JP2002280224A - アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法 - Google Patents

アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法

Info

Publication number
JP2002280224A
JP2002280224A JP2002000801A JP2002000801A JP2002280224A JP 2002280224 A JP2002280224 A JP 2002280224A JP 2002000801 A JP2002000801 A JP 2002000801A JP 2002000801 A JP2002000801 A JP 2002000801A JP 2002280224 A JP2002280224 A JP 2002280224A
Authority
JP
Japan
Prior art keywords
alloy powder
core
amorphous alloy
temperature
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002000801A
Other languages
English (en)
Inventor
Kyu-Jin Kim
圭鎭 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HumanElecs Co Ltd
Original Assignee
HumanElecs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020010000491A external-priority patent/KR100344010B1/ko
Priority claimed from KR1020010007782A external-priority patent/KR100344009B1/ko
Application filed by HumanElecs Co Ltd filed Critical HumanElecs Co Ltd
Publication of JP2002280224A publication Critical patent/JP2002280224A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/007Transformation of amorphous into microcrystalline state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si

Abstract

(57)【要約】 【課題】 良好な高周波特性を有するアモルファス合金
粉末コア及びナノクリスタル合金粉末コア並びにそれら
の製造方法を提供する。 【解決手段】 アモルファス合金粉末を、ポリイミド樹
脂及びフェノール樹脂の一方とバインダーを有機溶剤中
で溶解して作成した溶液と混合し、液相のバインダーで
前記合金粉末の表面を均一に被覆して複合粒子の粉末を
作成する工程と、前記複合粒子の粉末を成形する工程
と、成形された前記複合粒子の粉末に熱処理を施す工程
とを備えることを特徴とするアモルファス合金コアの製
造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、優れた高周波特性
を有するアモルファス合金粉末コア及び高周波帯域での
優れた軟磁性特性を備えたナノクリスタル合金粉末コア
並びにそれらの製造方法に関する。より詳しくは、本発
明は、良好な高周波特性を備えたアモルファス合金粉末
コアの製造方法に関し、従来の結晶性の磁気コアに比
べ、とても少ない量のポリイミド樹脂又はフェノール樹
脂をバインダーとして用いることによって、低温圧縮成
形により当該アモルファス合金粉末コアを製造すること
ができ、それにより製造収量を高めることができる。更
に、本発明は、アモルファス合金粉末又はアモルファス
合金粉末コアに結晶化開始温度よりも高い超えた温度に
て熱処理を施すことにより、優れた飽和磁束密度及び実
効透磁率を備えたナノクリスタル合金粉末コアを製造す
る方法に関する。
【0002】
【従来の技術】一般に、非晶質な軟磁性合金粉末は、耐
腐蝕性,耐摩耗性,強度,および透磁率について優れて
おり、電気及び電子機器の磁性体として使用されてい
る。それらは、トランス,インダクター,モーター,ジ
ェネレーター,リレー等に適用される。かかる非晶質な
軟磁性合金粉末は、急冷により製造されて非晶質状態を
維持し、通常薄い帯状または細い線状である。所定形状
のコアを製造するために、このような形状の非晶質な軟
磁性合金粉末はすり砕かれて粉末とされ、そして所定の
温度及び圧力にて圧縮される。
【0003】
【発明が解決しようとする課題】非晶質な軟磁性合金粉
末の塊の成形は、その非晶質な状態を維持するために
は、合金の結晶化温度よりも低い温度にて行なわなけれ
ばならない。しかしながら、そのような温度にて合金粉
末をかたまりとすることは不可能であり、非晶質な軟磁
性合金粉末にボールミルを用いて軟化点が低いガラス粉
末を添加することにより非晶質な軟磁性合金粉末を接着
し、そしてそれから温度500℃にてその粉末を軟化さ
せて成形する方法を適用していた。熱間静水圧プレス
(HIP),ホットプレス等が上記した方法に使用され
た。他には爆発法(explosive method),インパクトガ
ン法(Impact Gun Method)等の方法があるが、それら
は、非常に高いエネルギーを得るために特殊な装置を必
要とし、かつ長時間にて行なわれるので、製造収量を低
下させていた。結晶質な軟磁性粉末の塊の成形は、バイ
ンダーとして水ガラスを用いて高い温度で行なわれてい
る。このことは、15ton/cm2を超える高い加圧成形の
間に、結晶質の合金は非晶質な合金よりも強度が低いこ
とから、合金粉末は塑性変形に容易にさらされて互いに
強固に結合するためである。この工程は、クラックをほ
とんど引き起こすことなく、かつ成形後に約800℃の
高温にて熱処理を行なうことができるので原子の拡散を
生じさせ、それにより粒子間でより強い結合状態を得ら
れる。
【0004】他方、バインダーとして水ガラスを用い
て、非常に高い強度及び延性を有する非晶質な合金粉末
に高い圧力での成形を施した場合、たくさんのクラック
がコアに発生する。更に、500℃よりも低い温度にて
行なわれた熱処理は原子の拡散を生じさせず、最終的な
コアは強度が非常に低く、容易に壊れてしまう。本発明
の目的は、良好な高周波特性を備えた非晶質な合金粉末
コアの製造方法の提供であって、この製造方法は、従来
の水ガラスよりも高い粘性を有するポリイミド樹脂又は
フェノール樹脂をバインダーとして用い、それにより必
要とされるバインダーの量を減少させ、熱間静水圧プレ
スの場合よりも高い製造収量を確実なものにする。
【0005】本発明の別の目的は、高い成形密度を有す
る非晶質な合金コアの提供であって、当該コアは、その
表面にはクラックがなく、かつ、粒子間のその良好な絶
縁性により、高周波帯域においても低い周波数依存性及
び一定の透磁率を示す。本発明のまた別の目的は、優れ
た飽和磁束密度及び高められた実効透磁率を有備えたナ
ノクリスタル合金粉末コアの製造方法の提供であって、
この製造方法は、アモルファスな合金粉末に結晶化開始
温度を超えた温度にて熱処理を施し、バインダーとして
ポリイミド樹脂又はフェノール樹脂を使用する。
【0006】本発明の更にまた別の目的は、ナノクリス
タル合金粉末コアの提供であって、当該コアは、その表
面にはクラックがなく、かつ、粒子間のその良好な絶縁
性により、高周波帯域においても低い周波数依存性及び
一定の透磁率を示す。
【0007】
【課題を解決するための手段】上記した目的を達成する
ために、本発明は、アモルファス合金粉末を、ポリイミ
ド樹脂及びフェノール樹脂の一方とバインダーを有機溶
剤中で溶解して作成した溶液と混合し、液相のバインダ
ーで前記合金粉末の表面を均一に被覆して複合粒子の粉
末を作成する工程と、前記複合粒子の粉末を成形する工
程と、成形された前記複合粒子の粉末に熱処理を施す工
程とを備えることを特徴とするアモルファス合金粉末コ
アの製造方法を提供する(請求項1)。
【0008】好ましくは、上記した方法は、更に、ポリ
イミド樹脂及びフェノール樹脂の一方を有機溶剤中で溶
解して作成した溶液中で前記アモルファス合金粉末を混
合する前に、500℃よりも低い温度にて前記アモルフ
ァス合金粉末を熱処理する工程を含む(請求項6)。前
記アモルファス合金粉末が、Fe−Si−B基,Fe−
Al−B基,およびCo−Fe−Si−B基合金の少な
くともいずれか一種である(請求項2)。
【0009】全質量に対し、前記バインダーが0.3〜
3.0質量%である(請求項3)。前記成形は、室温か
ら200℃までの温度にて、10〜50ton/cm2の圧力
下で行なわれる(請求項4)。前記熱処理は150〜5
00℃の温度にて行なわれる(請求項5)。前記アモル
ファス合金粉末コアは、0.80Tよりも高い飽和磁束
密度を有し、かつ1MHz及び0.1MHzにて測定された透
磁率の比が0.90よりも大きい(請求項7)。
【0010】前記アモルファス合金粉末コアは、アモル
ファス合金粉末をポリイミドまたはフェノールを基剤と
するバインダーにより均一に被覆し、かつ温度200℃
未満にて圧縮成形することにより作成される(請求項
8)。本発明の別の態様によれば、ナノクリスタル合金
粉末コアの製造方法は、アモルファス合金粉末を、ポリ
イミド樹脂及びフェノール樹脂の一方とバインダーを有
機溶剤中で溶解して作成した溶液と混合し、液相のバイ
ンダーで前記合金粉末の表面を均一に被覆して複合粒子
の粉末を作成する工程と、前記複合粒子の粉末を常温に
て成形する工程と、成形された前記複合粒子の粉末に結
晶化開始温度よりも高い温度にて熱処理を施す工程とを
備える(請求項9)。
【0011】本発明の更に別の態様によれば、ナノクリ
スタル合金粉末コアの製造方法は、結晶化開始温度より
も高い温度にてアモルファス合金粉末に熱処理を施す工
程と、ポリイミド樹脂及びフェノール樹脂の一方とバイ
ンダーを有機溶剤中で溶解して作成した溶液を熱処理を
施した前記アモルファス合金粉末と混合し、液相のバイ
ンダーで前記合金粉末の表面を均一に被覆して複合粒子
の粉末を作成する工程と、前記複合粒子の粉末を100
〜300℃の温度にて成形する工程とを備える(請求項
10)。
【0012】前記アモルファス合金粉末が、Fe−Si
−B基合金またはFe−Al−B基合金である(請求項
11)。前記熱処理が、前記アモルファス合金の結晶化
開始温度とこの結晶化開始温度よりも100℃高い温度
の間の温度にて行なわれる(請求項12)。前記ナノク
リスタル合金粉末コアは、1.10Tよりも高い飽和磁
束密度を有し、かつ1MHz及び0.1MHzにて測定された
透磁率の比が0.90よりも大きい(請求項13)。こ
のナノクリスタル合金コアの特性は、同じ組成のアモル
ファス合金粉末コアに比べ20%よりも大きく高められ
ている。
【0013】また本発明においては、合金粉末を、ポリ
イミド樹脂及びフェノール樹脂の一方とバインダーを有
機溶剤中で溶解して作成した溶液と混合することを特徴
とするアモルファス合金コアまたはナノクリスタル合金
コアの製造方法が提供される(請求項14)。
【0014】
【発明の実施の形態】以下の詳細な発明において、発明
者が発明を実施するにあたって最良であると考える最適
な形態を一例として、本発明の好適な実施例を示して説
明する。後に明らかになるように、本発明は、本発明を
離れることなく様々な明白な点において変形が可能であ
る。
【0015】アモルファス合金粉末コア(amorphous al
loy powder core)及びナノクリスタル合金粉末コア(n
ano-crystal alloy powder core)の製造方法のために
必要とされる粉末の種類,バインダの種類,それらの
量,および加圧成形条件は、アモルファス合金粉末コア
及びナノクリスタル合金粉末コアの製造工程を通して類
似している。アモルファス合金粉末は機械的な合金工程
(mechanical alloy process),超急冷凝固法,及び水
噴射工程(water injection process)等により作成す
ることができる。
【0016】アモルファス状態の好適な合金粉末として
は、Fe基粉末(Fe−Si−B基,Fe−Al−B基
等),Co基粉末(Co−Fe−Si−B基)があり、
そして、アモルファス粉末を適当な熱処理によりナノ結
晶化するための好適な合金粉末としては、Fe−Si−
B基粉末,Fe−Al−B基粉末等がある。これらの合
金の結晶化温度(crystallization temperature)は約
500℃である。高い圧力の水噴射工程は、滴下した溶
解物を、30MPaを超える高圧力の水噴射により粉砕
し、そしてそれから急冷してアモルファス合金粉末を製
造する方法であり、従来の方法に比べて有利な収量及び
非結晶化という面を有する。高い圧力の水噴射を使用
し、噴射条件の変化に応じて100μm以下で平均直径
を変化させながら、アモルファス合金粉末を製造するこ
とができる。
【0017】バインダーの軟化点(vitrification poin
t)はアモルファス合金の結晶化温度よりも低くなけれ
ばならず、且つ、常温にて加えられた圧力の下でコアの
形状を保ちながら、クラックの発生を抑制するために、
常温で所定の接着強度を有していなければならない。ポ
リイミドを基剤とする熱可塑性樹脂、或いは、フェノー
ルを基剤とする熱可塑性樹脂が適当なバインダとして使
用されるのが好ましい。
【0018】バインダーの量は、全質量の0.5〜3.
0質量%に制限されるのが好ましい。0.5質量%より
少ないバインダーでは接着強度が弱く、合金粉末をかた
まりにすることが困難である。逆に、バインダーの量が
多すぎる場合、最終製品を形成する合金粉末の量が少な
くなり、かくして、合金粉末粒子間の接着強度は大きく
なるものの、その軟磁性特性が低くなる。上記した全質
量は、コアを形成する全てのバインダー及び合金粉末の
質量のことを指し、有機溶剤の質量は含まない。
【0019】バインダーを混合した合金粉末の成形に
は、10〜50ton/cm2の圧力を用いるのが好ましい。
圧力が10ton/cm2より低い場合、コアの密度が低くな
り、その軟磁性特性が低下する。圧力が高すぎる場合、
金型が非常に摩耗して製造コストが上昇する。優れた高
周波特性を有する、本発明のアモルファス合金粉末コア
およびナノクリスタル合金粉末コアの製造において、成
形温度,コアの熱処理温度等は、所望されるアモルファ
ス合金粉末コア及びナノクリスタル合金粉末コアととも
に変化する。
【0020】まず、本発明のアモルファス合金粉末コア
およびナノクリスタル合金粉末コアを製造するための成
形温度は、200℃より低いことが好ましい。成形温度
が高いほど、粉末粒子の密度が高くなるとともにコアの
成形密度が高くなる。温度が200℃より高いとエネル
ギーコストが高くなり好ましくない。本発明のアモルフ
ァス合金粉末コアの製造において、熱処理温度は、アモ
ルファス合金の組成及び以前の処理に要求された温度と
ともに変化し、結晶化温度よりも50〜200℃低い、
150〜500℃の温度が好ましい。温度が低い場合、
成形時に発生した内部応力を充分に除去することができ
ない。温度が高すぎる場合、アモルファス相から結晶相
への相変態が発生する。熱処理は不活性ガス或いは還元
ガスの雰囲気中で5〜60分間行なわれる。熱処理の時
間が短いと前記した応力は充分に除去されず、長時間熱
処理を行なうと製造収量が低下する。
【0021】次に、以下の説明は、高周波帯域で優れた
軟磁性特性を備えるナノクリスタル合金粉末コアの製造
に関する。(a)アモルファス合金粉末に結晶化開始温
度よりも高い温度にて熱処理を施してナノクリスタル合
金粉末を作成し、ポリイミド樹脂またはフェノール樹脂
並びにバインダを有機溶剤中に溶解して作られた溶液と
それを混合し、そして、液相のバインダで前記した合金
粉末を均一に(evenly)被覆して複合粉末を作成するコ
アの製造方法において、前記熱処理温度はバインダの軟
化点よりも高いのが好ましい。温度が高い場合、コアの
成形密度及び粒子の密度は高くなり、そして300℃を
超えて高い場合、エネルギーコストが高くなる。熱処理
の温度は、結晶化開始温度(crystallization starting
point)とこの結晶化開始温度よりも100℃、好まし
くは50℃、高い温度の間の温度である。
【0022】一般に、金属合金の熱処理は約500〜6
00℃で行なわれるのが好ましい。熱処理する温度が結
晶化開始温度よりも高すぎる場合、結晶相が突然粗くな
り、そしてバインダーが突然溶解し、かくして接着強度
が減少する。温度が結晶化開始温度よりも低い場合、ナ
ノクリスタル相はほとんど生成されない。好ましくは、
熱処理は、還元ガス雰囲気中で10〜60分間行なわれ
る。熱処理する時間が短すぎると、前記した応力を充分
に除去することができず、そして、熱処理を長時間行な
うことは、製造収量を減少させる。
【0023】以下の説明は、高周波帯域で優れた軟磁性
特性を備えるナノクリスタル合金粉末コアの製造に関す
る。(b)アモルファス合金粉末に結晶化開始温度より
も高い温度にて熱処理を施してナノクリスタル合金粉末
を作成し、ポリイミド樹脂またはフェノール樹脂並びに
バインダを有機溶剤中に溶解して作られた溶液とそれを
混合し、そして、液相のバインダで前記した合金粉末を
均一に被覆して複合粉末を作成する、ナノクリスタル合
金粉末コアを製造する方法において、熱処理に必要とさ
れる温度は、結晶化開始温度とこの結晶化開始温度より
も約100℃、好ましくは50℃、高い温度の間の温度
である。一般に、金属合金の熱処理は約500〜600
℃で行なわれるのが好ましい。以下の説明は本発明の好
適な実施例に関する。
【0024】<アモルファス合金粉末コアの好適な実施
例> 好適な実施例A−1 1gのポリイミド(GE Plastic製 ULTE
M 1000)を100ccの塩化メチレン溶液に溶解
して作った溶液を、高い圧力の水噴射法により作成した
99gのFe73Si1310Nb3Cu1アモルファス合金
粉末(平均粒径約15μm)に加え10分間混合した。
それからこの混合物を乾燥し、かくして、そのアモルフ
ァス合金粉末(平均粒径15μm)の表面がポリイミド
にて1μm未満の厚さまで均一に被覆されている複合粒
子の粉末が作成された。
【0025】この複合粒子の粉末7gを、外径20mm及
び内径12mmの金型に入れ、室温にて20ton/cm2の圧
力で成形し、そしてそれから、450℃の温度にてAr
ガス雰囲気中で30分間熱処理し、かくしてアモルファ
ス合金粉末コア(以下、アモルファスコアという)を作
成した。このアモルファスコアの特性、すなわち、密
度,クラックの発生,飽和磁束密度,様々な周波数帯域
における実効透磁率,および透磁率の比(μ1MHz/μ
0.1MHz)を表1に示す。コアの密度はコアの体積でコア
の実際の質量を除算して得られた値であり、そして、飽
和磁束密度(Bs)は振動試料磁力計(VSM)を用い
て外部磁界5,000Oeの下で測定された。実効透磁率
はLCRメータを用いて外部磁界10mOeの下で各周波
数帯域にて測定された。透磁率の比は1MHz及び0.1M
Hzにて測定された透磁率の値の比である。
【0026】好適な実施例A−2 この好適な実施例A−2は100ccの塩化メチレン溶
液に0.5gのポリイミドを溶解して溶液を作成した以
外は好適な実施例A−1と同様の条件で行なわれた。製
造されたアモルファスコアの特性、すなわち、密度,ク
ラックの発生,飽和磁束密度,様々な周波数帯域におけ
る実効透磁率,および透磁率の比(μ1M Hz/μ0.1MHz
を表1に示す。
【0027】好適な実施例A−3 この好適な実施例A−3は100ccの塩化メチレン溶
液に1.5gのポリイミドを溶解して溶液を作成した以
外は好適な実施例A−1と同様の条件で行なわれた。製
造されたアモルファスコアの特性、すなわち、密度,ク
ラックの発生,飽和磁束密度,様々な周波数帯域におけ
る実効透磁率,および透磁率の比(μ1M Hz/μ0.1MHz
を表1に示す。
【0028】好適な実施例A−4 この好適な実施例A−4は、常温にて成形する圧力が1
0ton/cm2である以外は好適な実施例A−1と同様の条
件で行なわれた。製造されたアモルファスコアの特性、
すなわち、密度,クラックの発生,飽和磁束密度,様々
な周波数帯域における実効透磁率,および透磁率の比
(μ1MHz/μ0.1MHz)を表1に示す。
【0029】好適な実施例A−5 この好適な実施例A−5は、常温にて成形する圧力が4
0ton/cm2である以外は好適な実施例A−1と同様の条
件で行なわれた。製造されたアモルファスコアの特性、
すなわち、密度,クラックの発生,飽和磁束密度,様々
な周波数帯域における実効透磁率,および透磁率の比
(μ1MHz/μ0.1MHz)を表1に示す。
【0030】好適な実施例A−6 高い圧力の水噴射工程により作成された99gのFe73
Si1310Nb3Cu1アモルファス合金粉末(平均粒径
約15μm)を、450℃の温度にてArガス雰囲気中
で30分間熱処理し、そしてそれから、常温にてそれに
対して空冷を施した。100ccのメチルアルコールに
1gのフェノール(KOLON Chemical製
KMB−100PLM)を溶解して作成した溶液を10
分間それと混合した。それから混合物を乾燥し、かくし
て、そのアモルファス合金粉末(平均粒径15μm)の
表面がフェノールにて1μm未満の厚さまで均一に被覆
されている複合粒子の粉末が作成された。
【0031】この複合粒子の粉末7gを、外径20mm及
び内径12mmの金型に入れ、室温にて20ton/cm2の圧
力で成形し、そしてそれから、150℃の温度にてAr
ガス雰囲気中で30分間熱処理し、かくしてアモルファ
スコアを作成した。このアモルファスコアの特性、すな
わち、密度,クラックの発生,飽和磁束密度,様々な周
波数帯域における実効透磁率,および透磁率の比(μ
1MHz/μ0.1MHz)を表1に示す。
【0032】好適な実施例A−7 この好適な実施例A−7は100ccのメチルアルコー
ルに0.5gのフェノールを溶解して溶液を作成した以
外は好適な実施例A−6と同様の条件で行なわれた。製
造されたアモルファスコアの特性、すなわち、密度,ク
ラックの発生,飽和磁束密度,様々な周波数帯域におけ
る実効透磁率,および透磁率の比(μ1M Hz/μ0.1MHz
を表1に示す。
【0033】好適な実施例A−8 この好適な実施例A−8は100ccのメチルアルコー
ルに1.5gのフェノールを溶解して溶液を作成した以
外は好適な実施例A−6と同様の条件で行なわれた。製
造されたアモルファスコアの特性、すなわち、密度,ク
ラックの発生,飽和磁束密度,様々な周波数帯域におけ
る実効透磁率,および透磁率の比(μ1M Hz/μ0.1MHz
を表1に示す。
【0034】好適な実施例A−9 この好適な実施例A−9は、金型の温度を150℃に維
持し、そして、続く熱処理を省略した以外は好適な実施
例A−6と同様の条件で行なわれた。製造されたアモル
ファスコアの特性、すなわち、密度,クラックの発生,
飽和磁束密度,様々な周波数帯域における実効透磁率,
および透磁率の比(μ1MHz/μ0.1MHz)を表1に示す。
【0035】好適な実施例A−10 この好適な実施例A−10は、アモルファス合金粉末を
450℃の温度にてH 2ガス雰囲気中で30分間熱処理
し、そして室温にてそれに対し空冷を施した以外は好適
な実施例A−6と同様の条件で行なわれた。製造された
アモルファスコアの特性、すなわち、密度,クラックの
発生,飽和磁束密度,様々な周波数帯域における実効透
磁率,および透磁率の比(μ1MHz/μ0.1MHz)を表1に
示す。
【0036】
【表1】
【0037】表1を参照すると、全ての好適な実施例に
おいて飽和磁束密度は約0.90Tであり、よく知られ
た結晶性軟磁性粉末コアの平均値である0.8Tより高
い。0.1MHzから1MHzまでの周波数帯域では透磁率
はほとんど変化しない。このコアの透磁率の比は0.1
MHzから1MHzまでの周波数帯域では0.90を超え、
そして、本発明のコアの周波数に対する低い依存性を示
し、このアモルファスコアが1MHzまで使用可能である
ことを示唆している。金属結晶コアと比較したときに、
本発明のコアは磁気特性(飽和磁束密度及び透磁率)に
おいて似ているかまたは優れており、そしてその実効透
磁率の比は1MHzまでの周波数帯域において0.90を
超えている。そのため、金属結晶コアの適当な周波数帯
域は200kHzであるが、本発明のコアは数10メガヘ
ルツにて使用することができる。
【0038】<アモルファス合金粉末コアの比較例A> 比較例A−1 この比較例A−1は100ccの塩化メチレン溶液に
0.3gのポリイミドを溶解して溶液を作成した以外は
好適な実施例A−1と同様の条件で行なわれた。製造さ
れたアモルファスコアの特性、すなわち、密度,クラッ
クの発生,飽和磁束密度,様々な周波数帯域における実
効透磁率,および透磁率の比(μ1MHz/μ 0.1MHz)を表
2に示す。
【0039】比較例A−2 この比較例A−2は塩化メチレンに3.2gのポリイミ
ドを溶解して溶液を作成した以外は好適な実施例A−1
と同様の条件で行なわれた。製造されたアモルファスコ
アの特性、すなわち、密度,クラックの発生,飽和磁束
密度,様々な周波数帯域における実効透磁率,および透
磁率の比(μ1MHz/μ0.1MHz)を表2に示す。
【0040】比較例A−3 この比較例A−3は、常温にて成形する圧力が5ton/cm
2である以外は好適な実施例A−1と同様の条件で行な
われた。製造されたアモルファスコアの特性、すなわ
ち、密度,クラックの発生,飽和磁束密度,様々な周波
数帯域における実効透磁率,および透磁率の比(μ1MHz
/μ0.1MHz)を表2に示す。
【0041】比較例A−4 この比較例A−4は100ccのメチルアルコールに
0.3gのフェノールを溶解して溶液を作成した以外は
好適な実施例A−6と同様の条件で行なわれた。製造さ
れたアモルファスコアの特性、すなわち、密度,クラッ
クの発生,飽和磁束密度,様々な周波数帯域における実
効透磁率,および透磁率の比(μ1MHz/μ 0.1MHz)を表
2に示す。
【0042】比較例A−5 この比較例A−5は、100ccのメチルアルコールに
3.2gのフェノールを溶解して溶液を作成した以外は
好適な実施例A−6と同様の条件で行なわれた。製造さ
れたアモルファスコアの特性、すなわち、密度,クラッ
クの発生,飽和磁束密度,様々な周波数帯域における実
効透磁率,および透磁率の比(μ1MHz/μ0.1MHz)を表
2に示す。
【0043】
【表2】
【0044】表2を参照すると、多数のクラックが比較
例のいくつかの条件では発生し、そして、実効透磁率お
よび飽和磁束密度は急激に減少している。
【0045】<ナノクリスタル合金粉末コアの好適な実
施例B> 好適な実施例B−1 ポリイミド1gを塩化メチレンに溶解して作った溶液
を、高い圧力の水噴射法により作成した99gのFe73
Si1310Nb3Cu1アモルファス合金粉末(平均粒径
約15μm)に加え10分間混合した。それからこの混
合物を乾燥し、かくして、そのアモルファス合金粉末
(平均粒径15μm)の表面がポリイミドにて1μm未
満の厚さまで均一に被覆されている複合粒子の粉末が作
成された。
【0046】この複合粒子の粉末7gを、外径20mm及
び内径12mmの金型に入れ、室温にて20ton/cm2の圧
力で成形し、そしてそれから、560℃の温度にてAr
ガス雰囲気中で30分間熱処理し、かくしてナノクリス
タル合金粉末コア(以下、ナノクリスタルコアという)
を作成した。このナノクリスタルコアの特性、すなわ
ち、密度,クラックの発生,飽和磁束密度,様々な周波
数帯域における実効透磁率,および透磁率の比(μ1MHz
/μ0.1MHz)を表3に示す。
【0047】アモルファス粉末の結晶化開始温度は、示
差熱分析(DTA)により昇温速度2℃/minにて加熱
して測定した。結晶粒の平均粒径は、X線回折(XR
D)および透過型電子顕微鏡(TEM)により測定され
た直径の平均値である。コアの密度は、コアの体積でコ
アの実際の質量を除算して得られた値であり、そして、
飽和磁束密度(Bs)は振動試料磁力計(VSM)を用
いて外部磁界5,000Oeの下で測定された。実効透磁
率はLCRメータを用いて外部磁界10mOeの下で各周
波数帯域にて測定された。透磁率の比は1MHz及び0.
1MHzにて測定された透磁率の値の比である。
【0048】好適な実施例B−2 この好適な実施例B−2は、高い圧力の水噴射法により
作成されたFe80Al 410Zr5Cu1アモルファス合
金粉末(平均粒径約12μm)99gを、500℃の温
度にてArガス雰囲気中で30分間熱処理した以外は好
適な実施例B−1と同様の条件で行なわれた。
【0049】好適な実施例B−3 高い圧力の水噴射法により作成されたFe80Al410
Zr5Cu1アモルファス合金粉末(平均粒径約12μ
m)99gを500℃の温度にてArガス雰囲気中で3
0分間熱処理し、そして室温にてそれに対して空冷を施
した。100ccのメチルアルコールに1gのフェノー
ルを溶解して作成された溶液を10分間それと混合し
た。それから混合物を乾燥し、かくして、平均粒径12
μmのアモルファス合金粉末の表面がフェノールにて1
μm未満の厚さまで均一に被覆されている複合粒子の粉
末が作成された。
【0050】この複合粒子の粉末7gを、外径20mm及
び内径12mmの金型に入れ、150℃の温度にて20to
n/cm2の圧力で成形し、かくしてアモルファスコアを作
成した。このアモルファスコアの特性、すなわち、密
度,クラックの発生,飽和磁束密度,様々な周波数帯域
における実効透磁率,および透磁率の比(μ1MHz/μ0.
1MHz)を表3に示す。
【0051】好適な実施例B−4 この好適な実施例B−4は、成形圧力が40ton/cm2
ある以外は好適な実施例B−1と同様の条件で行なわれ
た。 好適な実施例B−5 この好適な実施例B−5は、成形圧力が40ton/cm2
ある以外は好適な実施例B−3と同様の条件で行なわれ
た。
【0052】<ナノクリスタル合金粉末コアの比較例A
> 比較例B−1 この比較例B−1は、コアの熱処理が500℃の温度に
て行なわれた以外は好適な実施例B−1と同様の条件で
行なわれた。製造されたアモルファスコアの特性、すな
わち、密度,クラックの発生,飽和磁束密度,様々な周
波数帯域における実効透磁率,および透磁率の比(μ
1MHz/μ0.1MHz)を表3に示す。
【0053】比較例B−2 この比較例B−2は、コアの熱処理が450℃の温度に
て行なわれた以外は好適な実施例B−2と同様の条件で
行なわれた。製造されたアモルファスコアの特性、すな
わち、密度,クラックの発生,飽和磁束密度,様々な周
波数帯域における実効透磁率,および透磁率の比(μ
1MHz/μ0.1MHz)を表3に示す。
【0054】比較例B−3 この比較例B−3は、コアの熱処理が650℃の温度に
て行なわれた以外は好適な実施例B−1と同様の条件で
行なわれた。製造されたアモルファスコアの特性、すな
わち、密度,クラックの発生,飽和磁束密度,様々な周
波数帯域における実効透磁率,および透磁率の比(μ
1MHz/μ0.1MHz)を表3に示す。
【0055】
【表3】
【0056】表3を参照すると、全ての好適な実施例に
おいて飽和磁束密度は1.10Tを超えており、そし
て、ナノクリスタルコアの特性は、結晶化温度よりも低
い温度で熱処理された同じ組成のアモルファス合金粉末
コアに比べて20%より大きく高められている。1MHz
での実効透磁率は60を超え、そしてその透磁率は、結
晶化温度よりも低い温度で熱処理された同じ組成の非晶
質な軟磁性粉末コアに比べて20%以上高められてい
る。
【0057】0.1MHzから1MHzまでの周波数帯域で
は透磁率はほとんど変化しない。このコアの透磁率の比
は0.1MHzから1MHzまでの周波数帯域では0.90
を超え、そして、本発明のコアの周波数に対する低い依
存性を示し、このアモルファスコアが1MHzまで使用可
能であることを示唆している。金属結晶コアと比較した
ときに、本発明のコアは磁気特性(飽和磁束密度及び透
磁率)において似ているかまたは優れており、そしてそ
の実効透磁率の比は1MHzまでの周波数帯域において
0.90を超えている。そのため、金属結晶コアの適当
な周波数帯域は200kHzであるが、本発明のコアは数
10メガヘルツにて使用することができる。
【0058】結晶化開始温度よりも180℃高い温度で
熱処理された比較例B−3のコアは、平均結晶粒径が粗
く、その飽和磁束密度は本発明のナノクリスタル合金コ
アとほぼ同じであり、そしてその透磁率は相当低下して
いる。本発明を、最も実際的かつ好適な実施例であると
現在考えられるものとの関連で記載したが、本発明は、
開示された実施例に限定されることはなく、むしろそれ
どころか、請求項の要旨の範囲内に含まれる種々の変形
および等価な構成におよぶものである。
【0059】
【発明の効果】上記の説明から明らかなように、本発明
のアモルファス合金粉末コア及びナノクリスタル合金粉
末コアは、優れた高周波特性を備え、その表面にクラッ
クが発生することなく高い成形密度を有し、そして、満
足できる粒子の絶縁性及び周波数への低い依存性を示し
ている。更に、本発明のアモルファス合金粉末コアおよ
びナノクリスタル合金粉末コアは、高周波帯域で一定の
透磁率を有し、数キロヘルツから数10メガヘルツにて
電気および電子機器の磁性体として使用することができ
る。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金 圭鎭 大韓民国大田廣域市儒城區田民洞 世宗ア パート104洞202號 Fターム(参考) 4K018 AA25 AA26 BA16 BB07 CA01 CA07 FA09 5E041 AA02 AA03 AA05 BC05 BD03 CA02 CA03 CA04 HB15 HB17 NN03 NN14 NN18

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】 アモルファス合金粉末を、ポリイミド樹
    脂及びフェノール樹脂の一方とバインダーを有機溶剤中
    で溶解して作成した溶液と混合し、液相のバインダーで
    前記合金粉末の表面を均一に被覆して複合粒子の粉末を
    作成する工程と、前記複合粒子の粉末を成形する工程
    と、成形された前記複合粒子の粉末に熱処理を施す工程
    とを備えることを特徴とするアモルファス合金粉末コア
    の製造方法。
  2. 【請求項2】 前記アモルファス合金粉末が、Fe−S
    i−B基,Fe−Al−B基,およびCo−Fe−Si
    −B基合金の少なくともいずれか一種である請求項1の
    アモルファス合金粉末コアの製造方法。
  3. 【請求項3】 全質量に対し、前記バインダーが0.3
    〜3.0質量%である請求項1のアモルファス合金粉末
    コアの製造方法。
  4. 【請求項4】 前記成形が、室温から200℃までの温
    度にて10〜50ton/cm2の圧力下で行なわれる請求項
    1のアモルファス合金粉末コアの製造方法。
  5. 【請求項5】 前記熱処理が、温度150〜500℃に
    て行なわれる請求項1のアモルファス合金粉末コアの製
    造方法。
  6. 【請求項6】 更に、ポリイミド樹脂及びフェノール樹
    脂の一方を有機溶剤中で溶解して作成した溶液中で前記
    アモルファス合金粉末を混合する前に、500℃よりも
    低い温度にて前記アモルファス合金粉末を熱処理する工
    程を備える請求項1のアモルファス合金粉末コアの製造
    方法。
  7. 【請求項7】 0.80Tよりも高い飽和磁束密度を有
    し、かつ、1MHz及び0.1MHzにて測定した透磁率の比
    が0.90よりも大きいことを特徴とするアモルファス
    合金粉末コア。
  8. 【請求項8】 前記アモルファス合金コアが、アモルフ
    ァス合金粉末をポリイミドまたはフェノールを基剤とす
    るバインダーにより均一に被覆し、かつ温度200℃未
    満にて圧縮成形することにより作成された請求項7のア
    モルファス合金粉末コア。
  9. 【請求項9】 アモルファス合金粉末を、ポリイミド樹
    脂及びフェノール樹脂の一方とバインダーを有機溶剤中
    で溶解して作成した溶液と混合し、液相のバインダーで
    前記合金粉末の表面を均一に被覆して複合粒子の粉末を
    作成する工程と、前記複合粒子の粉末を常温にて成形す
    る工程と、成形された前記複合粒子の粉末に結晶化開始
    温度よりも高い温度にて熱処理を施す工程とを備えるこ
    とを特徴とするナノクリスタル合金粉末コアの製造方
    法。
  10. 【請求項10】 アモルファス合金粉末に結晶化開始温
    度よりも高い温度にて熱処理を施しナノクリスタル相を
    作成する工程と、ポリイミド樹脂及びフェノール樹脂の
    一方とバインダーを有機溶剤中で溶解して作成した溶液
    を熱処理を施した前記アモルファス合金粉末と混合し、
    液相のバインダーで前記合金粉末の表面を均一に被覆し
    て複合粒子の粉末を作成する工程と、前記複合粒子の粉
    末を温度100〜300℃にて成形する工程とを備える
    ことを特徴とするナノクリスタル合金粉末コアの製造方
    法。
  11. 【請求項11】 前記アモルファス合金粉末が、Fe−
    Si−B基合金またはFe−Al−B基合金である請求
    項9または10のナノクリスタル合金粉末コアの製造方
    法。
  12. 【請求項12】 前記熱処理が、前記アモルファス合金
    の結晶化開始温度とこの結晶化開始温度よりも100℃
    高い温度の間の温度にて行なわれる請求項9または10
    のナノクリスタル合金粉末コアの製造方法。
  13. 【請求項13】 0.80Tよりも高い飽和磁束密度を
    有し、かつ1MHz及び0.1MHzにて測定した透磁率の比
    が0.90よりも大きいことを特徴とするナノクリスタ
    ル合金粉末コア。
  14. 【請求項14】 合金粉末を、ポリイミド樹脂及びフェ
    ノール樹脂の一方とバインダーを有機溶剤中で溶解して
    作成した溶液と混合することを特徴とするアモルファス
    合金コアまたはナノクリスタル合金粉末コアの製造方
    法。
JP2002000801A 2001-01-05 2002-01-07 アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法 Pending JP2002280224A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020010000491A KR100344010B1 (ko) 2001-01-05 2001-01-05 고주파 특성이 우수한 비정질 합금 분말 코아 및 그 제조방법
KR2001-007782 2001-02-16
KR1020010007782A KR100344009B1 (ko) 2001-02-16 2001-02-16 고주파 특성이 우수한 나노 결정 합금 분말 코아 및 그제조 방법
KR2001-000491 2001-02-16

Publications (1)

Publication Number Publication Date
JP2002280224A true JP2002280224A (ja) 2002-09-27

Family

ID=26638697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000801A Pending JP2002280224A (ja) 2001-01-05 2002-01-07 アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法

Country Status (2)

Country Link
US (1) US6827557B2 (ja)
JP (1) JP2002280224A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228824A (ja) * 2005-02-15 2006-08-31 Tokyo Coil Engineering Kk インダクタ及びその製造方法
JP2007537637A (ja) * 2004-05-13 2007-12-20 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 誘導エネルギー伝送用アンテナ装置およびこのアンテナ装置の使用方法
JP2008141011A (ja) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd アモルファス圧粉磁心
JP2008141012A (ja) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd リアクトル
JP2010034102A (ja) * 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
WO2022264999A1 (ja) * 2021-06-16 2022-12-22 日立金属株式会社 ナノ結晶合金薄帯の製造方法、およびナノ結晶合金薄帯
WO2022264998A1 (ja) * 2021-06-16 2022-12-22 日立金属株式会社 ナノ結晶合金薄帯の製造方法、およびナノ結晶合金薄帯

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024824A1 (de) * 2000-05-19 2001-11-29 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
US7034427B2 (en) * 2003-08-18 2006-04-25 Light Engineering, Inc. Selective alignment of stators in axial airgap electric devices comprising low-loss materials
US20070024147A1 (en) * 2003-08-18 2007-02-01 Hirzel Andrew D Selective alignment of stators in axial airgap electric devices comprising low-loss materials
US7190101B2 (en) * 2003-11-03 2007-03-13 Light Engineering, Inc. Stator coil arrangement for an axial airgap electric device including low-loss materials
JP2007088134A (ja) * 2005-09-21 2007-04-05 Sumida Corporation チップインダクタ
KR20070044879A (ko) * 2005-10-26 2007-05-02 주식회사 피앤아이 금속, 합금 및 세라믹 나노 입자가 균일하게 진공 증착된파우더의 형성 방법 및 그 제조 장치
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
DE102006028389A1 (de) 2006-06-19 2007-12-27 Vacuumschmelze Gmbh & Co. Kg Magnetkern und Verfahren zu seiner Herstellung
DE102006032517B4 (de) 2006-07-12 2015-12-24 Vaccumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von Pulververbundkernen und Pulververbundkern
JP2009543370A (ja) * 2006-07-12 2009-12-03 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー 磁芯の作製方法、磁芯及び磁芯を伴う誘導性部材
US20080036566A1 (en) 2006-08-09 2008-02-14 Andrzej Klesyk Electronic Component And Methods Relating To Same
DE102007034925A1 (de) * 2007-07-24 2009-01-29 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2015517026A (ja) * 2012-03-23 2015-06-18 アップル インコーポレイテッド アモルファス合金粉末原料の加工プロセス
CN103233188A (zh) * 2013-04-23 2013-08-07 苏州斯玛格软磁新材料有限公司 一种非晶态抗电磁干扰材料及其制造方法
CN104028747B (zh) * 2014-05-28 2015-05-27 浙江大学 一种金属软磁复合材料的非均匀形核绝缘包覆处理方法
CN104070161B (zh) * 2014-05-28 2015-10-28 浙江大学 一种无机-有机复合粘结剂包覆软磁复合材料的制备方法
CN109256251A (zh) * 2018-09-19 2019-01-22 鲁东大学 表面氧化工艺制备高磁导低功耗金属软磁复合材料的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608297A (en) * 1982-04-21 1986-08-26 Showa Denka Kabushiki Kaisha Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
JPH0611008B2 (ja) * 1983-11-16 1994-02-09 株式会社東芝 圧粉鉄心
EP0800182B1 (en) * 1989-09-01 2002-11-13 Masaaki Yagi Thin soft magnetic alloy strip
TW428183B (en) * 1997-04-18 2001-04-01 Matsushita Electric Ind Co Ltd Magnetic core and method of manufacturing the same
US6284060B1 (en) * 1997-04-18 2001-09-04 Matsushita Electric Industrial Co., Ltd. Magnetic core and method of manufacturing the same
US6302972B1 (en) * 1998-12-07 2001-10-16 Sumitomo Special Metals Co., Ltd Nanocomposite magnet material and method for producing nanocomposite magnet
JP2000348918A (ja) * 1999-06-02 2000-12-15 Seiko Epson Corp 希土類ボンド磁石、希土類ボンド磁石用組成物および希土類ボンド磁石の製造方法
JP2001073062A (ja) * 1999-09-09 2001-03-21 Kubota Corp 非晶質軟磁性合金粉末成形体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537637A (ja) * 2004-05-13 2007-12-20 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 誘導エネルギー伝送用アンテナ装置およびこのアンテナ装置の使用方法
JP2006228824A (ja) * 2005-02-15 2006-08-31 Tokyo Coil Engineering Kk インダクタ及びその製造方法
JP2008141011A (ja) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd アモルファス圧粉磁心
JP2008141012A (ja) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd リアクトル
JP2010034102A (ja) * 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
WO2022264999A1 (ja) * 2021-06-16 2022-12-22 日立金属株式会社 ナノ結晶合金薄帯の製造方法、およびナノ結晶合金薄帯
WO2022264998A1 (ja) * 2021-06-16 2022-12-22 日立金属株式会社 ナノ結晶合金薄帯の製造方法、およびナノ結晶合金薄帯

Also Published As

Publication number Publication date
US20020124914A1 (en) 2002-09-12
US6827557B2 (en) 2004-12-07

Similar Documents

Publication Publication Date Title
JP2002280224A (ja) アモルファス合金粉末コア及びナノクリスタル合金粉末コア並びにそれらの製造方法
CN107578877B (zh) 一种磁导率μ=90的铁基纳米晶磁粉芯及其制备方法
WO2017022227A1 (ja) 軟磁性圧粉磁芯の製造方法および軟磁性圧粉磁芯
JP6482718B1 (ja) 軟磁性材料およびその製造方法
KR910002350B1 (ko) Fe-기본 연질 자성 합금 분말, 이의 자성 코어 및 이의 제조방법
CN106471588B (zh) 压粉磁心、磁心用粉末以及它们的制造方法
US20070258842A1 (en) Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them
KR101499297B1 (ko) 고온성형에 의한 고투자율 비정질 압분자심코아 및 그 제조방법
WO2008018179A1 (en) Antenna core and antenna
CN105405568A (zh) 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法
JP6088192B2 (ja) 圧粉磁芯の製造方法
TW200413546A (en) Noncrystalline soft magnetic alloy powder, and green compact core and electromagnetic wave absorber using the same
CN107924743B (zh) 软磁性粉末
KR20090009969A (ko) 자심 및 그 제조방법
JP2008294411A (ja) 軟磁性粉末、圧粉磁心の製造方法、圧粉磁心、及び磁性部品
CN113365764B (zh) 非晶质合金薄带、非晶质合金粉末及纳米晶体合金压粉磁芯以及纳米晶体合金压粉磁芯的制造方法
TW201917225A (zh) 鐵基合金、結晶鐵基合金粉化粉末及磁芯
KR100344010B1 (ko) 고주파 특성이 우수한 비정질 합금 분말 코아 및 그 제조방법
CN101699579A (zh) 具有更高复数磁导率的钕铁氮高频软磁材料制备方法
CN101707108B (zh) ThMn12型软磁材料及其制备方法
KR100344009B1 (ko) 고주파 특성이 우수한 나노 결정 합금 분말 코아 및 그제조 방법
CN1194356C (zh) 具有良好高频性能的非晶态合金粉末芯和纳米晶体合金粉末芯及其制造方法
CN111986912B (zh) 非晶态软磁粉芯及其制备方法和应用
KR100499014B1 (ko) 성형성이 개선된 비정질 또는 나노결정의 합금분말 코아및 그의 제조방법
JPWO2020179534A1 (ja) 磁心コアとその製造方法、及びコイル部品

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050713