレ、。
[0174] 内側揷入部 713Bは外側揷入部 713 Aの内部に挿入されるものである。内側揷入 部 713Bには、図 28に示すように、励起光用窓 225と、蛍光用窓 227と、光出射部( 光出射導入部) 217と、光導入部(光出射導入部) 219と、撮像部 21と、超音波発生 測定部 (超音波信号発生器、超音波信号検出器) 724と、が設けられている。
[0175] 超音波発生測定部 724は、内側揷入部 713Bからバルーン 15の体腔 3との接触面 までの距離の測定に用いるものである。超音波発生測定部 724は、超音波を内側揷 入部 713Bの外側に向けて発生するとともに、内側揷入部 713Bの内部に伝播してき た超音波を測定するものである。超音波発生測定部 724には、後述する制御部 754 力、ら発生する超音波の位相等を制御する制御信号が入力されているとともに、超音 波発生測定部 724から制御部 754に、測定された超音波の位相等に係る測定信号 が出力されている。超音波発生測定部 724は、内側揷入部 713Bにおける先端側端 部の半径方向外側で配置されて!/、る。超音波発生測定部 724に対して隣接する位 置には、内側揷入部 713Bの外周面の一部を構成するカバー 725が配置されている 。カバー 725は、硬質で超音波透過性のよい材料から形成されていることが好ましい
[0176] 測定制御部 709は、揷入部 605と体腔 3の内壁との距離を測定するものである。測 定制御部 709は、図 28に示すように、ポンプ (流入部) 749と、距離測定部(演算部) 753と、制御部 754と、を備えている。
[0177] ポンプ 749は、液体(例えば水)を圧送することによりバルーン 15を膨張させるもの である。ポンプ 749力、ら圧送された液体は圧送チューブ 755を通ってバルーン 15に 送られる。なお、ポンプ 749としては、公知のポンプを用いることができ、特に限定す るものではない。 [0178] 距離測定部 753は、体腔 3の内壁力も超音波発生測定部 724までの距離を算出す るものである。つまり、距離測定部 753は、後述する位相差に係る信号に基づいて、 体腔 3の内壁力 超音波発生測定部 724までの距離に係る距離信号を生成するもの である。距離測定部 753には、制御部 754から位相差に係る信号が入力されている とともに、距離測定部 753から蛍光信号処理部 57に距離信号が出力されている。な お、体腔 3の内壁から超音波発生測定部 724までの距離の算出方法は、公知の算 出方法を用いることができ、特に限定するものではなレ、。
[0179] 制御部 754は、超音波発生測定部 724を制御するとともに、後述する位相差に係 る信号を距離測定部 753に出力するものである。制御部 754は、超音波発生測定部 724に対して超音波の発生や停止、および、発生する超音波の位相などを制御する 制御信号を出力しているとともに、制御部 754には、超音波発生測定部 724から測 定された超音波の位相などの測定信号が入力されている。制御部 754は、入力され た制御信号および測定信号に基づレ、て、超音波発生測定部 724から発生された超 音波と、超音波発生測定部 724に測定された超音波との位相差を求め、位相差に係 る信号を出力している。
[0180] 次に、上記の構成からなる蛍光内視鏡 701による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15により外側揷入部 713Aを体腔 3に固定する方法、および、体腔 3から発生した蛍光を撮像する方法などは、第 1の実施形態と同様であるので、その 説明を省略する。
[0181] 次に、本実施形態の特徴である、体腔 3の内壁から超音波発生測定部 724までの 距離の測定方法について説明する。
[0182] バルーン 15により外側揷入部 713Aが体腔 3に固定されている状態で、制御部 75 4は、超音波発生測定部 724に対して超音波を発生させる制御信号を出力する。制 御信号が入力された超音波発生制御部 754は、制御信号に基づ!/、て超音波を発生 する。超音波は、カバー 725、外側揷入部 713Aおよびバルーン 15内の液体を伝播 して、バルーン 15と体腔 3との接触面である外周面において反射される。反射された 超音波は、バルーン 15内の液体、外側揷入部 713Aおよびカバー 725を伝播して 超音波発生測定部 724に検出される。超音波発生測定部 724は、反射した超音波 の位相などの情報を含む測定信号を制御部 754に出力する。
[0183] 制御部 754は、超音波発生測定部 724から入力された測定信号と、超音波発生測 定部 724に出力した制御信号とに基づいて、超音波発生測定部 724から発生された 超音波と、超音波発生測定部 724に測定された超音波との位相差を算出する。算出 された位相差に係る信号は、制御部 854から距離測定部 753に出力される。距離測 定部 753は、入力された位相差に係る信号に基づいて、体腔 3の内壁から超音波発 生測定部 724までの距離を算出する。算出された距離に係る距離信号は、蛍光信号 処理部 57に出力される。
[0184] 上記の構成によれば、超音波は、超音波発生測定部 724からバルーン 15の上記 接触面に向かって発生され、液体が満たされたバルーン 15内を伝搬する。ここで、 バルーン 15内に液体が満たされて!/、るため、気体が満たされて!/、る場合と比較して 、超音波の減衰率が低くなる。バルーン 15内を伝搬した超音波は、上記接触面にお いて反射し、超音波発生測定部 724により検出される。上記接触面と揷入部 705との 距離は、超音波発生測定部 724から発生される超音波の位相と、超音波発生測定 部 724に検出された超音波の位相との位相差に基づいて、制御部 754により求めら れている。
[0185] このように、制御部 754により求められた距離に基づくことにより、蛍光信号処理部 5 7は、上記内壁力 撮像部 21までの距離が所定の一定距離に保たれた場合と同様 の画像信号を生成することができる。
[0186] 〔第 2の実施形態の第 2変形例〕
次に、本発明の第 2の実施形態の第 2変形例について図 29および図 30を参照し て説明する。
本変形例の蛍光内視鏡の基本構成は、第 2の実施形態と同様であるが、第 2の実 施形態とは、揷入部の構成が異なっている。よって、本変形例においては、図 29お よび図 30を用いて揷入部の周辺のみを説明し、その他の構成要素等の説明を省略 する。
図 29は、本変形例における蛍光内視鏡の構成を説明する模式図である。 なお、第 2の実施形態と同一の構成要素については、同一の符号を付してその説 明を省略する。
[0187] 蛍光内視鏡 801は、図 29に示すように、被検体の体腔 3内に挿入される揷入部 80 5と、励起光を出射する光源 7と、揷入部 805と体腔 3の内壁との距離を測定する測 定制御部 809と、撮像された蛍光像を表示する表示部 11と、を備えている。
[0188] 図 30は、図 29の揷入部の構成を説明する模式図である。
揷入部 805には、図 29に示すように、外側揷入部(挿入部) 813Aと、内側揷入部( 光出射導入部、回転部) 813Bと、が設けられている。
[0189] 外側揷入部 813Aは揷入部 805の外周面を構成するチューブである。外側揷入部
813Aにおける揷入側端部(図 30の左側端部)の外周面にはバルーン 15が配置さ れている。少なくとも、外側揷入部 813Aのバルーン 15が配置されている領域であつ て、後述する励起光用窓 225および蛍光用窓 227と対向する領域は、励起光用窓 2 25を透過する励起光および蛍光用窓 227を透過する蛍光を透過する材料から形成 されていることが望ましい。外側揷入部 813Aは、マイクロ波透過性のよい材料から形 成されていることが望ましい。
[0190] 内側揷入部 813Bは外側揷入部 813Aの内部に揷入されるものである。内側揷入 部 813Bには、図 30に示すように、励起光用窓 225と、蛍光用窓 227と、光出射部( 光出射導入部) 217と、光導入部(光出射導入部) 219と、撮像部 21と、マイクロ波発 生測定部(マイクロ波信号発生器、マイクロ波信号検出器) 824と、が設けられている
[0191] マイクロ波発生測定部 824は、内側揷入部 813Bからバルーン 15の体腔 3との接 触面までの距離の測定に用いるものである。マイクロ波発生測定部 824は、マイクロ 波を内側揷入部 813Bの外側に向けて発生するとともに、内側揷入部 813Bの内部 に伝搬してきたマイクロ波を測定するものである。マイクロ波発生測定部 824には、後 述する制御部 854から、発生するマイクロ波の位相等を制御する制御信号が入力さ れているとともに、マイクロ波発生測定部 824から制御部 854に、測定されたマイクロ 波の位相等に係る測定信号が出力されている。マイクロ波発生測定部 824は、内側 揷入部 813Bにおける先端側端部の半径方向外側で配置されている。マイクロ波発 生測定部 824に対して隣接する位置には、内側揷入部 813Bの外周面の一部を構 成するカバー 825が配置されている。カノ一 825は、マイクロ波透過性のよい材料か ら形成されてレ、ることが好ましレ、。
[0192] 測定制御部 809は、揷入部 805と体腔 3の内壁との距離を測定するものである。測 定制御部 809は、図 30に示すように、送気ポンプ 49と、距離測定部(演算部) 853と 、制御部 854と、を備えている。
[0193] 距離測定部 853は、体腔 3の内壁からマイクロ波発生測定部 824までの距離を算 出するものである。つまり、距離測定部 853は、後述する位相差に係る信号に基づい て、体腔 3の内壁からマイクロ波発生測定部 824までの距離に係る距離信号を生成 するものである。距離測定部 853には、制御部 854から位相差に係る信号が入力さ れているとともに、距離測定部 853から蛍光信号処理部 57に距離信号が出力されて いる。なお、体腔 3の内壁からマイクロ波発生測定部 824までの距離の算出方法は、 公知の算出方法を用いることができ、特に限定するものではない。
[0194] 制御部 854は、マイクロ波発生測定部 824を制御するとともに、後述する位相差に 係る信号を距離測定部 753に出力するものである。制御部 854は、マイクロ波発生 測定部 824に対してマイクロ波の発生や停止、および、発生する超音波の位相など を制御する制御信号を出力しているとともに、制御部 854には、マイクロ波発生測定 部 824から測定された超音波の位相などの測定信号が入力されている。制御部 854 は、入力された制御信号および測定信号に基づいて、マイクロ波発生測定部 824か ら発生されたマイクロ波と、マイクロ波発生測定部 824に測定されたマイクロ波との位 相差を求め、位相差に係る信号を出力している。
[0195] 次に、上記の構成からなる蛍光内視鏡 801による体腔 3の内壁の撮像方法につい て説明する。
なお、バルーン 15により外側揷入部 813Aを体腔 3に固定する方法、および、体腔 3から発生した蛍光を撮像する方法などは、第 1の実施形態と同様であるので、その 説明を省略する。
[0196] 次に、本実施形態の特徴である、体腔 3の内壁からマイクロ波発生測定部 824まで の距離の測定方法について説明する。 [0197] バルーン 15により外側揷入部 813Aが体腔 3に固定されている状態で、制御部 85 4は、マイクロ波発生測定部 824に対してマイクロ波を発生させる制御信号を出力す る。制御信号が入力されたマイクロ波発生測定部 824は、制御信号に基づいてマイ クロ波を発生する。マイクロ波は、カノ一 825、外側揷入部 813Aおよびバルーン 15 内を伝搬して、バルーン 15と体腔 3との接触面である外周面において反射される。反 射されたマイクロ波は、バルーン 15、外側揷入部 813Aおよびカバー 825を伝搬して マイクロ波発生測定部 824に検出される。マイクロ波発生測定部 824は、反射したマ イク口波の位相などの情報を含む測定信号を制御部 854に出力する。
[0198] 制御部 854は、マイクロ波発生測定部 824から入力された測定信号と、マイクロ波 発生測定部 824に出力した制御信号とに基づいて、マイクロ波発生測定部 824から 発生されたマイクロ波と、マイクロ波発生測定部 824に測定されたマイクロ波との位相 差を算出する。算出された位相差に係る信号は、制御部 854から距離測定部 853に 出力される。距離測定部 853は、入力された位相差に係る信号に基づいて、体腔 3 の内壁からマイクロ波発生測定部 824までの距離を算出する。算出された距離に係 る距離信号は、蛍光信号処理部 57に出力される。
[0199] 上記の構成によれば、マイクロ波は、マイクロ波発生測定部 824力もバルーン 15の 上記接触面に向かって発生され、バルーン 15内を伝搬する。ここで、マイクロ波は、 超音波と比較して低い減衰率でバルーン 15内を伝搬する。バルーン 15内を伝搬し たマイクロ波は、上記接触面において反射し、マイクロ波発生測定部 824により検出 される。
[0200] 制御部 854は、マイクロ波発生測定部 824を制御することにより発生されるマイクロ 波を制御するとともに、制御部 854には、マイクロ波発生測定部 824から出力される 検出信号が入力される。そのため、制御部 854は、マイクロ波発生測定部 824から発 生されるマイクロ波の位相と、マイクロ波発生測定部 824に検出されたマイクロ波の位 相との位相差に基づいて、上記接触面と揷入部 805との距離を求めることができる。 このように、制御部 854により求められた距離に基づくことにより、蛍光信号処理部 5 7は、上記内壁力も撮像部 21の撮像素子 43までの距離が所定の一定距離に保たれ た場合と同様の画像信号を生成することができる。 なお、本発明の技術範囲は上記実施形態に限定されるものではなぐ本発明の趣 旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、第 1の実施形態の第 1変形例においては、体腔の内壁と揷入部との間の 距離を求めるためにバルーンの流量を測定することに代えて、測定揷入部の先端部 に超音波発生測定部を設けることができるものである。

Claims

請求の範囲
[1] 体腔内に挿入される揷入部と、
前記揷入部の半径方向に位置する前記体腔の内壁と接触することにより、前記揷 入部の半径方向において前記体腔に対する前記揷入部の位置決めを行うバルーン と、
前記内壁に対して照射される励起光を前記揷入部の半径方向外方に出射するとと もに、
前記内壁から発生した蛍光を前記揷入部の複数の異なる半径方向から前記揷入部 の内部に導入する光出射導入部と、
前記光出射導入部から導入された蛍光を撮像する撮像部と、
前記バルーンにおける前記内壁との接触面と、前記揷入部と、の間の距離に基づ いて前記撮像部から出力された撮像信号を補正する補正信号を算出する補正信号 算出部と、
前記補正信号に基づ!/、て前記撮像信号の強度を補正し、補正された撮像信号か ら画像信号を生成する信号処理部と、
が設けられた蛍光内視鏡。
[2] 前記光出射導入部が、前記励起光を前記揷入部の半径方向外方に出射する照射 部と、
前記内壁力 発生した蛍光を、前記揷入部の中心軸線方向に向けて反射するとと もに、
前記中心軸線回りに回転可能に配置された反射部と、
を備え、
前記撮像部が、前記反射部から反射した蛍光を撮像する請求項 1記載の蛍光内視 鏡。
[3] 前記反射部を回転させる回転駆動部が設けられた請求項 2記載の蛍光内視鏡。
[4] 前記光出射導入部が、前記揷入部の少なくとも先端部の内部に配置されるとともに 、前記揷入部の中心軸線回りに回転可能に配置された回転部と、
該回転部に設けられ、前記励起光を前記揷入部の半径方向外方に出射する照射 部と、
前記回転部に設けられ、前記内壁から発生した蛍光を前記中心軸線方向に向けて 反射する反射部と、
を備え、
前記撮像部が、前記回転部に設けられ、前記反射部から反射した蛍光を撮像する 請求項 1記載の蛍光内視鏡。
[5] 前記光出射導入部が、前記揷入部の少なくとも先端部の内部に配置されるとともに 、前記揷入部の中心軸線回りに回転可能に配置された回転部と、
前記回転部に設けられ、前記励起光を前記揷入部の半径方向外方に出射する照 射部と、
を備え、
前記撮像部が、前記回転部の内部に導入された蛍光を撮像する請求項 1記載の 蛍光内視鏡。
[6] 前記光出射導入部が、前記励起光を前記揷入部の半径方向外方に出射する照射 部と、
前記内壁力 発生した蛍光を前記揷入部の中心軸線方向に向けて反射する円錐 ミラーと、
を備え、
前記撮像部が、前記円錐ミラーから反射した蛍光を撮像する請求項 1記載の蛍光 内視鏡。
[7] 前記体腔に対する前記揷入部の挿入長さを計測する揷入長計測部と、
前記撮像部から出力される撮像信号と、前記揷入長計測部から出力される揷入長 さに係る信号と、に基づいて前記撮像信号の展開処理を行う画像処理部と、 が設けられた請求項 1から 6のいずれかに記載の蛍光内視鏡。
[8] 前記バルーンに流体を流入させる流入部と、
前記バルーンに流入した流体の流量を計測する流量計測部と、
該流量計測部から出力された流量信号に基づいて、前記バルーンにおける前記内 壁との接触面と、前記揷入部と、の間の距離を求める演算部と、が設けられ、 前記補正信号算出部が、前記演算部により求められた距離に基づいて前記補正 信号を算出する請求項 1から 7のいずれかに記載の蛍光内視鏡。
[9] 前記バルーンにおける前記内壁との接触面には蛍光剤が配置され、
該蛍光剤から発生した蛍光の強度を検出する蛍光検出部が設けられ、 前記補正信号算出部が、前記演算部により求められた距離に基づいて前記補正 信号を算出する請求項 1から 7のいずれかに記載の蛍光内視鏡。
[10] 前記バルーンに流入する流体が液体であって、
前記バルーンにおける前記内壁との接触面に向かって超音波を発生させる超音波 信号発生器と、
前記接触面から反射した超音波を検出する超音波信号検出器と、
前記超音波信号発生器を制御するとともに、前記超音波信号検出器から出力され る検出信号に基づいて、前記バルーンにおける前記内壁との接触面と、前記揷入部 と、の距離を求める制御部と、が設けられ、
前記補正信号算出部が、前記制御部により求められた距離に基づいて前記補正 信号を算出する請求項 1から 7のいずれかに記載の蛍光内視鏡。
[11] 前記バルーンにおける前記内壁との接触面に向かってマイクロ波を発生させるマイ クロ波信号発生器と、
前記接触面から反射したマイクロ波を検出するマイクロ波信号検出器と、 前記マイクロ波信号発生器を制御するとともに、前記マイクロ波信号検出器から出 力される検出信号に基づいて、前記バルーンにおける前記内壁との接触面と、前記 揷入部と、の距離を求める制御部と、が設けられ、
前記補正信号算出部は、前記演算部により求められた距離に基づいて前記補正 信号を算出する請求項 1から 7のいずれかに記載の蛍光内視鏡。
PCT/JP2007/073712 2006-12-11 2007-12-07 蛍光内視鏡 WO2008072579A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008549287A JP5097715B2 (ja) 2006-12-11 2007-12-07 蛍光内視鏡
US12/518,377 US20100020163A1 (en) 2006-12-11 2007-12-07 Fluorescence endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006333688 2006-12-11
JP2006-333688 2006-12-11

Publications (1)

Publication Number Publication Date
WO2008072579A1 true WO2008072579A1 (ja) 2008-06-19

Family

ID=39511598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073712 WO2008072579A1 (ja) 2006-12-11 2007-12-07 蛍光内視鏡

Country Status (3)

Country Link
US (1) US20100020163A1 (ja)
JP (1) JP5097715B2 (ja)
WO (1) WO2008072579A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131449A (zh) * 2008-08-22 2011-07-20 奥林巴斯医疗株式会社 摄像系统以及内窥镜系统
WO2011115095A1 (ja) * 2010-03-18 2011-09-22 オリンパス株式会社 蛍光観察装置および蛍光観察方法
JP2011529189A (ja) * 2008-07-24 2011-12-01 マサチューセッツ インスティテュート オブ テクノロジー 吸収を利用して画像形成を行うためのシステム及び方法
JP2012050487A (ja) * 2010-08-31 2012-03-15 Konica Minolta Opto Inc プローブ
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
WO2023276736A1 (ja) * 2021-06-30 2023-01-05 カーディナルヘルス株式会社 体内留置型医療デバイス、及びこれを用いた内視鏡システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130310645A1 (en) * 2011-01-28 2013-11-21 Koninklijke Philips N.V. Optical sensing for relative tracking of endoscopes
CN106725257A (zh) * 2016-12-12 2017-05-31 中国人民解放军第四军医大学 一种气囊式白光—辐光多模态内窥成像系统
WO2019090392A1 (en) * 2017-11-10 2019-05-16 Macquarie University Device, method and system for optical imaging
US11136879B2 (en) * 2020-01-31 2021-10-05 Aver Technologies, Inc. Borescope for drilled shaft inspection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222712A (ja) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd 蛍光内視鏡装置
JPH10243920A (ja) * 1997-03-07 1998-09-14 Olympus Optical Co Ltd 蛍光観察内視鏡装置
JP2005514144A (ja) * 2002-01-09 2005-05-19 ネオガイド システムズ, インコーポレイテッド 結腸の分光学的試験についての装置および方法
JP2006061683A (ja) * 2004-07-30 2006-03-09 Olympus Corp 内視鏡装置
JP2006512109A (ja) * 2002-08-01 2006-04-13 ザ ジョンズ ホプキンズ ユニバーシティ 蛍光発光を用いた、分子構造の特定技術、および身体内腔の内側に並ぶ細胞種の治療技術

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011624A2 (en) * 1993-10-29 1995-05-04 Feld Michael S A raman endoscope
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US20030135122A1 (en) * 1997-12-12 2003-07-17 Spectrx, Inc. Multi-modal optical tissue diagnostic system
US8024027B2 (en) * 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
DE60231725D1 (de) * 2001-09-06 2009-05-07 Hans Gregersen Ballonkathetersystem zur stimulation und messung der durch stimuli erzeugten reaktion
JP3821392B2 (ja) * 2004-06-14 2006-09-13 有限会社エスアールジェイ 内視鏡装置
US20080161730A1 (en) * 2005-02-21 2008-07-03 Mcmahon Barry Method and Apparatus For Chemical Measurement of Sphincters and Narrowing Regions in Hollow Biological Organs
US20070038126A1 (en) * 2005-06-23 2007-02-15 Pyle Jason L System and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222712A (ja) * 1994-02-10 1995-08-22 Olympus Optical Co Ltd 蛍光内視鏡装置
JPH10243920A (ja) * 1997-03-07 1998-09-14 Olympus Optical Co Ltd 蛍光観察内視鏡装置
JP2005514144A (ja) * 2002-01-09 2005-05-19 ネオガイド システムズ, インコーポレイテッド 結腸の分光学的試験についての装置および方法
JP2006512109A (ja) * 2002-08-01 2006-04-13 ザ ジョンズ ホプキンズ ユニバーシティ 蛍光発光を用いた、分子構造の特定技術、および身体内腔の内側に並ぶ細胞種の治療技術
JP2006061683A (ja) * 2004-07-30 2006-03-09 Olympus Corp 内視鏡装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529189A (ja) * 2008-07-24 2011-12-01 マサチューセッツ インスティテュート オブ テクノロジー 吸収を利用して画像形成を行うためのシステム及び方法
JP2015057604A (ja) * 2008-07-24 2015-03-26 マサチューセッツ インスティテュート オブ テクノロジー 吸収を利用して画像形成を行うためのシステム及び方法
US9097512B2 (en) 2008-07-24 2015-08-04 Massachusetts Institute Of Technology Layered medium for three-dimensional imaging
US9504546B2 (en) 2008-07-24 2016-11-29 Massachusetts Institute Of Technology Layered medium for three-dimensional imaging
US9820636B2 (en) 2008-07-24 2017-11-21 Massachusetts Institute Of Technology Layered medium for three-dimensional imaging
CN102131449A (zh) * 2008-08-22 2011-07-20 奥林巴斯医疗株式会社 摄像系统以及内窥镜系统
WO2011115095A1 (ja) * 2010-03-18 2011-09-22 オリンパス株式会社 蛍光観察装置および蛍光観察方法
US8481972B2 (en) 2010-03-18 2013-07-09 Olympus Corporation Fluoroscopy apparatus and fluoroscopy method
JP2012050487A (ja) * 2010-08-31 2012-03-15 Konica Minolta Opto Inc プローブ
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
WO2023276736A1 (ja) * 2021-06-30 2023-01-05 カーディナルヘルス株式会社 体内留置型医療デバイス、及びこれを用いた内視鏡システム

Also Published As

Publication number Publication date
JPWO2008072579A1 (ja) 2010-03-25
JP5097715B2 (ja) 2012-12-12
US20100020163A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4919786B2 (ja) 蛍光内視鏡
JP5097715B2 (ja) 蛍光内視鏡
JP5118867B2 (ja) 内視鏡観察装置および内視鏡の作動方法
JP2022016610A (ja) ビームスキャニングによる上皮性管腔器官の光学的イメージング方法およびシステム
JP4204577B2 (ja) 内視鏡を介する医療用マイクロ超音波−octプローブ
US10285568B2 (en) Apparatus and method for devices for imaging structures in or at one or more luminal organs
US8216128B2 (en) Medical system with a biological information acquiring apparatus and a manipulation information acquiring apparatus
JP4891006B2 (ja) 内視鏡装置
EP2377456A1 (en) Optical probe and optical observation device
US20030167007A1 (en) Apparatus and method for spectroscopic examination of the colon
US20110112410A1 (en) Optical probe, drive control method therefor, and endoscope apparatus
JP2015517387A (ja) カプセル顕微鏡検査のための装置、デバイスおよび方法
US20110077463A1 (en) Optical probe and endoscope apparatus
CN111419149A (zh) 一种多模态内窥镜及内窥成像系统
JP2008048787A (ja) 内視鏡装置、及び内視鏡プローブ
KR101440109B1 (ko) 위장관암의 림프절 전이 검출용 광음향 단층촬영 시스템
CN113520272B (zh) 一种内窥导管-多模态光学成像耦合检测系统
JP2004215739A (ja) プローブ
KR20210094847A (ko) 회전형 필터유닛을 구비하는 내시경 장치
JP2022132940A (ja) 内視鏡及び内視鏡システム
JP2010142496A (ja) 光プローブ用オーバーチューブ
JP2012050619A (ja) 画像診断装置におけるプローブ押付具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549287

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12518377

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850290

Country of ref document: EP

Kind code of ref document: A1