JP2002298834A - リチウム二次電池及びリチウム二次電池用正極 - Google Patents

リチウム二次電池及びリチウム二次電池用正極

Info

Publication number
JP2002298834A
JP2002298834A JP2001194983A JP2001194983A JP2002298834A JP 2002298834 A JP2002298834 A JP 2002298834A JP 2001194983 A JP2001194983 A JP 2001194983A JP 2001194983 A JP2001194983 A JP 2001194983A JP 2002298834 A JP2002298834 A JP 2002298834A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
thin film
positive electrode
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001194983A
Other languages
English (en)
Other versions
JP3920597B2 (ja
Inventor
Yasuyuki Kusumoto
靖幸 樟本
Masahisa Fujimoto
正久 藤本
Shin Fujitani
伸 藤谷
Yoichi Domoto
洋一 堂本
Daizo Chito
大造 地藤
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001194983A priority Critical patent/JP3920597B2/ja
Priority to US10/056,209 priority patent/US6979516B2/en
Publication of JP2002298834A publication Critical patent/JP2002298834A/ja
Application granted granted Critical
Publication of JP3920597B2 publication Critical patent/JP3920597B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

(57)【要約】 【課題】 リチウム金属または予めリチウムを吸蔵させ
た材料を活物質として含む負極と、正極活物質を含む正
極と、非水電解液を含む電解質とを備えるリチウム二次
電池において、放電容量が高く、かつ充放電サイクル特
性に優れたリチウム二次電池とする。 【解決手段】 正極活物質が、スパッタリング法、反応
性蒸着法、真空蒸着法、化学蒸着法、溶射法、またはめ
っき法などにより、気相または液相から基板上に堆積し
て形成した少なくとも鉄を含む酸化物を主成分とする薄
膜であることを特徴としている。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、リチウム二次電池
及びリチウム二次電池用正極に関するものである。
【0002】
【従来の技術】現在、リチウムイオン電池と称せられる
リチウム二次電池は、携帯電話やパソコン用の電源とし
て広く用いられている。現在一般に実用化されているリ
チウム二次電池は、重量エネルギー密度が150Wh/
kg程度であり、さらなる重量エネルギー密度の高密度
化が求められている。
【0003】現在一般に実用化されているリチウム二次
電池は、負極に黒鉛などの炭素系材料を用い、正極にL
iCoO2などのリチウム含有酸化物を用い、電解液に
LiPF6などの電解質塩を溶かしたエチレンカーボネ
ートのような環状カーボネートやジメチルカーボネート
のような鎖状カーボネートなどの有機溶剤を用いてい
る。この種のリチウム二次電池では、充放電を通じて、
リチウムイオンが正極と負極を行き来するだけであるの
で、エネルギー密度は正極比容量、負極比容量、及び電
池電圧によって決定される。
【0004】負極に用いられている炭素系材料の実比容
量は最も大きい黒鉛で370mAh/gであり、正極に
一般的に用いられいてるLiCoO2の実比容量は約1
50mAh/gである。このように、正極と負極の実比
容量を比べた場合、負極の容量が、正極の倍以上であ
り、重量エネルギー密度を高めるには負極より正極の実
比容量を高めた方が効果的であることがわかる。
【0005】
【発明が解決しようとする課題】しかしながら、LiC
oO2のようなリチウム含有酸化物は、Liを完全に引
き抜くと、結晶構造が崩れ充放電サイクル特性が著しく
低下してしまうことが知られいてる。従って、このよう
なLi含有酸化物を用いて正極の実比容量を高めること
は困難である。また、コバルトは埋蔵量が少なく、高価
であるため、これに代わる正極材料が求められている。
【0006】本発明の目的は、放電容量が高くかつ充放
電サイクル特性に優れたリチウム二次電池及びリチウム
二次電池用正極を提供することにある。
【0007】
【課題を解決するための手段】本発明のリチウム二次電
池は、リチウム金属または予めリチウムを吸蔵させた材
料を活物質として含む負極と、正極活物質を含む正極
と、非水電解液を含む電解質とを備えるリチウム二次電
池であり、正極活物質が、気相または液相から基板上に
堆積して形成した少なくとも鉄を含む酸化物を主成分と
する薄膜であることを特徴としている。
【0008】鉄を含む酸化物としては、Fe23、Fe
34などが挙げられ、上記薄膜はこれらの結晶を含んで
いることが好ましい。また、上記薄膜としては、基板に
対して概ね垂直方向に伸びた柱状構造を有しているもの
が充放電サイクル特性の向上の観点から好ましい。その
理由の詳細は不明であるが、柱状構造を有することによ
り、充放電に伴う正極活物質の膨張・収縮も膜厚方向に
その変化を生じやすくなり、その結果、充放電サイクル
を繰り返しても薄膜全体の構造が崩れにくく、容量の低
下が少なくなるものと思われる。
【0009】また、鉄を含む酸化物は、その他の元素を
含んでいてもよい。例えば、鉄を含む酸化物はカリウム
を含んでいてもよい。このような鉄及びカリウムを含む
化合物としては、例えば、K1.4Fe1117などが挙げ
られる。これらのフェライト材料は、従来からリチウム
二次電池の正極材料として研究されている材料である。
従来、これらの材料は、粉末状のものを、結着剤及び導
電剤と混合して、成型あるいは集電体上に塗布して電極
として作製されている。
【0010】本発明において、上記の少なくとも鉄を含
む酸化物を主成分とする薄膜は、気相または液相から基
板上に堆積して形成される。このような薄膜形成方法と
しては、スパッタリング法、反応性蒸着法、真空蒸着
法、化学蒸着(CVD)法、溶射法、またはめっき法、
あるいはこれらを組み合わせた方法が挙げられる。
【0011】本発明において、活物質として用いる少な
くとも鉄を含む酸化物は、上述のようにさらにカリウム
を含んでいてもよい。また、上記カリウムは膜厚方向に
その濃度に分布があってもよく、基板/薄膜界面から薄
膜表面に向かって暫時減少するような分布であることが
好ましい。カリウムの含有によって、鉄酸化物へのリチ
ウムイオンの挿入・脱離反応が影響を受け、おそらくは
リチウムの反応量が減少するため、反応に伴う膨張収縮
も減少するものと思われる。その結果、結晶構造が崩れ
にくくなるものと思われる。さらに、カリウムが膜厚方
向に上記分布をしていると、基板側でより薄膜構造が安
定し、基板との密着性も増加し、充放電サイクルを繰り
返しても薄膜全体の構造が崩れにくく、容量の低下を抑
え、安定した充放電サイクルが可能になると考えられ
る。
【0012】また、鉄及びカリウムを含む酸化物は、さ
らに炭素を含んでいてもよい。これによって、一般的に
絶縁体である鉄酸化物薄膜の導電性が向上し、リチウム
イオンの移動が容易になると考えられ、この観点から、
導電性の元素あるいは化合物を含有することで、同様の
効果が得られると考えられる。
【0013】本発明においては、基板として、電子伝導
性を有する基板を用いることが好ましい。電子伝導性を
有する基板を用いることにより、基板を集電体として機
能させることができる。基板は、金属あるいは合金であ
ることが好ましく、特にアルミニウムまたはアルミニウ
ム合金であることが好ましい。集電体として用いる場
合、その厚みが薄いことが好ましいので、基板として金
属または合金からなる箔を用いることが好ましい。
【0014】また、上記基板と上記鉄酸化物薄膜との界
面において、基板成分と薄膜成分が互いに拡散している
ことが好ましい。基板成分と薄膜成分の拡散により、薄
膜と基板との密着性が向上するとともに、上記カリウム
の含有の効果と同様、鉄酸化物とリチウムイオンとの反
応の抑制による効果も考えられる。
【0015】本発明の構成を有する鉄酸化物薄膜を形成
する方法としては、上述したように各種真空プロセスや
溶射法、めっき法、あるいはこれらを組み合わせた方法
が挙げられるが、特にスパッタリング法、反応性蒸着
法、真空蒸着法、化学蒸着(CVD)法が好ましい。こ
れは、薄膜形成時における温度の影響により、基板成分
及び薄膜成分の相互拡散が増加するとともに、薄膜が柱
状に成長しやすくなるからである。また、さらに薄膜形
成条件を制御することで例えば膜厚方向に対する組成制
御も容易である。また、例えば薄膜成長表面にイオンが
照射されるような条件で形成することで、基板/薄膜界
面での混合層(相互拡散領域)の形成や薄膜の結晶性
(配向性)制御、成長方向の制御(柱状方向の成長促
進)等も可能である。この具体的な方法としては、基板
表面への蒸発材料の到達と同時にArや酸素などのイオ
ンビームを照射する方法や、基板に実質的に負の電圧を
印加することで、Arや酸素などのイオンを引き付け、
基板に衝突するようにする方法がある。
【0016】本発明のリチウム二次電池用正極は、気相
または液相から集電体上に活物質薄膜を堆積して形成し
たリチウム二次電池用正極であり、活物質薄膜が少なく
とも鉄を含む酸化物を主成分とすることを特徴としてい
る。
【0017】本発明のリチウム二次電池用正極は、上記
本発明のリチウム二次電池に用いられる正極と同様のも
のである。本発明のリチウム二次電池において用いられ
る負極は、リチウム二次電池の負極として用いることが
できるものであれば特に限定されるものではなく、リチ
ウム金属または予めリチウムを吸蔵させた材料を活物質
として含んでいる。リチウムを予め吸蔵させた材料とし
ては、リチウムを予め吸蔵させた炭素系材料や、リチウ
ムを予め吸蔵させた合金などが挙げられる。これらの合
金としては、シリコン、アルミニウム、錫、ゲルマニウ
ム、インジウム、マグネシウムとリチウムの合金などが
挙げられる。
【0018】本発明のリチウム二次電池において用いら
れる電解質は、非水電解液を含む電解質である。非水電
解液の溶媒は、特に限定されるものではないが、エチレ
ンカーボネート、プロピレンカーボネート、ブチレンカ
ーボネートなどの環状カーボネートと、ジメチルカーボ
ネート、メチルエチルカーボネート、ジエチルカーボネ
ートなどの鎖状カーボネートとの混合溶媒が例示され
る。また、前記環状カーボネートと、1,2−ジメトキ
シエタン、1,2−ジエトキシエタンなどのエーテル系
溶媒との混合溶媒も例示される。また、非水電解液の溶
質としては、LiPF6、LiBF4、LiCF3SO3
LiN(CF3SO2)2、LiN(C25SO2)2、Li
N(CF3SO2)(C49SO2)、LiC(CF3
2)3、LiC(C25SO2)3など及びそれらの混合物
が例示される。また電解質として、ポリエチレンオキシ
ド、ポリアクリロニトリル、ポリフッ化ビニリデンなど
のポリマー電解質に電解液を含浸したゲル状ポリマー電
解質を用いてもよい。
【0019】
【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
【0020】(実験1) 〔正極の作製〕アルミニウム箔(厚み20μm)の上
に、RFスパッタリング法により、K 1.33Fe1117
ターゲットを用いて薄膜を形成した。薄膜形成条件を表
1に示す。
【0021】表1に示すターゲットとしては、直径1
0.2cm(4インチ)、厚み5mmのものを用いた。
また、ターゲットの上に載せた炭素チップは、直径10
mm、厚み1mmのものを、鉄チップは、10mm角、
厚み1mmのものを表1に示す個数用いた。炭素チップ
は、粉末の黒鉛をペレット化したものを用いた。鉄チッ
プは、上記形状の鉄板を用いた。
【0022】
【表1】
【0023】上記薄膜を形成したアルミニウム箔を20
mm角の大きさに切り出し、実施例1〜4の電極とし
た。比較例1の電極として、K1.4Fe1117の粉末か
らペレット電極を作製した。具体的には、K1.4Fe11
17粉末40重量部と、導電剤としてのアセチレンブラ
ック40重量部と、結着剤としてのポリテトラフルオロ
エチレン20重量部とを混合した後、直径16mm、厚
み0.1mmに加圧成形し、その後110℃で真空乾燥
してペレット電極を作製した。
【0024】〔電解液の調製〕エチレンカーボネート
(EC)とジメチルカーボネート(DMC)とを体積比
1:1の割合で混合させた混合溶媒に、LiPF6
1.0モル/リットルの割合で溶解し電解液を調製し
た。
【0025】〔ビーカーセルの作製〕上記正極を作用極
として用い、対極及び参照極としてはリチウム金属を成
形したものを用い、電解液としては上記の電解液を用い
てビーカーセルを作製した。
【0026】〔充放電サイクル試験〕上記実施例1〜4
及び比較例1のビーカーセルについて、以下の条件で充
放電サイクル試験を行った。
【0027】実施例1〜4の充放電条件 放電電流は、1サイクル目:2.0mA、2サイクル
目:1.0mA、3サイクル目以降:0.5mAとし、
放電終止電圧は0.5V(参照極に対する作用極の電
位)とした。
【0028】充電電流は、1サイクル目:2.0mA、
2サイクル目:1.0mA、3サイクル目以降:0.5
mAとし、充電終止電圧は4.0V(参照極に対する作
用極の電位)とした。
【0029】比較例1の充放電条件 放電電流は2.0mAとし、放電終止電圧は0.5V
(参照極に対する作用極の電位)とした。
【0030】充電電流は2.0mAとし、充電終止電圧
は4.0V(参照極に対する作用極の電位)とした。図
1に、実施例1〜4及び比較例1のサイクル数と放電容
量の関係を示す。図1から明らかなように、スパッタリ
ング法で電極を作製した実施例1〜4においては、充放
電サイクルを繰り返しても容量の低下が少ない。これに
対し、粉末から電極を作製した比較例1においては、充
放電サイクルの繰り返しにより放電容量が大きく低下し
ていることがかわる。
【0031】表2に、3サイクル目及び11サイクル目
の放電容量並びに11サイクル目の容量維持率を示す。
11サイクル目の容量維持率は、以下の式により算出し
た値である。
【0032】11サイクル目の容量維持率(%)=(1
1サイクル目の放電容量/3サイクル目の放電容量)×
100
【0033】
【表2】
【0034】表2から明らかなように、ターゲットの上
に炭素チップまたは鉄チップを載せて作製した実施例2
〜3は、ターゲットの上に何も載せずに作製した実施例
1に比べ、11サイクル目の容量維持率が大きくなって
いる。
【0035】(実験2) 〔正極の作製〕アルミニウム箔(厚み20μm)の上
に、反応性蒸着法により、Fe及びOからなる薄膜(フ
ェライト薄膜)を作製した。反応性蒸着法では、真空チ
ャンバー内にO2を導入し、電子ビーム(EB)ガンに
より、Fe蒸着材を溶融し蒸発させることにより、基板
であるアルミニウム箔の上にフェライト薄膜を形成し
た。
【0036】また、Feの蒸着と同時に、アルミニウム
箔に向けてイオンビームを照射する、イオンアシスト反
応性蒸着法でも、鉄酸化物(フェライト)薄膜の形成を
行った。
【0037】表3に、各薄膜形成条件を示す。
【0038】
【表3】
【0039】上記薄膜を形成したアルミニウム箔を20
mm角の大きさに切り出し、実施例5〜9の電極とし
た。比較例2として、Fe23粉末を用いてペレット電
極を作製した。具体的には、Fe23粉末40重量部、
導電剤としてのアセチレンブラック40重量部、結着剤
としてのポリテトラフルオロエチレン20重量部を混合
した後、直径16mm、厚み0.1mmに加圧成形し、
110℃で真空乾燥して、電極を作製した。
【0040】〔電解液の調製〕エチレンカーボネート
(EC)とジメチルカーボネート(DMC)とを体積比
1:1の割合で混合させた混合溶媒に、LiPF6
1.0モル/リットルの割合で溶解し電解液を調製し
た。
【0041】〔ビーカーセルの作製〕上記正極を作用極
として用い、対極及び参照極としてはリチウム金属を成
形したものを用い、電解液としては上記の電解液を用い
てビーカーセルを作製した。
【0042】〔充放電サイクル試験〕上記実施例5〜9
及び比較例2のビーカーセルについて、以下の条件で充
放電サイクル試験を行った。
【0043】実施例5〜9の充放電条件 放電電流は0.5mAとし、放電終止電圧は0.5V
(参照極に対する作用極の電位)とした。充電電流は
0.5mAとし、充電終止電圧は3.0V(参照極に対
する作用極の電位)とした。
【0044】比較例2の充放電条件 放電電流は2.0mAとし、放電終止電圧は0.5V
(参照極に対する作用極の電位)とした。
【0045】充電電流は2.0mAとし、充電終止電圧
は4.0V(参照極に対する作用極の電位)とした。図
2は、実施例6〜9及び比較例2における充放電サイク
ル数と放電容量の関係を示す図である。図2から明らか
なように、反応性蒸着法で作製した実施例6〜9は、充
放電サイクルを繰り返しても、容量の低下が少ない。こ
れに対し、粉末から電極を作製した比較例2では、充放
電サイクルを繰り返すことにより、放電容量が大きく低
下している。
【0046】表4に、実施例5〜9及び比較例2の2サ
イクル目及び5サイクル目の放電容量と、5サイクル目
の容量維持率を示す。5サイクル目の容量維持率は、以
下の式により算出した値である 5サイクル目の容量維持率(%)=(5サイクル目の放
電容量/2サイクル目の放電容量)×100
【0047】
【表4】
【0048】表4から明らかなように、実施例5〜9の
電池は、比較例2の電池に比べ、良好な充放電サイクル
特性を示している。次に、実験1及び2で作製した薄膜
の走査型電子顕微鏡(SEM)観察を行った。実施例
1、7、及び9で作製した薄膜の破断面のSEM写真を
それぞれ図3(実施例1)、図4(実施例7)、及び図
5(実施例9)に示す。倍率は30000倍である。断
面にはほぼ膜厚方向に結晶が成長した構造が見られ、薄
膜が柱状の構造であることがわかる。また、スパッタ法
で形成した薄膜(実施例1:図3)は、基板との界面付
近は一様で、表面付近のみ柱状になっていることがわか
る。
【0049】さらに、同様に実施例1、7、及び9で作
製した薄膜の表面のSEM像をそれぞれ図6(実施例
1)、図7(実施例7)、及び図8(実施例9)に示
す。倍率は30000倍である。表面には微細な凹凸が
存在することがわかる。また、反応性蒸着法で形成した
膜(実施例7:図7、実施例9:図8)の表面には、断
面像で見られた個々の柱状構造に対応する粒界がはっき
りと見られる。
【0050】次に、各薄膜の結晶性についてX線回折に
より評価した。実施例1、7、及び9と同条件でシリコ
ン(Si)ウエハ上に作製した薄膜のX線回折結果をそ
れぞれ図9(実施例1)、図10(実施例7)、及び図
11(実施例9)に示す。また、比較例1及び2で使用
したK1.4Fe1117粉末(図12)、Fe23粉末
(図13)並びにFe34粉末(図14)のX線回折結
果も併せて示す。
【0051】これらの図の比較から、図9及び図10で
は非晶質成分も目立つが、幾つかの回折ピークが見ら
れ、結晶性の薄膜であることがわかる。また、これらの
ピーク位置より、実施例1、7、及び9の薄膜はFe2
3あるいはFe34からなる薄膜であると考えられ
る。ただし、Fe23とFe34のピーク位置が非常に
近いので、これらの区別はできなかった。また、カリウ
ム含有ターゲットを用いてスパッタを行った膜の結果
(図9)からは、KO、KFeOなどのピークも見られ
なかった。
【0052】さらに、各薄膜の組成評価を行うために、
SIMS分析を行った。実施例1、7、及び9で作製し
た薄膜の結果をそれぞれ図15(実施例1)、図16
(実施例7)、及び図17(実施例9)に示す。これに
より、各薄膜中の鉄、酸素濃度はほぼ一定であることが
わかった。実施例1(図15)はカリウム含有ターゲッ
トを用いてスパッタを行ったものであるが、薄膜中にも
カリウムが存在していることがわかる。また、その分布
が界面から表面に向かって徐々に減少していることがわ
かった。また、実施例9(図17)は、酸素イオンビー
ムを照射しながら反応性蒸着を行い形成した薄膜である
が、イオンビームを照射しないで形成した実施例7の薄
膜(図16)と比較して、界面付近でのアルミニウム
(基板成分)の分布が広がっており、イオン照射によ
り、相互拡散が促進されていることがわかる。
【0053】上記の実施例では薄膜形成方法として、ス
パッタリング法及び反応性蒸着法を示したが、その他の
薄膜形成方法である、真空蒸着法、化学蒸着法、溶射
法、めっき法等により鉄酸化物の薄膜を形成して正極を
作製しても、同様に充放電サイクル特性に優れたリチウ
ム二次電池とすることが可能である。
【0054】
【発明の効果】本発明によれば、放電容量が高く、かつ
充放電サイクル特性に優れたリチウム二次電池とするこ
とができる。
【図面の簡単な説明】
【図1】本発明の実施例における充放電サイクルと放電
容量との関係を示す図。
【図2】本発明の実施例における充放電サイクルと放電
容量との関係を示す図。
【図3】本発明の実施例における薄膜の断面の走査型電
子顕微鏡写真(倍率30000倍)。
【図4】本発明の実施例における薄膜の断面の走査型電
子顕微鏡写真(倍率30000倍)。
【図5】本発明の実施例における薄膜の断面の走査型電
子顕微鏡写真(倍率30000倍)。
【図6】本発明の実施例における薄膜の表面の走査型電
子顕微鏡写真(倍率30000倍)。
【図7】本発明の実施例における薄膜の表面の走査型電
子顕微鏡写真(倍率30000倍)。
【図8】本発明の実施例における薄膜の表面の走査型電
子顕微鏡写真(倍率30000倍)。
【図9】本発明の実施例における薄膜のX線回折チャー
トを示す図。
【図10】本発明の実施例における薄膜のX線回折チャ
ートを示す図。
【図11】本発明の実施例における薄膜のX線回折チャ
ートを示す図。
【図12】比較例における酸化鉄粉末のX線回折チャー
トを示す図。
【図13】比較例における酸化鉄粉末のX線回折チャー
トを示す図。
【図14】比較例における酸化鉄粉末のX線回折チャー
トを示す図。
【図15】本発明の実施例における薄膜のSIMS測定
結果を示す図。
【図16】本発明の実施例における薄膜のSIMS測定
結果を示す図。
【図17】本発明の実施例における薄膜のSIMS測定
結果を示す図。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 堂本 洋一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 地藤 大造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 樽井 久樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS02 AS10 CC01 EE05 5H029 AJ03 AJ05 AK02 AK03 AL06 AL12 AM03 AM04 AM05 AM07 CJ24 DJ07 EJ01 HJ02 5H050 AA07 AA08 BA16 BA17 CA02 CA07 CB07 CB12 DA08 GA24 HA02

Claims (19)

    【特許請求の範囲】
  1. 【請求項1】 リチウム金属または予めリチウムを吸蔵
    させた材料を活物質として含む負極と、正極活物質を含
    む正極と、非水電解液を含む電解質とを備えるリチウム
    二次電池において、 前記正極活物質が、気相または液相から基板上に堆積し
    て形成した少なくとも鉄を含む酸化物を主成分とする薄
    膜であることを特徴とするリチウム二次電池。
  2. 【請求項2】 前記薄膜がFe23またはFe34の結
    晶を含むことを特徴とする請求項1に記載のリチウム二
    次電池。
  3. 【請求項3】 前記薄膜が基板に対して略垂直方向に伸
    びた柱状構造を有することを特徴とする請求項1または
    2に記載のリチウム二次電池。
  4. 【請求項4】 前記薄膜形成方法が、スパッタリング
    法、反応性蒸着法、真空蒸着法、化学蒸着法、溶射法、
    またはめっき法あるいはこれらを組み合わせた方法であ
    ることを特徴とする請求項1〜3のいずれか1項に記載
    のリチウム二次電池。
  5. 【請求項5】 鉄を含む酸化物が、カリウムを含むこと
    を特徴とする請求項1〜4のいずれか1項に記載のリチ
    ウム二次電池。
  6. 【請求項6】 前記カリウムの濃度が膜厚方向に対し
    て、基板側から表面側に向かって暫時減少していること
    を特徴とする請求項5に記載のリチウム二次電池。
  7. 【請求項7】 鉄及びカリウムを含む酸化物が、さらに
    炭素を含むことを特徴とする請求項5または6に記載の
    リチウム二次電池。
  8. 【請求項8】 前記基板が電子伝導性を有することを特
    徴とする請求項1〜7のいずれか1項に記載のリチウム
    二次電池。
  9. 【請求項9】 前記基板が金属または合金であることを
    特徴とする請求項8に記載のリチウム二次電池。
  10. 【請求項10】 前記基板がアルミニウムまたはアルミ
    ニウム合金であることを特徴とする請求項9に記載のリ
    チウム二次電池。
  11. 【請求項11】 前記基板と前記薄膜の界面において、
    前記基板成分と前記薄膜成分が相互に拡散していること
    を特徴とする請求項1〜10のいずれか1項に記載のリ
    チウム二次電池。
  12. 【請求項12】 気相または液相から集電体上に活物質
    薄膜を堆積して形成したリチウム二次電池用正極であっ
    て、 前記活物質薄膜が少なくとも鉄を含む酸化物を主成分と
    することを特徴とするリチウム二次電池用正極。
  13. 【請求項13】 前記活物質薄膜がFe23あるいはF
    34の結晶を含むことを特徴とする請求項12に記載
    のリチウム二次電池用正極。
  14. 【請求項14】 前記活物質薄膜が前記基板に対して略
    垂直方向に伸びた柱状構造を有することを特徴とする請
    求項12または13に記載のリチウム二次電池用正極。
  15. 【請求項15】 鉄を含む酸化物がカリウムを含むこと
    を特徴とする請求項12〜14のいずれか1項に記載の
    リチウム二次電池用正極。
  16. 【請求項16】 前記カリウムの濃度が膜厚方向に対し
    て、基板側から表面側に向かって暫時減少していること
    を特徴とする請求項15に記載のリチウム二次電池用正
    極。
  17. 【請求項17】 鉄及びカリウムを含む酸化物が、さら
    に炭素を含むことを特徴とする請求項15または16に
    記載のリチウム二次電池用正極。
  18. 【請求項18】 前記基板と前記薄膜の界面において、
    前記基板成分と前記薄膜成分が相互に拡散していること
    を特徴とする請求項12〜17のいずれか1項に記載の
    リチウム二次電池用正極。
  19. 【請求項19】 前記薄膜形成方法が、スパッタリング
    法、反応性蒸着法、真空蒸着法、化学蒸着法、溶射法ま
    たはめっき法あるいはこれらを組み合わせた方法である
    ことを特徴とする請求項12〜18のいずれか1項に記
    載のリチウム二次電池用正極。
JP2001194983A 2001-01-29 2001-06-27 リチウム二次電池及びリチウム二次電池用正極 Expired - Fee Related JP3920597B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001194983A JP3920597B2 (ja) 2001-01-29 2001-06-27 リチウム二次電池及びリチウム二次電池用正極
US10/056,209 US6979516B2 (en) 2001-01-29 2002-01-28 Lithium secondary battery and positive electrode for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-19978 2001-01-29
JP2001019978 2001-01-29
JP2001194983A JP3920597B2 (ja) 2001-01-29 2001-06-27 リチウム二次電池及びリチウム二次電池用正極

Publications (2)

Publication Number Publication Date
JP2002298834A true JP2002298834A (ja) 2002-10-11
JP3920597B2 JP3920597B2 (ja) 2007-05-30

Family

ID=26608434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194983A Expired - Fee Related JP3920597B2 (ja) 2001-01-29 2001-06-27 リチウム二次電池及びリチウム二次電池用正極

Country Status (2)

Country Link
US (1) US6979516B2 (ja)
JP (1) JP3920597B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076278A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 正極電極体およびリチウム二次電池
JP2009123664A (ja) * 2006-11-27 2009-06-04 Denso Corp 集電体、電極および蓄電装置
JP2009193701A (ja) * 2008-02-12 2009-08-27 Sumitomo Electric Ind Ltd リチウム電池、リチウム電池用正極およびその製造方法
WO2009153966A1 (ja) 2008-06-17 2009-12-23 パナソニック株式会社 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
WO2010092689A1 (ja) 2009-02-16 2010-08-19 トヨタ自動車株式会社 リチウム二次電池
JP2011129344A (ja) * 2009-12-17 2011-06-30 Toyota Motor Corp リチウムイオン二次電池
WO2013011568A1 (ja) * 2011-07-19 2013-01-24 株式会社日立製作所 イオン二次電池用電極、イオン二次電池用電極の製造方法、リチウムイオン二次電池およびマグネシウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794788B (zh) * 2014-02-21 2016-01-20 合肥国轩高科动力能源有限公司 一种磷酸铁锂正极材料的表面碳包覆方法
CN104368341B (zh) * 2014-04-10 2016-05-11 长春师范大学 一种纯Fe薄膜电催化剂的制备方法
CN104201323B (zh) * 2014-07-07 2016-08-17 上海电力学院 氧化铝包覆钴酸锂正极材料的制备方法
US10862120B2 (en) * 2015-12-07 2020-12-08 National Institute Of Advanced Industrial Science And Technology Positive electrode active material for potassium ion secondary cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328244A (ja) * 1991-04-26 1992-11-17 Riken Corp 電池用正極及びその製造方法
JPH04328245A (ja) * 1991-04-26 1992-11-17 Riken Corp リチウム電池
JP2001196059A (ja) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2001273899A (ja) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp リチウム二次電池用正極材料
JP2001297751A (ja) * 2000-04-14 2001-10-26 Tatsu Takahashi 高容量非水電解液リチュウム2次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040921A (ja) * 1996-07-26 1998-02-13 Fuji Photo Film Co Ltd 非水二次電池
JP3547575B2 (ja) * 1996-10-15 2004-07-28 松下電器産業株式会社 リチウム鉄酸化物、その製造方法およびリチウム電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328244A (ja) * 1991-04-26 1992-11-17 Riken Corp 電池用正極及びその製造方法
JPH04328245A (ja) * 1991-04-26 1992-11-17 Riken Corp リチウム電池
JP2001273899A (ja) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp リチウム二次電池用正極材料
JP2001196059A (ja) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd 非水電解質電池
JP2001297751A (ja) * 2000-04-14 2001-10-26 Tatsu Takahashi 高容量非水電解液リチュウム2次電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123664A (ja) * 2006-11-27 2009-06-04 Denso Corp 集電体、電極および蓄電装置
JP2009076278A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 正極電極体およびリチウム二次電池
JP2009193701A (ja) * 2008-02-12 2009-08-27 Sumitomo Electric Ind Ltd リチウム電池、リチウム電池用正極およびその製造方法
WO2009153966A1 (ja) 2008-06-17 2009-12-23 パナソニック株式会社 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
WO2010092689A1 (ja) 2009-02-16 2010-08-19 トヨタ自動車株式会社 リチウム二次電池
JP5273491B2 (ja) * 2009-02-16 2013-08-28 トヨタ自動車株式会社 リチウム二次電池
KR101319187B1 (ko) * 2009-02-16 2013-10-16 도요타지도샤가부시키가이샤 리튬 2차 전지
US8663843B2 (en) 2009-02-16 2014-03-04 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP2011129344A (ja) * 2009-12-17 2011-06-30 Toyota Motor Corp リチウムイオン二次電池
WO2013011568A1 (ja) * 2011-07-19 2013-01-24 株式会社日立製作所 イオン二次電池用電極、イオン二次電池用電極の製造方法、リチウムイオン二次電池およびマグネシウムイオン二次電池

Also Published As

Publication number Publication date
JP3920597B2 (ja) 2007-05-30
US20020168571A1 (en) 2002-11-14
US6979516B2 (en) 2005-12-27

Similar Documents

Publication Publication Date Title
JP6932321B2 (ja) アノード活物質、カソード活物質及び固体電解質のためのナノ加工コーティング並びにナノ加工コーティングを含む電池の製造方法
JP4208940B2 (ja) 負極活物質、これを用いた負極およびリチウムイオン二次電池
JP4650603B2 (ja) 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
US11355739B2 (en) Passivation of lithium metal by two-dimensional materials for rechargeable batteries
JP4416734B2 (ja) リチウム二次電池及びその製造方法
JP4415241B2 (ja) 二次電池用負極およびそれを用いた二次電池、および負極の製造方法
US8003253B2 (en) Non-aqueous electrolyte secondary battery
JP3624174B2 (ja) 金属酸化物電極及びその製造方法、並びにそれを用いたリチウム二次電池
EP1207566A2 (en) Anode thin film for lithium secondary battery
CN101593828A (zh) 锂离子二次电池用负极材料及其制造方法以及锂离子二次电池
JP2008293954A (ja) 電気化学素子とその電極、電極の製造方法、製造装置、リチウム化処理方法、リチウム化処理装置
JP2010262862A (ja) 非水電解質二次電池用負極活物質、その製造方法、および非水電解質二次電池
JP5119584B2 (ja) 非水電解質二次電池およびその負極の製造法
JP3609377B2 (ja) リチウム2次電池用陰極薄膜およびその製造方法
JP3920597B2 (ja) リチウム二次電池及びリチウム二次電池用正極
JP2002289177A (ja) リチウム二次電池用電極及びリチウム二次電池
CN101540421A (zh) 电解液和二次电池
CN101540422A (zh) 二次电池
US20230006208A1 (en) Positive-electrode material and battery
JP2008277099A (ja) 電気化学素子とその電極の製造方法、製造装置、前処理方法、前処理装置
JP3869609B2 (ja) リチウム二次電池用電極の製造方法
JP3935729B2 (ja) リチウム二次電池用電極
JPH09171829A (ja) リチウム二次電池用正極活物質およびリチウム二次電池
JP2006066370A (ja) 非水電解質二次電池用負極及びその製造方法、並びに非水電解質二次電池
US20220416297A1 (en) Positive-electrode material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees