JP4109132B2 - 蛍光判定装置 - Google Patents

蛍光判定装置 Download PDF

Info

Publication number
JP4109132B2
JP4109132B2 JP2003025400A JP2003025400A JP4109132B2 JP 4109132 B2 JP4109132 B2 JP 4109132B2 JP 2003025400 A JP2003025400 A JP 2003025400A JP 2003025400 A JP2003025400 A JP 2003025400A JP 4109132 B2 JP4109132 B2 JP 4109132B2
Authority
JP
Japan
Prior art keywords
fluorescence
calculation value
image
tissue
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003025400A
Other languages
English (en)
Other versions
JP2004000477A (ja
Inventor
和宏 辻田
英二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2003025400A priority Critical patent/JP4109132B2/ja
Publication of JP2004000477A publication Critical patent/JP2004000477A/ja
Application granted granted Critical
Publication of JP4109132B2 publication Critical patent/JP4109132B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、励起光の照射により被測定部から発せられる蛍光に基づいて、被測定部の組織性状を判定する蛍光判定方法および装置に関するものである。
【0002】
【従来の技術】
従来、所定の波長帯域の励起光を生体等の被測定部に照射して、この被測定部から発せられる蛍光の蛍光情報を分析して、被測定部の組織性状を判定する蛍光判定装置が提案されている。このような判定装置には、蛍光診断薬を予め吸収した生体組織から発せられる薬剤蛍光に基づいて判定を行う装置と、蛍光診断薬を使用せず、生体組織から発せられる自家蛍光に基づいて判定を行う装置とがある。この種の蛍光判定装置は多くの場合、体腔内部に挿入される内視鏡や、コルポスコープあるいは手術用顕微鏡等に組み込まれた形に構成される。
【0003】
初期の自家蛍光判定装置では、図9に示すように、病変組織から発せられる蛍光強度が、正常組織から発せられる蛍光強度に比べ小さいことを利用して、被測定部が正常組織であるか病変組織であるかの判定を行っていた。しかし、生体部位には凹凸があるため励起光光源から被測定部までの距離は均一ではなく、生体の被測定部における励起光照度は一般に不均一である。一方正常組織から発せられる蛍光強度は励起光照度にほぼ比例し、励起光照度は距離の2乗に反比例して低下する。そのため、光源から遠くにある正常組織からよりも近くにある病変組織からの方が強い蛍光を受光する場合があり、蛍光強度のみに基づいた判定を行うと、組織性状の判定を誤ることもあり得る。
【0004】
このような誤判定を防ぐために、生体組織の部位が受光した励起光の光強度と、この励起光の受光により被測定部から発せられた蛍光の光強度との比率に基づいた蛍光演算値、すなわち励起光を照射する距離や角度によって影響を受けない値である蛍光収率を反映した値を求めることにより被測定部の組織性状を判定する方式が提案されている。
【0005】
しかし、上記蛍光収率を反映した値を求める際に、紫外〜可視域の励起光は生体の種々の物質によって吸収を受けるため、反射された励起光の強度分布を測定しても生体組織が受光した励起光の強度分布を正しく測定したことにはならない。そこで、蛍光収率を反映する演算値を求める1つの方策として、紫外〜可視域に比べて一様な吸収を受ける近赤外光を参照光として生体組織に照射し、反射された近赤外光の光強度を励起光の光強度の代わりとして用いて、蛍光強度を反射された近赤外光の光強度により除算した蛍光収率演算値を求め、この蛍光収率演算値に基づいて、組織性状を判定する装置が提案されている。すなわち、上記蛍光収率演算値を求めることにより、励起光光源および蛍光受光部と被測定部との距離に依存する蛍光強度の項はキャンセルされ、蛍光収率の違いのみが反映された演算値に基づいて判定を行うことができる。
【0006】
一方、図9に示すように、正常組織から発せられ蛍光のスペクトル形状と、病変組織から発せられる蛍光のスペクトル形状が異なることを利用した蛍光判定装置の開発も進められている。例えば、蛍光の緑色波長帯域の光強度と赤色波長帯域の光強度の比に基づいて組織性状を判定する装置が提案されている(例えば特許文献1参照)。また、予め正常組織から取得した蛍光のスペクトル形状と、被測定部から取得した蛍光のスペクトル形状を比較することにより組織性状を判定する装置も提案されている(例えば特許文献2参照)。
【0007】
さらに、被測定部から取得した狭波長帯域の光強度を広波長帯域の光強度で規格化した規格化蛍光演算値を用いて組織性状を判定する装置を本出願人が提案している(例えば特許文献3参照)。同装置においては、正常組織から発せられる蛍光強度と病変組織から発せられる蛍光強度の差が大きい波長帯域480nm近傍の狭帯域の蛍光画像と、430nm近傍から730nm近傍までの広帯域の蛍光画像とを撮像し、狭帯域の蛍光画像の画素値を広帯域の蛍光画像の画素値により除算した規格化蛍光演算値を求め、この規格化蛍光演算値に基づいて、各画素ごとに組織性状を判定し、この組織性状に基づいた疑似カラー画像を表示している。すなわち上記規格化蛍光演算値を求めることにより励起光光源および蛍光受光部と被測定部との距離に依存する蛍光強度の項はキャンセルされ、蛍光スペクトルの形状の違いのみが反映された演算値に基づいて組織性状を判定することができる。
【0008】
しかしながら、in vivo の測定の結果、上記のように蛍光から取得した1種類のパラメータに基づいて判定を行うと、十分な判定精度を得ることが困難なケースがあることが判った。本発明者は、複数のパラメータを組み合わせて組織性状を判定することにより、判定精度が向上することに着目し、蛍光から取得した複数のパラメータに基づいて組織性状を判定する装置を提案している(例えば特許文献4参照)。この公報には、例えば蛍光強度または上記の蛍光収率演算値と、規格化蛍光演算値とを組み合わせて組織性状を判定することにより、正常組織と病変組織との判定精度が改善されることが示されている。
【0009】
【特許文献1】
特開平6-54792号公報。
【0010】
【特許文献2】
特開平9-506027号公報。
【0011】
【特許文献3】
特開平10-225436号公報。
【0012】
【特許文献4】
特開2001-17379号公報。
【0013】
【発明が解決しようとする課題】
上記特許文献4に記載された装置においては、被測定部から発せられた蛍光の蛍光強度、蛍光収率演算値あるいは規格化蛍光演算値のぞれぞれに対して、予め設定されたしきい値に基づいて正常組織であるか否かを判定し、各判定結果の論理積に基づいて最終的な判定を行っている。このため、一方の判定では、正常組織であると判定され、他方の判定では正常組織ではないと判定される場合があり、このような場合には、判定精度が高いとは言い難い。
【0014】
本発明は上記のような事情を鑑みて、励起光が照射された被測定部から発せられた蛍光に基づいて、被測定部の組織性状を判定する蛍光判定方法および装置において、判定精度を向上させた判定方法および装置を提供することを目的とするものである。
【0015】
【課題を解決するための手段】
本発明による蛍光判定方法は、励起光を照射された複数の既知性状組織のそれぞれから発せられた蛍光のスペクトル形状を反映した規格化蛍光演算値と前記蛍光の蛍光収率を反映した蛍光収率演算値との2次元分布と、前記各既知性状組織の組織性状との関係からなる演算値分布情報を予め記憶し、
励起光が照射された被測定部から発せられた蛍光の蛍光情報を検出し、
検出された前記蛍光情報に基づいて、前記被測定部から発せられた蛍光の規格化蛍光演算値および蛍光収率演算値を取得し、
前記両演算値と予め記憶された前記演算値分布情報とに基づいて、前記被測定部の組織性状を判定することを特徴とするものである。
【0016】
本発明による蛍光判定装置は、励起光を照射された複数の既知性状組織のそれぞれから発せられた蛍光のスペクトル形状を反映した規格化蛍光演算値と前記蛍光の蛍光収率を反映した蛍光収率演算値との2次元分布と、前記各既知性状組織の組織性状との関係からなる演算値分布情報を予め記憶する記憶手段と、
励起光を被測定部に照射する励起光照射手段と、
前記励起光の照射により前記被測定部から発せられた蛍光の蛍光情報を検出する蛍光検出手段と、
検出された前記蛍光情報に基づいて、前記被測定部から発せられた蛍光の規格化蛍光演算値および蛍光収率演算値を取得する演算値取得手段と、
前記両演算値と予め記憶された前記演算値分布情報とに基づいて、前記被測定部の組織性状を判定する判定手段とを備えたことを特徴とするものである。
【0017】
ここで、「規格化蛍光演算値」とは、蛍光のスペクトル形状を反映する演算値であり、被測定部から取得した異なる波長帯域の蛍光の蛍光強度の比率を反映した演算値を意味している。上記の異なる波長帯域としては、例えば480nm近傍の狭波長帯域と630nm近傍の狭波長帯域を選択することができる。また上記規格化蛍光演算値は、蛍光の狭帯域波長帯域(例えば430nm〜530nmの波長帯域)の光強度を広帯域波長帯域(例えば430nm〜730nmの波長帯域)の光強度で除算したものであってもよい。
【0018】
また「蛍光収率」とは、被測定部に照射される励起光の光強度と、その励起光の照射により被測定部から発せられる蛍光の光強度の比率を意味している。また「蛍光収率演算値」とは、例えば上述したように、参照光を生体組織に照射し、反射された参照光の光強度を励起光の光強度の代わりとして用いて、被測定部から発せられる蛍光の光強度を反射された参照光の光強度により除算した演算値である。上記参照光としては、組織によらず比較的均一な反射特性を有する近赤外光を使用することができる。また、精度は若干悪化するが、通常の照明光を利用することもできる。なお、励起光の射出部、すなわち内視鏡であればスコープ部の先端部と、被測定部との間の距離のバラツキを少なく保つことができれば、蛍光強度を蛍光収率演算値として用いることもできる。
【0019】
なお、上記「前記被測定部から発せられた蛍光の蛍光情報を検出する」際には、例えばCCD撮像素子などを用いて画像として所定領域の蛍光を取得してもよいし、単一の光ファイバーを用いたポイント計測により、1点の蛍光を取得してもよい。
【0020】
また、上記判定手段は、前記被測定部から発せられた蛍光の規格化蛍光演算値と蛍光収率演算値との2次元分布点が、前記演算値分布情報に含まれていない場合に、前記被測定部がアーティファクト領域であると判定するものであってもよい。
【0021】
なお、ここで、「アーティファクト領域」とは、生体組織上に蛍光を発する粘液や残渣等が付着している領域を意味している。「規格化蛍光演算値と蛍光収率演算値との2次元分布点」とは、例えば規格化蛍光演算値を縦軸、蛍光収率演算値を横軸に設定した2次元空間において、取得した規格化蛍光演算値と蛍光収率演算値とに基づいてプロットされる点を意味している。また、「2次元分布点が、前記演算値分布情報に含まれていない場合」とは、具体的には、既知性状組織から取得した規格化蛍光演算値と蛍光収率演算値との2次元分布範囲に、上記2次元分布点が入っていないことを意味している。
【0022】
なお、上記蛍光判定装置は、前記演算値分布情報および前記判定手段による判定結果を同時に表示する表示手段をさらに備えたものであってもよい。
【0023】
また、上記蛍光判定装置は、生体内に挿入する内視鏡挿入部を有する蛍光内視鏡装置に組み込むこともできる。
【0024】
【発明の効果】
本発明者は、特許文献4に記載された発明を出願後、蛍光から取得した複数のパラメータを用いて組織性状を判定する判定方法および判定装置の研究を継続的に進めている。その結果、上記の蛍光収率演算値と規格化蛍光演算値の2次元分布と、組織性状との間には、図1に示すように密接な関係があることが判明した。
【0025】
図1は多数の正常組織、前癌組織、病変(癌)組織から蛍光を取得し、それぞれの蛍光から規格化蛍光演算値および蛍光収率演算値を算出して、各組織性状と関連づけた演算値分布情報を作成し、図化したものであり、この図1から、各組織性状毎に所定の分布領域内に、規格化蛍光演算値および蛍光収率演算値が集まっていることがわかる。
【0026】
すなわち、本発明による蛍光判定方法および装置によれば、被測定部から取得した規格化蛍光演算値および蛍光収率演算値と、予め記憶された演算値分布情報とに基づいて、被測定部の組織性状を判定するため、被測定部の組織性状の判定精度が向上する。
【0027】
上記規格化蛍光演算値が、蛍光の狭帯域波長帯域の光強度を広帯域波長帯域の光強度で除算したものであれば、除算を行う際に0割り算が行われる可能性が低く、蛍光のスペクトル形状を適切に反映した規格化蛍光演算値を取得することができる。
【0028】
前記判定手段が、上記被測定部から発せられた蛍光の規格化蛍光演算値と蛍光収率演算値との2次元分布が、前記演算値分布情報に含まれていない場合に、前記被測定部がアーティファクト領域であると判定するものであれば、このような判定結果をモニタ等に表示することにより、測定者が組織性状を診断する際の信頼性を向上することが可能となる。
【0029】
また、上記蛍光判定装置が前記演算値分布情報および前記判定手段による判定結果を同時に表示する表示手段をさらに備えたものであれば、診断者は演算値分布情報および前記判定手段による判定結果を1枚の画像上で観察することができ蛍光判定装置の利便性が向上する。
【0030】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。まず、図2〜図5を参照して、本発明による蛍光判定方法および装置を適用した第1の具体的な実施の形態である蛍光内視鏡装置について説明する。図2は蛍光内視鏡装置の概略構成図であり、図3および図4は本蛍光内視鏡装置に搭載されるモザイクフィルタおよび切換フィルタの模式図であり、図5は演算値分布情報の模式図である。
【0031】
この蛍光内視鏡装置は、通常のカラー画像である通常画像を表示する通常画像モード、被測定部1に励起光を照射して、観察部1から発せられた蛍光に基づいて、観察部1の各被測定部2の組織性状を判定した判定結果を疑似カラーにより示す蛍光診断画像を表示する蛍光診断画像モードにより動作するものである。2つのモードの切り替えは、入力装置601 からの入力操作により行われる。なお、観察部1内において、CCDの各画素と対応する領域が被測定部2であり、この被測定部2毎に組織性状が判定される。すなわち多数(CCDの画素数)の被測定部2が集合して観察部1を形成している。
【0032】
通常画像モードにおいては、面順次光(R光Lr、G光Lg、B光Lb)を照射された観察部1の反射光による通常像をスコープ部10の先端に設けられたCCD撮像素子101 により撮像して、通常のカラー信号処理により作成した通常画像をモニタ70上に表示する。
【0033】
蛍光診断画像モードにおいては、励起光Leが照射された観察部1から発せられた蛍光から狭帯域蛍光画像と広帯域蛍光画像とを蛍光検出手段としてのCCD撮像素子101 を用いて撮像し、また近赤外光である参照光Lsを照射された観察部1の反射光によるIR反射像ZsからIR反射画像をCCD撮像素子101 を用いて撮像し、狭帯域蛍光画像の画素値を広帯域蛍光画像の画素値で除算した値である規格化蛍光演算値と、広帯域蛍光画像の画素値をIR反射画像の画素値で除算した値である蛍光収率演算値とを算出し、予め記憶部308 に記憶されている演算値分布情報を用いて、観察部1における各被測定部2ごとの組織性状の判定結果に基づいた疑似カラー画像である蛍光診断画像をモニタ70上に表示する。なお演算値分布情報の詳細は後述する。
【0034】
本発明の実施形態である蛍光内視鏡装置は、図2に示すように、先端にCCD撮像素子101 を備え、患者の病巣と疑われる部位に挿入されるスコープ部10、通常像撮像用の照明光である面順次光(R光Lr、G光LgおよびB光Lb)を射出する光源と、蛍光像撮像用の励起光Leを射出する光源と、IR反射像撮像用の参照光Lsを射出する光源とを備える照明ユニット20、狭帯域蛍光画像と広帯域蛍光画像の画素値から蛍光演算値を算出し、該蛍光演算値に基づいて蛍光診断画像信号を生成して出力する蛍光画像処理ユニット30、通常画像信号の生成と、その通常画像信号および蛍光画像処理ユニット30から出力された蛍光診断画像信号をビデオ信号に変換して出力する通常画像処理ユニット40、CCD撮像素子101 の動作を制御するCCD駆動ユニット50、各ユニットの動作を制御するコントローラ60、該コントローラ60に接続されている入力装置601 および通常画像または蛍光診断画像を表示する表示手段としてのモニタ70から構成されている。なお、照明ユニット20、蛍光画像処理ユニット30、通常画像処理ユニット40、CCD駆動ユニット50およびコントローラ60はプロセッサ部80を構成し、スコープ部10とプロセッサ部80およびプロセッサ部80とモニタ70は、それぞれ図示省略したコネクタにより、接離自在に接続されている。
【0035】
スコープ部10は、内部に先端まで延びるライトガイド102 およびCCDケーブル103 を備えている。ライトガイド102 およびCCDケーブル103 の先端部、即ちスコープ部10の先端部には、照明レンズ104 および対物レンズ105 を備えている。CCDケーブル103 の先端部には、微少な帯域フィルタがモザイク状に組み合わされたモザイクフィルタ106 がオンチップされたCCD撮像素子101 が接続され、該CCD撮像素子101 には、プリズム107 が取り付けられている。また、プリズム107 と対物レンズ105 の間には、波長420nm以下の波長の光をカットする励起光カットフィルタ108 が取り付けられている。
【0036】
CCD撮像素子101 は、撮像した光学像を信号電荷へ変換する受光部および信号電荷の一時的蓄積および転送を行う蓄積部を備えたフレームトランスファー型のCCD撮像素子である。ライトガイド102 は、面順次光用のライトガイド102a、励起光用のライトガイド102bおよび参照光用のライトガイド102cがバンドルされ、ケーブル状に一体化されており、各ライトガイドは、照明ユニット20へ接続されている。
【0037】
ケーブル103 は、CCD撮像素子101 の駆動信号が送信される駆動ライン103aと、CCD撮像素子101 から画像信号を読み出す出力ライン103bとが組み合わされている。駆動ライン103aの一端は、CCD駆動ユニット50に接続され、出力ライン103bの一端は、蛍光画像処理ユニット30および通常画像処理ユニット40へ接続されている。
【0038】
モザイクフィルタ106 は、図3に示すように、430nm〜530nmの波長帯域の光を透過させる狭帯域フィルタ106aと、全波長帯域の光を透過させる全波長帯域フィルタ106bが交互に組み合わされ、各帯域フィルタはCCD撮像素子101 の画素に一対一で対応している。
【0039】
照明ユニット20は、白色光を射出する白色光源201 、白色光源用電源202 、白色光をR光Lr、G光LgおよびB光Lbに、順次色分解するための切換フィルタ204 、切換フィルタ204 を回転させるフィルタ回転部205 、蛍光像撮像用の波長410nmの励起光Leを発するGaN系半導体レーザ206 および半導体レーザ用電源207 、IR反射像撮像用の近赤外光である参照光Lsを発する参照光源209 、その参照光源209 に電気的に接続される参照光源用電源210 を備えている。
【0040】
上記切換フィルタ204 は、図4に示すように、R光Lrを透過するRフィルタ204a、G光Lgを透過するGフィルタ204b、B光Lbを透過するBフィルタ204cおよび遮光機能を有するマスク部204dとから構成されている。マスク部204dにより、面順次光(R光Lr、G光LgまたはB光Lb)が照射されていない間に、CCD撮像素子101 では、受光部から蓄積部へ信号電荷が転送される。
【0041】
蛍光画像処理ユニット30は、励起光Leが照射された時に、CCD撮像素子101 で撮像された画像信号のプロセス処理を行う信号処理回路301 、該信号処理回路301 から出力された画像信号をデジタル化するA/D 変換回路302 、デジタル化された画像信号を、モザイクフィルタ106 の狭帯域フィルタ106aと対応する画素で受光した画像信号からなる狭帯域蛍光画像と、全波長帯域フィルタ106bと対応する画素で受光した画像信号からなる広帯域蛍光画像とで、異なる記憶領域に保存する画像メモリ303 と、参照光Lsが照射された時に、CCD撮像素子101 で撮像された画像信号のうち、モザイクフィルタ106 の全波長帯域フィルタ106bと対応する画素で受光した画像信号にプロセス処理を施す信号処理回路304 、該信号処理回路304 から出力された画像信号をデジタル化するA/D 変換回路305 、デジタル化された画像信号からなるIR反射画像を保存する画像メモリ306 と、画像メモリ303 に記憶された隣接する画素で撮像された狭帯域蛍光画像の画素値を広帯域蛍光画像の画素値で除算した規格化蛍光演算値と、画像メモリ303 に記憶された広帯域蛍光画像の画素値を画像メモリ306 に記憶された対応する画素で撮像されたIR反射画像の画素値で除算した蛍光収率演算値とを算出する蛍光演算値算出部307 と、図5に示す演算値分布情報を記憶する記憶部308 と、各画素毎に、蛍光演算値算出部307 で算出された規格化蛍光演算値および蛍光収率演算値と、記憶部308 に記憶されている演算値分布情報とを用いて、組織性状を判定する判定部309 、判定結果に基づいて色が割り当てられた蛍光診断画像を生成して、後述するビデオ信号処理回路405 へ出力する蛍光診断画像生成部310 とを備えている。
【0042】
ここで、図5に示す演算値分布情報の作成方法について説明する。まず、予め他の手法により組織性状が明らかにされている既知性状組織であり、かつ組織上に蛍光を発する粘液、消化液、唾液、泡、残渣等が大量に付着していない清浄生体組織である正常組織、前癌組織、病変(癌)組織に対して、本蛍光内視鏡装置を使用して、上述した動作と同様の動作により、規格化蛍光演算値および蛍光収率演算値を取得し、正常組織、前癌組織、病変(癌)組織と関連づけた2次元分布グラフを作成する。次に図5に示すように、このグラフ上に正常組織と関連付けた正常エリア7、前癌組織と関連付けた前癌エリア6、病変(癌)組織と関連付けた病変(癌)エリア5を規定する。記憶部308 には、各組織性状と関連付けた正常エリア7、前癌エリア6、病変(癌)エリア5の範囲が演算分布情報として記憶されている。
【0043】
通常画像処理ユニット40は、R光Lr、G光LgまたはB光Lbが照射された時に、モザイクフィルタ106 の全波長帯域フィルタ106bと対応する画素で受光した画像信号にプロセス処理を施す信号処理回路401 、該信号処理回路401 から出力された画像信号をデジタル化するA/D 変換回路402 、デジタル化された画像信号を各色毎の画像(R画像、G画像およびB画像)として保存する画像メモリ403 、該画像メモリに保存された各色毎の画像から通常画像信号を生成する通常画像生成部404 、通常画像を表示する際には、上記通常画像生成部404 から出力された通常画像信号をビデオ信号に変換して出力し、また蛍光診断画像を表示する際には、上記の蛍光診断画像生成部310 から出力された蛍光診断画像信号をビデオ信号に変換して出力するビデオ信号処理回路405 を備えている。CCD駆動ユニット50は、CCD撮像素子101 の動作タイミングを制御する動作制御信号を出力するものである。コントローラ60は、各部位に接続され、動作タイミングを制御している。
【0044】
以下、本発明による蛍光内視鏡装置の動作について説明する。通常画像モードにおいては、面順次光の照射、通常像の撮像および通常画像の表示が行われ、蛍光診断画像モードにおいては、励起光Leまたは参照光Lsの照射と、蛍光像の撮像またはIR反射像の撮像とが時分割で行われ、蛍光診断画像が表示される。
【0045】
まず、通常画像モードにおける動作を説明する。撮像に先立ち、観察者はスコープ部10を、被験者の体腔内に挿入し、スコープ部10先端を観察部1の近傍に誘導する。
【0046】
最初に、R画像を取得する際の動作を説明する。コントローラ60からの信号に基づき、白色光源用電源202 が駆動され、白色光源201 から白色光が射出される。白色光は、集光レンズ203 により集光され、切換フィルタ204 を透過する。切換フィルタ204 では、コントローラ60からの信号に基づいて、Rフィルタ204aが光路上に配置されている。このため、白色光は、切換フィルタ204 を透過するとR光Lrとなる。R光Lrは、ライトガイド102aに入射され、スコープ部10の先端まで導光された後、照明レンズ104 から観察部1へ照射される。
【0047】
観察部1で反射されたR光Lrの反射光は、集光レンズ105 により集光され、プリズム107 に反射して、CCD撮像素子101 上にR光反射像Zrとして結像される。CCD撮像素子101 より出力された画像信号の中で、モザイクフィルタ106 の全波長帯域フィルタ106bと対応する画素で受光した信号のみが、通常画像処理ユニット40の信号処理回路401 で、プロセス処理を施されR画像信号として出力され、残りの信号は破棄される。R画像信号は、A/D 変換回路402 でデジタル信号に変換されて、画像メモリ403 のR画像の記憶領域へ記憶される。以後、同様な動作によりG画像およびB画像が取得され、それぞれ、画像メモリ403 のG画像の記憶領域およびB画像の記憶領域へ記憶される。
【0048】
R画像、G画像およびB画像が画像メモリ403 に記憶されると、表示タイミングに合わせて通常画像生成部404 において、3色の画像から通常画像信号が生成され出力される。ビデオ信号処理回路405 では、通常画像信号をビデオ信号に変換し、モニタ70に出力する。モニタ70には、カラー画像である通常画像が表示される。
【0049】
次に蛍光診断画像モードの際の動作について説明する。観察者は、入力装置601を用いて、蛍光診断画像モードを選択する。まず、コントローラ60からの信号に基づき、励起光源用電源207 が駆動され、GaN系半導体レーザ206 から波長410nmの励起光Leが射出される。励起光Leは、レンズ208 を透過し、ライトガイド102bに入射され、スコープ部10先端まで導光された後、照明レンズ104 から観察部1へ照射される。
【0050】
励起光Leを照射されることにより生じる観察部1からの蛍光は、集光レンズ105 により集光され、プリズム107 に反射して、モザイクフィルタ106 を透過して、CCD撮像素子101 上に蛍光像Zjとして結像される。この際励起光Leの反射光は、励起光カットフィルタ108 によりカットされるため、CCD撮像素子101 に入射することはない。
【0051】
CCD撮像素子101 では、蛍光像Zjが受光されて、光電変換され、光の強弱に応じた画像信号に変換されて出力される。
【0052】
CCD撮像素子101 から出力された信号は、蛍光画像処理ユニット30の信号処理回路301 で、プロセス処理を施され、A/D 変換回路302 でデジタル信号に変換されて、狭帯域フィルタ106aを透過した狭帯域蛍光画像と全帯域フィルタ106bを透過した広帯域蛍光画像に分けて、画像メモリ303 の記憶領域へ記憶される。
【0053】
次に参照光LsのIR反射像Zsを撮像する際の動作を説明する。コントローラ60からの信号に基づき、参照光源用電源210 が駆動され、参照光源から近赤外光である参照光Lsが射出される。参照光Lsは、レンズ211 を透過し、ライトガイド102cに入射され、スコープ部先端まで導光された後、照明レンズ104 から観察部1へ照射される。
【0054】
観察部1で反射された参照光Lsの反射光は、集光レンズ105 により集光され、プリズム107 に反射して、モザイクフィルタ106 を透過して、CCD撮像素子101 上にIR反射像Zsとして結像される。CCD撮像素子101 では、IR反射像Zsが受光されて光電変換され、光の強弱に応じた画像信号に変換されて出力される。
【0055】
CCD撮像素子101 から出力された信号は、蛍光画像処理ユニット30の信号処理回路304 で、全帯域フィルタ106bに対応する画素で受光された信号のみが、プロセス処理を施されて出力され、A/D 変換回路305 でデジタル信号に変換されて、画像メモリ306 へIR反射画像として記憶される。
【0056】
画像メモリ306 へIR反射画像が記憶されると、蛍光演算値算出部307 では隣合う画素毎に、画像メモリ303 に記憶された狭帯域蛍光画像の画素値を広帯域蛍光画像の画素値で除算して規格化蛍光演算値を算出し、また画像メモリ303 に記憶された広帯域蛍光画像の画素値を画像メモリ306 に記憶された対応する画素で撮像されたIR反射画像の画素値で除算して蛍光収率演算値を算出する。
【0057】
判定部309 では、各被測定部2の規格化蛍光演算値と蛍光収率演算値との2次元分布点が、図5に点2aとして示すように記憶部308 に記憶されている演算値分布情報の正常エリア7内に入るものであれば、その画素に対応する被測定部2は正常組織であると判定し、点2bとして示すように、前癌エリア6内に入るものであれば、前癌組織であると判定し、点2cとして示すように病変(癌)エリア5内に入るものであれば病変(癌)組織であると判定する。また、規格化蛍光演算値と蛍光収率演算値との2次元分布点が、点2dとして示すように上記正常エリア7、前癌エリア6または病変(癌)組織5のどれにも入らない場合には、その画素に対応する被測定部2は、アーティファクト領域であると判定する。なお、アーティファクト領域とは、生体組織上に蛍光を発する粘液や残渣等が付着している領域であり、これらの領域で発せられた蛍光からは、組織性状を判定することはできない。
【0058】
蛍光診断画像生成部310 では、これらの判定結果に基づいて、例えば、正常組織であると判定された画素には緑色を割り当て、前癌組織であると判定された画素には黄色を割り当て、病変(癌)組織であると判定された画素には赤色を割り当て、アーティファクト領域であると判定された画素には無色が割り当てられた蛍光診断画像信号を生成して、ビデオ信号処理回路405 へ出力する。ビデオ信号処理回路405 では、蛍光診断画像信号をビデオ信号に変換し、モニタ70へ出力し、モニタ70には蛍光診断画像が表示される。
【0059】
以上の説明であきらかなように、本実施形態における蛍光内視鏡装置においては、観察部1から発せられた蛍光から取得した規格化蛍光演算値および蛍光収率演算値の2次元分布点と、予め記憶部308 に記憶された演算値分布情報とに基づいて、観察部1の各被測定部2の組織性状が判定されるため、組織性状の判定精度が向上する。このため、観察部1の各被測定部2の組織性状をより正確に反映した蛍光診断画像がモニタ70上に表示される。
【0060】
また、図6に示すように、モニタ70に、蛍光診断画像71と、図5に示す2次元分布グラフおよび演算値分布情報とを同時に表示させてもよい。診断者は2次元分布グラフ、演算値分布情報および蛍光診断画像71を1枚の画像上で観察することができ蛍光判定装置の利便性が向上する。さらに、例えば蛍光診断画像71上の所望の部位72を入力装置601 から指定することにより、その部位72の2次元分布点73を2次元分布グラフ上に表示させるように構成すれば、所望の部位72の組織性状をより容易に視認することができる。なお、このような場合には、2次元分布点73の表示色を既存の分布点の表示色とは異なる表示色とすれば、さらに容易に視認することができる。
【0061】
また、規格化蛍光演算値としては、蛍光の狭帯域波長帯域の光強度を広帯域波長帯域の光強度で除算した値が使用されているため、除算を行う際に0割り算が行われる可能性が低く、被測定部2から発せられた蛍光のスペクトル形状を適切に反映した規格化蛍光演算値を使用することができる。
【0062】
さらに、判定部309 において、被測定部2から取得した規格化蛍光演算値と蛍光収率演算値との2次元分布点が、既知性状組織から取得した演算値分布情報に含まれていない場合に、被測定部2がアーティファクト領域であると判定するので、このような判定結果を反映した蛍光診断画像をモニタ70に表示することにより、測定者がアーティファクト領域と、正常組織、前癌組織や病変(癌)組織とを容易に識別でき、診断の際の信頼性が向上する。
【0063】
なお、本実施の形態においては、正常組織、前癌組織および病変(癌)組織の判定を行ったが、これに限定されるものではなく、演算値分布情報を予め取得することにより、異形成、炎症あるいは潰瘍等の各種疾患の判定を行うことができる。また、判定したい疾患、測定部位、被験者の年齢等に応じて、複数種類の演算値分布情報を記憶させ、適宜切り替えて使用すれば、判定精度を向上させることができる。
【0064】
次に、図2および図7を参照して本発明の第2の実施形態について説明する。第2の実施例形態である蛍光内視鏡装置の概略構成は、図2に示す第1の実施形態である内視鏡装置とほぼ同様であるため、図2に番号のみを示す。図7は、本実施形態において用いられる演算値分布情報の模式図である。
【0065】
本実施の形態における蛍光内視鏡装置においては、蛍光画像処理ユニット30の代わりに信号処理回路301 、A/D 変換回路302 、画像メモリ303 と、信号処理回路304 、A/D 変換回路305 、画像メモリ306 と、蛍光演算値算出部307と、図7に示す演算値分布情報を記憶する記憶部318 、各画素毎に蛍光演算値算出部307 で算出された規格化蛍光演算値および蛍光収率演算値と、記憶部318 に記憶されている演算値分布情報とを用いて、組織性状を判定する判定部319 、判定結果に基づいて蛍光診断画像を生成する蛍光診断画像生成部320 とを備えている蛍光演算ユニット31が設けられている。
【0066】
記憶部318に記憶されている演算値分布情報の作成方法を説明する。まず、予め他の手法により組織性状が明らかにされている既知性状組織であり、かつ組織上に蛍光を発する粘液や残渣等が大量に付着していない清浄生体組織である正常組織、前癌組織、病変(癌)組織に対して、本蛍光内視鏡装置を使用して、規格化蛍光演算値および蛍光収率演算値を取得し、正常組織、前癌組織、病変(癌)組織と関連づけた2次元分布グラフを作成する。
【0067】
次に、これらの2次元分布グラフから図7に点線で示すような演算値分布関数を算出する。演算値分布関数は、規格化蛍光演算値をNF、蛍光収率演算値をAFとすると次式で表される。
【0068】
1/NF=1.1+0.0012/AF
同時に、既知性状組織から取得された測定値の標準偏差σを算出し、次式で規定される範囲を清浄生体組織範囲8として規定する。
【0069】
1/NF=(1.1±σ)+0.0012/AF
記憶部318には、演算値分布情報として、演算値分布関数および上記清浄生体組織範囲8が記憶される。
【0070】
判定部319 では、まず、各画素毎の規格化蛍光演算値と蛍光収率演算値との2次元分布点が、上記清浄生体組織範囲8の範囲外であった場合には、その画素に対応する被測定部2はアーティファクト領域であると判定する。
【0071】
2次元分布点が、清浄生体組織範囲8の範囲内であれば、この2次元分布点から最も近い距離にある演算値分布関数上の点を算出し、その点を組織性状判定点として設定する。
【0072】
蛍光診断画像生成部320 では、予め演算値分布関数上の各点に対して緑(正常組織)〜黄(前癌組織)〜赤(癌組織)の間の色が連続的に設定されている。規格化蛍光演算値と蛍光収率演算値の2次元分布点が清浄生体組織範囲8内にある各画素には、演算値分布関数上の組織性状判定点に相当する色を割り当て、またアーティファクト領域であると判定された画素に対しては、無色を割り当てて、蛍光診断画像信号を生成して、ビデオ信号処理回路405 へ出力する。ビデオ信号処理回路405 では、蛍光診断画像信号をビデオ信号に変換し、モニタ70には蛍光診断画像が表示される。
【0073】
以上の説明であきらかなように、本実施形態における蛍光内視鏡装置においては、観察部1から取得した規格化蛍光演算値と、蛍光収率演算値と、予め記憶部318 に記憶された演算値分布情報(演算値分布関数および清浄生体組織範囲8)とに基づいて、被測定部2の組織性状が判定されるため、被測定部2の組織性状の判定精度が向上する。また組織性状の変化を連続的な色変化として表示できるため、被測定部2の組織性状をより一層正確に反映した蛍光診断画像をモニタ上に表示することができる。
【0074】
本実施の形態においても、正常組織、前癌組織および病変(癌)組織の判定を行ったが、これに限定されるものではなく、演算値分布情報を予め取得することにより、異形成、炎症あるいは潰瘍等の各種疾患の判定を行うことができる。また、判定したい疾患、測定部位、あるいは被験者の年齢等に応じて複数種類の演算値分布情報を記憶させ、適宜切り替えて使用すれば、一層判定精度を向上させることができる。
【0075】
また、図8に示すように、モニタ70に、蛍光診断画像71と、図7に示す2次元分布グラフおよび演算値分布情報とを同時に表示させてもよい。診断者は2次元分布グラフ、演算値分布情報および蛍光診断画像71を1枚の画像上で観察することができ蛍光判定装置の利便性が向上する。さらに、例えば蛍光診断画像71上の所望の部位72を入力装置601 から指定することにより、その部位72の2次元分布点74を2次元分布グラフ上に表示させるように構成すれば、所望の部位72の組織性状をより容易に視認することができる。なお、このような場合には、2次元分布点74の表示色を既存の分布点の表示色とは異なる表示色とすれば、さらに容易に視認することができる。また、表示の際には、2次元分布点74の偏差を算出し、この値も同時に表示すれば、部位72の組織性状を一層正確に反映した表示を行うことができる。
【0076】
なお、本実施の形態の変型例として、記憶部318 に、演算値分布情報として、演算値分布関数および標準偏差σを記憶し、判定部319 において、演算値分布関数および標準偏差σから清浄生体組織範囲8を算出して、上記と同様の判定を行うものも考えられる。上述したように、判定したい疾患、測定部位、あるいは被験者の年齢等に応じて複数種類の演算値分布情報を記憶させ、適宜切り替えて使用するような場合であっても、各演算値分布情報として、演算値分布関数および標準偏差σを記憶しておけばよいので、他種類のテーブルを記憶するための大容量のメモリを準備する必要がない。
【0077】
また各実施の形態においては、演算値分布情報としては、予め他の手法により組織性状が明らかにされている既知性状組織から取得した規格化蛍光演算値および蛍光収率演算値から2次元分布グラフに基づいて作成され、記憶されている演算値分布情報を用いたがこれに限定されるものではない。例えば内視鏡検査時に行った生検等により、所望の部位の規格化蛍光演算値および蛍光収率演算値と組織性状が明らかにされた場合には、このデータを加えて演算値分布情報を再作成し、次回の内視鏡検査時には、この再作成された演算値分布情報を用いて組織性状を判定してもよい。また、内視鏡検査の目的に応じて、演算値分布情報の設定範囲を診断者が手動操作で変更できる構成としてもよい。例えばスクリーニング等を行う場合には、病変組織として判定される範囲が通常よりも広くなるように演算値分布情報を設定すれば、スクリーニング精度を向上させることができる。
【0078】
なお、各実施の形態においては、通常画像、蛍光画像およびIR反射画像を1つの撮像素子により撮像したが、それぞれ別個の撮像素子を用いて撮像してもよい。このような場合には、各撮像素子に、取得する画像に適した透過波長範囲を備えた光学フィルタを取り付けることが望ましい。また、プロセッサ部80内にCCD撮像素子を設け、スコープ部10先端からプロセッサ部80内のCCD撮像素子までイメージガイドにより蛍光像を伝送させてもよい。
【図面の簡単な説明】
【図1】演算値分布情報の説明図
【図2】本発明による第1の具体的な実施の形態である蛍光内視鏡装置の概略構成図
【図3】モザイクフィルタの概略構成図
【図4】切換フィルタの概略構成図
【図5】組織性状判定方法の説明図
【図6】表示画面の説明図
【図7】演算値分布情報の説明図
【図8】表示画面の説明図
【図9】正常組織および病変組織の蛍光から取得した蛍光の蛍光強度スペクトルを示す説明図
【符号の説明】
1 観察部
2 被測定部
10 スコープ部
20 照明ユニット
30,31 蛍光画像処理ユニット
40 通常画像処理ユニット
50 CCD駆動ユニット
60 コントローラ
70 モニタ
101 撮像素子
106 モザイクフィルタ
307 蛍光演算値算出部
308,318 記憶部
309,319 判定部
310,320 蛍光診断画像生成部

Claims (4)

  1. 励起光を照射された複数の既知性状組織のそれぞれから発せられた蛍光のスペクトル形状を反映した規格化蛍光演算値と前記蛍光の蛍光収率を反映した蛍光収率演算値との2次元分布と、前記各既知性状組織の組織性状との関係からなる演算値分布情報を予め記憶する記憶手段と、
    励起光を被測定部に照射する励起光照射手段と、
    前記励起光の照射により前記被測定部から発せられた蛍光の蛍光情報を検出する蛍光検出手段と、
    検出された前記蛍光情報に基づいて、前記被測定部から発せられた蛍光の規格化蛍光演算値および蛍光収率演算値を取得する演算値取得手段と、
    前記両演算値と予め記憶された前記演算値分布情報とに基づいて、前記被測定部の組織性状を判定する判定手段とを備えたことを特徴とする蛍光判定装置。
  2. 前記規格化蛍光演算値が前記蛍光の狭帯域波長帯域の光強度を広帯域波長帯域の光強度で除算したものであることを特徴とする請求項記載の蛍光判定装置。
  3. 前記判定手段は、前記被測定部から発せられた蛍光の規格化蛍光演算値と蛍光収率演算値との2次元分布点が、前記演算値分布情報に含まれていない場合に、前記被測定部がアーティファクト領域であると判定するものであることを特徴とする請求または記載の蛍光判定装置。
  4. 前記演算値分布情報および前記判定手段による判定結果を同時に表示する表示手段をさらに備えたことを特徴とする請求項からいずれか1項記載の蛍光判定装置。
JP2003025400A 2002-03-28 2003-02-03 蛍光判定装置 Expired - Lifetime JP4109132B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025400A JP4109132B2 (ja) 2002-03-28 2003-02-03 蛍光判定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002092284 2002-03-28
JP2003025400A JP4109132B2 (ja) 2002-03-28 2003-02-03 蛍光判定装置

Publications (2)

Publication Number Publication Date
JP2004000477A JP2004000477A (ja) 2004-01-08
JP4109132B2 true JP4109132B2 (ja) 2008-07-02

Family

ID=30446263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025400A Expired - Lifetime JP4109132B2 (ja) 2002-03-28 2003-02-03 蛍光判定装置

Country Status (1)

Country Link
JP (1) JP4109132B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191090B2 (ja) * 2005-07-15 2013-04-24 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2007313169A (ja) 2006-05-29 2007-12-06 Olympus Corp 病変抽出装置および病変抽出方法
JP2009125411A (ja) * 2007-11-27 2009-06-11 Fujinon Corp 内視鏡画像処理方法および装置ならびにこれを用いた内視鏡システム
JP5152795B2 (ja) * 2008-05-22 2013-02-27 富士フイルム株式会社 蛍光画像取得装置および蛍光画像取得装置の作動方法
JP5191327B2 (ja) * 2008-09-17 2013-05-08 富士フイルム株式会社 画像取得装置および画像取得装置の作動方法
EP2520211B1 (en) * 2010-02-10 2014-04-23 Olympus Corporation Fluorescence endoscope device

Also Published As

Publication number Publication date
JP2004000477A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4311607B2 (ja) 蛍光診断情報生成方法および装置
US10070791B2 (en) Apparatus for caries detection
US7702139B2 (en) Apparatus for caries detection
US6678398B2 (en) Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
JP6468287B2 (ja) 走査型投影装置、投影方法、走査装置、及び手術支援システム
US20080062429A1 (en) Low coherence dental oct imaging
JP5492030B2 (ja) 画像撮像表示装置およびその作動方法
JP4202671B2 (ja) 規格化画像生成方法および装置
JP2001258820A (ja) 蛍光画像表示方法および装置
JP2004024656A (ja) 蛍光内視鏡装置
US20030216626A1 (en) Fluorescence judging method and apparatus
JP2004024497A (ja) 蛍光診断画像生成装置
JP2003164414A (ja) 蛍光診断画像表示方法および表示装置
JP4109132B2 (ja) 蛍光判定装置
JP2003111716A (ja) 標準光源、補正係数算出方法および装置並びに蛍光画像生成方法および装置
JP4109133B2 (ja) 蛍光判定装置
JP2002336187A (ja) 規格化蛍光画像生成方法および装置
EP3278707B1 (en) Endoscopic diagnostic device, image processing method, program, and recording medium
JP2004008230A (ja) 蛍光診断情報生成装置
JP2001128925A (ja) 蛍光表示方法および装置
JP2004024496A (ja) 蛍光診断画像生成方法および装置
JP2003159209A (ja) 蛍光診断画像表示方法および表示装置
JP2003339622A (ja) 蛍光判定方法および装置
JP2012050598A (ja) 撮像表示方法および装置
JP2006122560A (ja) 体液蛍光スペクトル取得装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250