JP2006013529A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2006013529A
JP2006013529A JP2005214808A JP2005214808A JP2006013529A JP 2006013529 A JP2006013529 A JP 2006013529A JP 2005214808 A JP2005214808 A JP 2005214808A JP 2005214808 A JP2005214808 A JP 2005214808A JP 2006013529 A JP2006013529 A JP 2006013529A
Authority
JP
Japan
Prior art keywords
insulating film
film
trench
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214808A
Other languages
English (en)
Inventor
Hisashi Ogawa
久 小川
Hiroaki Nakaoka
弘明 中岡
Atsuhiro Kajitani
敦宏 柁谷
Shin Hashimoto
伸 橋本
Kyoko Egashira
恭子 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005214808A priority Critical patent/JP2006013529A/ja
Publication of JP2006013529A publication Critical patent/JP2006013529A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures

Abstract

【課題】 基板面積の増大なしにキャパシタを容量増大できるDRAM又はこれとロジック回路とを混載した半導体装置の製造方法の提供。
【解決手段】 半導体装置の製造方法は次の通りである。基板上面に第1の絶縁膜50で埋められたトレンチを形成。第1の絶縁膜の一部の上部を除去し、トレンチ内及び基板の上面上に第2の絶縁膜を形成し、その上に導体膜を形成。導体膜及び第2の絶縁膜をパターニングし、ゲート電極16a、プレート電極16b及び容量絶縁膜15を形成。ゲート電極及びプレート電極をマスクとし、イオン注入によりメモリトランジスタの低濃度ドレイン拡散層17b及びソース拡散層18を形成。ゲート電極、プレート電極の側面上に、各々第1、第2のサイドウォール25a、25bを形成。尚、プレート電極は基板の上面の一部とトレンチの露出している側面とに亘る領域上に形成され、ソース拡散層は第1、第2のサイドウォールによって覆われる。
【選択図】 図2

Description

本発明は、半導体記憶装置の製造方法に関し、特にDRAMをロジックチップに混載する所謂DRAM混載ロジックLSIに適用されるものである。
近年、小型化と大容量のメモリー容量と高速のデータ転送速度とが要求されるマルチメディア機器向けに、高性能ロジック回路とDRAMメモリ部とを混載したDRAM混載デバイスが実用化されている。DRAM混載デバイスは、DRAMメモリセルの情報記憶部であるキャパシタが半導体基板のトレンチ内に設けられているトレンチキャパシタ型と、半導体基板の主面の上方にキャパシタや電極が三次元的に積み上げられているスタックキャパシタ型とに大きく分けられる。
一方、より簡便にメモリセルを形成できるデバイスとして、ゲート絶縁膜を容量絶縁膜として用い、ゲート電極をプレート電極として用いた,所謂プレーナ型(MOS構造)のDRAM及びロジック回路を混載したデバイスが最近改めて注目を集めている。
しかしながら、上記従来のDRAM・ロジック混載デバイスについては、それぞれ以下のような不具合があった。
上記トレンチキャパシタ型やスタック型のDRAM・ロジック混載デバイスを製造するためのプロセスにおいては、メモリセルトランジスタに加えてメモリセルキャパシタを形成するために複雑な工程が追加されている。その結果、設計変更などのための開発期間や、デバイスの製造に要する期間が長期化する上に、デバイスの歩留まり向上が益々困難となり、製造コストも高くなるという不具合があった。
また、プレーナ型のDRAM・ロジック混載デバイスについては、これを製造するためのプロセスは短く単純であるが、メモリセルのサイズがスタックキャパシタ型やトレンチキャパシタ型よりも大きくなってしまうために、大容量のDRAMをロジック回路に混載しつつ高密度化された半導体装置を得ることが困難になってしまうという不具合があった。
本発明の目的は、基板面積の増大を招くことなくキャパシタの容量を増大させることができるDRAM又はこのDRAMとロジック回路とを混載した半導体装置の製造方法を提供することにある。
本発明の第1の半導体装置の製造方法は、メモリトランジスタとキャパシタとを備えた半導体装置の製造方法であって、半導体基板の上面領域にトレンチを形成する工程(a)と、トレンチ内を埋める第1の絶縁膜を形成する工程(b)と、第1の絶縁膜の一部の上部を除去し、上記トレンチの側面の一部を露出させる工程(c)と、工程(c)の後で、トレンチ内及び半導体基板の上面上に亘って、第2の絶縁膜を形成する工程(d)と、第2の絶縁膜上に導体膜を形成する工程(e)と、導体膜をパターニングして、メモリセルトランジスタのゲート電極を形成すると共に、半導体基板の上面の一部と、トレンチの露出している側面とに亘る領域の上に、キャパシタのプレート電極を形成する工程(f)と、工程(f)の後に、第2の絶縁膜をパターニングして、キャパシタの容量絶縁膜を形成する工程(g)と、工程(g)の後に、ゲート電極及びプレート電極をマスクにして、イオン注入により半導体基板にメモリトランジスタの低濃度ドレイン拡散層及びソース拡散層を形成する工程(h)と、工程(h)の後に、ゲート電極の側面上に第1の絶縁膜サイドウォールを形成するとともに、プレート電極の側面上に第2の絶縁膜サイドウォールを形成する工程(i)とを含み、工程(i)では、ソース拡散層は、第1の絶縁膜サイドウォール及び第2の絶縁膜サイドウォールによって覆われるようになっている。
この方法により、トレンチの側面の一部がキャパシタとして機能するので、基板面積当たりの容量密度の高いプレーナ型キャパシタを有する半導体装置が得られる。
尚、工程(c)の後で且つ工程(d)の前に、半導体基板の上面の一部と、トレンチの露出している側面とに亘る領域に不純物をドープして、キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含むことが好ましい。
また、工程(b)の後で且つ工程(c)の前に、半導体基板の上面の一部に不純物をドープして、キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含むことが好ましい。
このようにして、トレンチの側面と、半導体基板上面の一部とに亘ってストレージノードを形成することができる。
また、工程(g)は、第2の絶縁膜をパターニングして、メモリトランジスタのゲート絶縁膜を形成する工程を含むことが好ましい。
これにより、キャパシタの容量絶縁膜と同時に、メモリトランジスタのゲート絶縁膜を形成することができる。
また、工程(d)では、第2の絶縁膜として酸化膜と窒化膜とを順次積層した後、窒化膜を酸化して、酸化膜,窒化膜及び酸化膜の積層膜からなる容量絶縁膜を形成すると共に、半導体基板の表面を酸化してメモリセルトランジスタのゲート絶縁膜を形成し、工程(e)では、導体膜を容量絶縁膜とゲート絶縁膜との上に形成することが好ましい。
このようにすることにより、ゲート絶縁膜と容量絶縁膜との材質を変えながら共通の導体膜からゲート電極とプレート電極とを形成することが可能になる。
また、工程(i)の後に、ゲート電極、プレート電極、第1の絶縁膜サイドウォール及び第2の絶縁膜サイドウォールをマスクとするイオン注入により、半導体基板にメモリトランジスタの高濃度ドレイン拡散層を形成する工程をさらに含むことが好ましい。
このようにすると、ソース拡散層に高濃度のイオンが注入されるのを防ぎながら、高濃度ドレイン拡散層を形成することができる。
また、半導体装置は、ゲート電極及びソース・ドレイン拡散層とを有するロジックトランジスタをさらに備えており、工程(a)では、ロジックトランジスタ形成領域において、素子分離用のトレンチを形成し、工程(b)では、ロジックトランジスタ形成領域のトレンチ内を第1の絶縁膜によって埋め、工程(c)では、ロジックトランジスタ形成領域のトレンチを埋める第1の絶縁膜はそのまま残しておくことが好ましい。
このようにすると、メモリトランジスタ及びキャパシタ等を形成するのと同じ工程において、ロジックトランジスタを形成することができる。つまり、素子分離用のトレンチを利用したキャパシタを形成しつつ、ロジックトランジスタの素子分離を同時に形成することが可能になり、工程の簡素化と半導体装置の高密度化とを図ることができる。
本発明の第2の半導体装置の製造方法は、メモリトランジスタとキャパシタとを備えた半導体装置の製造方法であって、半導体基板の上面領域にトレンチを形成する工程(a)と、トレンチ内及び半導体基板の上面上に亘って、絶縁膜を形成する工程(b)と、絶縁膜上に導体膜を形成する工程(c)と、導体膜をパターニングして、メモリセルトランジスタのゲート電極を形成すると共に、トレンチ上にキャパシタのプレート電極とを形成する工程(d)と、工程(d)の後に、絶縁膜をパターニングして、キャパシタの容量絶縁膜を形成する工程(e)と、工程(e)の後に、ゲート電極及びプレート電極をマスクとするイオン注入により、半導体基板にメモリトランジスタの低濃度ドレイン拡散層及びソース拡散層を形成する工程(f)と、工程(f)の後に、ゲート電極の側面上に第1の絶縁膜サイドウォールを形成する共に、プレート電極の側面上に第2の絶縁膜サイドウォールを形成する工程(g)とを含み、工程(c)では、絶縁膜と導体膜との合計膜厚がトレンチの溝幅の1/2よりも厚く形成され、工程(g)では、ソース拡散層は、第1の絶縁膜サイドウォール及び第2の絶縁膜サイドウォールによって覆われる。
この方法により、トレンチ型キャパシタを形成する際に、工程(c)におけるトレンチの上方における導体膜の上面が平坦になるので、工程(d)における導体膜のパターニング精度が向上する。
尚、工程(a)の後で且つ工程(b)の前に、半導体基板におけるトレンチの内壁面の領域及び半導体基板の上面の一部に亘って不純物をドープして、キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含むことが好ましい。
また、工程(a)の後で工程(b)の前に、酸化膜からなるトレンチ分離を形成する工程をさらに含むことも好ましい。
このようにすると、酸化膜からなるトレンチ分離の形成された半導体装置とすることができる。
また、工程(e)は、絶縁膜をパターニングして、メモリトランジスタのゲート絶縁膜を形成する工程を含むことが好ましい。
これにより、キャパシタの容量絶縁膜と同時に、メモリトランジスタのゲート絶縁膜を形成することができる。
また、工程(b)では、絶縁膜として酸化膜と窒化膜とを順次積層した後、窒化膜を酸化して、酸化膜,窒化膜及び酸化膜の積層膜からなる容量絶縁膜を形成すると共に、半導体基板の表面を酸化してメモリセルトランジスタのゲート絶縁膜を形成し、工程(c)では、導体膜を容量絶縁膜とゲート絶縁膜との上に形成することが好ましい。
このようにすることにより、ゲート絶縁膜と容量絶縁膜との材質を変えながら共通の導体膜からゲート電極とプレート電極とを形成することが可能になる。
また、工程(g)の後に、ゲート電極、プレート電極、第1の絶縁膜サイドウォール及び第2の絶縁膜サイドウォールをマスクとするイオン注入により、半導体基板にメモリトランジスタの高濃度ドレイン拡散層を形成する工程をさらに含むことが好ましい。
このようにすると、ソース拡散層に高濃度のイオンが注入されるのを防ぎながら、高濃度ドレイン拡散層を形成することができる。
本発明の半導体装置の製造方法によると、基板面積を増やすことなくメモリセルのキャパシタとして機能する部分の面積を増大させることができるので、高密度化に適したDRAM又はDRAM・ロジック混載デバイスを得ることができる。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。図2(a),(b)は、それぞれ図1に示すIIa-IIa 線における断面図及びIIb-IIb 線における断面図である。なお、図2(a)においては、半導体装置のメモリ領域Rmemo及びロジック回路領域Rlogcにおける断面構造が示されているが、図1及び図2(b)においては、ロジック回路領域Rlogcにおける断面構造の図示は省略されている。
図1及び図2(a),(b)に示すように、本実施形態の半導体装置は、p型のシリコン基板10と、シリコン基板10のメモリ領域Rmemoに設けられたpウエル11aと、シリコン基板10のロジック回路領域Rlogcに設けられたnウエル11b及びpウエル11cと、メモリ領域Rmemoのpウエル11aの底部を囲む深部nウエル11dとを有しており、いわゆるトリプルウエル構造を有している。また、メモリ領域Rmemoにおける活性領域を区画するシャロートレンチ分離12aと、ロジック回路領域Rlogcにおける活性領域を区画するシャロートレンチ分離12bとを備えている。
そして、メモリ領域Rmemoにおいては、pウエル11aの上に、ゲート電極16a,ゲート絶縁膜14a,絶縁膜サイドウォール25a,低濃度のn型不純物を含む低濃度ドレイン拡散層17b,高濃度のn型不純物を含む高濃度ドレイン拡散層17a及びソース拡散層18を有するメモリセルトランジスタTrmと、プレート電極16b,ストレージノードとして機能するn型拡散層19,容量絶縁膜15及び絶縁膜サイドウォール25bを有するプレーナ型キャパシタCppとが設けられている。ここで、高濃度ドレイン拡散層17a及び低濃度ドレイン拡散層17bによって、メモリセルトランジスタのドレイン拡散層が構成されている。一方、ソース拡散層18は、全体的に低濃度のn型不純物を含む低濃度不純物拡散層のみによって構成されている。
プレーナ型キャパシタCppの容量絶縁膜15及びプレート電極16bは、シリコン基板10上と、シャロートレンチ分離12aと共有しているトレンチ内とに亘って設けられており、容量絶縁膜15及びプレート電極16bとによってトレンチの上部が埋められている。また、n型拡散層19の端部は、トレンチ上部の側面に沿って、シャロートレンチ分離12a及びソース拡散層18とオーバーラップする領域まで形成されている。
また、ロジック回路領域Rlogcにおいては、ゲート電極16c,ゲート絶縁膜14b,絶縁膜サイドウォール26及びp型ソース・ドレイン拡散層21を有するpチャネル型MISトランジスタ(pMIS)と、ゲート電極16c,ゲート絶縁膜14b,絶縁膜サイドウォール26及びn型ソース・ドレイン拡散層20を有するnチャネル型MISトランジスタ(nMIS)とが設けられている。
そして、基板全体には層間絶縁膜30が堆積されており、層間絶縁膜30を貫通してメモリ領域RmemoのメモリセルトランジスタTrmの高濃度ドレイン拡散層17aに接続されるビット線コンタクト31と、ビット線コンタクト31に接続され層間絶縁膜30の上に延びるビット線32とが設けられている。
なお、ロジック回路領域Rlogcにおいても、層間絶縁膜30を貫通してソース・ドレイン拡散層20,21に到達するソースコンタクト及びドレインコンタクトや、層間絶縁膜30を貫通してゲート電極16cにコンタクトするゲートコンタクトなどが設けられているが、これらの部材は本発明の本質に関わる部分ではないので、図示が省略されている。
ここで、本実施形態の特徴は、プレート電極16bがメモリセルトランジスタTrmのゲート電極16aと共通の導体膜(本実施形態ではポリシリコン膜)から形成されていることと、プレーナ型キャパシタCppの容量絶縁膜15及びプレート電極16bが、シャロートレンチ分離12aと共有しているトレンチ内にまで亘っていて、該トレンチの上部を埋めていることである。
本実施形態によると、プレート電極16bがメモリセルトランジスタのゲート電極16aと共通の導体膜から形成されているので、メモリセルサイズの縮小が可能になる。
しかも、本実施形態によると、シャロートレンチ分離12aは、トレンチの下部のみを埋めており、トレンチの上部はプレーナ型キャパシタCppの容量絶縁膜15とプレート電極16bとによって埋められている。その結果、トレンチの上部では、トレンチの側面部において、n型拡散層19(ストレージノード)とプレート電極16bとが容量絶縁膜15を挟んで相対向しているので、この分だけキャパシタ容量が増大することになる。つまり、本実施形態のプレーナ型キャパシタは、シリコン基板10の上面及びトレンチの側面の一部に亘って設けられており、基板面積を増やすことなくキャパシタとして機能する部分の面積を増大させることができる。いわばプレーナ・トレンチ混合型キャパシタとして高容量化された構造となっており、これにより、メモリ機能のために必要な面積の縮小を図ることができる。
−第1の実施形態の半導体装置の第1の製造方法−
次に、本発明の第1の実施形態における半導体装置の第1の製造方法について説明する。図3(a)〜(c)は、本実施形態における半導体装置の第1の製造方法を示す断面図である。ただし、図3(a)〜(c)においては、メモリ領域Rmemoのみを図示して、ロジック回路領域Rlogcの図示は省略する。また、図3(a)〜(c)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
まず、図3(a)に示す工程で、下敷き酸化膜と窒化膜マスクとを用いる公知の方法により、シリコン基板10の表面領域に、活性領域を区画するための分離用トレンチを形成する。このとき、ロジック回路領域Rlogcにおいても、分離用トレンチが形成される。その後、分離用トレンチ内にシリコン酸化膜を埋め込んで、素子分離用絶縁膜50を形成する。このとき、ロジック回路領域Rlogcにも、図2(a)に示すような素子分離12bが形成される。さらに、ロジック回路領域Rlogcの一部を覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoに、加速エネルギー1200keV,ドーズ量3.0×1012の条件で、リンイオン(P+ )の注入を行なって、メモリ領域Rmemoのpウエル11aの底部領域に深部nウエル11d(図2(a)参照)を形成する。さらに、ロジック回路領域Rlogcのpチャネル型トランジスタ形成領域を覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoとロジック回路領域Rlogcの一部とに、加速エネルギー250keV,ドーズ量1×1013の条件で、ボロンイオン(B+ )の注入を行なって、メモリ領域Rmemoのpウエル11aと、ロジック回路領域Rlogcのpウエル11c(図2(a)参照)とを形成する。また、メモリ領域Rmemoと、ロジック回路領域Rlogcのpチャネル型トランジスタ形成領域とを覆うレジストマスク(図示せず)を用いて、加速エネルギー250keV,ドーズ量1×1013cm-2の条件で、リンイオン(P+ )の注入を行なって、ロジック回路領域Rlogcにnウエル11b(図2(a)参照)を形成する。なお、図2(a)には図示されていないが、メモリ領域Rmemo及びロジック回路領域Rlogcにおいて、シャロートレンチ分離12a,12bの直下方にはチャネルストッパ用の不純物が注入され、トランジスタのチャネル領域下方には、パンチスルーストッパ用の不純物が注入される。これらの条件としては、周知の条件を用いることができる。
なお、本実施形態では、分離用トレンチ及び素子分離用絶縁膜50を形成した後に、深部nウエル11d,pウエル11a,11c及びnウエル11bを形成したが、分離用トレンチ及び素子分離用絶縁膜50を形成する前にこれらの各ウエルを形成してもよい。
次に、図3(b)に示す工程で、ロジック回路領域Rlogc全体とメモリ領域Rmemoの活性領域の一部とを覆うレジストマスク51をマスクとして用い、メモリ領域Rmemoのみにおける素子分離用絶縁膜50の上部を選択的にウエットエッチングにより除去し、分離用トレンチ及び素子分離用絶縁膜50の下部を残存させてなるシャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにおいては、素子分離用絶縁膜をエッチングせずに、これをシャロートレンチ分離12b(図2(a)参照)としてそのまま残しておく。さらに、レジストマスク51をそのまま注入マスクとして用い、砒素イオン(As+ )を注入して、ストレージノードとなるn型拡散層19を形成する。このと
き、レジストマスク51の横方向の寸法は、メモリセルトランジスタのソース拡散層18と、プレーナ型キャパシタCppのn型拡散層19とがオーバーラップするように設定されている。
次に、図3(c)に示す工程で、メモリ領域Rmemoの容量絶縁膜15,ゲート絶縁膜14a及びロジック回路領域Rlogcのゲート絶縁膜14bとなる厚み2〜6nmの酸化膜を形成した後、その上に、厚み200nmのポリシリコン膜を堆積する。
その後、ポリシリコン膜及び酸化膜をパターニングすることにより、メモリ領域Rmemoに、プレーナ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、図3(c)には図示されていないが、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図2(a)参照)。なお、ポリシリコン膜のパターニングに先立って、ポリシリコン膜のうち,pチャネル型MISトランジスタ及びnチャネル型MISトランジスタの双方,あるいはpチャネル型MISトランジスタのゲート電極となる部分に、ゲート電極抵抗を下げるための不純物イオンの注入を行ってもよい。
その後、メモリ領域Rmemoのメモリセルトランジスタにゲート電極16a及びプレート電極16bをマスクにして、低濃度の砒素イオンを注入する。これにより、メモリ領域Rmemoにおいては低濃度ドレイン拡散層17b及びソース拡散層18が形成される。このとき、メモリセルトランジスタのソース拡散層18は、ストレージノードであるn型拡散層19とオーバーラップするように形成される。
次に、基板上の全面にシリコン酸化膜及びシリコン窒化膜を順次堆積した後、異方性エッチングを行なうことにより、メモリセルトランジスタのゲート電極16aの側面上に絶縁膜サイドウォール25aを形成する。このとき、トレンチ型キャパシタのプレート電極16bの側面上にも、絶縁膜サイドウォール25bが形成される。そして、メモリセルトランジスタのソース拡散層18は、2つの絶縁膜サイドウォール25a,25bによって覆われる。また、ロジック回路領域Rlogcにおいて、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタの各ゲート電極16cの側面上にも絶縁膜サイドウォール26が形成される(図2(a)参照)。
また、ロジック回路領域Rlogc及びメモリ領域Rmemoのnチャネル型MISトランジスタに高濃度の砒素イオンを注入する。これにより、ロジック回路領域Rlogcにおいて、nチャネル型MISトランジスタのソース・ドレイン拡散層20が形成される。また、メモリ領域Rmemoには、高濃度ドレイン拡散層17aが形成される。このとき、ソース拡散層18上は絶縁膜サイドウォール25a,25bで覆われているため、高濃度の砒素が注入されず、高濃度ソース拡散層が形成されることはない。また、ロジック回路領域Rlogcにおいて、pチャネル型MISトランジスタに、ゲート電極16c及び絶縁膜サイドウォール26をマスクにして、高濃度のフッ化ボロンイオンを注入して、pチャネル型MISトランジスタのソース・ドレイン拡散層21を形成する。
その後、基板上に厚み900nmのシリコン酸化膜を堆積した後、CMPにより平坦化を行なって、層間絶縁膜30を形成する。さらに、層間絶縁膜30を貫通して、メモリ領域Rmemoの高濃度ドレイン拡散層17aに到達するコンタクトホールを形成した後、コンタクトホールをタングステンなどによって埋めることにより、ビット線コンタクト31を形成する。なお、ロジック回路領域Rlogcにおいても、ソース・ドレインコンタクトが形成される(図2(a)に図示せず)。その後、層間絶縁膜30の上に、厚み400nmのアルミニウム合金膜(又は銅合金膜)を堆積した後、これをパターニングすることにより、ビット線32を形成する。これにより、図1及び図2(a),(b)に示す半導体装置の構造が得られる。
本実施形態の半導体装置の第1の製造方法によると、共通のポリシリコン膜から、メモリセルトランジスタのゲート電極16aと、プレーナ型キャパシタのプレート電極16bと、ロジック回路領域RlogcのMISトランジスタのゲート電極16cとを形成しているので、工程の簡素化による製造コストの低減を図ることができる。
−第1の実施形態の半導体装置の第2の製造方法−
次に、本発明の第1の実施形態における半導体装置の第2の製造方法について説明する。図4(a)〜(c)は、本実施形態における半導体装置の第2の製造方法を示す断面図である。図4(a)〜(c)においては、メモリ領域Rmemoのみを図示して、ロジック回路領域Rlogcの図示は省略する。また、図4(a)〜(c)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
まず、図4(a)に示す工程で、図3(a)に示す工程と同様の条件で同様の処理を行なう。すなわち、シリコン基板10の表面領域に、活性領域を区画するための分離用トレンチを形成した後、分離用トレンチ内にシリコン酸化膜を埋め込んで、素子分離用絶縁膜50(ロジック回路領域Rlogcにおけるシャロートレンチ分離12b)を形成する。さらに、ロジック回路領域Rlogcを覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoにリンイオン(P+ )の注入を行なって、メモリ領域Rmemoのpウエル11aの底部領域に深部nウエル11d(図2(a)参照)を形成する。さらに、メモリ領域Rmemoのpウエル11aと、ロジック回路領域Rlogcのpウエル11c及びnウエル11b(図2(a)参照)と、メモリ領域Rmemo及びロジック回路領域Rlogcにおけるチャネルストッパ及びパンチスルーストッパを形成する。
次に、メモリ領域Rmemoおよびロジック回路領域Rlogcの活性領域の上に、酸化膜からなる注入保護用酸化膜54を形成した後、注入保護用酸化膜54の上に、ロジック回路領域Rlogc全体とメモリ領域Rmemoの活性領域の一部とを覆うレジストマスク51を形成する。そして、このレジストマスク51をマスクとして用い、砒素イオン(As+ )を注入して、ストレージノードとなるn型拡散層19を形成する。このとき、レジストマスク51の横方向の寸法は、メモリセルトランジスタのソース拡散層18と、プレーナ型キャパシタCppのn型拡散層19とがオーバーラップするように設定されている。
次に、図4(b)に示す工程で、メモリ領域Rmemoにおける注入保護用酸化膜54と素子分離用絶縁膜50の上部とをウエットエッチングにより除去し、分離用トレンチ及び素子分離用絶縁膜50の下部を残存させてなるシャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにおいては、素子分離用絶縁膜をエッチングせずに、これをシャロートレンチ分離12b(図2(a)参照)としてそのまま残しておく。
次に、図4(c)に示す工程で、図3(c)と同様の処理を行なう。すなわち、プレーナ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図2(a)参照)。さらに、メモリ領域Rmemoの低濃度ドレイン拡散層17b,高濃度ドレイン拡散層17a,ソース拡散層18及び絶縁膜サイドウォール25a,25bと、ロジック回路領域Rlogcの各MISトランジスタのソース・ドレイン拡散層20,21及び絶縁膜サイドウォール26とを形成する。その後、層間絶縁膜30と、ビット線コンタクト31と、ビット線32とを形成する。
以上の工程により、図1及び図2(a),(b)に示す構造を有する半導体装置が得られる。
この第2の製造方法においては、第1の製造方法とは異なり、n型拡散層19を形成してから素子分離用絶縁膜50の上部をエッチングしている。そして、この第2の製造方法によっても、上記第1の製造方法と同様に効果を発揮することができる。
−第1の実施形態の変形例における半導体装置の製造方法−
次に、本発明の第1の実施形態の変形例における半導体装置の製造方法について説明する。図5(a)〜(c)は、第1の実施形態の変形例における半導体装置の製造工程を示す断面図である。図5(a)〜(c)においても、メモリ領域Rmemoのみを図示して、ロジック回路領域Rlogcの図示は省略する。また、図5(a)〜(c)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
まず、図5(a)に示す工程で、図3(a)に示す工程と同様の条件で同様の処理を行なう。すなわち、シリコン基板10の表面領域に、活性領域を区画するための分離用トレンチを形成した後、分離用トレンチ内にシリコン酸化膜を埋め込んで、素子分離用絶縁膜50(ロジック回路領域Rlogcにおけるシャロートレンチ分離12b)を形成する。さらに、ロジック回路領域Rlogcを覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoにリンイオン(P+ )の注入を行なって、メモリ領域Rmemoのpウエル11aの底部領域に深部nウエル11d(図2(a)参照)を形成する。また、メモリ領域Rmemoのpウエル11aと、ロジック回路領域Rlogcのpウエル11c及びnウエル11b(図2(a)参照)と、メモリ領域Rmemo及びロジック回路領域Rlogcにおけるチャネルストッパ及びパンチスルーストッパを形成する。
次に、図5(b)に示す工程で、ロジック回路領域Rlogc全体とメモリ領域Rmemoの活性領域の一部とを覆うレジストマスク51をマスクとして用い、メモリ領域Rmemoのみにおける素子分離用絶縁膜50の上部を選択的にウエットエッチングにより除去し、分離用トレンチ及び素子分離用絶縁膜50の下部を残存させてなるシャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにおいては、素子分離用絶縁膜をエッチングせずに、これをシャロートレンチ分離12b(図2(a)参照)としてそのまま残しておく。ただし、この変形例においては、図3(b)に示すようなヒ素イオン(As+ )の注入は行なわず、n型拡散層19は形成しない。
すなわち、本変形例においては、プレート電極16bへのバイアスの印加によってpウエル表面の反転層をストレージノードとして機能させる。
次に、図5(c)に示す工程で、図3(c)と同様の処理を行なう。すなわち、プレーナ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図2(a)参照)。さらに、メモリ領域Rmemoの低濃度ドレイン拡散層17b,高濃度ドレイン拡散層17a,ソース拡散層18及び絶縁膜サイドウォール25a,25bと、ロジック回路領域Rlogcの各MISトランジスタのソース・ドレイン拡散層20,21及び絶縁膜サイドウォール26とを形成する。その後、層間絶縁膜30と、ビット線コンタクト31と、ビット線32とを形成する。
本変形例によっても、上記第1の実施形態の製造方法と同様に効果を発揮する なお、メモリ領域Rmemoにおいては、ゲート絶縁膜14aと容量絶縁膜15とを別の絶縁膜から形成することが可能である。例えば、ゲート絶縁膜14aを酸化膜とし、容量絶縁膜を、酸化膜,酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などとする。また、ロジック回路領域Rlogcにおいては、トランジスタの種類に応じて、ゲート絶縁膜の厚みが2種類,3種類など、複数種類設けられていることが多い。そして、ロジック回路領域Rlogcの各トランジスタのゲート絶縁膜14bも、酸化膜だけでなく、酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などであってもよい。
また、メモリ領域Rmemoにおいては、ゲート絶縁膜14aと容量絶縁膜15とを共通の絶縁膜から形成することが可能である。例えば、ゲート絶縁膜14a及び容量絶縁膜を、酸化膜,酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などで構成することができる。また、ロジック回路領域Rlogcにおいては、トランジスタの種類に応じて、ゲート絶縁膜の厚みが2種類,3種類など、複数種類設けられていることが多い。そして、ロジック回路領域Rlogcの各トランジスタのゲート絶縁膜14bも、酸化膜だけでなく、酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などであってもよい。
ただし、本実施形態のごとく、メモリセルトランジスタのゲート絶縁膜と容量絶縁膜を別々の膜で形成することで、トランジスタの性能を落とすことなく、リーク電流の少ないキャパシタを形成することが可能になる。
(第2の実施形態)
図6は、本発明の第2の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。図7(a),(b)は、それぞれ図6に示すVIIa-VIIa 線における断面図及びVIIb-VIIb 線における断面図である。なお、図7(a)においては、半導体装置のメモリ領域Rmemo及びロジック回路領域Rlogcにおける断面構造が示されているが、図6及び図7(b)においては、ロジック回路領域Rlogcにおける断面構造の図示は省略されている。
図6及び図7(a),(b)に示すように、本実施形態の半導体装置は、p型のシリコン基板10と、シリコン基板10のメモリ領域Rmemoに設けられたpウエル11aと、シリコン基板10のロジック回路領域Rlogcに設けられたnウエル11b及びpウエル11cと、メモリ領域Rmemoのpウエル11aの底部領域を囲む深部nウエル11dとを有しており、いわゆるトリプルウエル構造を有している。また、メモリ領域Rmemoにおける活性領域を区画するシャロートレンチ分離12aと、ロジック回路領域Rlogcにおける活性領域を区画するシャロートレンチ分離12bとを備えている。
そして、メモリ領域Rmemoにおいては、pウエル11aの上に、ゲート電極16a,ゲート絶縁膜14a,絶縁膜サイドウォール25a,低濃度のn型不純物を含む低濃度ドレイン拡散層17b,高濃度のn型不純物を含む高濃度ドレイン拡散層17a及びソース拡散層18を有するメモリセルトランジスタTrmと、プレート電極16b,ストレージノードとして機能するn型拡散層19,容量絶縁膜15及び絶縁膜サイドウォール25bを有するトレンチ型キャパシタCptとが設けられている。ここで、高濃度ドレイン拡散層17a及び低濃度ドレイン拡散層17bによって、メモリセルトランジスタのドレイン拡散層が構成されている。一方、ソース拡散層18は、全体的に低濃度のn型不純物を含む低濃度不純物拡散層のみによって構成されている。
また、ロジック回路領域Rlogcにおいては、ゲート電極16c,ゲート絶縁膜15,絶縁膜サイドウォール26及びp型ソース・ドレイン拡散層21を有するpチャネル型MISトランジスタ(pMIS)と、ゲート電極16c,ゲート絶縁膜14b,絶縁膜サイドウォール26及びn型ソース・ドレイン拡散層20を有するnチャネル型MISトランジスタ(nMIS)とが設けられている。
そして、基板全体には層間絶縁膜30が堆積されており、層間絶縁膜30を貫通してメモリ領域RmemoのメモリセルトランジスタTrmの高濃度ドレイン拡散層17aに接続されるビット線コンタクト31と、ビット線コンタクト31に接続され層間絶縁膜30の上に延びるビット線32が設けられている。
なお、ロジック回路領域Rlogcにおいても、層間絶縁膜30を貫通してソース・ドレイン拡散層20,21に到達するソースコンタクト及びドレインコンタクトや、層間絶縁膜30を貫通してゲート電極16cにコンタクトするゲートコンタクトなどが設けられているが、これらの部材は本発明の本質に関わる部分ではないので、図示が省略されている。
本実施形態によると、トレンチ型キャパシタの構造を採りながら、第1の実施形態と同様に、プレート電極16bがメモリセルトランジスタのゲート電極16aと共通の導体膜から形成されているので、メモリセルサイズの縮小が可能になるとともに、基板全体の段差を低減することができる。
ここで、ゲート電極16a,16c及びプレート電極16bの厚みは、それと容量絶縁膜15の厚みとを足した合計の厚みがトレンチ型キャパシタが埋め込まれているトレンチの溝幅の1/2よりも厚いことが好ましい。その場合には、トレンチの上方においてポリシリコン膜に凹部が存在しないので、後述するように、製造工程におけるフォトリソグラフィーが円滑に行なわれるので、ポリシリコン膜のパターニングを精度よく行なうことができるからである。
−第2の実施形態の製造方法−
次に、本発明の第2の実施形態における半導体装置の製造方法について説明する。図8(a)〜(c)は、本実施形態における半導体装置の製造工程を示す断面図である。ただし、図8(a)〜(c)においては、メモリ領域Rmemoのみを図示して、ロジック回路領域Rlogcの図示は省略する。また、図8(a)〜(c)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
まず、図8(a)に示す工程で、下敷き酸化膜と窒化膜マスクとを用いる公知の方法により、シリコン基板10の表面領域に、活性領域を区画するための分離用トレンチを形成する。このとき、ロジック回路領域Rlogcにおいても、分離用トレンチが形成される。その後、分離用トレンチ内にシリコン酸化膜を埋め込んで、シャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにも、図7(a)に示すようなトレンチ分離12bが形成される。さらに、ロジック回路領域Rlogcを覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoにリンイオン(P+ )の注入を行なって、メモリ領域Rmemoのpウエル11aの底部領域に深部nウエル11d(図2(a)参照)を形成する。さらに、ロジック回路領域Rlogcのpチャネル型トランジスタ形成領域を覆うレジストマスク(図示せず)を用いて、シリコン基板10のうちメモリ領域Rmemoとロジック回路領域Rlogcの一部とにボロンイオン(B+ )の注入を行なって、メモリ領域Rmemoのpウエル11aと、ロジック回路領域Rlogcのpウエル11c(図7(a)参照)とを形成する。また、メモリ領域Rmemoと、ロジック回路領域Rlogcのnチャネル型トランジスタ形成領域とを覆うレジストマスク(図示せず)を用いて、リンイオン(P+ )の注入を行なって、ロジック回路領域Rlogcにnウエル11b(図7(a)参照)を形成する。これらの工程の条件は、第1の実施形態と同様である。なお、図7(a)には図示されていないが、メモリ領域Rmemo及びロジック回路領域Rlogcにおいて、シャロートレンチ分離12a,12bの直下方にはチャネルストッパ用の不純物が注入され、トランジスタのチャネル領域下方にはパンチスルーストッパ用の不純物が注入される。
その後、シリコン基板10の上に、キャパシタ用トレンチを形成しようとする領域を開口したレジストマスク55を形成する。そして、レジストマスク55を用いて、ドライエッチングを行なうことにより、シリコン基板10にキャパシタ用トレンチ56を形成する。キャパシタ用トレンチの溝幅は、0.3μmである。このとき、ロジック回路領域においては、キャパシタ用トレンチは形成されない。
次に、図8(b)に示す工程で、レジストマスク55を除去した後、ロジック回路領域Rlogc及びメモリ領域Rmemoの活性領域の一部を覆うレジストマスク55’を形成した後、このレジストマスク55’を注入マスクとして用い、砒素イオン(As+ )を注入して、キャパシタ用トレンチ56の内壁面の領域及びその付近の領域にストレージノードとなるn型拡散層19を形成する。
次に、図8(c)に示す工程で、メモリ領域Rmemoの容量絶縁膜15,ゲート絶縁膜14a及びロジック回路領域Rlogcのゲート絶縁膜14bとなる厚み2〜6nmの酸化膜形成した後、その上に、厚み200nmのポリシリコン膜を堆積する。このポリシリコン膜と酸化膜との合計厚みは、キャパシタ用トレンチ56の溝幅の1/2以上である。その後、ポリシリコン膜及び熱酸化膜をパターニングすることにより、メモリ領域Rmemoに、トレンチ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、図8(c)には図示されていないが、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図7(a)参照)。
その後、メモリ領域Rmemoのメモリセルトランジスタ領域及びロジック回路領域Rlogcのnチャネル型MISトランジスタ領域に、ゲート電極16a,16c及びプレート電極16bをマスクにして、エクステンション用濃度の砒素イオンを注入する。これにより、メモリ領域Rmemoにおいては低濃度ドレイン拡散層17b及びソース拡散層18が形成され、ロジック回路領域Rlogcにおいてはnチャネル型MISトランジスタのエクステンション拡散層が形成される。このとき、メモリセルトランジスタのソース拡散層18は、ストレージノードであるn型拡散層19とオーバーラップするように形成される。また、図示されていないが、ロジック回路領域Rlogcにおいては、pチャネル型MISトランジスタのエクステンション用濃度のフッ化ボロンイオンを注入して、pチャネル型MISトランジスタのエクステンション拡散層を形成する。
次に、メモリセルトランジスタのゲート電極16aの側面上に絶縁膜サイドウォール25aを形成する。このとき、トレンチ型キャパシタのプレート電極16bの側面上にも絶縁膜サイドウォール25bが形成される。そして、メモリセルトランジスタのソース拡散層18は、2つの絶縁膜サイドウォール25a,25bによって覆われる。また、ロジック回路領域Rlogcにおいて、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタの各ゲート電極16cの側面上にも絶縁膜サイドウォール26が形成される(図7(a)参照)。
その後、ロジック回路領域Rlogcのnチャネル型MISトランジスタ及びメモリ領域Rmemoに、ゲート電極16a,16c,プレート電極16b及び絶縁膜サイドウォール25a,25bをマスクにして、高濃度の砒素イオン(As+ )を注入する。これにより、ロジック回路領域Rlogcにおいては、nチャネル型MISトランジスタのソース・ドレイン拡散層20が形成される。また、メモリ領域Rmemoには高濃度ドレイン拡散層17aが形成される。このとき、ソース拡散層18上は、絶縁膜サイドウォール25a,25bで覆われているため、高濃度の砒素が注入されず、高濃度ソース拡散層が形成されることはない。また、ロジック回路領域Rlogcのpチャネル型MISトランジスタに、ゲート電極16c及び及び絶縁膜サイドウォール26をマスクにして、高濃度のフッ化ボロンイオンを注入して、pチャネル型MISトランジスタのソース・ドレイン拡散層21を形成する。
その後の工程は図示しないが、第1の実施形態と同様の処理を行なって、基板上に、層間絶縁膜30と、層間絶縁膜30を貫通してメモリ領域Rmemoの高濃度ドレイン拡散層17a,プレート電極16bにそれぞれ接続されるビット線コンタクト31と、層間絶縁膜30の上に延びるビット線32を形成する。なお、ロジック回路領域Rlogcにおいても、ソース・ドレインコンタクトが形成される(図7(a)に図示せず)。これにより、図6及び図7(a),(b)に示す半導体装置の構造が得られる。
本実施形態の製造方法によると、キャパシタ用トレンチ56を形成した後、キャパシタ用トレンチの溝幅の1/2以上の厚みのポリシリコン膜をキャパシタ用トレンチ56の上に堆積するので、キャパシタ用トレンチ56の上方におけるポリシリコン膜の上面が平坦になる。ポリシリコン膜の上面に急峻な凹部が存在すると、ポリシリコン膜をパターニングするためのレジストマスクを形成する際に、レジストが凹部に吸収されてレジスト膜全体の平坦性が悪化する。したがって、デザインルールが0.1μm程度のデバイスのプロセスにおいては、ゲート電極のパターニング精度を確保することが困難になる。それに対し、本実施形態では、ポリシリコン膜の厚みをキャパシタ用トレンチ56の幅の1/2以上に設定しているので、ゲート電極のパターニング精度を維持することができ、メモリセルトランジスタやロジックトランジスタのゲート電極と、トレンチ型キャパシタのプレート電極とを共通の導体膜(ポリシリコン膜)から形成することが実質的に可能となる。
そして、メモリセルトランジスタやロジックトランジスタのゲート電極と、トレンチ型キャパシタのプレート電極とを共通の導体膜(ポリシリコン膜)から形成することにより、基板全体の段差を小さく維持することができ、微細パターンの配線の形成が容易になることから、DRAM・ロジック混載型半導体装置の高密度化を図ることができる。
なお、メモリ領域Rmemoにおいては、ゲート絶縁膜14aと容量絶縁膜15とを別の絶縁膜から形成することが可能である。例えば、ゲート絶縁膜14aを酸化膜とし、容量絶縁膜15を酸化膜,酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などとすることができる。また、ロジック回路領域Rlogcにおいては、トランジスタの種類に応じて、ゲート絶縁膜の厚みが2種類,3種類など、複数種類設けられていることが多い。そして、ロジック回路領域Rlogcの各トランジスタのゲート絶縁膜14bも、酸化膜だけでなく、酸窒化膜,酸化膜/窒化膜の積層膜であるON膜,酸化膜/窒化膜/酸化膜の積層膜であるONO膜,高誘電体膜であるHfO2 膜,ZrO2 膜などであってもよい。
メモリセルトランジスタのゲート絶縁膜と容量絶縁膜を別々の膜で形成することで、トランジスタの性能を落とすことなく、リーク電流の少ないキャパシタを形成することが可能になる。
さらに、ゲート電極加工のためにハードマスクを使用したり、反射防止膜を形成する場合は、これら電極材料上に形成する絶縁膜も含めてシャロートレンチ部が平坦化できるようにシャロートレンチの開口幅を設計することで、ゲート電極のパターニング精度を高く維持することができる。
−第2の実施形態の半導体装置の製造方法の変形例−
次に、本発明の第2の実施形態における半導体装置の製造方法の変形例について説明する。図9(a)〜(c)は、本実施形態における半導体装置の製造方法の変形例を示す断面図である。ただし、図9(a)〜(c)においては、メモリ領域Rmemoのみを図示して、ロジック回路領域Rlogcの図示は省略する。また、図9(a)〜(c)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
まず、図9(a)に示す工程で、p型のシリコン基板10の上に、例えば厚みが200nmのSiO2 膜からなる酸化膜マスク(図示せず)を形成し、酸化膜マスクを用いたドライエッチングにより、シリコン基板10にキャパシタ用トレンチを形成する。
次に、注入マスク(図示せず)を用い、砒素イオン(As+ )を注入して、ストレージノードとなるn型拡散層19を形成する。
次に、注入マスクを除去した後、基板上に、厚み20nmのシリコン酸化膜と、厚み95nmのシリコン窒化膜とを順次形成し、シリコン窒化膜60のうちトレンチの上方に位置する部分の平坦化を行なう。そして、シリコン窒化膜とシリコン酸化膜とをパターニングして、窒化膜マスク60及び下敷き酸化膜59を形成する。さらに、窒化膜マスク60等をマスクとして用いてドライエッチングを行なうことにより、シリコン基板10にシャロートレンチ61を形成する。このとき、図示しないが、ロジック回路領域においても、シャロートレンチを形成する。
次に、図9(b)に示す工程で、基板上に、シリコン酸化膜(図示せず)を堆積した後、CMPにより、シリコン酸化膜を平坦化する。その後、窒化膜マスク60および下敷き酸化膜59を除去することにより、シャロートレンチ分離12aが形成される。その際、シャロートレンチ分離12aの表面部もエッチングされるが、全体の厚みに対してわずかの厚み分がエッチングされるだけである。その後、第2の実施形態と同様に、深部nウエル11d,pウエル11a,pウエル11c,nウエル11b(図2(a)参照)などを形成する。
を形成する。また、図2(a)には図示されていないが、メモリ領域Rmemo及びロジック回路領域Rlogcにおいて、シャロートレンチ分離12a,12bの直下方にはチャネルストッパ用の不純物が注入され、トランジスタのチャネル領域下方にはパンチスルーストッパ用の不純物が注入される。
その後、図9(c)に示す工程では、既に説明した図8(c)に示す工程と同じ処理を行なうことにより、図6及び図7(a),(b)に示す半導体装置の構造が得られる。
本実施形態においては、先にキャパシタ用トレンチ及びn型拡散層19を形成してから、シャロートレンチ分離12a,12bを形成している点で、先にシャロートレンチ分離を形成してからキャパシタ用トレンチを形成している図8(a)〜(c)に示す方法とは異なっている。この手順でも、図8(a)〜(c)に示す製造方法と基本的には同じ効果を発揮することができる。
加えて、この変形例の手順によると、図9(a)から図9(b)に示す工程での酸化により、キャパシタ用トレンチのコーナー部の形状を容易に丸めることが可能となるとともに、トレンチの壁面が清浄化,平滑化されるので、後に形成される容量絶縁膜15の特性が向上する。この特性の向上とは、例えば膜厚がほぼ均一化されて、容量絶縁膜15を介するリークが低減されたり、容量値のばらつきが小さくなるなどによって、電荷保持機能が安定することを意味する。
(第3の実施形態)
第1の実施形態におけるプレーナ型キャパシタを、第2の実施形態に示すキャパシタ用トレンチと、シャロートレンチ分離のトレンチとの各上部を埋めるように設けることができる。
図10は、本発明の第3の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。図11(a),(b)は、それぞれ図10に示すXIa-XIa 線における断面図及びXIb-XIb 線における断面図である。なお、図11(a)においては、半導体装置のメモリ領域Rmemo及びロジック回路領域Rlogcにおける断面構造が示されているが、図10及び図11(b)においては、ロジック回路領域Rlogcにおける断面構造の図示は省略されている。
図10及び図11(a),(b)に示すように、本実施形態の半導体装置は、p型のシリコン基板10と、シリコン基板10のメモリ領域Rmemoに設けられたpウエル11aと、シリコン基板10のロジック回路領域Rlogcに設けられたnウエル11b及びpウエル11cと、メモリ領域Rmemoのpウエル11aの底部領域を囲む深部nウエル11dとを有しており、いわゆるトリプルウエル構造を有している。また、メモリ領域Rmemoにおける活性領域を区画するシャロートレンチ分離12aと、ロジック回路領域Rlogcにおける活性領域を区画するシャロートレンチ分離12bとを備えている。
そして、メモリ領域Rmemoにおいては、pウエル11aの上に、ゲート電極16a,ゲート絶縁膜14a,絶縁膜サイドウォール25a,低濃度のn型不純物を含む低濃度ドレイン拡散層17b,高濃度のn型不純物を含む高濃度ドレイン拡散層17a及びソース拡散層18を有するメモリセルトランジスタTrmと、プレート電極16b,ストレージノードとして機能するn型拡散層19,容量絶縁膜15及び絶縁膜サイドウォール25bを有するプレーナ型キャパシタCppとが設けられている。ここで、高濃度ドレイン拡散層17a及び低濃度ドレイン拡散層17bによって、メモリセルトランジスタのドレイン拡散層が構成されている。一方、ソース拡散層18は、全体的に低濃度のn型不純物を含む低濃度不純物拡散層のみによって構成されている。
ここで、プレーナ型キャパシタCppの容量絶縁膜15及びプレート電極16bは、シリコン基板10上と、シャロートレンチ分離12aとは共有しているトレンチ内と、第2の実施形態におけるキャパシタ用トレンチ(図8(a)における符号56で示されているトレンチ)に亘って設けられており、容量絶縁膜15及びプレート電極16bとによって各トレンチの上部が埋められている。なお、キャパシタ用トレンチの下部は、埋め込み酸化層56aとなっている。また、n型拡散層19の端部は、各トレンチの各上部の側面に沿って、シャロートレンチ分離12a及び埋め込み酸化層56aとオーバーラップする領域まで形成されている。
また、ロジック回路領域Rlogcにおいては、ゲート電極16c,ゲート絶縁膜15,絶縁膜サイドウォール26及びp型ソース・ドレイン拡散層21を有するpチャネル型MISトランジスタ(pMIS)と、ゲート電極16c,ゲート絶縁膜14b,絶縁膜サイドウォール26及びn型ソース・ドレイン拡散層20を有するnチャネル型MISトランジスタ(nMIS)とが設けられている。
そして、基板全体には層間絶縁膜30が堆積されており、層間絶縁膜30を貫通してメモリ領域RmemoのメモリセルトランジスタTrmの高濃度ドレイン拡散層17aに接続されるビット線コンタクト31bと、ビット線コンタクト31に接続され層間絶縁膜30の上に延びるビット線32とが設けられている。
なお、ロジック回路領域Rlogcにおいても、層間絶縁膜30を貫通してソース・ドレイン拡散層20,21に到達するソースコンタクト及びドレインコンタクトや、層間絶縁膜30を貫通してゲート電極16cにコンタクトするゲートコンタクトなどが設けられているが、これらの部材は本発明の本質に関わる部分ではないので、図示が省略されている。
ここで、本実施形態の特徴は、プレート電極16bがメモリセルトランジスタTrmのゲート電極16aと共通の導体膜(本実施形態ではポリシリコン膜)から形成されていることと、キャパシタCppの容量絶縁膜15及びプレート電極16bが、シャロートレンチ分離12aとは共有しているトレンチと、それに加えて、第2の実施形態のキャパシタ用トレンチ56(図8(a)参照)との各内部にまで亘っていて、各トレンチの各上部を埋めていることである。
本実施形態のキャパシタは、第1の実施形態と同様に、シリコン基板10の上面及びトレンチの側面の一部に亘って設けられており、いわばプレーナ・トレンチ混合型キャパシタとして高容量化された構造となっており、これにより、メモリ機能のために必要な面積の縮小を図ることができる。
しかも、本実施形態においては、第1の実施形態よりもさらにプレーナ型キャパシタの容量として機能する部分の面積が増大するので、第1の実施形態の効果をより顕著に発揮することができる。
なお、本実施形態の製造工程は、基本的に図3(a)〜(c)に示す方法と同じであり、形成されるトレンチ(トレンチ分離用絶縁膜50)の数が増大するだけであるので、図示及び説明を省略する。また、本実施形態においても、図4(a)〜(c)に示す方法(第2の製造方法)や、図5(a)〜(c)に示す構造(変形例)及びその製造方法を適用することができる。
(第4の実施形態)
図12(a),(b)は、それぞれ順に、本発明の第4の実施形態に係る半導体装置のうちメモリ部の構成を、ゲート及びプレート電極よりも上方の部材を省略して示す平面図、及びキャパシタ用トレンチ形成時に用いるレジストマスクの構造を示す平面図である。図13(a)〜(d)は、それぞれ図12に示すXIIIa-XIIIa 線における断面図及びXIIIb-XIIIb 線における断面図である。なお、図13(a)〜(d)においては、半導体装置のロジック回路領域Rlogcにおける断面構造の図示は省略されている。
図12(a)に示すように、活性領域(基板領域)と、活性領域を取り囲むシャロートレンチ分離12aとに跨ってゲート電極16aと、プレート電極16bとを備えている。プレート電極16bの一部は、第2の実施形態と同様に、キャパシタ用トレンチ内に埋め込まれている。キャパシタ用トレンチは、ゲート幅方向に実質的に平行に延び、かつ、シャロートレンチ分離12aに囲まれる矩形上の基板領域のゲート長方向におけるほぼ中央部に位置している。半導体装置のその他の構造は、第2の実施形態と同様である。以下、本実施形態では、本実施形態の特徴部分であるキャパシタ用トレンチ,プレート電極の形成方法を主として説明する。
まず、図13(a)に示す工程で 分離用トレンチの形成と、分離用トレンチ内へのシリコン酸化膜の埋め込みとを行なって、シャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにも、トレンチ分離が形成される。さらに、第2の実施形態と同様の工程を行なって、深部nウエル11d,pウエル11a,ロジック回路領域のpウエル11c及びnウエル11bを形成する(図7(a)参照)。なお、図13(a)〜(d)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
次に、図13(b)に示す工程で、シリコン基板10の上に、キャパシタ用トレンチを形成しようとする領域を開口したレジストマスク55(図12(b)参照)を形成する。図12(b)及び図13(b)に示すように、レジストマスク55の開口は、シャロートレンチ分離12aの一部を横切って複数の活性領域(基板領域)に跨っている。そして、レジストマスク55を用いて、ドライエッチングを行なうことにより、シリコン基板10にキャパシタ用トレンチ56を形成する。このとき、シャロートレンチ分離12aを構成するシリコン酸化膜と、シリコン基板とのエッチング選択比を高く確保する必要があるので、エッチングガスとして塩素系のガス(例えばHBr/Cl2 )を用いる。キャパシタ用トレンチ56の溝幅は、例えば0.3μmである。このとき、ロジック回路領域においては、キャパシタ用トレンチは形成されない。
次に、図13(c)に示す工程で、レジストマスク55を除去した後、トランジスタ形成領域よりも狭い範囲を覆うレジストマスク(図示せず)を形成した後、このレジストマスクを注入マスクとして用い、砒素イオン(As+ )を注入して、キャパシタ用トレンチ56の壁面直下の領域及びその付近の領域にストレージノードとなるn型拡散層19を形成する。
次に、メモリ領域Rmemoの容量絶縁膜15及びメモリ領域Rmemoのゲート絶縁膜14aとなる厚み2.9nmの熱酸化膜と、ロジック回路領域Rlogcのゲート絶縁膜14b(図7(a)参照)となる厚み2〜6nmの熱酸化膜とを形成した後、その上に、厚み200nmのポリシリコン膜16を堆積する。このポリシリコン膜16と熱酸化膜との合計厚みは、キャパシタ用トレンチ56の溝幅の1/2以上である。
次に、図13(d)に示す工程で、ポリシリコン膜16及び熱酸化膜をパターニングすることにより、メモリ領域Rmemoに、トレンチ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、図13(d)には図示されていないが、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図7(a)参照)。
その後の工程の図示は省略するが、第2の実施形態の製造方法と同様の工程を行なって、メモリ領域Rmemoの各サイドウォール25a,25b,高濃度ドレイン拡散層17a,低濃度ドレイン拡散層17b,ソース拡散層18と、ロジック回路領域Rlogcのサイドウォール26,ソース・ドレイン拡散層20,21などを形成する。
本実施形態の方法によると、図13(b)に示す工程で、シャロートレンチ分離12aを挟む複数の活性領域に跨る開口を有するレジストマスク55を用いて、キャパシタ用トレンチ56形成のためのエッチングを行なっているので、レジストマスクをシャロートレンチ分離に対する位置決めの精度が要求されるわけではないので、工程の簡素化が図れる。
(第5の実施形態)
図14(a),(b)は、それぞれ順に、本発明の第5の実施形態に係る半導体装置のうちメモリ部の構成を、ゲート及びプレート電極よりも上方の部材を省略して示す平面図、及びキャパシタ用トレンチ形成時に用いるレジストマスクの構造を示す平面図である。図15(a)〜(d)は、それぞれ図14に示すXVa-XVa 線における断面図及びXVb-XVb 線における断面図である。なお、図15(a)〜(d)においては、半導体装置のロジック回路領域Rlogcにおける断面構造の図示は省略されている。
図14(a)に示すように、活性領域(基板領域)と、活性領域を取り囲むシャロートレンチ分離12aとに跨ってゲート電極16aと、プレート電極16bとを備えている。プレート電極16bの一部は、第2の実施形態と同様に、キャパシタ用トレンチ内に埋め込まれている。キャパシタ用トレンチは、ゲート幅方向に実質的に平行に延び、かつ、シャロートレンチ分離12aに囲まれる矩形上の基板領域のゲート長方向における端部に位置している。半導体装置のその他の構造は、第2の実施形態と同様である。以下、本実施形態では、本実施形態の特徴部分であるキャパシタ用トレンチ,プレート電極の形成方法を主として説明する。
まず、図14(a)に示す工程で 分離用トレンチの形成と、分離用トレンチ内へのシリコン酸化膜の埋め込みとを行なって、シャロートレンチ分離12aを形成する。このとき、ロジック回路領域Rlogcにも、トレンチ分離が形成される。さらに、第2の実施形態と同様の工程を行なって、深部nウエル11d,pウエル11a,ロジック回路領域のpウエル11c及びnウエル11bを形成する(図7(a)参照)。なお、図14(a)〜(d)において、pウエル11a及び深部nウエル11dはシリコン基板10に形成されているが、便宜上シリコン基板10の基板本体部の図示は省略する。
次に、図15(b)に示す工程で、シリコン基板10の上に、キャパシタ用トレンチを形成しようとする領域を開口したレジストマスク55(図14(b)参照)を形成する。図14(b)及び図15(b)に示すように、レジストマスク55の開口は、シャロートレンチ分離12aの一部を横切って複数の活性領域(基板領域)に跨っている。そして、レジストマスク55を用いて、ドライエッチングを行なうことにより、シリコン基板10にキャパシタ用トレンチ56を形成する。このとき、シャロートレンチ分離12aを構成するシリコン酸化膜と、シリコン基板とのエッチング選択比を高く確保する必要があるので、エッチングガスとして塩素系のガス(例えばHBr/Cl2 )を用いる。キャパシタ用トレンチ56の溝幅は、例えば0.3μmである。このとき、ロジック回路領域においては、キャパシタ用トレンチは形成されない。
次に、図15(c)に示す工程で、レジストマスク55を除去した後、トランジスタ形成領域よりも狭い範囲を覆うレジストマスク(図示せず)を形成した後、このレジストマスクを注入マスクとして用い、砒素イオン(As+ )を注入して、キャパシタ用トレンチ56の壁面直下の領域及びその付近の領域にストレージノードとなるn型拡散層19を形成する。
次に、メモリ領域Rmemoの容量絶縁膜15及びメモリ領域Rmemoのゲート絶縁膜14aとなる厚み2.9nmの熱酸化膜と、ロジック回路領域Rlogcのゲート絶縁膜14b(図7(a)参照)となる厚み2〜6nmの熱酸化膜とを形成した後、その上に、厚み200nmのポリシリコン膜16を堆積する。このポリシリコン膜16と熱酸化膜との合計厚みは、キャパシタ用トレンチ56の溝幅の1/2以上である。
次に、図15(d)に示す工程で、ポリシリコン膜16及び熱酸化膜をパターニングすることにより、メモリ領域Rmemoに、トレンチ型キャパシタの容量絶縁膜15及びプレート電極16bと、メモリセルトランジスタのゲート絶縁膜14a及びゲート電極16aとを形成する。また、図13(d)には図示されていないが、ロジック回路領域Rlogcには、pチャネル型MISトランジスタ及びnチャネル型MISトランジスタのゲート絶縁膜14b及びゲート電極16cを形成する(図7(a)参照)。
その後の工程の図示は省略するが、第2の実施形態の製造方法と同様の工程を行なって、メモリ領域Rmemoの各サイドウォール25a,25b,高濃度ドレイン拡散層17a,低濃度ドレイン拡散層17b,ソース拡散層18と、ロジック回路領域Rlogcのサイドウォール26,ソース・ドレイン拡散層20,21などを形成する。
本実施形態の方法によると、図15(b)に示す工程で、シャロートレンチ分離12aを挟む複数の活性領域に跨る開口を有するレジストマスク55を用いて、キャパシタ用トレンチ56形成のためのエッチングを行なっているので、レジストマスクをシャロートレンチ分離に対する位置決めの精度が要求されるわけではないので、第4の実施形態よりもさらに工程の簡素化が図れる。
(その他の実施形態)
上記各実施形態において、メモリセルは深いnウエルに囲まれた構成であってもよい。
また、上記各実施形態においては、メモリセルトランジスタをnチャネル型トランジスタとしたが、メモリセルトランジスタはpチャネル型トランジスタであってもよい。メモリセルトランジスタをpチャネル型トランジスタにすることにより、トリプルウエル構造を採らなくてもよいので、製造工程におけるマスク数を低減しうる利点がある。その場合には、pウエル11aに代えてnウエルを、n型拡散層19に代えてp型拡散層を、高濃度ドレイン拡散層17aに代えて高濃度p型拡散層を形成し、メモリセルトランジスタのソース拡散層18及び低濃度ドレイン拡散層17bをいずれもp型領域にする必要がある。そして、深部nウエル11dに相当するウエルは不要である。
上記各実施形態におけるゲート電極16a,16c及びプレート電極16bを形成するためのポリシリコン膜の上に、SiON膜等の反射防止膜を設けてもよい。その場合には、トレンチの上方での積層膜の平坦性を確保するためには、反射防止膜とポリシリコン膜と容量絶縁膜との合計厚みがトレンチの幅の1/2以上であることが好ましい。その場合、ポリシリコン膜をパターニングするためのレジスト膜を形成するためのフォトリソグラフィー工程において、レジスト膜のパターニング精度を高く維持することができるので、より微細なトランジスタを設ける場合に有利である。
また、上記各実施形態におけるゲート電極16a,16c及びプレート電極16bを形成するためのポリシリコン膜の上に、酸化膜等のエッチング用のハードマスクを設けてもよい。その場合には、トレンチの上方での積層膜の平坦性を確保するためには、エッチング膜とポリシリコン膜と容量絶縁膜との合計厚みがトレンチの幅の1/2以上であることが好ましい。その場合、レジストマスクよりもハードマスクの方が、エッチング中におけるパターンの崩れが小さいので、ゲート電極等のパターニング精度がより向上する。よって、より微細なトランジスタを設ける場合に有利である。
また、ハードマスクと反射防止膜との双方を設ける場合や、ハードマスクとしても反射防止膜としても機能する膜を設ける場合も同様である。
また、上記ゲート電極やプレート電極は、ポリシリコン膜,及び金属膜の積層膜(いわゆるポリメタル)からなる導体膜から形成されていてもよい。その場合には、ポリシリコン膜及び金属膜の積層膜からなる導体膜と容量絶縁膜との合計厚み、あるいはポリシリコン膜及び金属膜の積層膜からなる導体膜と容量絶縁膜と反射防止膜等の絶縁膜との合計厚みがトレンチの溝幅の1/2よりも大きければよい。
本発明の半導体装置は、各種電子機器に搭載されるDRAM又はDRAM・ロジック混載デバイスとして利用することができる。
本発明の第1の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。 (a),(b)は、それぞれ図1に示すIIa-IIa 線における断面図及びIIb-IIb 線における断面図である。 (a)〜(c)は、第1の実施形態における半導体装置の第1の製造方法を示す断面図である。 (a)〜(c)は、第1の実施形態における半導体装置の第2の製造方法を示す断面図である。 (a)〜(c)は、第1の実施形態の変形例における半導体装置の製造工程を示す断面図である。 本発明の第2の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。 (a),(b)は、それぞれ図6に示すVIIa-VIIa 線における断面図及びVIIb-VIIb 線における断面図である。 (a)〜(c)は、第2の実施形態における半導体装置の製造工程を示す断面図である。 (a)〜(c)は、本実施形態における半導体装置の製造方法の変形例を示す断面図である。 本発明の第3の実施形態に係る半導体装置のうちメモリ部の構成を示す平面図である。 (a),(b)は、それぞれ図10に示すXIa-XIa 線における断面図及びXIb-XIb 線における断面図である。 (a),(b)は、それぞれ順に、本発明の第4の実施形態に係る半導体装置のうちメモリ部の構成を、ゲート及びプレート電極よりも上方の部材を省略して示す平面図、及びキャパシタ用トレンチ形成時に用いるレジストマスクの構造を示す平面図である。 (a)〜(d)は、それぞれ図12に示すXIIIa-XIIIa 線における断面図及びXIIIb-XIIIb 線における断面図である。 (a),(b)は、それぞれ順に、本発明の第5の実施形態に係る半導体装置のうちメモリ部の構成を、ゲート及びプレート電極よりも上方の部材を省略して示す平面図、及びキャパシタ用トレンチ形成時に用いるレジストマスクの構造を示す平面図である。 (a)〜(d)は、それぞれ図14に示すXVa-XVa 線における断面図及びXVb-XVb 線における断面図である。
符号の説明
10 シリコン基板
11 ウエル
12 シャロートレンチ分離
14 ゲート絶縁膜
15 容量絶縁膜
16a ゲート電極
16b プレート電極
16c ゲート電極
17 ドレイン領域
18 ソース領域
19 高濃度n型拡散層
20 ソース・ドレイン拡散層
25 絶縁膜サイドウォール
26 絶縁膜サイドウォール
30 層間絶縁膜
31 ビット線コンタクト
32 ビット線

Claims (14)

  1. メモリトランジスタとキャパシタとを備えた半導体装置の製造方法であって、
    半導体基板の上面領域にトレンチを形成する工程(a)と、
    上記トレンチ内を埋める第1の絶縁膜を形成する工程(b)と、
    上記第1の絶縁膜の一部の上部を除去し、上記トレンチの側面の一部を露出させる工程(c)と、
    上記工程(c)の後で、上記トレンチ内及び上記半導体基板の上面上に亘って、第2の絶縁膜を形成する工程(d)と、
    上記第2の絶縁膜上に導体膜を形成する工程(e)と、
    上記導体膜をパターニングして、上記メモリセルトランジスタのゲート電極を形成すると共に、上記半導体基板の上面の一部と、上記トレンチの露出している側面とに亘る領域の上に、上記キャパシタのプレート電極を形成する工程(f)と、
    上記工程(f)の後に、上記第2の絶縁膜をパターニングして、上記キャパシタの容量絶縁膜を形成する工程(g)と、
    上記工程(g)の後に、上記ゲート電極及び上記プレート電極をマスクにして、イオン注入により上記半導体基板に上記メモリトランジスタの低濃度ドレイン拡散層及びソース拡散層を形成する工程(h)と、
    上記工程(h)の後に、上記ゲート電極の側面上に第1の絶縁膜サイドウォールを形成するとともに、上記プレート電極の側面上に第2の絶縁膜サイドウォールを形成する工程(i)とを含み、
    上記工程(i)では、上記ソース拡散層は、上記第1の絶縁膜サイドウォール及び上記第2の絶縁膜サイドウォールによって覆われることを特徴とする半導体装置の製造方法。
  2. 請求項1記載の半導体装置の製造方法において、
    上記工程(c)の後で且つ上記工程(d)の前に、上記半導体基板の上面の一部と、上記トレンチの露出している側面とに亘る領域に不純物をドープして、上記キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含む,半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、
    上記工程(b)の後で且つ上記工程(c)の前に、上記半導体基板の上面の一部に不純物をドープして、上記キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含む,半導体装置の製造方法。
  4. 請求項1〜3のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(g)は、上記第2の絶縁膜をパターニングして、上記メモリトランジスタのゲート絶縁膜を形成する工程を含むことを特徴とする半導体装置の製造方法。
  5. 請求項1〜4のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(d)では、上記第2の絶縁膜として酸化膜と窒化膜とを順次積層した後、上記窒化膜を酸化して、酸化膜,窒化膜及び酸化膜の積層膜からなる容量絶縁膜を形成すると共に、上記半導体基板の表面を酸化して上記メモリセルトランジスタのゲート絶縁膜を形成し、
    上記工程(e)では、上記導体膜を上記容量絶縁膜と上記ゲート絶縁膜との上に形成する,半導体装置の製造方法。
  6. 請求項1〜5のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(i)の後に、上記ゲート電極、上記プレート電極、上記第1の絶縁膜サイドウォール及び上記第2の絶縁膜サイドウォールをマスクとするイオン注入により、上記半導体基板に上記メモリトランジスタの高濃度ドレイン拡散層を形成する工程をさらに含む、半導体装置の製造方法。
  7. 請求項1〜6のうちいずれか1つに記載の半導体装置の製造方法において、
    上記半導体装置は、ゲート電極及びソース・ドレイン拡散層とを有するロジックトランジスタをさらに備えており、
    上記工程(a)では、上記ロジックトランジスタ形成領域において、素子分離用のトレンチを形成し、
    上記工程(b)では、上記ロジックトランジスタ形成領域の上記トレンチ内を上記第1の絶縁膜によって埋め、
    上記工程(c)では、上記ロジックトランジスタ形成領域の上記トレンチを埋める上記第1の絶縁膜はそのまま残しておく,半導体装置の製造方法。
  8. メモリトランジスタとキャパシタとを備えた半導体装置の製造方法であって、
    半導体基板の上面領域にトレンチを形成する工程(a)と、
    上記トレンチ内及び上記半導体基板の上面上に亘って、絶縁膜を形成する工程(b)と、
    上記絶縁膜上に導体膜を形成する工程(c)と、
    上記導体膜をパターニングして、上記メモリセルトランジスタのゲート電極を形成すると共に、上記トレンチ上に上記キャパシタのプレート電極とを形成する工程(d)と、
    上記工程(d)の後に、上記絶縁膜をパターニングして、上記キャパシタの容量絶縁膜を形成する工程(e)と、
    上記工程(e)の後に、上記ゲート電極及び上記プレート電極をマスクとするイオン注入により、上記半導体基板に上記メモリトランジスタの低濃度ドレイン拡散層及びソース拡散層を形成する工程(f)と、
    上記工程(f)の後に、上記ゲート電極の側面上に第1の絶縁膜サイドウォールを形成する共に、上記プレート電極の側面上に第2の絶縁膜サイドウォールを形成する工程(g)とを含み、
    上記工程(c)では、上記絶縁膜と上記導体膜との合計膜厚が上記トレンチの溝幅の1/2よりも厚く形成され、
    上記工程(g)では、上記ソース拡散層は、上記第1の絶縁膜サイドウォール及び上記第2の絶縁膜サイドウォールによって覆われることを特徴とする半導体装置の製造方法。
  9. 請求項8記載の半導体装置の製造方法において、
    上記工程(a)の後で且つ上記工程(b)の前に、上記半導体基板における上記トレンチの内壁面の領域及び上記半導体基板の上面の一部に亘って不純物をドープして、上記キャパシタのストレージノードとなる不純物拡散層を形成する工程をさらに含む,半導体装置の製造方法。
  10. 請求項8又は9記載の半導体装置の製造方法において、
    上記工程(a)の前に、酸化膜からなるトレンチ分離を形成する工程をさらに含む、半導体装置の製造方法。
  11. 請求項8又は9記載の半導体装置の製造方法において、
    上記工程(a)の後で上記工程(b)の前に、酸化膜からなるトレンチ分離を形成する工程をさらに含む、半導体装置の製造方法。
  12. 請求項8〜11のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(e)は、上記絶縁膜をパターニングして、上記メモリトランジスタのゲート絶縁膜を形成する工程を含むことを特徴とする半導体装置の製造方法。
  13. 請求項8〜12のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(b)では、上記絶縁膜として酸化膜と窒化膜とを順次積層した後、上記窒化膜を酸化して、酸化膜,窒化膜及び酸化膜の積層膜からなる容量絶縁膜を形成すると共に、上記半導体基板の表面を酸化して上記メモリセルトランジスタのゲート絶縁膜を形成し、
    上記工程(c)では、上記導体膜を上記容量絶縁膜と上記ゲート絶縁膜との上に形成する,半導体装置の製造方法。
  14. 請求項8〜13のうちいずれか1つに記載の半導体装置の製造方法において、
    上記工程(g)の後に、上記ゲート電極、上記プレート電極、上記第1の絶縁膜サイドウォール及び上記第2の絶縁膜サイドウォールをマスクとするイオン注入により、上記半導体基板に上記メモリトランジスタの高濃度ドレイン拡散層を形成する工程をさらに含む、半導体装置の製造方法。
JP2005214808A 2002-02-14 2005-07-25 半導体装置の製造方法 Pending JP2006013529A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214808A JP2006013529A (ja) 2002-02-14 2005-07-25 半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002036084 2002-02-14
JP2005214808A JP2006013529A (ja) 2002-02-14 2005-07-25 半導体装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003568698A Division JPWO2003069676A1 (ja) 2002-02-14 2003-02-14 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006013529A true JP2006013529A (ja) 2006-01-12

Family

ID=27678075

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2003568698A Pending JPWO2003069676A1 (ja) 2002-02-14 2003-02-14 半導体装置の製造方法
JP2004063839A Pending JP2004172643A (ja) 2002-02-14 2004-03-08 半導体装置
JP2005214808A Pending JP2006013529A (ja) 2002-02-14 2005-07-25 半導体装置の製造方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2003568698A Pending JPWO2003069676A1 (ja) 2002-02-14 2003-02-14 半導体装置の製造方法
JP2004063839A Pending JP2004172643A (ja) 2002-02-14 2004-03-08 半導体装置

Country Status (7)

Country Link
US (1) US6995415B2 (ja)
EP (1) EP1475839A1 (ja)
JP (3) JPWO2003069676A1 (ja)
KR (1) KR100609194B1 (ja)
CN (1) CN1263143C (ja)
TW (1) TWI268601B (ja)
WO (1) WO2003069676A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170750A (ja) * 2008-01-18 2009-07-30 Fujitsu Microelectronics Ltd 半導体装置とその製造方法
JP2010021254A (ja) * 2008-07-09 2010-01-28 Fujitsu Microelectronics Ltd 半導体装置及びその製造方法
JP2010192816A (ja) * 2009-02-20 2010-09-02 Fujitsu Semiconductor Ltd 半導体装置とその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774439B2 (en) * 2000-02-17 2004-08-10 Kabushiki Kaisha Toshiba Semiconductor device using fuse/anti-fuse system
KR100540478B1 (ko) * 2004-03-22 2006-01-11 주식회사 하이닉스반도체 전하 트랩을 갖는 게이트유전체를 포함한 휘발성 메모리셀 트랜지스터 및 그 제조 방법
KR100702307B1 (ko) * 2004-07-29 2007-03-30 주식회사 하이닉스반도체 반도체 소자의 디램 및 그 제조 방법
JP2006049413A (ja) * 2004-08-02 2006-02-16 Fujitsu Ltd 半導体装置及びその製造方法
JP4664631B2 (ja) * 2004-08-05 2011-04-06 株式会社東芝 半導体装置及びその製造方法
US7190036B2 (en) * 2004-12-03 2007-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor mobility improvement by adjusting stress in shallow trench isolation
JP4781673B2 (ja) * 2004-12-28 2011-09-28 ルネサスエレクトロニクス株式会社 半導体記憶装置
KR100596889B1 (ko) 2005-03-22 2006-07-04 주식회사 하이닉스반도체 반도체 소자의 제조 방법
CN101479843B (zh) * 2006-06-30 2011-03-30 富士通半导体股份有限公司 半导体装置和半导体装置的制造方法
JP5076570B2 (ja) * 2007-03-16 2012-11-21 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP5515429B2 (ja) * 2009-06-01 2014-06-11 富士通セミコンダクター株式会社 半導体装置の製造方法
US8420476B2 (en) * 2010-05-27 2013-04-16 International Business Machines Corporation Integrated circuit with finFETs and MIM fin capacitor
JP5758729B2 (ja) * 2011-07-27 2015-08-05 ローム株式会社 半導体装置
JP2017041614A (ja) * 2015-08-21 2017-02-23 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US10032777B1 (en) * 2017-06-05 2018-07-24 United Microelectronics Corp. Array of dynamic random access memory cells
FR3076660B1 (fr) * 2018-01-09 2020-02-07 Stmicroelectronics (Rousset) Sas Dispositif integre de cellule capacitive de remplissage et procede de fabrication correspondant
US11621222B2 (en) 2018-01-09 2023-04-04 Stmicroelectronics (Rousset) Sas Integrated filler capacitor cell device and corresponding manufacturing method
JP7186684B2 (ja) * 2019-09-17 2022-12-09 株式会社東芝 半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107762A (ja) * 1984-10-31 1986-05-26 Toshiba Corp 半導体記憶装置の製造方法
JPS62134963A (ja) 1985-12-09 1987-06-18 Toshiba Corp 半導体記憶装置の製造方法
JPS6324657A (ja) * 1986-07-17 1988-02-02 Toshiba Corp 半導体記憶装置の製造方法
JPH06302778A (ja) * 1993-04-15 1994-10-28 Matsushita Electric Ind Co Ltd 半導体装置とその製造方法
JPH11284146A (ja) 1998-03-30 1999-10-15 Nippon Steel Corp 半導体記憶装置及びその製造方法
EP1039470A3 (en) * 1999-03-25 2000-11-29 SANYO ELECTRIC Co., Ltd. Semiconductor memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170750A (ja) * 2008-01-18 2009-07-30 Fujitsu Microelectronics Ltd 半導体装置とその製造方法
JP2010021254A (ja) * 2008-07-09 2010-01-28 Fujitsu Microelectronics Ltd 半導体装置及びその製造方法
JP2010192816A (ja) * 2009-02-20 2010-09-02 Fujitsu Semiconductor Ltd 半導体装置とその製造方法

Also Published As

Publication number Publication date
US6995415B2 (en) 2006-02-07
TWI268601B (en) 2006-12-11
KR20040030929A (ko) 2004-04-09
KR100609194B1 (ko) 2006-08-02
JPWO2003069676A1 (ja) 2005-06-09
TW200400623A (en) 2004-01-01
CN1263143C (zh) 2006-07-05
EP1475839A1 (en) 2004-11-10
WO2003069676A1 (fr) 2003-08-21
JP2004172643A (ja) 2004-06-17
US20040137667A1 (en) 2004-07-15
CN1498424A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
JP2006013529A (ja) 半導体装置の製造方法
US9472557B2 (en) Memory transistors with buried gate electrodes
JP2004172643A5 (ja)
JP4468187B2 (ja) 半導体装置の製造方法
KR20010014804A (ko) 반도체 집적 회로 장치 및 그 제조 방법
US8551861B2 (en) Semiconductor device and method for manufacturing the same
JP5718585B2 (ja) 半導体装置及びその製造方法、並びにデータ処理システム
JP2010141107A (ja) 半導体装置及びその製造方法
JP2006310576A (ja) 半導体装置およびその製造方法
KR100371654B1 (ko) 반도체 장치의 제조 방법 및 반도체 장치
US6974987B2 (en) Semiconductor device
US20080048230A1 (en) Semiconductor device and method for manufacturing the same
JP2006120904A (ja) 半導体装置及びその製造方法
JPH11177089A (ja) 半導体装置の製造方法
US6674111B2 (en) Semiconductor device having a logic transistor therein
US6251721B1 (en) Semiconductor device and method of manufacturing the same
US7884418B2 (en) Semiconductor device and transistor
JP2008210940A (ja) 半導体装置及びその製造方法
US7332390B2 (en) Semiconductor memory device and fabrication thereof
US20020109194A1 (en) Semiconductor device
JP2005236135A (ja) 半導体装置の製造方法
JP2011129761A (ja) 半導体装置の製造方法
JP4031777B2 (ja) 半導体装置
JP3420522B2 (ja) 半導体装置およびその製造方法
JPH10261703A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728