CN105405568A - 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法 - Google Patents

用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法 Download PDF

Info

Publication number
CN105405568A
CN105405568A CN201510568093.2A CN201510568093A CN105405568A CN 105405568 A CN105405568 A CN 105405568A CN 201510568093 A CN201510568093 A CN 201510568093A CN 105405568 A CN105405568 A CN 105405568A
Authority
CN
China
Prior art keywords
core
powder
compressed
coating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510568093.2A
Other languages
English (en)
Other versions
CN105405568B (zh
Inventor
大坪将士
谷昌明
服部毅
黄晸焕
原昌司
田岛伸
三枝真二郎
石井洪平
冈本大祐
高桥利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN105405568A publication Critical patent/CN105405568A/zh
Application granted granted Critical
Publication of CN105405568B publication Critical patent/CN105405568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

本发明提供了用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法。具体地,所述压粉磁芯包含软磁颗粒、第一包覆层、第二包覆层和第三包覆层。第一包覆层由氧化铝制成,所述软磁颗粒的至少一部分表面包覆有所述第一包覆层。第二包覆层由氮化铝制成,所述第一包覆层的至少一部分表面包覆有所述第二包覆层。第三包覆层由低熔点玻璃制成,所述第二包覆层的至少一部分表面包覆有所述第三包覆层。所述低熔点玻璃具有低于所述软磁颗粒的退火温度的软化点。

Description

用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法
技术领域
本发明涉及一种在体积比电阻(下文中简称为“比电阻”)和强度方面优异的压粉磁芯、可自其获得所述压粉磁芯的用于磁芯的粉末及其制备方法。
背景技术
现有技术中使用有电磁产品,例如变压器、电动机、发电机、扬声器、感应加热器或各种致动器。大多数这些产品使用交变磁场。通常,为了高效地获得局部高交变磁场,在交变磁场中设置磁芯(软磁石)。
需要磁芯来不仅在交变磁场中提供高磁特性而且在交变磁场中提供使用过程中高频波损耗的减少。此高频波损耗也可与磁芯的材料无关地称为“铁损”。高频波损耗包括涡流损耗、磁滞损耗和残留损耗。在此情况下,重要的是减小涡流损耗,其随交变磁场频率的增大而增大。
为了减小涡流损耗,已进行压粉磁芯的开发和研究,压粉磁芯通过将包覆有绝缘层(膜)的软磁颗粒(构成用于磁芯的粉末的颗粒)加压成型而获得。介于各个软磁颗粒之间的绝缘层实现高比电阻并减少压粉磁芯的高频波损耗。压粉磁芯在其形状方面具有高的自由度并被用在各种电磁装置中。近来,为了扩展压粉磁芯的用途,进一步的重点已放在改善比电阻和强度上。日本专利申请公开第2003-243215号(JP2003-243215A)、日本专利申请公开第2006-233268号(JP2006-233268A)和日本专利申请公开第2013-171967号(JP2013-171967A)公开了其中比电阻和强度得到改善的下述压粉磁芯。
JP2003-243215A公开了一种压粉磁芯,其包含:具有其上形成氮化物层的表面的Fe-Si软磁颗粒;和由有机硅树脂等制成的绝缘粘结剂(粘结剂)。此氮化物层由氮化硅制成并且形成为抑制高温退火过程中绝缘材料(例如,有机硅树脂)向软磁颗粒内部的扩散。压粉磁芯例如使用包括以下步骤的方法制备:将通过相互捏合Fe-4Si-3Al(重量%)粉末与有机硅树脂所获得的复合物加压成型为压实体;和在N2中于800℃下将所述压实体加热30分钟以氮化和退火。
然而,在使用上述方法获得的压粉磁芯的情况下,退火温度高于作为绝缘材料的有机硅树脂等的耐热温度。因此,软磁颗粒之间的绝缘性质和粘结强度很可能不够。因此,在JP2003-243215A中公开的方法中,可能无法在软磁颗粒之间形成均匀或均一的氮化物层。
JP2006-233268A公开了通过将投入到由SUS316制成的容器中的气体雾化粉末(Fe-Cr-Al)在空气(含氮气氛)中加热到1000℃可获得磁粉,所述磁粉包含具有包覆有AlN膜的表面的颗粒,所述AlN膜具有高电阻。用来形成AlN膜的粉末包含Cr。当所述粉末不含Cr时,将产生铁的氮化物。
当如JP2006-233268A中所述在空气中加热Fe-Cr-Al粉末时,通常在颗粒表面上形成相当可观量的氧化物(氧化物膜)。因此,AlN可能不均匀地形成于颗粒表面上。JP2006-233268A未对压粉磁芯的比电阻和强度进行详细描述。
JP2013-171967A公开了可通过在含氮气氛中微波加热由使用SiO2绝缘的气体雾化粉末(Fe-6.5重量%Si)制成的压实体来获得包含具有其上形成有氮化物的表面的颗粒的压粉磁芯。此氮化物为氮化硅,而非下面描述的AlN。另外,JP2013-171967A未对低熔点玻璃进行描述。
发明内容
本发明提供了用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法。
根据本发明的第一个方面的用于磁芯的粉末包含:软磁颗粒;由氧化铝制成的氧化物层,所述软磁颗粒的至少一部分表面包覆有所述氧化物层;和由氮化铝制成的氮化物层,所述氧化物层的至少一部分表面包覆有所述氮化物层。
根据本发明的第一个方面的用于磁芯的粉末还可包含低熔点玻璃。所述低熔点玻璃可附着到所述氮化物层的一部分表面并且具有低于所述软磁颗粒的退火温度的软化点。
根据本发明的第二个方面的制备压粉磁芯的方法包括:用根据本发明的第一个方面的用于磁芯的粉末填充模具;将填充的用于磁芯的粉末加压成型为压实体;和对所述压实体退火。
根据本发明的第三个方面的压粉磁芯包含软磁颗粒、第一包覆层、第二包覆层和第三包覆层。第一包覆层由氧化铝制成,所述软磁颗粒的至少一部分表面包覆有所述第一包覆层。第二包覆层由氮化铝制成,所述第一包覆层的至少一部分表面包覆有所述第二包覆层。第三包覆层由低熔点玻璃制成,所述第二包覆层的至少一部分表面包覆有所述第三包覆层。所述低熔点玻璃具有低于所述软磁颗粒的退火温度的软化点。
在本发明的第三个方面,软磁颗粒可由含Al的铁合金制成。
在上面的配置中,铁合金还可包含Si。铁合金中Al的含量相对于Al和Si的总含量的质量比可为0.45或更高。
在上面的配置中,Al的含量的质量比可为0.67或更高。
在上面的配置中,相对于100质量%的铁合金的总质量而言,Al和Si的总含量可为10质量%或更低。
在本发明的第三个方面,低熔点玻璃可包含硼硅酸盐玻璃。
在本发明的第三个方面,相对于100质量%的压粉磁芯的总质量而言,低熔点玻璃的含量可为0.05质量%至4质量%。
在上面的配置中,相对于100质量%的压粉磁芯的总质量而言,低熔点玻璃的含量可为0.1质量%至1质量%。
本发明的第四个方面为制备用于磁芯的粉末的方法。所述方法包括在氮化气氛中于800℃至1050℃的温度范围内加热包含氧化物层的氧化物颗粒以在所述氧化物层的至少一部分表面上形成由氮化铝制成的氮化物层。所述氧化物颗粒由含Al的铁合金制成。所述氧化物层由氧化铝制成并且设置在所述氧化物颗粒的至少一部分表面上。
在本发明的第四个方面,氧化物颗粒的表面中的氧浓度可为0.08%或更高。
附图说明
本发明的示例性实施方案的特征、优点以及技术和工业重要性将在下文结合附图描述,在附图中,相同的附图标记表示相同的要素,且其中:
图1A为示出了根据本发明的一个实施方案的压粉磁芯中的晶界的示意图;
图1B为示出了根据本发明的实施方案在氧化物层上形成氮化物层的步骤的示意图;
图2A为通过观察氮化物颗粒(样品12)的表面附近的区域所获得的AES图;
图2B为通过观察氮化物颗粒(样品19)的表面附近的区域所获得的AES图;
图2C为通过观察氮化物颗粒(样品20)的表面附近的区域所获得的AES图;
图3为示出了氮化物颗粒(样品1)的表面附近的区域的XRD曲线图;
图4为示出了根据每一个样品的压粉磁芯的比电阻与径向耐压强度之间的关系的分散图;
图5为示出了根据每一个样品的压粉磁芯的制备条件及其特性的表格;和
图6为示出了图5中所示低熔点玻璃的组成和软化点的表格。
具体实施方式
作为试错法的结果,本发明人发现,通过在软磁颗粒之间形成包括氧化铝层、氮化铝层和低熔点玻璃层的三个层的晶界,可获得具有高比电阻和高强度的压粉磁芯。基于此发现,取得了本发明。下文将描述本发明的实施方案的概要。
根据本发明的一个实施方案的压粉磁芯包含:软磁颗粒;由氧化铝制成的第一包覆层,所述软磁颗粒的至少一部分表面包覆有所述第一包覆层;由氮化铝制成的第二包覆层,所述第一包覆层的至少一部分表面包覆有所述第二包覆层;和由低熔点玻璃制成的第三包覆层,所述第二包覆层的至少一部分表面包覆有所述第三包覆层,所述低熔点玻璃具有低于所述软磁颗粒的退火温度的软化点。
在根据本发明的实施方案的压粉磁芯中,相邻软磁颗粒之间的晶界具有包括第一包覆层、第二包覆层和第三包覆层的三层结构(参见图1A)。在这些层中,形成在由氧化铝制成的第一包覆层(适宜地称为“Al-O层”)上的由氮化铝制成的第二包覆层(适宜地称为“AlN层”)展现出高的绝缘性,甚至在进行高温退火以移除成型过程中引入到软磁颗粒中的残余应力后也无改性或缺陷。甚至当在第二包覆层中形成缺陷如裂纹时,软磁颗粒之间的绝缘性也将由第二包覆层的表面所包覆的由低熔点玻璃制成的第三包覆层保持。
另外,在退火过程中软化或熔化了的低熔点玻璃对AlN层具有优异的润湿性,将AlN层润湿并均匀地铺展于其上。因此,在根据本发明的实施方案的压粉磁芯中,软磁颗粒之间的小孔隙(例如,三相点)充满低熔点玻璃,并因此基本上无作为裂纹之源的空隙形成。结果,由低熔点玻璃制成的第三包覆层(也适宜地称为“低熔点玻璃层”)与第二包覆层协力改善相邻软磁颗粒之间的绝缘性并可强力地粘结相邻的软磁颗粒。
构成晶界的层协同地起作用。结果,根据本发明的实施方案的压粉磁芯可展现出高磁特性(例如,低的矫顽力和低的磁滞损耗)而同时实现高的比电阻和强度水平。
在根据本发明的实施方案的压粉磁芯的情况下,低熔点玻璃和软磁颗粒之间各构成元素的扩散基本上被抑制,甚至在高温退火之后,但其原因不清楚。据认为,各构成元素的扩散的抑制因为介于低熔点玻璃和软磁颗粒之间的化合物层(特别地,AlN层)起到阻挡层的作用来抑制低熔点玻璃的改性或劣化而获得。据认为,AlN层的上述效果有助于压粉磁芯的比电阻和强度的改善。
据认为,第一包覆层(Al-O层)有助于压粉磁芯的比电阻和强度的改善并且还显著地有助于作为下层的第二包覆层(AlN层)的稳定和均匀形成。
根据本发明的一个实施方案,可提供适于产生上述压粉磁芯的用于磁芯的粉末。具体而言,根据本发明的实施方案的用于磁芯的粉末可包含:软磁颗粒;由氧化铝制成的氧化物层,所述软磁颗粒的至少一部分表面包覆有所述氧化物层;和由氮化铝制成的氮化物层,所述氧化物层的至少一部分表面包覆有所述氮化物层。此用于磁芯的粉末可被用来制备上述压粉磁芯。在用于磁芯的粉末中,具有低于所述软磁颗粒的退火温度的软化点的低熔点玻璃可被附着到氮化物层。
在本说明书中,包含氧化物层和其表面上的氮化物层的软磁颗粒、或者在氮化物层的表面上还包含低熔点玻璃的软磁颗粒将被适宜地称为“用于磁芯的颗粒”。用于磁芯的颗粒的聚集体可被视为根据本发明的实施方案的用于磁芯的粉末。
用于磁芯的颗粒中低熔点玻璃的存在形式不受限制。例如,低熔点玻璃可以粒径小于软磁颗粒粒径的玻璃细颗粒的形式或者以膜或层的形式附着到颗粒表面。这同样适用于制备用于磁芯的粉末的方法。当对用于磁芯的粉末的压实体退火时,仅需要低熔点玻璃软化或熔化以便在第二包覆层上形成第三包覆层。
根据本发明的一个实施方案,可提供一种制备上述用于磁芯的粉末的方法。根据本发明的实施方案的方法包括在氮化气氛中于800℃至1050℃、优选850℃至1000℃的温度范围内加热氧化物颗粒以在氧化物层的至少一部分表面上形成由氮化铝制成的氮化物层的氮化步骤,其中所述氧化物颗粒由含Al的铁合金制成并在氧化物颗粒的至少一部分表面上包含由氧化铝制成的氧化物膜。根据此实施方案的方法还可包括使低熔点玻璃附着到氮化物层的一部分表面的玻璃附着步骤,所述低熔点玻璃具有低于所述软磁颗粒的退火温度的软化点。
上述氧化物颗粒可通过单独地进行在软磁颗粒的至少一部分表面上形成氧化物层的氧化步骤来获得,所述氧化物层由氧化铝制成,并且所述软磁颗粒由含Al的铁合金制成。可在软磁颗粒的制备过程中同时(自然地)形成氧化物层。例如,在使用气水雾化粉末或水雾化粉末时,在颗粒表面上自然地形成上述氧化物层。当然,根据本发明的实施方案的氧化物颗粒可通过调节熔融铁合金被喷射入其中的气氛(氧浓度)自气体雾化粉末获得。在这种情况下,认为熔融铁合金被喷射入其中的气氛中所含的氧或者作为被喷射颗粒的冷却介质的水为用于形成氧化物层的氧源。
在氧化物层上形成显著有助于改善压粉磁芯的比电阻和强度的氮化物层的机理不一定清楚但目前推测如下。当由含Al的铁合金制成并在软磁颗粒的表面上包含氧化物层的软磁颗粒(氧化物颗粒)在氮化气氛中被加热时,比Fe(其具有低的氧化物形成能)更可能被氧化的Al从软磁颗粒的内部向作为氧化物层的其表面侧扩散。相反,氧化物层中存在的O扩散向软磁颗粒的内部。因此,更可能朝向氧化物层的内部(软磁颗粒的表面侧)形成稳定的氧化铝。另一方面,朝向氧化物层的外部(最外表面侧)形成具有低氧浓度的不稳定氧化铝(缺氧的氧化铝)。即,至少在氧化物层的最外表面附近的区域上可形成其中形成完全化合物所需的O部分欠缺的不稳定氧化铝(Al-O)。
当被加热到高温的氮(N)与呈这种状态氧化物层的最外表面接触时,N很可能被引入到呈缺氧状态的Al-O中,并且至少一部分Al与N反应。结果,据认为在氧化物层的最外表面附近的区域上形成由稳定的AlN制成的氮化物层(参见图1A)。经氮化的软磁颗粒(包含氮化物层的软磁颗粒)将被适宜地称为“氮化物颗粒”。
据认为,构成氮化物层的氮化铝主要由AlN制成,但其可由其中Al相对于N的原子比率并非精确地为1∶1的不完全氮化物制成。另外,据认为,构成氧化物层的氧化铝的组成和结构可随层中的厚度位置而改变或可在各个处理之前或之后改变。因此,难以完全指定构成氮化物层的氮化铝的组成和结构。氧化铝的实例包括:由α-Al2O3或γ-Al2O3表示的氧化铝(III);由Al2O表示的氧化铝(I);由AlO表示的氧化铝(II);和自上述实例获得的部分缺氧的氧化铝。根据本发明的实施方案的氧化铝不限于一种氧化铝而是可为多种氧化铝的混合物。考虑到形成氮化物层的步骤,据认为优选的是,氮化之前的氧化物层自缺氧的氧化铝获得。
根据本发明的一个实施方案,可提供一种制备压粉磁芯的方法。根据该实施方案的方法包括:用上述用于磁芯的粉末填充模具的填充步骤;将模具中用于磁芯的粉末加压成型为压实体的成型步骤;和对成型步骤后获得的压实体退火的退火步骤。根据此方法,可获得具有优异的比电阻和强度的压粉磁芯。
优选根据本发明的每一个实施方案的每一个层均一或均匀地形成在颗粒表面上。然而,每一个层均可具有非包覆部分、或者不均一或不均匀部分。另外,每一个层的组成或状态(例如,组成分布)可在从每一个层的形成到压粉磁芯的退火的步骤过程中改变。
根据本发明的每一个实施方案的“软磁颗粒的退火温度”具体是指进行以自用于磁芯的粉末的加压成型压实体移除残余应变或残余应力的退火步骤的加热温度。退火温度的具体温度不受特别限制,只要其高于所选的低熔点玻璃的软化点即可。例如,退火温度优选为650℃或更高,更优选700℃或更高,还更优选800℃或更高,甚至还更优选850℃或更高。
根据本发明的每一个实施方案中描述的“软化点”指在其下经加热的低熔点玻璃的粘度为1.0×107.5dPa·s的温度。因此,本发明的每一个实施方案中描述的软化点不一定与所谓的玻璃化转变点(Tg)匹配。玻璃的软化点根据JISR3103-1使用“玻璃的粘度和粘度固定点-第1部分:软化点的测定”确定。
除非另有指定,否则本说明书中描述的“x至y”包括下限x和上限y。可适宜地组合本说明书中描述的各种数值及数值范围中包括的数值来构造新的数值范围如“a至b”。
下文将详细描述本发明的实施方案。
软磁颗粒不受特别限制,只要它们包含铁磁元素如第4周期过渡元素(例如,Fe、Co或Ni)作为主要组分即可。然而,从操作性能、可得性、成本等角度出发,软磁颗粒优选由纯铁或铁合金制成。优选铁合金为包含Al的铁合金(含Al铁合金),因为易于形成由氧化铝制成的氧化物层(或第一包覆层)和由氮化铝制成的氮化物层(或第二包覆层)。此外,优选铁合金包含Si,因为软磁颗粒电阻率的改善、压粉磁芯比电阻的改善(减小涡流损耗)、强度的改善等得以实现。另外优选铁合金还包含Si与Al的组合,因为易于形成氧化物层和氮化物层。除非另有指定,否则本说明书关于氧化物层或氮化物层的描述可适宜地适用于第一包覆层或第二包覆层。
本发明的实施方案中描述的铁合金中包含的Si含量过高是不优选的,因为很可能在软磁颗粒的表面上优先形成硅化合物(氧化硅:SiO2或氮化硅:Si3N4)。因此,在根据本发明的实施方案的铁合金中,作为Al含量相对于Al和Si的总含量(Al+Si)的质量比的Al比率(Al/Al+Si)优选为0.447或更高、0.45或更高,更优选0.6或更高,还更优选0.67或更高、0.7或更高,甚至还更优选0.8或更高。Al比率的上限优选为1或以下,更优选0.96或以下。此时,相对于100质量%(下文中简称为“%”)的铁合金总质量而言,Al和Si的总含量优选为10%或更低,更优选6%或更低,还更优选5%或更低。Al和Si的总含量的下限优选为2%或更高,更优选3%或更高。
铁合金中Al或Si的具体组成可考虑例如氧化物层和氮化物层的可形成性、压粉磁芯的磁特性和用于磁芯的粉末的加压成型性来适宜地调节。例如,相对于100%的构成软磁颗粒的铁合金总质量而言,Al含量优选为0.01%至7%,更优选1%至6%,还更优选2%至5%,Si含量优选为0.5%至4%,更优选1%至3%,还更优选1.5%至2.5%。Al含量或Si含量过低是不优选的,因为上述效果差。Al含量或Si含量过高是不优选的,因为例如压粉磁芯的磁特性和加压成型性降低并且成本增加。
在根据本发明的实施方案的铁合金中,余量含有Fe作为主要组分。除Fe和不可避免的杂质外,余量还可含有一种或更多种可改善AlN的可形成性、压粉磁芯的磁特性和比电阻、以及用于磁芯的粉末的加压成型性的改性元素。作为改性元素,可考虑例如Mn、Mo、Ti、Ni或Cr。通常,改性元素的量非常小,其含量优选为2%或更低,更优选1%或更低。
软磁颗粒的粒径不受特别限制。通常,粒径优选为10μm至300μm,更优选50μm至250μm。粒径过大是不优选的,因为导致比电阻的减小或涡流损耗的增大。粒径过小是不优选的,因为例如导致磁滞损耗的增大。除非另有指定,否则本说明书中描述的粉末的粒径定义为用具有预定网格尺寸的筛使用过筛法分级后的粉末的粒径。
关于用于获得软磁颗粒的基础颗粒或作为所述基础颗粒的聚集体的基础粉末,其制备方法不受限制,只要可获得根据本发明的实施方案的压粉磁芯即可。此外,优选包覆之前在基础颗粒的表面上存在适量的氧以便在软磁颗粒的表面上稳定地形成起到第一包覆层的作用的Al-O层。例如,基础颗粒的表面中的氧浓度优选为0.08%或更高,更优选0.1%或更高,还更优选0.17%或更高。本说明书中描述的氧浓度使用以下方法确定,并将包覆前基础粉末的总质量(作为测量对象的基础颗粒的总质量)定义为100质量%。
本说明书中描述的氧浓度使用红外吸收法(红外光谱:IR)定义。具体而言,在惰性气体(He)气氛中加热并熔化作为测量对象的样品的基础颗粒(基础粉末的一部分)以产生CO。提取所产生的CO并由检测器检测以便定量。结果确定了氧浓度。
优选基础粉末(氧化物粉末)由氧化物颗粒制成,其中所述氧化物颗粒的表面上形成有由缺氧的氧化铝制成的氧化物层。优选基础粉末由拟球形颗粒制成,颗粒之间的侵蚀性减小,并且比电阻的减小得到抑制。作为基础粉末(氧化物粉末),优选例如气水雾化粉末。基础粉末可由单种粉末制成或可由具有不同粒径、制备方法和组成的多种粉末的混合物制成。
作为根据本发明的实施方案的低熔点玻璃,考虑压粉磁芯中需要的比电阻、强度、退火温度等来优选选择具有适宜组成的低熔点玻璃。作为根据本发明的实施方案的低熔点玻璃,优选比硼硅酸铅玻璃具有较低环境负荷的低熔点玻璃,并且其实例包括硅酸盐玻璃、硼酸盐玻璃、硼硅酸盐玻璃、氧化钒玻璃和磷酸盐玻璃。
更具体而言,硅酸盐玻璃的实例包括含有SiO2-ZnO、SiO2-Li2O,SiO2-Na2O,SiO2-CaO,SiO2-MgO或SiO2-Al2O3作为主要组分的玻璃。硅酸铋玻璃的实例包括含有SiO2-Bi2O3-ZnO、SiO2-Bi2O3-Li2O、SiO2-Bi2O3-Na2O或SiO2-Bi2O3-CaO作为主要组分的玻璃。硼酸盐玻璃的实例包括含有B2O3-ZnO、B2O3-Li2O、B2O3-Na2O、B2O3-CaO、B2O3-MgO或B2O3-Al2O3作为主要组分的玻璃。硼硅酸盐玻璃的实例包括含有SiO2-B2O3-ZnO、SiO2-B2O3-Li2O、SiO2-B2O3-Na2O或SiO2-B2O3-CaO作为主要组分的玻璃。氧化钒玻璃的实例包括含有V2O5-B2O3、V2O5-B2O3-SiO2、V2O5-P2O5或V2O5-B2O3-P2O5作为主要组分的玻璃。磷酸盐玻璃的实例包括含有P2O5-Li2O、P2O5-Na2O、P2O5-CaO、P2O5-MgO或P2O5-Al2O3作为主要组分的玻璃。除上述成分外,根据本发明的实施方案的低熔点玻璃可还含SiO2、ZnO、Na2O、B2O3、Li2O、SnO、BaO、CaO和Al2O3中的一种或多种成分。
相对于100质量%的用于磁芯的粉末总质量而言,低熔点玻璃的含量优选为0.05质量%至4质量%,更优选0.1质量%至2质量%,还更优选0.5质量%至1.5质量%,或者相对于100质量%的压粉磁芯总质量而言优选0.1质量%至1质量%。当低熔点玻璃的含量过低时,无法形成足量的第三包覆层,并且无法获得具有高比电阻和高强度的压粉磁芯。另一方面,当低熔点玻璃的含量过高时,压粉磁芯的磁特性可能下降。
然而,当用于磁芯的粉末中的低熔点玻璃(退火前)呈粒径小于软磁颗粒的粒径的玻璃细颗粒形式时,玻璃细颗粒的粒径优选为0.1μm至100μm,更优选0.5μm至50μm,但其取决于软磁颗粒的粒径。当玻璃细颗粒的粒径过小时,难以产生或操作玻璃细颗粒。当玻璃细颗粒的粒径过大时,难以均匀地形成第三包覆层。确定玻璃细颗粒的粒径的方法的实例包括湿法、干法、基于照射激光的散射图案获得粒径的方法、基于沉降速率的差异获得粒径的方法和基于图像分析获得粒径的方法。在本说明书中,玻璃细颗粒的粒径使用扫描电子显微镜(SEM)通过图像分析确定。
图1B为示出了根据本发明的实施方案在氧化物层上形成氮化物层的步骤的示意图。氮化步骤为在氧化物颗粒的表面上获得用于形成由氮化铝制成的氮化物层的颗粒(氮化物颗粒)的步骤。可考虑形成氧化物层的各种方法。然而,如上所述,在氮化气氛中于800℃至1050℃、优选820℃至1000℃、更优选850℃至950℃的温度范围内加热由含Al的铁合金制成并且在氧化物颗粒的至少一部分表面上包含由氧化铝制成的氧化物膜的氧化物颗粒。结果,可在氧化物颗粒的表面上均匀地形成氮化物层。所得氮化物层薄且具有高绝缘性和对低熔点玻璃优异的润湿性。当氮化温度过高或过低时,难以形成氮化物层。
虽然可考虑各种氮化气氛,但氮化气氛优选氮(N2)气氛。氮气氛可为纯氮气气氛或氮气与惰性气体(例如,N2或Ar)的混合气体气氛。此外,氮化气氛可为例如氨气(NH3)。为了固定氮化过程中的氮浓度至一定的值,氮化气氛优选为流动的气氛。虽然加热时间取决于氮化气氛中的氮浓度及加热温度,但其例如优选为0.5小时至10小时,更优选1小时至3小时。此时,氮化气氛中的氧浓度优选为0.1体积%或更低。
玻璃附着步骤为使低熔点玻璃附着到氮化物颗粒的表面的步骤。例如,当在使由低熔点玻璃制成的细颗粒(玻璃细颗粒)附着到氮化物颗粒的表面时,可使用湿法或干法进行玻璃附着步骤。例如,当使用湿法时,玻璃附着步骤可为在分散介质中相互混合玻璃细颗粒与氮化物颗粒并然后干燥所得分散体的湿附着步骤。当使用干法时,玻璃附着步骤可为相互混合玻璃细颗粒与氮化物颗粒而不使用分散介质的干附着步骤。在使用湿法时,玻璃细颗粒很可能均匀地附着到氮化物颗粒的表面。从可略去干燥步骤的角度出发,干法是高效的。为了促进玻璃细颗粒的附着,可使用粘结剂(例如,由PVA或PVB制成的粘结剂)。是使用湿法还是干法不受特别限制,只要在用于磁芯的粉末的压实体(在本说明书中,此压实体也被称为“压粉磁芯”)的退火过程中低熔点玻璃软化或熔化以润湿颗粒表面并均匀地铺展于其上即可。
根据本发明的实施方案的压粉磁芯可通过以下步骤获得,包括:用用于磁芯的粉末填充具有预定形状的腔的模具的填充步骤;将用于磁芯的粉末加压成型为压实体的加压成型步骤;和对压实体退火的退火步骤。这里将描述加压成型步骤和退火步骤。
在加压成型步骤中施加到软磁粉末的加压成型压力不受特别限制。随着加压成型压力增大,可获得具有较高密度和较高磁通量密度的压粉磁芯。这样的高压成型方法的实例包括使用经润滑模具的温热高压成型方法。使用经润滑模具的温热高压成型方法包括:用用于磁芯的粉末填充模具的填充步骤,所述模具的内表面涂布有高级脂肪酸润滑剂;和在加压成型温度和加压成型压力下将所述用于磁芯的粉末加压成型为压实体以便与高级脂肪酸润滑剂分离地在用于磁芯的粉末与模具的内表面之间形成金属皂膜的温热高压成型步骤。
这里,术语“温热”指考虑到对表面膜(或绝缘膜)的影响、高级脂肪酸润滑剂的改性等,加压成型温度例如优选70℃至200℃,更优选100℃至180℃。使用经润滑模具的温热高压成型方法的详情在许多出版物如日本专利第3309970号和日本专利第4024705号中有述。根据使用经润滑模具的温热高压成型方法,可在提高模具寿命的同时进行超高压成型,并可容易地获得具有高密度的压粉磁芯。
进行退火步骤以减少在加压成型步骤过程中引入到软磁颗粒中的残余应变或残余应力以便可减小压粉磁芯的矫顽力或磁滞损耗。此时,退火温度可根据软磁颗粒和低熔点玻璃的种类来适宜地选择并优选为650℃或更高、更优选700℃或更高、还更优选800℃或更高、甚至还更优选850℃或更高。根据本发明的实施方案的绝缘层(特别地,氮化物层或第二包覆层)具有优异的耐热性。因此,甚至在高温退火之后,高绝缘性和高阻挡性能也可保持。退火温度优选为1000℃或更低,更优选970℃或更低,还更优选920℃或更低,因为过度加热是不必要的并且压粉磁芯的特性可能下降。加热时间例如优选0.1小时至5小时,更优选0.5小时至2小时。加热气氛优选为惰性气氛(包括氮气氛)。
可适宜地调节根据本发明的实施方案的压粉磁芯的每一个包覆层的厚度(膜厚度)。当每一个包覆层的厚度过小时,压粉磁芯的比电阻和强度无法充分改善。当每一个包覆层的厚度过大时,压粉磁芯的磁特性将显著下降。
第一包覆层(氧化物层)的厚度例如优选0.01μm至1μm,更优选0.2μm至0.5μm。第二包覆层(氮化物层)的厚度例如优选0.05μm至2μm,更优选0.5μm至1μm。第三包覆层的厚度例如优选0.5μm至10μm,更优选1μm至5μm。理想的是,在每一个颗粒上形成每一个层(包覆层)。然而,可在多个颗粒的聚集体上部分地形成每一个层。
在根据本发明的实施方案的压粉磁芯中,其具体特性不受特别限制。然而,例如,优选作为压粉磁芯的体积密度(ρ)相对于软磁颗粒的真密度(ρ0)的比率的密度比率(ρ/ρ0)优选为85%或更高、更优选90%或更高、还更优选95%或更高,因为可获得高的磁特性。
压粉磁芯的比电阻为每一个压粉磁芯固有的值,其不依赖于形状。例如,比电阻优选为102μΩ·m或更高,更优选103μΩ·m或更高,还更优选104μΩ·m或更高,甚至还更优选105μΩ·m或更高。随着压粉磁芯的强度增大,其用途将拓宽,这是优选的。压粉磁芯的径向耐压强度例如优选50MPa或更高,更优选80MPa或更高,还更优选100MPa或更高。
在根据本发明的实施方案的压粉磁芯中,其形式不受特别限制。例如,所述压粉磁芯可用于各种电磁装置如电动机、致动器、变压器、感应加热器、扬声器或反应器中。具体而言,所述压粉磁芯优选用作构成电动机或发电机的场磁铁或者电枢的铁芯。在这些中,根据本发明的实施方案的压粉磁芯适合于用于驱动电动机的铁芯,其中需要减少的损耗和高输出(高磁通量密度)。驱动电动机被用于汽车等。
根据本发明的实施方案的氮化铝(第二包覆层)具有高的导热性和优异的散热。因此,在使用根据本发明的实施方案的压粉磁芯作为例如用于电动机的铁芯时,由来自铁芯中或周围设置的线圈的涡流等生成的热易于通过传导向外部而消散。
下文将描述本发明的实施例1。改变基础粉末(软磁颗粒)和基础粉末的氮化条件(温度)来制备各种用于磁芯的粉末。通过俄歇电子能谱(AES)或X-射线衍射(XRD)观察每一种所得粉末颗粒的表面附近的区域。下文将具体描述详情。
下文将描述样品的制备。作为包含氧化物颗粒的基础粉末,制备由五种具有如图5中所示不同配方的Fe-Si-Al铁合金制成的气水雾化粉末。这些气水雾化粉末通过向使用氮气的氮气气氛中喷射熔融的原材料并用水冷却所喷射的原材料来制备。
作为对比样品的基础粉末,制备由两种具有如图5中所示不同配方的Fe-Si铁合金制成的气水雾化粉末并制备由纯铁制成的气体雾化粉末。由Fe-Si铁合金制成的气水雾化粉末使用与由Fe-Si-Al铁合金制成的气水雾化粉末相同的方法制备。另一方面,由纯铁制成的气体雾化粉末通过向使用氮气的氮气气氛中喷射熔融的原材料并在氮气气氛中冷却所喷射的原材料来产生。各气水雾化粉末中的氧浓度汇总示于图5中。确定氧浓度的方法如上文所述。
使用电磁筛振动器(Retsch制造)用具有预定网格尺寸的筛对各基础粉末分级。各基础粉末的粒径汇总示于图5中。本说明书中描述的粉末的粒径“x-y”指基础粉末包含不能通过网格尺寸为x(μm)的筛但是能通过网格尺寸为y(μm)的筛的软磁颗粒。粉末的粒径“-y”指基础粉末包含能通过网格尺寸为y(μm)的筛的软磁颗粒。通过SEM证实,所有基础粉末均不含有粒径小于5μm的软磁颗粒(同样适用于下文)。
下文将描述氮化步骤(氮化物层形成步骤)。将每一种基础粉末投入到热处理炉中并在其中氮气(N2)以0.5升/分钟的速率流动的氮化气氛中于图5中所示的条件下氮化(加热)。结果,获得氮化物粉末(样品1至25、C1、C2和C4)。
对自具有不同组成的根据样品12、19和20的每一种氮化物粉末随意提取的氮化物颗粒进行俄歇电子能谱以研究每一个颗粒的表面附近的区域(从最外表面到600nm的深度)中的组分组成。如上获得的结果示于图2A至2C中(这些图将汇总称为“图2”)。
通过X-射线衍射(XRD)分析自样品1随意提取的每一个粉末颗粒的表面附近的区域以获得曲线,并将得到的曲线示于图3中。XRD使用X-射线衍射仪(D8ADVANCE,BrukerAXS制造)在真空管条件:Fe-Kα,2θ:40度至50度和测量条件:0.021度/步和9步/秒下进行。
如自图2中示出的各分析结果可见,Al、O和N主要分布在氮化物颗粒的表面附近的区域中(深度:约50nm至100nm)。在从最外表面到深度(层深度)约50nm的区域中,N浓度较高。随着深度增大,N浓度减小而O浓度增大。从上面的结果发现,在软磁颗粒的表面上形成厚度约100nm至150nm的由氧化铝制成的氧化物层并在氧化物层的最外表面侧上形成厚度约50nm至100nm的由氮化铝制成的氮化物层。
如自图3中示出的每一X射线的衍射峰明显可见,发现氮化物层主要由AlN制成。自图2中示出的相应分析结果可以认为,作为下层的氧化物层由缺氧的氧化铝制成。
作为对根据样品C2的粉末颗粒的X-射线衍射的结果,不能验证源自AlN的衍射峰,并且不能观察到氮化物层的形成。据推测原因在于氮化温度低。基于上面的结果,阐明以下:为了在氮气中稳定地形成氮化物层,有必要在优选800℃或更高、更优选850℃或更高的较高温度下进行加热。
将含有Fe-1.6%Si-1.3%Al(Al比率:0.45,粒径:180μm或更小)的软磁粉末和含有Fe-0.7%Si-1.1%Al(Al比率:0.61,粒径:180μm或更小)的软磁粉末于900℃下氮化2小时以制备氮化物粉末。使用这些氮化物粉末,用与根据样品1的粉末颗粒相同的方法进行X-射线衍射。在所有软磁粉末的粉末颗粒中均观察到源自AlN的衍射峰。
如上所述氮化含有Fe-6.0%Si-1.6%Al(Al比率:0.21,粒径:106μm至212μm)的软磁粉末以获得粉末颗粒。当使用获得的粉末颗粒进行相同的X-射线衍射时,未观察到源自AlN的衍射峰。基于上面的结果,阐明以下:为了形成氮化物层,有必要Al比率为预定的值或更高(或高于预定的值)。
下面将描述实施例2的压粉磁芯。在此实施例中,使用图5中示出的各粉末制备各种压粉磁芯,并测量和评价其比电阻和径向耐压强度。下文将具体描述详情。
下文将描述用于磁芯的粉末的制备。如上所述氮化基础粉末来制备各种氮化物粉末(例如,样品1至25)。为了比较,制备其上未进行上述氮化处理的未经处理基础粉末(样品C3)、氧化粉末(样品C5至C7)和其颗粒表面包覆有机硅树脂的粉末(样品C8)。
在软磁颗粒的表面上形成由氧化硅制成的绝缘层的氧化处理(样品C5和C6)通过在其中氧势得到调节的氢气氛中将基础粉末于900℃下加热3小时来进行。在软磁颗粒的表面上形成由氧化铁制成的绝缘层的氧化处理(样品C7)通过在氧浓度为10体积%的氮气氛中将基础粉末于750℃下加热1小时来进行。有机硅树脂的包覆通过将基础粉末投入到其中相对于基础粉末的质量而言含0.2质量%的市售有机硅树脂(“YR3370”,MOMENTIVE生产)的包覆树脂溶液中、使乙醇挥发、然后于250℃下固化有机硅树脂来进行。
下文将依次描述玻璃附着步骤。通过将低熔点玻璃附着到上述除样品C4外的所有样品的粉末颗粒来制备用于磁芯的粉末。图5中示出的低熔点玻璃的种类为图6中示出的任何那些。图6不仅示出了各低熔点玻璃的组分组成,而且示出了本说明书中描述的其软化点。
下文将描述玻璃细颗粒的制备。作为低熔点玻璃,准备具有图6中所示的相应组成的市售玻璃粉(B:ChiyodaChemicalCo.,Ltd.生产,D:TokanMaterialTechnologyCo.,Ltd.生产,其它:NihonHoroYuyakuCo.,Ltd.生产)。将每一种玻璃粉投入到湿磨机(dyno磨机:ShimaruEnterprisesCorporation制造)的室中,运行搅拌桨,并将玻璃粉磨碎。收集磨碎的玻璃粉并干燥。结果,获得由各种低熔点玻璃制成的玻璃细颗粒。所得玻璃细颗粒的粒径小于软磁颗粒的粒径,并且最大粒径为约5μm。此粒径使用扫描电子显微镜(SEM)通过图像分析确定。
下文将描述干法包覆。用旋转球磨机搅拌每一种样品的粉末与玻璃细颗粒的粉末。搅拌后用研钵压碎凝固的粉末。结果,获得用于磁芯的粉末,其包含表面附着有玻璃细颗粒的颗粒。相对于100质量%的用于磁芯的粉末的添加量而言,低熔点玻璃(玻璃细颗粒的粉末)的添加量在图5中示出。
下文将描述压粉磁芯的制备。首先将描述加压成型步骤。使用每一种用于磁芯的粉末,用使用经润滑模具的温热高压成型方法获得具有环形形状(外径:×内径:×高:5mm)的压实体。此时,例如,根本不使用内部润滑剂或树脂粘结剂。具体而言,每一种粉末如下所述加压成型。
准备具有对应于所需形状的腔的烧结碳化物模具。预先使用带式加热器将该模具加热到130℃。模具的内周面预先涂布有TiN,并且其表面粗糙度为0.4Z。
使用喷枪在约10cm3/分钟的速率下用含硬脂酸锂(1%)的水分散体均匀涂布经加热模具的内周面。此水分散体通过向水中加入表面活性剂和消泡剂获得。其它配置的详情在日本专利第3309970号和日本专利第4024705号中有述。
用每一种用于磁芯的粉末填充其内表面涂布有硬脂酸锂的模具(填充步骤),并在温热环境中于1000MPa或1568MPa下对模具加压成型,同时使模具保持在130℃下(加压成型步骤)。在此温热加压成型过程中,可在低的脱模压力下从模具释放每一个压实体而不擦伤模具。
下文将描述退火步骤。将每一个所得压实体投入到加热炉中并在其中氮气以0.5L/分钟的速率流动的气氛中加热一小时。此时的加热温度(退火温度)示于图5中。结果,获得图5中示出的各种压粉磁芯(样品)。
获得每一种压粉磁芯的比电阻和径向耐压强度。比电阻基于电阻和体积计算,其中所述电阻使用数字万用表用四端子法测量,所述体积实际上自各样品测量。径向耐压强度使用环形样品根据JISZ2507测量。结果示于图5中。每一种样品的比电阻与径向耐压强度之间的关系示于图4中。图5的比电阻项中示出的术语“≥104”指测量样品的比电阻高于测量极限(超量程)。
下文将描述晶界结构。如自图2中示出的AES的结果可见,氮化步骤后在软磁粉末颗粒之间的晶界中形成了第一包覆层(Al-O层)和第二包覆层(AlN层)。通过氮化步骤形成的第一包覆层和第二包覆层是热和化学稳定的。因此,据认为,在通过玻璃附着步骤、加压成型步骤和退火步骤获得的样品1至25的压粉磁芯中,第三包覆层形成为覆盖第二包覆层。
如自图4和5明显可见,发现包含具有上述三层结构的晶界的所有压粉磁芯展现出足够的比电阻和径向耐压强度。
另一方面,在其中在晶界上形成低熔点玻璃层但不形成AlN层的样品C1至C3中,压粉磁芯的比电阻极其低。相反,在其中在晶界上形成AlN但不形成低熔点玻璃层的样品C4中,比电阻高,但压粉磁芯的径向耐压强度极其低。
另外,在其中在晶界上不形成AlN层但形成Si-O层或Fe-O层和低熔点玻璃层的样品C5至C7的压粉磁芯中,径向耐压强度高,但比电阻极其低。原因据推测在于如下:包覆软磁颗粒的Si-O层或Fe-O层与待在退火过程中改性的熔融(软化)的低熔点玻璃反应,因而其绝缘性下降。
此外,在其中在晶界上不形成AlN但形成有机硅树脂层和低熔点玻璃层的样品C8的压粉磁芯中,不管低熔点玻璃层的存在,不仅比电阻而且径向耐压强度都低。原因据推测在于如下:绝缘性因有机硅树脂层在退火过程中被加热而改性从而下降;以及由于熔融(软化)的低熔点玻璃对有机硅树脂层的不良润湿性而在晶界上形成为裂纹之源的小空隙。
基于结果,阐明以下:在包含具有第一包覆层(Al-O层)、第二包覆层(AlN层)和第三包覆层(低熔点玻璃层)的三层结构的晶界的压粉磁芯中,甚至在高温退火后也展现出高的比电阻和高的径向耐压强度。

Claims (13)

1.一种用于磁芯的粉末,其特征在于,所述粉末包含:
软磁颗粒;
由氧化铝制成的氧化物层,所述软磁颗粒的至少一部分表面包覆有所述氧化物层;和
由氮化铝制成的氮化物层,所述氧化物层的至少一部分表面包覆有所述氮化物层。
2.根据权利要求1所述的用于磁芯的粉末,还包含:
低熔点玻璃,所述低熔点玻璃附着到所述氮化物层的至少一部分表面并且具有低于所述软磁颗粒的退火温度的软化点。
3.一种制备压粉磁芯的方法,其特征在于,所述方法包括:
用根据权利要求2所述的用于磁芯的粉末填充模具;
将填充的用于磁芯的粉末加压成型为压实体;和
对所述压实体退火。
4.一种压粉磁芯,其特征在于,所述压粉磁芯包含:
软磁颗粒;
由氧化铝制成的第一包覆层,所述软磁颗粒的至少一部分表面包覆有所述第一包覆层;
由氮化铝制成的第二包覆层,所述第一包覆层的至少一部分表面包覆有所述第二包覆层;和
由低熔点玻璃制成的第三包覆层,所述第二包覆层的至少一部分表面包覆有所述第三包覆层,所述低熔点玻璃具有低于所述软磁颗粒的退火温度的软化点。
5.根据权利要求4所述的压粉磁芯,其中
所述软磁颗粒由含Al的铁合金制成。
6.根据权利要求5所述的压粉磁芯,其中
所述铁合金还包含Si,以及
所述铁合金中Al的含量相对于Al和Si的总含量的质量比为0.45或更高。
7.根据权利要求6所述的压粉磁芯,其中
所述Al的含量的所述质量比为0.67或更高。
8.根据权利要求6或7所述的压粉磁芯,其中
相对于100质量%的所述铁合金的总质量而言,所述Al和Si的总含量为10质量%或更低。
9.根据权利要求4所述的压粉磁芯,其中
所述低熔点玻璃包含硼硅酸盐玻璃。
10.根据权利要求4或9所述的压粉磁芯,其中
相对于100质量%的所述压粉磁芯的总质量而言,所述低熔点玻璃的含量为0.05质量%至4质量%。
11.根据权利要求10所述的压粉磁芯,其中
相对于100质量%的所述压粉磁芯的总质量而言,所述低熔点玻璃的含量为0.1质量%至1质量%。
12.一种制备用于磁芯的粉末的方法,其特征在于,所述方法包括
在氮化气氛中于800℃至1050℃的温度范围内加热包含氧化物层的氧化物颗粒以在所述氧化物层的至少一部分表面上形成由氮化铝制成的氮化物层,所述氧化物颗粒由含Al的铁合金制成,以及所述氧化物层由氧化铝制成并且设置在所述氧化物颗粒的至少一部分表面上。
13.根据权利要求12所述的制备用于磁芯的粉末的方法,其中
所述氧化物颗粒的表面中的氧浓度为0.08%或更高。
CN201510568093.2A 2014-09-08 2015-09-08 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法 Active CN105405568B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182730 2014-09-08
JP2014182730A JP6232359B2 (ja) 2014-09-08 2014-09-08 圧粉磁心、磁心用粉末およびそれらの製造方法

Publications (2)

Publication Number Publication Date
CN105405568A true CN105405568A (zh) 2016-03-16
CN105405568B CN105405568B (zh) 2018-03-06

Family

ID=54065757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510568093.2A Active CN105405568B (zh) 2014-09-08 2015-09-08 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法

Country Status (6)

Country Link
US (2) US20160071636A1 (zh)
EP (1) EP2993672B1 (zh)
JP (1) JP6232359B2 (zh)
KR (1) KR101945580B1 (zh)
CN (1) CN105405568B (zh)
CA (1) CA2903439C (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074697A (zh) * 2016-11-15 2018-05-25 丰田自动车株式会社 压粉磁芯及用于其的制造方法
CN108254523A (zh) * 2016-12-28 2018-07-06 Tdk株式会社 组成网络拓扑结构的分析方法和分析程序
CN108538533A (zh) * 2018-06-11 2018-09-14 彭晓领 一种软磁复合材料的界面扩散制备方法
CN110246653A (zh) * 2018-03-09 2019-09-17 Tdk株式会社 软磁性金属粉末、压粉磁芯及磁性部件
CN111489888A (zh) * 2019-01-28 2020-08-04 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN111725959A (zh) * 2019-03-20 2020-09-29 丰田自动车株式会社 马达铁芯的制造方法
CN112435822A (zh) * 2020-11-05 2021-03-02 青岛云路先进材料技术股份有限公司 高效铁硅铝磁粉芯的制备方法及制得的铁硅铝磁粉芯
CN112735802A (zh) * 2020-12-25 2021-04-30 中钢集团南京新材料研究院有限公司 一种铁硅铝磁粉心微波绝缘包覆方法及绝缘包覆磁粉心
CN113037027A (zh) * 2021-04-20 2021-06-25 温州大学 基于激光熔化沉积工艺的分层导磁铁芯成型装置及方法
CN113543908A (zh) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 压粉磁芯
CN113948301A (zh) * 2020-07-17 2022-01-18 丰田自动车株式会社 压粉磁芯的制造方法
CN115229178A (zh) * 2022-06-07 2022-10-25 深圳市信维通信股份有限公司 一种磁性粉末的制备方法、磁性粉末及电感器
CN115229178B (zh) * 2022-06-07 2024-05-31 深圳市信维通信股份有限公司 一种磁性粉末的制备方法、磁性粉末及电感器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397388B2 (ja) 2014-09-08 2018-09-26 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法
JP6443269B2 (ja) * 2015-09-01 2018-12-26 株式会社村田製作所 磁心及びその製造方法
JP6378156B2 (ja) 2015-10-14 2018-08-22 トヨタ自動車株式会社 圧粉磁心、圧粉磁心用粉末、および圧粉磁心の製造方法
CN110178190B (zh) * 2017-01-12 2021-07-13 株式会社村田制作所 磁性体粒子、压粉磁芯和线圈部件
JP2018166156A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
JP6504287B1 (ja) * 2018-03-09 2019-04-24 Tdk株式会社 軟磁性金属粉末、圧粉磁心および磁性部品
WO2019241078A1 (en) * 2018-06-11 2019-12-19 Smart E, Llc Compact rankine turbogenerator device for distributed co-generation of heat and electricity
CN110610803B (zh) * 2018-06-15 2021-09-14 山东精创磁电产业技术研究院有限公司 一种软磁复合材料的成型方法
JP2021057434A (ja) * 2019-09-30 2021-04-08 株式会社村田製作所 コイル部品およびそれに用いられる磁性粉末混合樹脂材料の製造方法
KR102335425B1 (ko) * 2020-01-09 2021-12-06 삼성전기주식회사 자성 분말 및 자성 분말을 포함하는 코일 부품

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965379A (zh) * 2004-09-30 2007-05-16 住友电气工业株式会社 软磁材料,粉末磁芯和制备软磁材料的方法
CN102227784A (zh) * 2009-06-30 2011-10-26 住友电气工业株式会社 软磁性材料、压粉体、压粉磁心、电磁元件、制造软磁性材料的方法以及制造压粉磁心的方法
CN102292177A (zh) * 2009-01-22 2011-12-21 住友电气工业株式会社 冶金用粉末的制法、压粉磁芯的制法、压粉磁芯以及线圈部件
JP2013171967A (ja) * 2012-02-21 2013-09-02 Hitachi Ltd 軟磁性圧粉磁心並びにこれを用いたリアクトル、チョークコイル、固定子及びモータ並びに軟磁性圧粉磁心の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406580B1 (en) * 1989-06-09 1996-09-04 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same
DE60030422T8 (de) 1999-12-14 2007-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute Herstellungsverfahren für pulvergrünkörper
JP4003067B2 (ja) * 2001-12-28 2007-11-07 信越化学工業株式会社 希土類焼結磁石
JP2003243215A (ja) * 2002-02-21 2003-08-29 Matsushita Electric Ind Co Ltd 複合磁性材料
JP4024705B2 (ja) 2003-03-24 2007-12-19 株式会社豊田中央研究所 圧粉磁心およびその製造方法
JP2006233268A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd 高電気抵抗磁性粉末とその製造方法、ならびに高電気抵抗磁性粉末成形体とその製造方法
JP2007194273A (ja) * 2006-01-17 2007-08-02 Jfe Steel Kk 圧粉磁心用の軟磁性金属粉末および圧粉磁心
JP2012230948A (ja) * 2011-04-25 2012-11-22 Toyota Central R&D Labs Inc 磁心用粉末、圧粉磁心およびその製造方法
JP6048378B2 (ja) * 2013-11-28 2016-12-21 株式会社豊田中央研究所 圧粉磁心、磁心用粉末およびそれらの製造方法
JP5682724B1 (ja) * 2014-05-14 2015-03-11 Tdk株式会社 軟磁性金属粉末および軟磁性金属圧粉コア

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965379A (zh) * 2004-09-30 2007-05-16 住友电气工业株式会社 软磁材料,粉末磁芯和制备软磁材料的方法
CN102292177A (zh) * 2009-01-22 2011-12-21 住友电气工业株式会社 冶金用粉末的制法、压粉磁芯的制法、压粉磁芯以及线圈部件
CN102227784A (zh) * 2009-06-30 2011-10-26 住友电气工业株式会社 软磁性材料、压粉体、压粉磁心、电磁元件、制造软磁性材料的方法以及制造压粉磁心的方法
JP2013171967A (ja) * 2012-02-21 2013-09-02 Hitachi Ltd 軟磁性圧粉磁心並びにこれを用いたリアクトル、チョークコイル、固定子及びモータ並びに軟磁性圧粉磁心の製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074697A (zh) * 2016-11-15 2018-05-25 丰田自动车株式会社 压粉磁芯及用于其的制造方法
CN108254523A (zh) * 2016-12-28 2018-07-06 Tdk株式会社 组成网络拓扑结构的分析方法和分析程序
CN110246653A (zh) * 2018-03-09 2019-09-17 Tdk株式会社 软磁性金属粉末、压粉磁芯及磁性部件
CN108538533A (zh) * 2018-06-11 2018-09-14 彭晓领 一种软磁复合材料的界面扩散制备方法
CN111489888A (zh) * 2019-01-28 2020-08-04 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN111489888B (zh) * 2019-01-28 2024-01-02 株式会社博迈立铖 R-t-b系烧结磁体的制造方法
CN111725959A (zh) * 2019-03-20 2020-09-29 丰田自动车株式会社 马达铁芯的制造方法
CN113543908A (zh) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 压粉磁芯
CN113543908B (zh) * 2019-03-22 2023-05-23 日本特殊陶业株式会社 压粉磁芯
CN113948301A (zh) * 2020-07-17 2022-01-18 丰田自动车株式会社 压粉磁芯的制造方法
CN113948301B (zh) * 2020-07-17 2023-11-21 丰田自动车株式会社 压粉磁芯的制造方法
CN112435822A (zh) * 2020-11-05 2021-03-02 青岛云路先进材料技术股份有限公司 高效铁硅铝磁粉芯的制备方法及制得的铁硅铝磁粉芯
CN112435822B (zh) * 2020-11-05 2023-04-07 青岛云路先进材料技术股份有限公司 高效铁硅铝磁粉芯的制备方法及制得的铁硅铝磁粉芯
CN112735802A (zh) * 2020-12-25 2021-04-30 中钢集团南京新材料研究院有限公司 一种铁硅铝磁粉心微波绝缘包覆方法及绝缘包覆磁粉心
CN113037027A (zh) * 2021-04-20 2021-06-25 温州大学 基于激光熔化沉积工艺的分层导磁铁芯成型装置及方法
CN113037027B (zh) * 2021-04-20 2022-02-01 温州大学 基于激光熔化沉积工艺的分层导磁铁芯成型装置及方法
CN115229178A (zh) * 2022-06-07 2022-10-25 深圳市信维通信股份有限公司 一种磁性粉末的制备方法、磁性粉末及电感器
CN115229178B (zh) * 2022-06-07 2024-05-31 深圳市信维通信股份有限公司 一种磁性粉末的制备方法、磁性粉末及电感器

Also Published As

Publication number Publication date
CN105405568B (zh) 2018-03-06
KR101945580B1 (ko) 2019-02-07
US20160071636A1 (en) 2016-03-10
EP2993672A1 (en) 2016-03-09
CA2903439C (en) 2018-02-20
JP6232359B2 (ja) 2017-11-15
KR20160030052A (ko) 2016-03-16
US20190214172A1 (en) 2019-07-11
JP2016058496A (ja) 2016-04-21
CA2903439A1 (en) 2016-03-08
EP2993672B1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
CN105405568A (zh) 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法
KR101335820B1 (ko) 야금용 분말의 제조 방법, 압분자심의 제조 방법, 압분자심 및 코일 부품
JP6397388B2 (ja) 圧粉磁心、磁心用粉末およびそれらの製造方法
EP1808242B1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
EP1840907B1 (en) Soft magnetic material and dust core
JP6048378B2 (ja) 圧粉磁心、磁心用粉末およびそれらの製造方法
CN104919546B (zh) 用于生产永磁体的方法和永磁体
JP5470683B2 (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
JP2009302165A (ja) 圧粉磁心及びその製造方法
JP3861288B2 (ja) 軟磁性材料の製造方法
WO2006106566A1 (ja) 軟磁性材料および圧粉成形体の製造方法
JP2014120678A (ja) 圧粉成形体、及び圧粉成形体の製造方法
JP2007251125A (ja) 軟磁性合金圧密体及びその製造方法
JP5232708B2 (ja) 圧粉磁心及びその製造方法
JP2006278833A (ja) 高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法
JP4618557B2 (ja) 軟磁性合金圧密体及びその製造方法
CN109513933B (zh) 一种耐高温高表面电阻铁基软磁磁芯的制备方法
US20220293336A1 (en) Powder magnetic core, inductor, and method for manufacturing powder magnetic core
JP2008088459A (ja) 高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant