ES2388848T3 - Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína - Google Patents

Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína Download PDF

Info

Publication number
ES2388848T3
ES2388848T3 ES02707551T ES02707551T ES2388848T3 ES 2388848 T3 ES2388848 T3 ES 2388848T3 ES 02707551 T ES02707551 T ES 02707551T ES 02707551 T ES02707551 T ES 02707551T ES 2388848 T3 ES2388848 T3 ES 2388848T3
Authority
ES
Spain
Prior art keywords
polysaccharide
vaccine
conjugate
protein
meningitidis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES02707551T
Other languages
English (en)
Inventor
Robert P. Ryall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Pasteur SA
Sanofi Pasteur Inc
Original Assignee
Aventis Pasteur SA
Sanofi Pasteur Inc
Aventis Pasteur Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23001755&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2388848(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aventis Pasteur SA, Sanofi Pasteur Inc, Aventis Pasteur Inc filed Critical Aventis Pasteur SA
Application granted granted Critical
Publication of ES2388848T3 publication Critical patent/ES2388848T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/116Polyvalent bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/095Neisseria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines

Abstract

Vacuna meningocócica polivalente que comprende cantidades inmunológicamente eficaces de cuatroconjugados distintos de proteína-polisacárido para su uso en la protección de un ser humano frente a la infección porN. meningitidis, en la que cada uno de los conjugados contiene un polisacárido capsular diferente conjugado a unaproteína portadora, y en la que los polisacáridos capsulares se preparan a partir de los serogrupos A, C, W-135 e Yde N. meningitidis, en la que además la proteína portadora es el toxoide diftérico o CRM197.

Description

Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína.
Esta solicitud reivindica el beneficio de la solicitud provisional US nº 60/263.435, presentada el 23 de enero de 2001.
Antecedentes de la invención
Campo de la invención
La presente invención se refiere al campo de medicina en general, y más específicamente a microbiología, inmunología, vacunas y a la prevención de infección por un patógeno bacteriano mediante inmunización.
Sumario de la técnica relacionada
Neisseria meningitidis es una causa principal de la meningitis bacteriana y septicemia en todo el mundo. La incidencia de la enfermedad meningocócica endémica durante los últimos treinta años oscila desde 1 a 5 por
100.000 en el mundo desarrollado, y de 10 a 25 por 100.000 en los países en desarrollo (Reido, F.X., et al. 1995). Durante la epidemia, la incidencia de la enfermedad meningocócica se aproxima a 1000 por 100.000. Hay aproximadamente 2.600 casos de meningitis bacteriana por año en los Estados Unidos de América, y de media
330.000 casos en los países en desarrollo. La tasa de mortalidad de los casos oscila entre 10 y 20%.
Los meningococos patógenos están encerrados por una cápsula de polisacárido que se une a la superficie de la membrana exterior del organismo. Se han identificado trece serogrupos diferentes de meningococos basándose en la especificidad inmunológica del polisacárido capsular (Frasch, C.E., et al. 1985). De estos trece serogrupos, cinco provocan la mayoría de la enfermedad meningocócica; estos incluyen los serogrupos A, B, C, W135, e Y. El serogrupo A es responsable de la mayoría de las enfermedades epidémicas. Los serogrupos B, C e Y provocan la mayoría de las enfermedades endémicas y epidemias localizadas.
La mucosa naso-urofaríngea humana es el único depósito natural conocido de Neisseria meningitidis.La colonización tiene lugar tanto en la superficie exterior de las células mucosales como en el tejido subepitelial de la nasofaringe. La carga de meningococos puede durar meses. La diseminación de los meningococos se produce mediante contacto directo o por día de gotitas de aire. Los meningococos se hacen invisibles al pasar a través del epitelio mucosal vía vacuolas fagocíticas como resultado de la endocitosis. La defensa del hospedante frente a meningococos invasivos depende de la bacteriolisis mediada por el complemento. Los anticuerpos del suero que son responsables de la bacteriolisis mediada por el complemento están dirigidos en gran parte frente al polisacárido exterior capsular.
Se han descrito vacunas basadas en el polisacárido meningocócico, que provocan una respuesta inmunitaria frente al polisacárido capsular. Estos anticuerpos son capaces de llevar a cabo la bacteriolisis de los meningococos específicos de serogrupos mediada por el complemento. Se demostró que las vacunas de polisacáridos meningocócicos son eficaces en niños y adultos (Peltola, H., et al. 1977 y Artenstein, M.S., et al. 1970), pero la eficacia estaba limitada a lactantes y niños de corta edad (Reingold, A.L., et al. 1985). Las dosis subsiguientes del polisacárido en poblaciones más jóvenes provocaron una respuesta débil o ninguna respuesta de refuerzo (Goldschneider, I., et al. 1973 y Gold, R., et al. 1977). La duración de la protección provocada por las vacunas del polisacárido meningocócico no es duradera, y se ha estimado que está entre 3 y 5 años en adultos y en niños antes de los cuatro años de edad (Brandt, B., et al. 1975, Käyhty, H., et al. 1980, y Ceesay, S. J., et al. 1993). Para niños de uno a cuatro años de edad, la duración de la protección es menor de tres años (Reingold, A.L., et al. 1985).
Los polisacáridos son incapaces de unirse a las moléculas del complejo mayor de histocompatibilidad, un prerrequisito para la presentación de antígenos a y la estimulación de linfocitos T auxiliares, es decir, son antígenos independientes de las células T. Los polisacáridos son capaces de estimular linfocitos B para la producción de anticuerpos sin la ayuda de linfocitos T auxiliares. Como resultado de la estimulación de los linfocitos B independiente de T, hay una falta de inducción de memoria tras la inmunización mediante estos antígenos. Los antígenos de polisacáridos son capaces de provocar respuestas muy eficaces independientes de T en adultos, pero estas respuestas independientes de T son débiles en el sistema inmunitario inmaduro de lactantes y niños de corta edad.
Los antígenos de polisacáridos independientes de T se pueden convertir en antígenos dependientes de T mediante unión covalente de los polisacáridos a moléculas proteicas (“portadoras” o “proteínas portadoras”). Las células B que se unen al componente de polisacárido de la vacuna conjugada se pueden activar mediante células T auxiliares específicas para péptidos que son parte de la proteína portadora conjugada. La respuesta T auxiliar a la proteína portadora sirve para aumentar la producción de anticuerpos frente al polisacárido.
Se ha demostrado que el polisacárido del serogrupo B es pobremente inmunógeno a nada inmunógeno en la población humana (Wyle, F.A., et al. 1972). La unión química del polisacárido de este grupo a proteínas no ha alterado significativamente la respuesta inmunitaria en animales de laboratorio (Jennings, H. J., et al. 1981). Se piensa que la razón para la falta de respuesta inmunitaria al polisacárido de este grupo surge de las similitudes estructurales entre el polisacárido del serogrupo B y las glucoproteínas del hospedante polisialiladas, tales como las moléculas de adhesión de células neuronales.
Se ha descrito una vacuna conjugada meningocócica basada en el polisacárido del serogrupo C. Esta vacuna monovalente provoca una fuerte respuesta de anticuerpo funcional frente al polisacárido capsular presente en cepas de N. meningitidis que corresponden al serogrupo C. Tal vacuna sólo es capaz de proteger frente a la enfermedad provocada por bacterias del serogrupo C.
Las vacunas existentes basadas en polisacárido meningocócico son de uso limitado en niños de corta edad, y no proporcionan protección duradera en adultos. La única vacuna meningocócica que se ha demostrado que es capaz de provocar una protección duradera en todos los grupos, incluyendo niños, con riesgo de infección meningocócica se basa en un polisacárido procedente de un único serogrupo de N. meningitidis, y no proporciona protección frente a la infección por otros serogrupos. De este modo, existe la necesidad de una vacuna conjugada meningocócica capaz de conferir protección amplia y duradera frente a enfermedad meningocócica en niños y adultos con riesgo de infección meningocócica. Los polisacáridos meningocócicos multivalentes de la presente invención resuelven esta necesidad al proporcionar formulaciones de vacunas en las que los polisacáridos inmunógenos procedentes de los principales grupos patógenos de N. meningitidis se han convertido en antígenos dependientes de T a través de conjugaciones a proteínas portadoras.
Sumario de la invención
La presente invención proporciona la reivindicación 1. Adicionalmente, la presente invención proporciona la reivindicación 7.
También se describen en la presente memoria composiciones inmunológicas que comprenden dos o más conjugados de proteína-polisacárido, en los que cada uno de los conjugados comprende un polisacárido capsular procedente de N. meningitidis conjugado con una proteína portadora.
Se describen además en la presente memoria composiciones inmunológicas que comprenden dos o más conjugados distintos de proteína-polisacárido, en las que cada uno de los conjugados comprende un polisacárido capsular procedente de un serogrupo diferente de N. meningitidis conjugado a una proteína portadora.
La presente invención proporciona vacunas para conjugados meningocócicos de polisacárido-proteína provocados por Neisseria meningitidis patógena. La presente invención proporciona vacunas meningocócicas polivalentes que comprenden cantidades inmunológicamente eficaces de cuatro conjugados distintos de proteína-polisacárido, en las que cada uno de los conjugados contiene un polisacárido capsular diferente conjugado a una proteína portadora, y en las que cada polisacárido capsular se selecciona de entre el grupo que consiste en polisacárido capsular procedente de los serogrupos A, C, W-135 e Y, en las que la proteína portadora es toxoide diftérico o CRM197.
Se describen en la presente memoria métodos para fabricar una composición meningocócica polivalente de polisacárido-proteína, que comprende purificar dos o más polisacáridos capsulares procedentes de Neisseria meningitidis patógena; conjugar los polisacáridos purificados a una o más proteínas portadoras, y combinar los conjugados para obtener la composición meningocócica polivalente de polisacárido-proteína.
Campagne G. et al. (Pediatric Infectious Disease Journal (2000): 19, 144-150) describen una vacuna meningocócica conjugada de toxoide diftérico con polisacárido A + C (MenD). Se encontró que MenD es segura entre lactantes en Níger, y la inmunización condujo a una actividad de anticuerpo funcional significativamente mayor que con la vacuna del polisacárido correspondiente.
Lei Q. P. et al. (Developments in biologicals (2000): 103, 259 -264) describen una vacuna conjugada tetravalente que comprende polisacáridos preparados de los serotipos A, C, W135 e Y de Neisseria meningitidis conjugados individualmente al toxoide diftérico. Describen un método de precipitación que usa desoxicolato/HCl que separa eficazmente el polisacárido libre y el unido en la vacuna conjugada tetravalente.
Lamb D. H. et al. (Developments in biologicals (2000): 103, 251 -258) describen el análisis electroforético capilar de dicha vacuna meningocócica de un conjugado de polisacárido con toxoide diftérico descrita por Lei Q. P. et al.
Perkins B. A. (Journal of the American Medical Association (2000): 283, 2842 -2843) describe las vacunas de polisacáridos meningocócidos disponibles así como vacunas de conjugados meningocócicos que se están desarrollando y que es necesario desarrollar, entre ellas una vacuna de un conjugado de A, C, W135 e Y.
Se describe en la presente memoria un método para inducir una respuesta inmunológica frente al polisacárido capsular de N. meningitidis, que comprende administrar una cantidad inmunológicamente eficaz de la composición inmunológica de la invención a un ser humano o animal.
Se describe en la presente memoria un método para proteger un ser humano o animal susceptible a la infección por
N. meningitidis, que comprende administrar una dosis inmunológicamente eficaz de la vacuna de la invención al ser humano o animal.
Descripción detallada de la invención
Se describe en la presente memoria una composición inmunológica de dos o más conjugados distintos de proteínapolisacárido, en la que cada uno de los conjugados comprende un polisacárido capsular conjugado a una proteína portadora. De este modo, se describen composiciones que comprenden dos o más polisacáridos capsulares diferentes conjugados a una o más proteínas portadoras.
Los polisacáridos capsulares se pueden preparar mediante técnicas estándar conocidas por los expertos en la técnica (ref.). En la presente invención, los polisacáridos capsulares se preparan a partir de los serogrupos A, C, W135 e Y de N. meningitidis.
En una forma de realización preferida, estos conjugados de serogrupos meningocócicos se preparan mediante procedimientos separados y se formulan en una única formulación farmacéutica. Por ejemplo, los polisacáridos capsulares procedentes de los serogrupos A, C, W135 e Y de N. meningitidis se purifican de forma separada.
En una forma de realización preferida de la presente invención, el polisacárido purificado se despolimeriza y se activa antes de la conjugación a una proteína portadora. En una forma de realización preferida de la presente invención, los polisacáridos capsulares de los serogrupos A, C, W135 e Y de N. meningitidis se despolimerizan parcialmente usando condiciones oxidativas suaves.
La despolimerización o despolimerización parcial de los polisacáridos puede estar seguida entonces de una etapa de activación. Por “activación” se quiere decir tratamiento químico del polisacárido para proporcionar grupos químicos capaces de reaccionar con la proteína portadora. Un método de activación preferido implica el tratamiento con dihidrazida de ácido adípico en disolución salina fisiológica a pH 5,0 ± 0,1 durante aproximadamente dos horas a 15 a 30ºC. En la patente US nº 5.965.714 se describe un procedimiento para la activación.
Una vez activados, los polisacáridos capsulares se pueden conjugar entonces a una o más proteínas portadoras. En una forma de realización preferida de la presente invención, cada polisacárido capsular se conjuga de forma separada a una sola especie de proteína portadora. En una forma de realización preferida, los polisacáridos capsulares procedentes de los serogrupos A, C, W135 e Y de N. meningitidis se conjugan cada uno separadamente a la misma especie de proteína portadora.
Las proteínas portadoras pueden incluir toxinas bacterianas inactivadas tales como el toxoide diftérico, CRM197, el toxoide tetánico, toxoide tosferínico, E. coli LT, E. coli ST, y exotoxina A de Pseudomonas aeruginosa. También se podrían usar proteínas de la membrana exterior bacteriana tales como el complejo c de la membrana exterior (OMPC), porinas, proteínas de unión a transferrina, neumolisis, proteína A de la superficie neumocócica (PspA), o proteína adhesínica neumocócica (PsaA). También se podrían usar como proteínas portadoras otras proteínas tales como ovoalbúmina, hemocianina de lapa californiana (KLH), seroalbúmina bovina (BSA) o derivado de proteína purificada de tuberculina (PPD). Las proteínas portadoras son preferentemente proteínas que no son tóxicas y no son reactogénicas, y son obtenibles en cantidad y pureza suficientes. Las proteínas portadoras deberían poder someterse a procedimientos de conjugación estándar. En una forma de realización preferida de la presente invención, se usa como proteína portadora la toxina diftérica purificada de cultivos de Corynebacteria diphtheriae y destoxificada químicamente usando formaldehído.
Tras la conjugación del polisacárido capsular a la proteína portadora, los conjugados de polisacárido-proteína se pueden purificar (enriquecer con respecto a la cantidad de conjugado de polisacárido-proteína) mediante una variedad de técnicas. Una meta de la etapa de purificación es eliminar el polisacárido no unido del conjugado de polisacárido-proteína. En la patente US nº 6.146.902 se describe un método de purificación, que implica la ultrafiltración en presencia de sulfato de amonio. Como alternativa, los conjugados se pueden purificar de la proteína sin reaccionar y del polisacárido mediante cualquier número de técnicas estándar, incluyendo, entre otras, cromatografía de exclusión por tamaños, centrifugación por gradiente de densidad, cromatografía de interacción hidrófoba, o fraccionamiento con sulfato de amonio. Véase, por ejemplo, P.W. Anderson, et al. (1986). J. Immunol.
137: 1181-1186. Véase también H. J. Jennings y C. Lugowski (1981) J. Immunol. 127: 1011-1018.
Tras la conjugación del polisacárido y de la proteína portadora, las composiciones inmunológicas de la presente invención se obtienen combinando los diversos conjugados de polisacárido-proteína. Las composiciones inmunológicas descritas en la presente memoria comprenden dos o más polisacáridos capsulares diferentes conjugados a una o más proteínas portadoras. También se describe en la presente memoria una composición inmunológica bivalente que comprende polisacáridos capsulares procedentes de los serogrupos A y C de N. meningitidis, conjugados separadamente al toxoide diftérico. Más preferentemente, la presente invención es una composición inmunológica tetravalente que comprende polisacáridos capsulares procedentes de los serogrupos A, C, W-135 e Y de N. meningitidis, conjugados separadamente al toxoide diftérico.
La preparación y uso de proteínas portadoras, y una variedad de procedimientos de conjugación potenciales, son bien conocidos por los expertos en la técnica. Los conjugados de la presente invención se pueden preparar mediante tales personas expertas usando las enseñanzas contenidas en la presente invención, así como en información fácilmente disponible en la bibliografía general. También se puede obtener una guía a partir de una cualquiera o de todas las patentes US siguientes: US nº 4.356.170; US nº 4.619.828; US nº 5.153.312; US nº 5.422.427 y US nº 5.445.817.
Las composiciones inmunológicas de la presente invención se obtienen preparando separadamente conjugados de polisacárido-proteína a partir de serogrupos meningocócicos diferentes, y combinando después los conjugados. Las composiciones inmunológicas de la presente invención se usan como vacunas. La formulación de las vacunas de la presente invención se puede lograr usando métodos reconocidos en la técnica. Las composiciones de vacuna de la presente invención también pueden contener uno o más adyuvantes. Los adyuvantes incluyen, a título de ejemplo y no de limitación, adyuvantes de aluminio, adyuvante de Freund, BAY, DC-chol, pcpp, monofosforil lípido A, CpG, QS-21, toxina del cólera y formil metionil péptido. Véase, por ejemplo, Vaccine Design, the Subunit and Adjuvant Approach, 1995 (M.F. Powell y M. J. Newman, eds., Plenum Press, NY). El adyuvante es preferentemente un adyuvante de aluminio, tal como hidróxido de aluminio o fosfato de aluminio.
Como se demuestra más abajo, las vacunas según la invención provocan una respuesta inmunitaria de tipo dependiente de T en diversos modelos de animales, mientras que la vacuna de polisacárido provoca una respuesta inmunitaria de tipo independiente de T. De este modo, las composiciones descritas en la presente memoria también son herramientas de investigación útiles para estudiar las rutas y procesos biológicos implicados en las respuestas inmunitarias de tipo dependiente de T a los antígenos de N. meningitidis.
La cantidad de vacuna de la invención a administrar a un ser humano o animal, y el régimen de administración, se puede determinar según técnicas estándar bien conocidas por los expertos en las técnicas farmacéutica y veterinaria, teniendo en cuenta factores como el antígeno particular, el adyuvante (si está presente), la edad, sexo, peso, especie y estado del animal o paciente particular, y la vía de administración. En la presente invención, la cantidad de polisacárido-proteína portadora para proporcionar una dosis eficaz para la vacunación frente a N. meningitidis puede estar entre alrededor de 0,02 !g y alrededor de 5 !g por kg de peso corporal. En una composición y método preferidos de la presente invención, la dosis está entre alrededor de 0,1 !g y 3 !g por kg de peso corporal. Por ejemplo, una dosis eficaz requerirá menos anticuerpo si el tiempo de post-infección transcurrido es menor, puesto que hay menos tiempo para que la bacteria prolifere. De manera similar, una dosis eficaz dependerá de la carga bacteriana en el momento del diagnóstico. Para uso terapéutico se podrían considerar múltiples inyecciones administradas durante un período de días.
Los conjugados tetravalentes de la presente invención se pueden administrar como una única dosis o en serie (es decir, con una “revacunación” o “revacunaciones”). Por ejemplo, un niño podría recibir una dosis única muy temprana en la vida, y después se le podría administrar una dosis de refuerzo hasta diez años más tarde, según se recomienda actualmente para otras vacunas para prevenir enfermedades de la niñez.
La dosis de refuerzo generará anticuerpos a partir de células B sensibilizadas, es decir, una respuesta anamnésica. Esto es, la vacuna del conjugado polivalente provoca una respuesta de anticuerpo funcional primaria elevada (es decir, tras una única administración de la vacuna) en poblaciones más jóvenes cuando se compara con la vacuna de polisacárido autorizada, y es capaz de provocar una respuesta anamnésica (es decir, tras una administración de refuerzo), demostrando que la respuesta inmunitaria protectora provocada por la vacuna del conjugado polivalente de la presente invención es de larga duración.
Las composiciones de la invención pueden incluir preparaciones líquidas para la administración a los orificios, por ejemplo oral, nasal, anal, vaginal, peroral, intragástrica, mucosal (por ejemplo perlingual, alveolar, gingival, mucosa olfativa o respiratoria), etc., tales como suspensiones, jarabes o elixires; y preparaciones para la administración parenteral, subcutánea, intradérmica, intramuscular, intraperitoneal o intravenosa (por ejemplo, administración inyectable), tales como suspensiones o emulsiones estériles. Se prefieren la administración intravenosa y la parenteral. Tales composiciones pueden estar en mezcla con un vehículo, diluyente o excipiente adecuado, tal como agua estéril, disolución salina fisiológica, glucosa, o similar. Las composiciones también se pueden liofilizar. Las composiciones pueden contener sustancias auxiliares tales como agentes humectantes o emulsionantes, agentes tamponantes del pH, gelantes o aditivos que potencian la viscosidad, conservantes, agentes saborizantes, colores, y similares, dependiendo de la vía de administración y la preparación deseada. Para preparar preparaciones adecuadas sin experimentación innecesaria, se pueden consultar textos estándar, tales como “REMINGTON’S PHARMACEUTICAL SCIENCE”, 17ª edición, 1985.
Las composiciones de la invención usadas como vacunas se proporcionan convenientemente como preparaciones líquidas, por ejemplo disoluciones acuosas isotónicas, suspensiones, emulsiones o composiciones viscosas que se pueden tamponar a un pH seleccionado. Si se prefiere la absorción por el tubo digestivo, las composiciones de la invención pueden estar en forma “sólida” de pastillas, comprimidos, cápsulas, cápsulas oblongas, y similares, incluyendo preparaciones “sólidas” que se liberan con el tiempo y que tienen un relleno líquido, por ejemplo líquido cubierto de gelatina, con lo que la gelatina se disuelve en el estómago para el suministro al intestino. Si se desea la administración nasal o respiratoria (mucosal), las composiciones pueden estar en forma y se pueden dispensar mediante un dispensador de pulverización de presión manual, un dispensador de bomba o un dispensador de aerosol. Los aerosoles están habitualmente a presión por medio de un hidrocarburo. Los dispensadores de bomba pueden dispensar preferentemente una dosis medida o una dosis que tiene un tamaño de partículas particular.
Las preparaciones líquidas son normalmente más fáciles de preparar que los geles, que otras composiciones viscosas, y que las composiciones sólidas. Adicionalmente, las composiciones líquidas son en cierto modo más convenientes de administrar, especialmente mediante inyección u oralmente, a animales, niños, particularmente a niños pequeños, y a otros que pueden tener dificultad para tragar una pastilla, comprimido, cápsula o similar, o en situaciones de múltiples dosis. Por otro lado, las composiciones viscosas se pueden formular en el intervalo de viscosidad apropiada para proporcionar períodos más prolongados de contacto con la mucosa, tal como el forro del estómago o la mucosa nasal.
Obviamente, la elección de los vehículos adecuados y otros aditivos dependerá de la vía exacta de administración y de la naturaleza de la forma de dosificación particular, por ejemplo forma de dosificación líquida (por ejemplo, si la composición se va a formular en una disolución, una suspensión, un gel u otra forma líquida) o forma de dosificación sólida (por ejemplo, si la composición se va a formular en una pastilla, comprimido, cápsula, cápsula oblonga, forma de liberación con el tiempo o forma llena de líquido).
Las disoluciones, suspensiones y geles contienen normalmente una cantidad importante de agua (por ejemplo agua pura) además del ingrediente activo. También pueden estar presentes cantidades pequeñas de otros ingredientes tales como agentes que ajustan el pH (por ejemplo, una base tal como NaOH), emulsionantes o agentes de dispersión, agentes tamponantes, conservantes, agentes humectantes, agentes gelificantes (por ejemplo, metilcelulosa), colores y/o sabores. Las composiciones pueden ser isotónicas, es decir, pueden tener la misma presión osmótica que la sangre y que el fluido lagrimal.
La isotonicidad deseada de las composiciones de esta invención se puede lograr usando tartrato de sodio, propilenglicol u otros solutos inorgánicos u orgánicos. El cloruro de sodio se prefiere particularmente para tampones que contienen iones sodio.
La viscosidad de las composiciones se puede mantener en el nivel seleccionado usando un agente espesante farmacéuticamente aceptable. Se prefiere metilcelulosa debido a que está fácil y económicamente disponible, y es fácil de trabajar con ella. Otros agentes espesantes adecuados incluyen, por ejemplo, goma de xantana, carboximetilcelulosa, hidroxipropilcelulosa, carbomer, y similar. La concentración preferida del agente espesante dependerá del agente seleccionado. El punto importante es usar una cantidad que logrará la viscosidad seleccionada. Las composiciones viscosas se preparan normalmente a partir de disoluciones mediante la adición de tales agentes espesantes.
Para incrementar el período de caducidad de las composiciones, se puede emplear un conservante farmacéuticamente aceptable. Puede ser adecuado el alcohol bencílico, aunque también se puede emplear una variedad de conservantes, incluyendo, por ejemplo, parabenos, timerosal, clorobutanol, o cloruro de benzalconio. Una concentración adecuada del conservante será de 0,02% a 2% basado en el peso total, aunque puede haber una variación apreciable dependiendo del agente seleccionado.
Los expertos en la técnica reconocerán que los componentes de las composiciones se deben de seleccionar para que sean químicamente inertes con respecto a los conjugados de polisacárido de N. meningitidis-proteína portadora.
La invención se describirá adicionalmente con referencia a los siguientes ejemplos ilustrativos y no limitantes que exponen con detalle varias formas de realización preferidas del concepto inventivo. Otros ejemplos de esta invención serán manifiestos para los expertos en la técnica sin separarse del alcance de la invención como se define en las reivindicaciones.
Ejemplos
Ejemplo 1
Preparación de polvos de polisacáridos capsulares purificados de los serogrupos A, C, W-135, e Y de Neisseria meningitidis
Preparación de pasta bruta
De forma separada, se descongelaron cultivos de siembra congelados en húmedo de los serogrupos A, C, W-135, e Y de Neisseria meningitidis, y se recuperaron con la ayuda de medio líquido Watson Scherp y se plantaron en botellas de Blake que contienen medio de agar de Mueller Hinton. Las botellas de Blake se incubaron entre 35 y 37ºC en una atmósfera de CO2 durante 15 a 19 horas. Después del período de incubación, se descargó el crecimiento de las botellas de Blake y se añadió a matraces de 4 l que contienen medio de Watson Scherp. Los matraces se incubaron entre 35 y 37ºC durante 3 a 7 horas en un agitador de plataforma. Los contenidos de los matraces de 4 l se transfirieron a una vasija fermentadora que contiene medio de Watson Scherp. La vasija fermentadora se incubó entre 35 y 37ºC durante 7 a 12 horas, controlando el contenido de oxígeno disuelto y el pH con adiciones suplementarias de alimento y antiespumante. Después del período de incubación, los contenidos de la vasija fermentadora se transfirieron a un tanque de 500 l, se añadió Cetavlon, y el material se mezcló durante 1 hora. El crecimiento tratado con Cetavlon se centrifugó entre aproximadamente 15.000 y 17.000 x g a un caudal de aproximadamente 30 a 70 litros por hora. El polisacárido bruto se precipitó del sobrenadante con una segunda precipitación de Cetavlon. Se añadió Cetavlon al sobrenadante, y el material se mezcló durante por lo menos 1 hora a temperatura ambiente. El material se almacenó entre 1 y 5ºC durante 8 a 12 horas. El polisacárido precipitado se recogió mediante centrifugación entre aproximadamente 45.000 y 50.000 x g, a un caudal de 300 y 400 ml por minuto. La pasta recogida se almacenó a -60ºC o menos hasta que se procesó posteriormente.
Preparación de polvo de polisacárido purificado
La pasta inactivada se descongeló y se transfirió a una amasadora. La pasta se amasó con cloruro de calcio 0,9M para producir una suspensión homogénea. La suspensión se centrifugó a aproximadamente 10.000 x g durante 15 minutos. El sobrenadante se decantó a través de una almohadilla libre de fibra de algodón en un recipiente como el primer extracto. Se añadió a la pasta un segundo volumen de cloruro de calcio 0,9M, y se amasó para producir una suspensión homogénea. La suspensión se centrifugó como antes, y el sobrenadante se combinó con el sobrenadante procedente de la primera extracción. Se llevó a cabo un total de cuatro extracciones, y los sobrenadantes se reunieron. Los extractos reunidos se concentraron mediante ultrafiltración usando unidades de ultrafiltración enrolladas en espiral de 10-30 kDa de corte de peso molecular (MWCO).
Se añadió cloruro de magnesio al concentrado, y el pH se ajustó entre 7,2 y 7,5 usando hidróxido de sodio. Se añadieron ADNasa y ARNasa al concentrado, y se incubó entre 25 y 28ºC con mezclamiento durante 4 horas. Se añadió etanol a una concentración de 30 a 50%. El ácido nucleico y la proteína precipitados se eliminaron mediante centrifugación a 10.000 x g durante 2 horas. El sobrenadante se recuperó y el polisacárido se precipitó añadiendo etanol al 80% y dejando reposar toda la noche entre 1 y 5ºC. El alcohol se eliminó por sifón, y el polisacárido precipitado se centrifugó durante 5 minutos a 10.000 x g. El polisacárido precipitado se lavó con alcohol. El polisacárido se lavó con acetona, y se centrifugó entre 15 y 20 minutos a 10.000 x g. El polisacárido se secó a vacío. El polvo de polisacárido inicial se disolvió en disolución de acetato de sodio. Se añadió cloruro de magnesio, y el pH se ajustó entre 7,2 y 7,5 usando disolución de hidróxido sódico. Se añadieron ADNasa y ARNasa a la disolución, y se incubó entre 25 y 28ºC con mezclamiento durante 4 horas para eliminar los ácidos nucleicos residuales. Después de la incubación con estas enzimas, se añadió un volumen igual de disolución de acetato de sodio-fenol a la mezcla de polisacárido-enzima, y se colocó en un agitador de plataforma entre 1 y 5ºC durante aproximadamente 30 minutos. La mezcla se centrifugó a 10.000 x g durante 15 a 20 minutos. La capa acuosa superior se recuperó y se guardó. A la capa acuosa se añadió un volumen igual de disolución de acetato de sodio-fenol, y se extrajo como antes. Se llevó a cabo un total de cuatro extracciones para eliminar proteína y endotoxina de la disolución de polisacárido. Los extractos acuosos combinados se diluyeron hasta diez veces con agua para inyección, y se diafiltraron frente a 10 volúmenes de agua para inyección. Se añadió cloruro de calcio al polisacárido diafiltrado. El polisacárido se precipitó toda la noche entre 1 a 5ºC añadiendo etanol hasta 80%. El sobrenadante alcohólico se extrajo, y el polisacárido se recogió mediante centrifugación a 10.000 x g durante 15 minutos. El polisacárido purificado se lavó dos veces con etanol, y una vez con acetona. El polvo lavado se secó a vacío en un secador. El polvo seco se almacenó a -30ºC o menos hasta que se procesó en el conjugado.
Ejemplo 2
Despolimerización de polvo de polisacárido capsular purificado de los serogrupos A, C, W-135, e Y de Neisseria meningitidis
Los materiales usados en la preparación incluyen polvos de polisacárido capsular purificado procedente de los serogrupos A, C, W-135, e Y de Neisseria meningitidis (preparados según el Ejemplo 1), tampón de acetato de sodio 50 mM estéril, pH 6,0, ácido clorhídrico 1N estéril, hidróxido sódico 1N estéril, peróxido de hidrógeno al 30%, y disolución salina fisiológica estéril (cloruro de sodio al 0,85%).
Cada polisacárido de los serogrupos se despolimerizó en una reacción separada. Se cargó un tanque de acero inoxidable con hasta 60 g de polvo de polisacárido capsular purificado. Se añadió tampón de acetato de sodio 50 mM estéril, pH 6,0, al polisacárido para producir una concentración de 2,5 g de polisacárido por litro. La disolución de polisacárido se dejó mezclar entre 1 y 5ºC durante 12 a 24 horas para llevar a cabo la disolución. El tanque de reacción se conectó a una unidad intercambiadora de calor. Se añadió tampón de acetato de sodio 50 mM adicional, pH 6,0, para diluir el polisacárido hasta la concentración de reacción de 1,25 g por litro. La disolución de polisacárido se calentó hasta 55ºC ± 0,1. A la mezcla de reacción se añadió una alícuota de peróxido de hidrógeno al 30% para producir una concentración de reacción de 1% de peróxido de hidrógeno.
El transcurso de la reacción se monitorizó siguiendo el cambio en el tamaño molecular del polisacárido a lo largo del tiempo. Cada 15 a 20 minutos, se extrajeron alícuota de la mezcla de reacción y se inyectaron en una columna de HPSEC para medir el tamaño molecular del polisacárido. Cuando el tamaño molecular del polisacárido alcanzó el tamaño molecular buscado, se apagó la unidad de calentamiento y la disolución de polisacárido se enfrió rápidamente hasta 5ºC mediante circulación a través de un baño de agua con hielo. La disolución de polisacárido despolimerizado se concentró hasta 15 g por litro conectando el tanque de reacción a una unidad de ultrafiltración equipada con cartuchos de celulosa regenerada de 3000 MWCO. La disolución concentrada de polisacárido despolimerizado se diafiltró frente a 10 volúmenes de disolución salina fisiológica estéril (cloruro de sodio al 0,85%). El polisacárido despolimerizado se almacenó entre 1 y 5ºC hasta la siguiente etapa del procedimiento.
El tamaño molecular del polisacárido despolimerizado se determinó haciéndolo pasar a través de una columna de cromatografía de filtración en gel vendida con el nombre comercial “Ultahydrogel™250”, que se calibró usando patrones de peso molecular de dextrano, y mediante dispersión de la luz de láser de múltiples ángulos. La cantidad de polisacárido se determinó mediante el contenido de fósforo para el serogrupo A usando el método de Bartlet,
G.R.J. (1959) Journal of Biological Chemistry, 234, p. 466-468, y mediante el contenido de ácido siálico para los serogrupos C, W135 e Y usando el método de Svennerholm, L. (1955) Biochimica Biophysica Acta 24, p. 604-611. El contenido de O-acetilo se determinó mediante el método de Hesterin, S. (1949) Journal of Biological Chemistry 180, p. 249. La actividad reductora se determinó mediante el método de Park, J.T. y Johnson, M.J. (1949 Journal of Biological Chemistry 181, p. 149-151. La integridad estructural del polisacárido despolimerizado se determinó mediante RMN 1H y 13C de la proteína. La pureza del polisacárido despolimerizado se determinó midiendo el contenido de LAL (endotoxina) y el contenido de peróxido de hidrógeno residual.
Ejemplo 3
Derivatización del polisacárido despolimerizado de los serogrupos A, C, W-135, e Y de Neisseria meningitidis
Los materiales usados en esta preparación incluyen los serogrupos A, C, W-135, e Y del polisacárido capsular de Neisseria meningitidis despolimerizado con peróxido de hidrógeno (preparado según el Ejemplo 2), dihidrazida de ácido adípico, 1-etil-3-(3-dimetilaminopropil)carbodiimida (EDAC) para el serogrupo A solamente, cianoborohidruro de sodio, ácido clorhídrico 1N estéril, hidróxido sódico 1N estéril, cloruro de sodio 1M estéril, y disolución salina fisiológica estéril (cloruro de sodio al 0,85%).
Cada polisacárido del serogrupo se derivatizó en una reacción separada. Un tanque de acero inoxidable se cargó con el polisacárido despolimerizado purificado, y se diluyó con disolución salina fisiológica al 0,85% estéril para lograr una concentración final de la reacción de 6 g de polisacárido por litro. A esta disolución se añadió una alícuota concentrada de dihidrazida de ácido adípico disuelta en disolución salina fisiológica al 0,85% estéril, a fin de lograr una concentración de la reacción de 1 g por litro. Para el serogrupo A solamente, se añadió EDCA como una alícuota concentrada disuelta en disolución salina fisiológica al 0,85% estéril, para lograr una concentración de reacción de 1 g por litro. El pH se ajustó hasta 5,0 ± 0,1, y este pH se mantuvo durante 2 horas usando ácido clorhídrico estéril 1N e hidróxido sódico estéril 1N a temperatura ambiente (15 a 30ºC). Después de dos horas, se añadió a la mezcla de reacción una alícuota concentrada de cianoborohidruro de sodio, disuelto en disolución salina fisiológica al 0,8%, para lograr una concentración de reacción de 2 g por litro. La reacción se agitó a temperatura ambiente (15 a 30ºC) durante 44 horas ± 4 horas mientras se mantenía el pH a 5,5 ± 0,5. Tras este período de reacción, el pH se ajustó hasta 6,0 ± 0,1, y el polisacárido derivatizado se concentró hasta 12 g de polisacárido por litro conectando el tanque de reacción a una unidad de ultrafiltración equipada con cartuchos de celulosa regenerada de 3000 MWCO. El polisacárido derivatizado concentrado se diafiltró durante 30 volúmenes de cloruro de sodio 1M, seguido de 10 volúmenes de cloruro de sodio 0,15M. Este tanque se desconectó de la unidad de ultrafiltración y se almacenó entre 1 y 5ºC durante 7 días. El tanque se volvió a conectar a una unidad de ultrafiltración equipada con cartuchos de celulosa regenerada de 3000 MWCO, y se diafiltró frente a 30 volúmenes de cloruro de sodio 1M, seguido de 10 volúmenes de cloruro de sodio 0,15M.
El tamaño molecular del polisacárido derivatizado, la cantidad de polisacárido, y el contenido de O-acetilo se midió mediante los mismos métodos usados en el polisacárido despolimerizado. El contenido de hidrazida se midió mediante el método de ácido 2,4,6-trinitrobencenosulfónico de Snyder, S.L. y Sobocinski, P.Z. (1975) Analytical Biochemistry 64, p. 282-288. La integridad estructural del polisacárido derivatizado se determinó mediante RMN 1H y13C. La pureza del polisacárido derivatizado se determinó midiendo el nivel de hidrazida no unida, el contenido de LAL (endotoxina), y el contenido de cianoborohidruro residual.
Ejemplo 4
Preparación de proteína portadora
Preparación de proteína de toxoide diftérico bruta
Se reconstituyeron y se incubaron cultivos de siembra liofilizados durante 16 a 18 horas. Una alícuota del cultivo se transfirió a un matraz de 0,5 litros que contiene medio de crecimiento, y el matraz de cultivo se incubó entre 34,5 y 36,5ºC en un agitador giratorio durante 7 a 9 horas. Una alícuota del matraz de cultivo se transfirió a un matraz de 4 litros que contiene medio de crecimiento, y el matraz de cultivo se incubó entre 34,5 y 36,5ºC en un agitador giratorio durante 14 a 22 horas. Los cultivos procedentes del matraz de 4 litros se usaron para inocular un fermentador que contiene medio de crecimiento. El fermentador se incubó entre 34,5 y 36,5ºC durante 70 a 144 horas. Los contenidos del fermentador se filtraron a través de filtros de profundidad en una vasija de recolección. Se añadió a la cosecha una alícuota de disolución de formaldehído al 37% para lograr una concentración de 0,2%. El pH se ajustó entre 7,4 y 7,6. La cosecha se filtró a través de un cartucho de filtro de 0,2 micrómetros en botellas estériles de 20 litros. Las botellas se incubaron entre 34,5 y 36,5ºC durante 7 días. A cada botella de 20 litros se añadió una alícuota de disolución de formaldehído, 37%, para lograr una concentración de 0,4%. El pH de las mezclas se ajustó entre 7,4 y 7,6. Las botellas se incubaron entre 34,5 y 36,5ºC durante 7 días en un agitador. A cada botella de 20 litros se añadió una alícuota de disolución de formaldehído, 37%, para lograr una concentración de 0,5%. El pH de las mezclas se ajustó entre 7,4 y 7,6. Las botellas se incubaron entre 34,5 y 36,5ºC durante 8 semanas. El toxoide bruto se ensayó para determinar la destoxificación. Las botellas se almacenaron entre 1 y 5ºC durante el período de ensayo.
Purificación de la proteína de toxoide diftérico bruta
El toxoide bruto se dejó calentar hasta la temperatura ambiente, y los contenidos de las botellas de 20 litros se combinaron en un tanque de purificación. El pH del toxoide se ajustó entre 7,2 y 7,4, y se añadió carbón al toxoide bruto y se mezcló durante 2 minutos. La mezcla de carbón con el toxoide se dejó reposar durante 1 hora, y después se filtró a través de un cartucho de filtro de profundidad en un segundo tanque de purificación. Se añadió al filtrado sulfato de amonio sólido para lograr 70% de saturación. El pH se ajustó entre 6,8 y 7,2, y la disolución se dejó reposar durante 16 horas. La proteína precipitada se recogió por filtración y se lavó con disolución de sulfato de amonio saturada al 70%, pH 7,0. El precipitado se disolvió en agua destilada estéril, y la disolución de proteína se filtró en una vasija de recolección de acero inoxidable. El pH se ajustó entre 6,8 y 7,2, y se añadió sulfato de amonio hasta 40% de saturación. El pH de la disolución se ajustó entre 7,0 y 7,2, y se dejó que la disolución reposara durante 16 horas. El precipitado se eliminó por filtración y se descartó. Se añadió sulfato de sodio al filtrado hasta 70% de saturación, y el pH se ajustó entre 7,0 y 7,2. La mezcla se dejó reposar durante 16 horas, y la proteína precipitada se recogió mediante filtración. El precipitado se disolvió en agua destilada estéril, se filtró para eliminar la proteína no disuelta, y se diafiltró frente a disolución salina fisiológica al 0,85%.
Concentración y filtración estéril de la proteína de toxoide diftérico purificada
La disolución proteica se concentró hasta 15 g por litro y se diafiltró frente a 10 volúmenes de disolución salina fisiológica al 0,85% usando un cartucho de filtro de celulosa regenerada de 10.000 MWCO. La disolución proteica concentrada se esterilizó mediante filtración a través de una membrana de 0,2 micrómetros. La disolución proteica se almacenó entre 1 y 5ºC hasta que se procesó en el conjugado.
La concentración proteica se determinó mediante el método de Lowry, O.H. et al (1951) Journal of Biological Chemistry 193, p. 265-275. La pureza de la proteína se midió mediante esterilidad, contenido de LAL (endotoxina), y contenido de formaldehído residual.
Ejemplo 5
Preparación de conjugados monovalentes de polisacárido de los serogrupos A, C, W-135, e Y de Neisseria meningitidis con la proteína de toxoide diftérico
Los materiales usados en esta preparación incluyen polisacárido derivatizado con ácido adípico procedente de los serogrupos A, C, W-135, e Y de Neisseria meningitidis (preparados según el Ejemplo 3), proteína de toxoide diftérico estéril (preparada según el Ejemplo 4), EDAC, sulfato de amonio, ácido clorhídrico 1N estéril, hidróxido sódico 1N estéril, y disolución salina fisiológica estéril (0,85%).
Se preparó un conjugado de polisacárido de los serogrupos mediante una reacción separada. Los cuatro conjugados se prepararon mediante el siguiente procedimiento. Se cargó un tanque de acero inoxidable con polisacárido purificado derivatizado con ácido adípico a una concentración de reacción de 700 a 1000 !moles de hidrazida reactiva por litro, y con proteína de toxoide diftérico purificada a una concentración de reacción de 3,8 a 4,0 g de proteína por litro. Para diluir los materiales de partida hasta las concentraciones de reacción diana, se usó disolución salina fisiológica al 0,85%, y el pH se ajustó hasta 5,0 ± 0,1. Se añadió una alícuota de EDAC a la mezcla de polisacárido-proteína para lograr una concentración de reacción de 2,28 a 2,4 g por litro. El pH de la reacción se mantuvo a 5,0 ± 0,1 durante 2 horas entre 15 y 30ºC. Después de dos horas, el pH se ajustó hasta 7,0 ± 0,1 usando hidróxido sódico 1N estéril, y la reacción se almacenó entre 1 y 5ºC durante 16 a 20 horas.
La mezcla de reacción se dejó calentar entre 15 y 30ºC, y la vasija de reacción se conectó a una unidad de ultrafiltración equipada con un cartucho de celulosa regenerada de 30.000 MWCO. Se añadió sulfato de amonio sólido hasta 60% de saturación (para los serogrupos A, W-135 e Y) y 50% de saturación (para el serogrupo C). La mezcla de reacción del conjugado se diafiltró frente a 20 volúmenes de disolución de sulfato de amonio saturada al 60% (para los serogrupos A, W-135 e Y) y disolución de sulfato de amonio saturada al 50% (para el serogrupo C), seguido de 20 volúmenes de disolución salina fisiológica, 0,85%. El conjugado diafiltrado se filtró en primer lugar a través de una cápsula de filtro que contiene un filtro de 1,2 micrómetros y un filtro de 0,45 micrómetros, y después a través de una segunda cápsula de filtro que contiene un filtro de 0,22 micrómetros.
La cantidad de polisacárido y el contenido de O-acetilo se midieron mediante los mismos métodos usados en el polisacárido despolimerizado y derivatizado. La cantidad de proteína se determinó mediante el método de Lowry. El tamaño molecular del conjugado se determinó haciéndolo pasar a través de una columna de cromatografía de filtración en gel vendida con el nombre “TSK6000PW” que usó ADN como el marcador de volumen vacío, ATP como el marcador del volumen total, y tiroglobulina bovina como un marcador de referencia. Además, el tamaño molecular del conjugado eluido de la columna TSK6000PW se midió mediante dispersión de luz de láser de múltiples ángulos. El carácter antigénico del conjugado se midió uniéndolo a un anticuerpo específico del serogrupo anti-polisacárido usando el método de ELISA de sándwich doble. La pureza de los conjugados se determinó midiendo la cantidad de polisacárido no unido (no conjugado) mediante elución a través de una columna de cromatografía de interacción hidrófoba, midiendo la proteína no conjugada mediante electroforesis capilar, midiendo la esterilidad, el contenido de LAL (endotoxina), el contenido de EDAC residual, y el contenido de ion amonio residual.
Ejemplo 6
Formulación de una vacuna meningocócica polivalente de un conjugado de polisacárido A, C, W-135 e Y con toxoide diftérico
Los materiales usados en esta preparación incluyen conjugados del polisacárido de los serogrupos A, C, W-135 e Y con toxoide diftérico (preparados según el Ejemplo 5), disolución salina fisiológica tamponada con fosfato de sodio 100 mM estéril (cloruro de sodio al 0,85%).
Una alícuota de disolución salina fisiológica tamponada con fosfato de sodio 100-500 mM estéril se añadió a disolución salina fisiológica (0,85%) en un tanque de formación de masa de acero inoxidable para producir una concentración de vacuna final de fosfato de sodio 10 mM. Una alícuota de cada uno de dos a cuatro de los conjugados meningocócicos monovalentes estériles de polisacárido-toxoide diftérico se añadió al tanque formador de masa que contiene disolución salina fisiológica tamponada con fosfato de sodio estéril 10 mM, para producir una concentración final de 8 !g de cada polisacárido de los serogrupos por mililitro de tampón. El conjugado tetravalente conjugado se mezcló y se filtró a través de un filtro de 0,2 !m en un segundo tanque formador de masa.
La cantidad de cada polisacárido de los serogrupos presente en la formulación polivalente se determinó mediante análisis del sacárido componente usando cromatografía de intercambio aniónico de pH elevado con detección amperométrica pulsada. La cantidad de proteína se midió mediante el método de Lowry. El pH de la vacuna se midió usando un electrodo de combinación conectado a un peachímetro. El carácter antigénico de la vacuna de conjugado polivalente se midió uniéndola a un anticuerpo específico del serogrupo anti-polisacárido usando un método de ELISA de sándwich doble. La inmunogenicidad de la vacuna del conjugado polivalente se midió mediante la capacidad de cada conjugado presente en la vacuna para provocar tanto una respuesta inmunitaria IgG antipolisacárido primaria como de refuerzo en un modelo de animal. La pureza de la vacuna del conjugado polivalente se determinó midiendo la cantidad de polisacárido no unido (no conjugado) usando una cromatografía de intercambio iónico de pH elevado con detección amperométrica pulsada, midiendo la esterilidad, el contenido de LAL (endotoxina), el contenido pirogénico y la seguridad general.
Ejemplo 7
Preparación de conjugado meningocócico polivalente de polisacárido con proteína de toxoide diftérico adyuvantado con hidróxido de aluminio
La preparación de conjugado se adsorbió a hidróxido de aluminio. Los materiales usados en esta preparación incluyen la preparación de conjugados de polisacárido de los serogrupos A, C, W-135 e Y con toxoide diftérico descrita en el Ejemplo 5, disolución salina fisiológica estéril (cloruro de sodio al 0,85%), e hidróxido de aluminio estéril en disolución salina fisiológica (cloruro de sodio al 0,85%).
Una alícuota de cada uno de los conjugados monovalentes estériles meningocócicos del polisacárido con toxoide diftérico se añadió al tanque de formación de masa que contiene disolución salina fisiológica para producir una concentración final de 8 !g de cada polisacárido de los serogrupos por mililitro de tampón. Una alícuota de hidróxido de aluminio estéril en disolución salina fisiológica (cloruro de sodio al 0,85%) se añadió a la vacuna de conjugado polivalente para lograr una concentración final de 0,44 mg de ion aluminio por mililitro de vacuna.
Ejemplo 8
Preparación de conjugado adyuvantado con fosfato de aluminio
Los materiales usados en esta preparación incluyen la preparación de conjugados de polisacárido de los serogrupos A, C, W-135 e Y con toxoide diftérico descrita en el Ejemplo 5, disolución salina fisiológica estéril (cloruro de sodio al 0,85%), y fosfato de aluminio estéril en disolución salina fisiológica (cloruro de sodio al 0,85%).
Una alícuota de cada uno de los conjugados meningocócicos monovalentes estériles de polisacárido-toxoide diftérico se añadió al tanque de formación de masa que contiene disolución salina fisiológica para producir una
5 concentración final de 8 !g de cada polisacárido de los serogrupos por mililitro de tampón. Una alícuota de fosfato de aluminio estéril en disolución salina fisiológica (cloruro de sodio al 0,85%) se añadió a la vacuna de conjugado polivalente para lograr una concentración final de 0,44 mg de ion aluminio por mililitro de vacuna.
Ejemplo 9
10 Inmunogenicidad de la vacuna de conjugado tetravalente
La vacuna de conjugado tetravalente se estudió para determinar su capacidad para provocar una respuesta inmunitaria en pequeños animales de laboratorio antes de la evaluación en la clínica. Para estudiar la
15 inmunogenicidad de las vacunas de los conjugados con relación a las vacunas de polisacáridos, se usaron ratones, ratas y conejos. Estos modelos de animales son útiles debido a que son capaces de distinguir la vacuna de los conjugados de la vacuna de polisacáridos correspondiente por su patrón de respuesta inmunitaria. La vacuna de conjugado provoca una respuesta inmunitaria de tipo dependiente de T en estos modelos, mientras que la vacuna de polisacárido provoca una respuesta inmunitaria de tipo independiente de T.
20 En estudios de inmunogenicidad del ratón, el conjugado se diluyó con disolución salina fisiológica (cloruro de sodio al 0,85%) para administrar entre una cuarta parte y una decimosexta parte de una dosis humana. A los ratones se les administró una o dos dosis de vacuna, ya sea de conjugado o de polisacárido, y se extrajeron muestras de sangre dos semanas después de la vacunación. Un grupo de ratones sirvió como un grupo de control no
25 inmunizado. Los anticuerpos frente a cada uno de los polisacáridos de los serogrupos se midieron mediante un método de ELISA. Las muestras de suero se incubaron con exceso de cada polisacárido capsular que se unió a un pocillo de placa de microtitulación de ELISA. Para unir cada polisacárido de los subgrupos al pocillo de microtitulación se usó seroalbúmina humana metilada. Tras la incubación, el pocillo de microtitulación se lavó con tampón, y se añadió un conjugado de anticuerpo secundario-enzima al complejo de anticuerpo-polisacárido, que se
30 une al anticuerpo anti-polisacárido meningocócico. La placa de microtitulación se lavó, y se añadió un sustrato químico al conjugado de anticuerpo anti-polisacárido meningocócico-anticuerpo secundario-enzima. La enzima hidroliza una porción del sustrato químico, que da como resultado la formación de color. La cantidad de formación de color es proporcional a la cantidad de conjugado de anticuerpo anti-polisacárido meningocócico-anticuerpo secundario-enzima que se une al pocillo de microtitulación. La potencia de la vacuna se determinó comparando los
35 antisueros de referencia para cada serogrupo, que se mide en la misma placa de microtitulación, mediante un cálculo en línea paralelo usando un ajuste de cuatro parámetros. Los antisueros de referencia de los ratones se generaron en la misma raza de ratones que se inmunizaron individualmente con tres dosis de cada vacuna de conjugado de los serogrupos. A los antisueros de referencia de los ratones se les asignó títulos basándose en la inversa de dilución que produce una densidad óptica de 1,0.
40 En la Tabla 1 se presenta un resumen de los títulos de IgG anti-polisacárido para cada serogrupo logrados en ratones Swiss-Webster que se vacunaron con dos dosis de la vacuna de conjugado tetravalente, tanto formulación líquida como de hidróxido de aluminio, o la vacuna de polisacárido tetravalente correspondiente. Los títulos de IgG se midieron en sueros reunidos procedentes de un conjunto de diez ratones. Para medir la respuesta inmunitaria a
45 cada formulación de vacuna, se usaron dos conjuntos de 10 ratones. Ambos conjuntos se vacunaron en el día 1. En el día 15 (2 semanas después de la vacunación) se extrajeron muestras de sangre de un conjunto de 10 ratones, y el segundo conjunto de diez ratones se vacunó con una segunda dosis de vacuna en el día 15. Dos semanas más tarde en el día 29, se tomaron muestras de sangre del segundo conjunto de 10 ratones, y del grupo de control no inmunizado. Todos los anticuerpos se titularon al mismo tiempo, esto es, tanto en el día 15 como en el día 29 se
50 evaluaron las muestras de sangre al mismo tiempo junto con los controles no inmunizados y los sueros de referencia de los ratones. Tabla 1
Títulos de IgG anti-polisacárido en sueros reunidos de ratones Swiss-Webster vacunados con conjugado tetravalente o con polisacárido.
Grupo de vacuna
Dosis !g ps Anti-A men Anti-C men Anti-W135 men Anti-Y men
D15
D29 D15 D29 D15 D29 D15 D29
Conjugado (sin adyuvante)
0,25 131 2640 250 1510 1350 6100 5660 4830
Conjugado (sin adyuvante)
0,50 171 6220 416 2050 849 26000 5980 112000
Conjugado (sin adyuvante)
1,0 249 4500 525 2740 1450 16600 11300 59100
Conjugado (Hid. Alum.)
0,25 2920 4500 1010 2980 2300 33700 11600 124000
Conjugado (Hid. Alum.)
0,50 5800 9550 2280 1010 4810 71900 26400 330000
Conjugado (Hid. Alum.)
1,0 6210 9350 2630 12800 7870 94000 32700 302000
Polisacárido (sin adyuvante)
1,0 136 173 184 205 612 608 4470 3910
No inmunizados
n.a. - 110 - 145 - 623 - 777
La vacuna del conjugado tetravalente, tanto sin adyuvante como con adyuvante con hidróxido de aluminio, es capaz de provocar una fuerte respuesta inmunitaria IgG anti-polisacárido en este modelo de ratón. El adyuvante de hidróxido de aluminio sirve para mejorar tanto la respuesta primaria como de refuerzo frente a cada uno de los 5 cuatro conjugados de los polisacáridos de los serogrupos. La vacuna de polisacárido tetravalente provoca una respuesta inmunitaria insignificante frente a los serogrupos A, C y W135 en este modelo de ratón con relación al control no inmunizado, mientras que el serogrupo Y provoca una respuesta inmunitaria respetable, pero no una respuesta de refuerzo. La vacuna de polisacárido tetravalente no provoca una respuesta de refuerzo a los cuatro polisacáridos de los serogrupos en este modelo. Este modelo puede diferenciar fácilmente entre la vacuna de
10 polisacárido y la vacuna de conjugado tanto por la magnitud de la respuesta inmunitaria como por el patrón de respuesta de refuerzo frente a cada una de las vacunas de conjugados de serogrupos.
Se ha estudiado en clínica la forma sin adyuvante de la vacuna de conjugado tetravalente para determinar la seguridad de inmunogenicidad en adultos sanos jóvenes y en niños sanos jóvenes. En el estudio con adultos, los
15 sujetos se vacunaron con una sola dosis de vacuna, formulada para contener 4 !g de cada uno de los cuatro conjugados, como polisacárido. Se tomaron muestras de sangre inmediatamente antes de la vacunación y 28 días después de la vacunación. Los anticuerpos frente a cada uno de los conjugados de los serogrupos se midieron mediante una medida de ELISA que cuantificó la cantidad de IgG anti-polisacárido. El método de ELISA es muy similar al método usado para medir la cantidad de anticuerpo IgG presente en sueros de ratón.
20 De forma breve, se incubaron muestras de suero en pocillos de microtitulación de ELISA que se revistieron con polisacárido meningocócico en exceso que se unió a la placa con seroalbúmina humana metilada. La cantidad de anticuerpo unido se determinó mediante una reacción con anticuerpo monoclonal específico anti-IgG humana de ratón marcado con peroxidasa. Una reacción subsiguiente que usa sustrato de peroxidasa genera un producto
25 cromogénico que se midió espectrofotométricamente. La densidad óptica resultante del cromóforo se correlaciona con la cantidad de anticuerpo IgG en el suero que se une al polisacárido meningocócico en la placa de microtitulación. La cantidad de anticuerpo se calculó comparando un suero de referencia humano (CDC 1922) con un valor asignado usando un método de curva logística de 4 parámetros. Además, los anticuerpos se midieron en busca de su capacidad para lisar bacterias específicas de serogrupos. Las muestras de suero se inactivaron
30 primeramente por calor para destruir el complemento. Las muestras de suero se diluyeron mediante diluciones de dos veces en una placa de microtitulación estéril de 96 pocillos. A las diluciones de suero se añadieron bacterias específicas de serogrupos junto con complemento de conejo recién nacido, y se dejó incubar. Después de un período de incubación, se añadió un medio de recubrimiento de agar a la mezcla de suero/complemento/bacterias. El recubrimiento de agar se dejó endurecer, y después se incubó toda la noche a 37ºC con dióxido de carbono al
35 5%. Al siguiente día, se contaron las colonias bacterianas presentes en los pocillos. El título de punto final se determinó mediante la dilución de suero recíproca que produce más del 50% de muertes en comparación con la media de los pocillos de control con complemento.
En la Tabla 2 se presenta un resumen de las concentraciones medias de IgG anti-polisacárido para cada serogrupo
40 y el título medio del anticuerpo bactericida sérico (SBA) en sueros de adulto antes y después de la vacunación con la vacuna de conjugado tetravalente formulada a 4 !g de polisacárido por dosis. La respuesta inmunitaria frente a los cuatro conjugados de los serogrupos fue satisfactoria, esto es, comparable a la respuesta inmunitaria lograda por la vacuna de polisacárido autorizada en términos tanto de respuestas de anticuerpo IgG como de anticuerpo bactericida funcional. Se encontró que la vacuna es segura para este grupo de edad, y se encontró que el perfil de
45 seguridad es similar al de la vacuna de polisacárido autorizada.
Tabla 2
GMC (concentración media de grupo) de IgG anti-polisacárido y GMTs (títulos medios de grupo) de anticuerpo bactericida de suero para adultos sanos jóvenes vacunados con una vacuna meningocócica de conjugado tetravalente formulada a 4 !g por dosis por polisacárido
Respuesta inmunitaria por serogrupo
Npre/Npost GMC de IgG (!g/ml) [95% Cl] GMT de SBA [95%Cl]
Pre
Post Pre Post
A
28/28 3,3 [2,3-4,8] 38,4 [22,2-66,4] 487 [231-1027] 6720 [4666-15428]
C
28/28 0,4 [0,2-0,71 5,5 [3,0-10,1] 16,4 [7,1-37,7] 1560 [800-4042]
W-135
28/28 0,6 [0,3-1,0] 5,8 [2,9-11,7] 10,0 [5,9-16,9] 609 [250-1481]
Y
28/28 1,3 [0,7-2,5] 6,8 [3,2-14,6] 19,0 18,0-41,2] 390 [143-1061]
50 En grupos de edad más joven, niños con menos de 2 años de edad, la respuesta inmunitaria frente a la vacuna de polisacárido es débil, y se ha estimado que la inmunidad decrece después de un año. A niños de 12 a 15 meses de edad se les administró una única dosis de vacuna de conjugado tetravalente formulada a 4 !g de cada polisacárido
de los serogrupos por dosis, y se les administró una segunda dosis de vacuna de conjugado tetravalente dos meses después de la primera dosis. Se tomaron muestras de sangre antes de la primera y de la segunda vacunación, y un mes después de la segunda vacunación. Las respuestas de anticuerpos frente a los cuatro conjugados de los serogrupos se resumen en la Tabla 3. Para cada serogrupo, se observó una respuesta de refuerzo para anticuerpo 5 IgG y para anticuerpo bactericida funcional, tras una segunda dosis de conjugado tetravalente. El nivel de anticuerpo IgG provocado por la vacuna de conjugado es comparable al provocado por el polisacárido autorizado para este grupo de edad; una respuesta después de 6 semanas de 3,64 !g/ml (2,96-4,49) de respuesta de anticuerpo IgG frente al polisacárido del serogrupo C. Sin embargo, el nivel de anticuerpo bactericida provocado por la vacuna de conjugado es mucho mayor que el provocado normalmente por la vacuna de polisacárido autorizada para este grupo
10 de edad; un título de SBA después de 6 semanas de 7,2 (5,0-10,4). Se piensa que la razón de esta discordancia entre el anticuerpo IgG y el anticuerpo bactericida en las poblaciones más jóvenes resulta de que el polisacárido provoca una proporción elevada de anticuerpo de baja avidez en las poblaciones más jóvenes. Contrariamente, parece que el conjugado provoca una proporción mucho mayor de anticuerpo de avidez elevada. Se piensa que el anticuerpo de avidez elevada es responsable de la actividad bactericida.
15 Tabla 3
GMC (concentración media de grupo) de IgG anti-polisacárido y GMTs (títulos medios de grupo) de anticuerpo bactericida de suero para infantes sanos (1 a 2 años de edad) vacunados con dos dosis de vacuna meningocócica de conjugado tetravalente formulada a 4 !g por dosis por polisacárido
Respuesta inmunitaria por serogrupo
N1/N2/N 3 GMC de IgG (!g/ml) [95% Cl] GMT de SBA [95% Cl]
Pre-dosis1
Pre-dosis2 Post-dosis 2 Pre-dosis1 Pre-dosis2 Post-dosis 2
A
8/8/8 0,2 [0,1-0,4] 2,1 [0,9-4,8] 4,4 [2,1-9,1] 8,7 [1,4-55,1] 1328 [179-9871] 3158 [1857-5371]
C
8/8/8 0,2 [0,0-0,7] 1,0 [0,3-3,1] 1,5 [0,6-3,6] 6,7 [2,0-23,0] 117 [37,7-365] 304 [128-721]
W-135
8/8/8 0,1 [0,1-0,2] 0,6 [0,2-1,9] 1,5 [0,8-3,1] 6,2 [2,2-17,2] 22,6 [2,8-185] 430 [172-1076]
Y
8/8/8 0,3 [0,2-0,4] 1,2 [0,5-2,8] 4,5 [2,7-7,6] 5,7 [3,7-8,8] 98,7 [20,4-478] 304 [101-920]
Además de la capacidad de la vacuna de conjugado tetravalente de provocar una respuesta de anticuerpo funcional
20 elevada en poblaciones más jóvenes en comparación con la vacuna de polisacárido autorizada, la vacuna de conjugado tetravalente es capaz de provocar una respuesta anamnésica, demostrando que la protección provocada por la vacuna de conjugado tetravalente de la presente invención es de larga duración. En el desarrollo de la vacuna de conjugado tetravalente, se llevaron a cabo en primer lugar estudios sobre una formulación de conjugado bivalente AC. La vacuna ofrece una cobertura más amplia que el conjugado monovalente C autorizado actual, pero no protege
25 frente a la enfermedad provocada por los serogrupos W135 e Y.
Se llevó a cabo un estudio clínico con lactantes que comparó la respuesta inmunitaria frente a la vacuna de polisacárido bivalente AC frente a la vacuna del conjugado bivalente AC. En este estudio, se enroló un tercer grupo de lactantes para servir como grupo de control, y recibieron un conjugado de Haemophilus influenzae tipo b. Los tres 30 grupos de vacunas recibieron las mismas vacunas pediátricas. El grupo del conjugado bivalente AC recibió tres dosis de vacuna de conjugado (4 !g de polisacárido por dosis) a 6, 10 y 14 semanas de edad. El grupo de polisacárido bivalente AC recibió dos dosis de una vacuna de polisacárido bivalente AC (50 !g de polisacárido por dosis) a 10 y 14 semanas de edad. El grupo del conjugado de Haemophilus influenzae tipo b recibió tres dosis de vacuna de conjugado a 6, 10 y 14 semanas de edad. Se tomaron muestras de sangre a las seis semanas, antes de
35 la vacunación, y a las 18 semanas, 4 semanas después de la vacunación. Cuando los niños tuvieron 11 a 12 meses de edad, se tomaron muestras de sangre, y los niños que recibieron el conjugado bivalente AC o la vacuna de polisacárido bivalente AC recibieron una dosis de refuerzo de polisacárido AC. La razón para la dosis de refuerzo del polisacárido fue evaluar si los sujetos provocarían o no una respuesta anamnésica.
40 Los resultados de este estudio, tanto las respuestas inmunitarias primarias como de refuerzo con polisacárido, se presentan en la Tabla 4 para la respuesta de anticuerpo IgG, y en la Tabla 5 para la respuesta de anticuerpo SBA. La respuesta de anticuerpo IgG después de la serie primaria fue aproximadamente la misma tanto para la vacuna de polisacárido como de conjugado. Sin embargo, la respuesta de anticuerpo bactericida en los sujetos vacunados con conjugado fue mucho mayor que aquella para los sujetos vacunados con polisacárido. Como se observa con los
45 pacientes de un año de edad, la vacunación de los lactantes con el polisacárido provoca muy poco anticuerpo bactericida funcional. El anticuerpo provocado por los lactantes frente a la vacuna de polisacárido es presumiblemente anticuerpo de baja avidez, mientras que la vacuna de conjugado parece provocar anticuerpo de avidez elevada, dando cuenta de ese modo del título mucho mayor de anticuerpo bactericida. El nivel elevado de anticuerpo funcional provocado por la dosis de refuerzo de la vacuna de polisacárido en los sujetos que habían
50 recibido la vacuna de conjugado en la serie de vacunación primaria indica que estos sujetos han sido sensibilizados para una respuesta de anticuerpo dependiente de células T o de memoria. Los sujetos que recibieron la vacuna de polisacárido en la serie de vacunación primaria provocaron una respuesta modesta frente a la dosis de refuerzo con polisacárido, esto es, indicativa de una respuesta independiente de células T.
Tabla 4
GMC (concentración media de grupo) de IgG anti-polisacárido en infantes frente a serogrupos A y C antes y después tanto de la inmunización en serie primaria (6, 10 y 14 semanas de edad) como de la vacunación de recuerdo con polisacárido bivalente AC dado a los 11 a 12 meses de edad.
Respuesta inmunitaria por grupo de vacuna
GMC de vacunación primaria [95% Cl] GMC de vacunación de recuerdo con PS [95%Cl]
N
Pre Post N Pre Post
Serogrupo A:
Conjugado AC
34 3,4 [2,2-5,4] 5,8 [4,3-8,0] 31 0,2 [0,1-0,3] 7,0 [4,0-12,0]
Polisacárido AC
35 3,0 [1,7-5,3] 5,5 [4,1-7,3] 30 0,9 [0,5-1,4] 3,1 [2,0-4,7]
Conjugado HIB
36 3,2 [2,2-4,5] 0,6 [0,4-0,8] NA NA NA
Serogrupo C:
Conjugado AC
31 1,6 [0,9-2,8] 2,8 [2,0-3,9] 31 0,1 [0,1-0,2] 8,1 [4,5-14,5]
Polisacárido AC
35 2,3 [1,4-3,9] 5,3 [3,8-7,4] 30 0,6 [0,3-1,0] 2,8 [1,7-4,7]
Conjugado HIB
36 2,0 [1,2-3,5] 0,5 [0,3-0,7] NA NA NA
Tabla 5
GMC (concentración media de grupo) de SBA en infantes frente a serogrupos A y C antes y después tanto de la inmunización de serie primaria (6, 10 y 14 semanas de edad) como de la vacunación de recuerdo con polisacárido bivalente AC dado a los 11 a 12 meses de edad.
Respuesta inmunitaria por grupo de vacuna
GMC de vacunación primaria [95% Cl] GMC de vacunación de recuerdo con PS [95%Cl]
N
Pre Post N Pre Post
Serogrupo A:
Conjugado AC
34 11,8 [7,2-19,3] 177 [101-312] 24 10,1 [5,6-18,0] 373 [162-853]
Polisacárido AC
32 14,7 [8,5-25,4] 7,0 [4,7-10,5] 26 6,1 [3,9-9,5] 24,1 [11-53]
Conjugado HIB
35 11,2 [6,8-18,3] 6,7 [4,3-10,5] NA NA NA
Serogrupo C:
Conjugado AC
34 50,8 [24-107] 189 [128-278] 27 4,6 [3,6-5,6] 287 [96,2-858]
Polisacárido AC
32 62,7 [29-131] 25,4 [14,4-44,6] 26 4,1 [3,9-4,3] 14,4 [7,9-26,1]
Conjugado HIB
36 45,3 [21,9-133] 7,3 [4,7-11,3] NA NA NA
10 Además de los beneficios que esta invención ofrece de la protección mejorada frente a la enfermedad meningocócica en poblaciones jóvenes y la protección más amplia frente a serogrupos A, C, W-135 e Y, el conjugado tetravalente puede proporcionar protección frente a otros patógenos induciendo una respuesta de anticuerpo frente a la proteína portadora. Cuando la vacuna de conjugado tetravalente, que usa conjugado con toxoide diftérico, se administró a lactantes, estos sujetos también recibieron las inmunizaciones pediátricas
15 habituales, que incluyeron el toxoide diftérico. Por lo tanto, en estos sujetos no hubo ninguna mejora aparente en la respuesta de anticuerpo frente al toxoide diftérico. Sin embargo, cuando se administró el conjugado del toxoide diftérico a sujetos que no recibieron vacunas concomitantes que contienen toxoide diftérico, se observó una fuerte respuesta de refuerzo frente al toxoide diftérico. Estos sujetos habían recibido un régimen de tres dosis de DTP a los 2, 3 y 4 meses de edad. En este estudio, los sujetos recibieron una única dosis de un conjugado bivalente AC o una
20 única dosis de una vacuna de polisacárido bivalente AC entre 2 y 3 años de edad. Se tomaron muestras de sangre en el momento de la vacunación y 30 días después de la vacunación. El conjugado bivalente AC usó el toxoide diftérico como la proteína portadora.
En la Tabla 6 se presenta la respuesta inmunitaria del toxoide diftérico en los dos grupos de vacunas. El polisacárido
25 no sirve para estimular una respuesta inmunitaria anti-difteria en estos sujetos como se esperaba; sin embargo, se observó una fuerte respuesta inmunitaria anti-difteria para los sujetos que recibieron el conjugado AC. Por lo tanto, la vacuna de conjugado meningocócica puede proporcionar un beneficio añadido de estimulación de una respuesta inmunitaria frente a proteína portadora, proporcionando de ese modo protección frente a enfermedades provocadas por Corynebacteria diphtheriae cuando se usa el toxoide diftérico como proteína portadora.
Tabla 6
GMT (título medio de grupo) de anticuerpo anti-difteria mediante ELISA en UI/ml en niños sanos jóvenes vacunados con una vacuna bivalente de conjugado AC con toxoide diftérico formulada a 4!g como polisacárido por dosis o una vacuna bivalente de polisacárido AC formulada a 50 !g como polisacárido por dosis
Respuesta inmunitaria por grupo de vacuna
Npre/Npost Anticuerpo anti-difteria (ELISA -UI/ml) [95%Cl]
Pre
Post
Conjugado AC
104/103 0,047 [0,036-0,060] 21,2 [11,6-38,6]
Polisacárido AC
103/102 0,059 [0,045-0,076] 0,059 [0,045-0,077]
Referencias:
Frasch, C.E., Zollenger, W.D. y Poolman, J.T. (1985) Review of Infectious Diseases 7, p. 504-510. 10 Reido, F.X., Plikaytis, B.D. y Broome, C. V. (1995) Pediatric Infectious Disease Journal 14, p.643-657.
Artenstein, M.S., Gold, R., Zimmerly, J.G., Wyle, F.A., Schneider, H. y Harkins, C. (1970) The New England Journal of Medicine 282, p. 417-420.
15 Peltola, H., Makela, H., Kayhty, H., Jousimies, H., Herva, E., Hallstrom, K., Sivonen, A., Renkonen, O.V., Pettay, O., Karanko, V., Ahvonen, P., y Sarna, S. (1997) The New England Journal of Medicine 297, p. 686-691.
Reingold, A.L., Broome, C.V., Hightower, A.W., Ajello, G.W., Bolan, G.A., Adamsbaum, C., Jones, E.E., Phillips, C., 20 Tiendrebeogo, H., y Yada, A. (1985) The Lancet 2, p. 114-118.
Goldschneider, I., Lepow, M.L., Gotschlich, E.C., Mauck, F.T., Bachl, F., y Randolph, M. (1973) The Journal of Infectious Diseases 128, p. 769-776.
25 Gold, R., Lepow, M.L., Goldschneider, I., y Gotschlich, E.C. (1977) The Journal of Infectious Diseases 136, S31-S35.
Brandt, B.L. y Artenstein, M.S. (1975) The Journal of Infectious Diseases 131, p. S69-S72.
Kayhty, H., Karanko, V., Peltola, H., Sarna, S, y Makela, H. (1980) The Journal of Infectious Diseases 142, p. 861-868.
30 Cessey, S.J., Allen, S.J., Menon, A., Todd, J.E., Cham, K., Carlone, G.M., Turner, S.H., Gheesling, L.L., DeWitt, W., Plikaytis, B.D., y Greenwood, B. (1993) The Journal of Infectious Diseases 167, p. 1212-1216.
Wyle, F.A., Artenstein, M.S., Brandt, G.L., Tramont, E.C., Kasper, D.L., Altieri, P.L., Berman, S.L., y Lo-wenthal, J.P. 35 (1972) The Journal of Infectious Diseases, 126, p. 514-522.
Jennings, H.J. and Lugowski, C. (1981) The Journal of Immunology 127, p. 1011-1018.

Claims (12)

  1. REIVINDICACIONES
    1. Vacuna meningocócica polivalente que comprende cantidades inmunológicamente eficaces de cuatro conjugados distintos de proteína-polisacárido para su uso en la protección de un ser humano frente a la infección por
    N. meningitidis, en la que cada uno de los conjugados contiene un polisacárido capsular diferente conjugado a una proteína portadora, y en la que los polisacáridos capsulares se preparan a partir de los serogrupos A, C, W-135 e Y de N. meningitidis, en la que además la proteína portadora es el toxoide diftérico o CRM197.
  2. 2.
    Vacuna para su uso según la reivindicación 1, en la que cada polisacárido capsular se conjuga de forma separada a la misma especie de proteína portadora.
  3. 3.
    Vacuna para su uso según la reivindicación 1 ó 2, que comprende además un adyuvante.
  4. 4.
    Vacuna para su uso según la reivindicación 3, en la que el adyuvante es hidróxido de aluminio.
  5. 5.
    Vacuna para su uso según la reivindicación 3, en la que el adyuvante es fosfato de aluminio.
  6. 6.
    Vacuna para su uso según la reivindicación 1 ó 2, en la que la vacuna no contiene un adyuvante.
  7. 7.
    Método para fabricar una vacuna destinada a ser utilizada para proteger un ser humano frente a la infección por
    N. meningitidis, caracterizado porque se usan
    (i)
    un conjugado de una proteína portadora y un polisacárido capsular del serogrupo A de N. meningitidis;
    (ii)
    un conjugado de una proteína portadora y un polisacárido capsular del serogrupo C de N. meningitidis;
    (iii) un conjugado de una proteína portadora y un polisacárido capsular del serogrupo W-135 de N. meningitidis; y
    (iv) un conjugado de una proteína portadora y un polisacárido capsular del serogrupo Y de N. meningitidis;
    en el que dicho método comprende la preparación separada de dichos conjugados y la combinación de dichos conjugados en mezcla con un vehículo, diluyente o excipiente adecuado, en el que la proteína portadora es toxoide diftérico o CRM197.
  8. 8.
    Método según la reivindicación 7, en el que cada polisacárido capsular se conjuga de forma separada a la misma especie de proteína portadora.
  9. 9.
    Método según la reivindicación 7 u 8, que comprende además la inclusión de un adyuvante en la vacuna.
  10. 10.
    Método según la reivindicación 9, en el que el adyuvante es hidróxido de aluminio.
  11. 11.
    Método según la reivindicación 9, en el que el adyuvante es fosfato de aluminio.
  12. 12.
    Método según la reivindicación 7 u 8, en el que la vacuna no contiene un adyuvante.
ES02707551T 2001-01-23 2002-01-22 Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína Expired - Lifetime ES2388848T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26343501P 2001-01-23 2001-01-23
US263435P 2001-01-23
PCT/US2002/001963 WO2002058737A2 (en) 2001-01-23 2002-01-22 Multivalent meningococcal polysaccharide-protein conjugate vaccine

Publications (1)

Publication Number Publication Date
ES2388848T3 true ES2388848T3 (es) 2012-10-19

Family

ID=23001755

Family Applications (3)

Application Number Title Priority Date Filing Date
ES10183565.0T Expired - Lifetime ES2544979T3 (es) 2001-01-23 2002-01-22 Vacuna de conjugado de polisacárido-CRM197 meningocócica tri- o tetravalente
ES15167027T Expired - Lifetime ES2892316T3 (es) 2001-01-23 2002-01-22 Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína
ES02707551T Expired - Lifetime ES2388848T3 (es) 2001-01-23 2002-01-22 Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES10183565.0T Expired - Lifetime ES2544979T3 (es) 2001-01-23 2002-01-22 Vacuna de conjugado de polisacárido-CRM197 meningocócica tri- o tetravalente
ES15167027T Expired - Lifetime ES2892316T3 (es) 2001-01-23 2002-01-22 Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína

Country Status (38)

Country Link
US (9) US8722062B2 (es)
EP (3) EP2332581B1 (es)
JP (6) JP2005504718A (es)
KR (2) KR100947757B1 (es)
CN (1) CN100556459C (es)
AP (1) AP1897A (es)
AU (2) AU2007216743A1 (es)
BE (3) BE2012C050I2 (es)
BR (1) BRPI0206672B8 (es)
CA (1) CA2435681C (es)
CR (1) CR7035A (es)
CY (2) CY1113072T1 (es)
DK (2) DK1355673T3 (es)
EA (1) EA006947B1 (es)
EC (1) ECSP034701A (es)
ES (3) ES2544979T3 (es)
FR (3) FR12C0072I2 (es)
GE (1) GEP20053691B (es)
HR (1) HRP20030598B1 (es)
HU (2) HU230490B1 (es)
IL (3) IL157060A0 (es)
IS (1) IS6881A (es)
LT (1) LT5177B (es)
LU (1) LU92108I2 (es)
LV (1) LV13128B (es)
MX (2) MXPA03006561A (es)
NO (1) NO20033816L (es)
NZ (2) NZ602682A (es)
OA (1) OA12590A (es)
PL (1) PL226184B1 (es)
PT (2) PT2332581E (es)
RO (1) RO122761B1 (es)
SI (1) SI21352A (es)
TN (1) TNSN03041A1 (es)
UA (1) UA92579C2 (es)
WO (1) WO2002058737A2 (es)
YU (1) YU66103A (es)
ZA (1) ZA200306176B (es)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9928196D0 (en) 1999-11-29 2000-01-26 Chiron Spa Combinations of B, C and other antigens
PT2332581E (pt) * 2001-01-23 2015-10-16 Sanofi Pasteur Inc Vacina meningocócica tri- ou tetravalente de conjugados de polissacárido e crm-197
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
AU2014218428B2 (en) * 2001-06-20 2016-08-25 Glaxosmithkline Biologicals Sa Capsular polysaccharide solubilisation and combination vaccines
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
GB0302218D0 (en) * 2003-01-30 2003-03-05 Chiron Sri Vaccine formulation & Mucosal delivery
MXPA04011249A (es) * 2002-05-14 2005-06-06 Chiron Srl Vacunas mucosales con adyuvante de quitosano y antigenos meningococicos.
WO2004033623A2 (en) * 2002-05-16 2004-04-22 Aventis Pasteur, Inc. Animal component free meningococcal polysaccharide fermentation and seedbank development
AU2003257003A1 (en) * 2002-07-30 2004-02-16 Baxter Healthcare S.A. Chimeric multivalent polysaccharide conjugate vaccines
EP1582217A1 (en) * 2002-11-14 2005-10-05 Instituto Finlay, Centro de Investigacion-Produccion de vacunas y sueros Method of obtaining conjugate vaccines and vaccine compositions containing same
GB0227346D0 (en) 2002-11-22 2002-12-31 Chiron Spa 741
JP4827726B2 (ja) * 2003-01-30 2011-11-30 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル 複数の髄膜炎菌血清群に対する注射可能ワクチン
CA2517439C (en) * 2003-03-07 2013-07-23 Wyeth Holdings Corporation Polysaccharide - staphylococcal surface adhesin carrier protein conjugates for immunization against nosocomial infections
CN1819843A (zh) * 2003-05-07 2006-08-16 安万特巴斯德公司 增强脑膜炎球菌疫苗接种免疫原性的方法
ES2596553T3 (es) * 2003-06-02 2017-01-10 Glaxosmithkline Biologicals Sa Composiciones inmunogénicas a base de micropartículas que comprenden toxoide adsorbido y un antígeno que contiene un polisacárido
EP2364725A3 (en) * 2003-06-23 2012-05-09 Sanofi Pasteur Inc. Immunization method against neisseria meningitidis serogroups a and c
JP4918356B2 (ja) * 2003-06-23 2012-04-18 バクスター・インターナショナル・インコーポレイテッド Y群髄膜炎菌ワクチン及びそれらの髄膜炎菌組合せワクチン
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
CN103357002A (zh) 2003-10-02 2013-10-23 诺华疫苗和诊断有限公司 多种脑膜炎球菌血清群的液体疫苗
GB0406013D0 (en) * 2004-03-17 2004-04-21 Chiron Srl Analysis of saccharide vaccines without interference
AU2011204789B2 (en) * 2004-04-22 2013-07-11 Glaxosmithkline Biologicals S.A. Immunising against meningococcal serogroup Y using proteins
GB0408977D0 (en) 2004-04-22 2004-05-26 Chiron Srl Immunising against meningococcal serogroup Y using proteins
GB0408978D0 (en) 2004-04-22 2004-05-26 Chiron Srl Meningococcal fermentation for preparing conjugate vaccines
RU2379052C2 (ru) 2004-04-30 2010-01-20 Чирон С.Р.Л. Вакцинация менингококковыми конъюгатами
GB0500787D0 (en) 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
GB0413868D0 (en) * 2004-06-21 2004-07-21 Chiron Srl Dimensional anlaysis of saccharide conjugates
BRPI0515125A (pt) * 2004-08-30 2008-07-08 Sanofi Pasteur Inc conjugados de polissacarìdeo derivatizado-proteìna multivalentes, meningocócicos e vacina
GB0419846D0 (en) * 2004-09-07 2004-10-13 Chiron Srl Vaccine adjuvants for saccharides
AU2005286798A1 (en) * 2004-09-21 2006-03-30 Sanofi Pasteur, Inc. Multivalent meningococcal derivatized polysaccharide-protein conjugates and vaccine
GB0428394D0 (en) * 2004-12-24 2005-02-02 Chiron Srl Saccharide conjugate vaccines
GB0505518D0 (en) 2005-03-17 2005-04-27 Chiron Srl Combination vaccines with whole cell pertussis antigen
WO2006113528A2 (en) 2005-04-18 2006-10-26 Novartis Vaccines And Diagnostics Inc. Expressing hepatitis b virus surface antigen for vaccine preparation
US8431136B2 (en) 2005-06-27 2013-04-30 Glaxosmithkline Biologicals S.A. Immunogenic composition
RU2457858C2 (ru) 2005-09-01 2012-08-10 Новартис Вэксинес Энд Дайэгностикс Гмбх Унд Ко Кг Множественная вакцинация, включающая менингококки серогруппы с
US20070065462A1 (en) * 2005-09-21 2007-03-22 Ryall Robert P Multivalent meningococcal derivatized polysaccharide-protein conjugates and vaccine
CA2644724C (en) 2006-03-17 2016-05-24 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods for preparing complex multivalent immunogenic conjugates
US10828361B2 (en) 2006-03-22 2020-11-10 Glaxosmithkline Biologicals Sa Regimens for immunisation with meningococcal conjugates
ES2670231T3 (es) * 2006-03-22 2018-05-29 Glaxosmithkline Biologicals S.A. Regímenes para inmunización con conjugados meningocócicos
GB0605757D0 (en) 2006-03-22 2006-05-03 Chiron Srl Separation of conjugated and unconjugated components
WO2007116409A2 (en) 2006-04-11 2007-10-18 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Improved vaccines comprising multimeric hsp60 peptide carriers
EP2152302B1 (en) 2007-06-04 2015-10-07 GlaxoSmithKline Biologicals SA Formulation of meningitis vaccines
ES2383231T3 (es) 2007-10-19 2012-06-19 Novartis Ag Formulaciones para vacunas meningocócicas
GB0822633D0 (en) 2008-12-11 2009-01-21 Novartis Ag Formulation
GB0822634D0 (en) 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
US20100189737A1 (en) 2008-12-17 2010-07-29 Arico Beatrice Meningococcal vaccines including hemoglobin receptor
US8003112B2 (en) * 2009-04-16 2011-08-23 Howard University Meningococcal and pneumococcal conjugate vaccine and method of using same
ES2707778T3 (es) * 2009-12-30 2019-04-05 Glaxosmithkline Biologicals Sa Inmunógenos polisacáridos conjugados con proteínas portadoras de E. coli
EP2547357A1 (en) 2010-03-18 2013-01-23 Novartis AG Adjuvanted vaccines for serogroup b meningococcus
WO2012025873A2 (en) 2010-08-23 2012-03-01 Wyeth Llc STABLE FORMULATIONS OF NEISSERIA MENINGITIDIS rLP2086 ANTIGENS
EP2612148B1 (en) 2010-09-04 2019-06-12 GlaxoSmithKline Biologicals SA Bactericidal antibody assays to assess immunogenicity and potency of meningococcal capsular saccharide vaccines
PE20140173A1 (es) 2010-09-10 2014-02-20 Wyeth Llc Variantes no lipidadas de antigenos orf2086 de neisseria meningitidis
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
RU2013144207A (ru) 2011-03-02 2015-04-10 Новартис Аг Комбинированные вакцины с пониженными дозами антигена и/или адъюванта
US9149541B2 (en) 2011-07-08 2015-10-06 Novartis Ag Tyrosine ligation process
CN104080479B (zh) 2011-11-07 2019-11-05 葛兰素史密丝克莱恩生物有限公司 包括spr0096和spr2021抗原的运载体分子
US10598666B2 (en) 2012-03-08 2020-03-24 Glaxosmithkline Biologicals Sa In vitro potency assay for protein-based meningococcal vaccines
EP2822584A1 (en) 2012-03-08 2015-01-14 Novartis AG Combination vaccines with tlr4 agonists
SA115360586B1 (ar) 2012-03-09 2017-04-12 فايزر انك تركيبات لعلاج الالتهاب السحائي البكتيري وطرق لتحضيرها
SG10201602558UA (en) 2012-03-09 2016-05-30 Pfizer Neisseria meningitidis compositions and methods thereof
CN102660602B (zh) * 2012-04-17 2015-03-25 江苏康泰生物医学技术有限公司 快速纯化细菌荚膜多糖的方法
MX2014014067A (es) 2012-05-22 2015-02-04 Novartis Ag Conjugado de serogrupo x de meningococo.
ES2700824T3 (es) * 2012-08-16 2019-02-19 Pfizer Procedimientos y composiciones de glucoconjugación
CA2882619A1 (en) 2012-09-06 2014-03-13 Novartis Ag Combination vaccines with serogroup b meningococcus and d/t/p
CN102861326A (zh) * 2012-09-19 2013-01-09 天津康希诺生物技术有限公司 流脑多糖-蛋白质缀合疫苗及制备方法
CN105007935A (zh) 2012-12-18 2015-10-28 葛兰素史密丝克莱恩生物有限公司 用于保护免于白喉和/或破伤风的缀合物
EP2964665B1 (en) 2013-03-08 2018-08-01 Pfizer Inc Immunogenic fusion polypeptides
HUE051592T2 (hu) * 2013-03-18 2021-03-01 Glaxosmithkline Biologicals Sa Kezelési módszer
EP3613755A1 (en) 2013-07-11 2020-02-26 Novartis AG Lysine-specific chemoenzymatic protein modifications using microbial transglutaminase
CA2923129C (en) 2013-09-08 2020-06-09 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
EP3148577B1 (en) 2014-05-24 2021-01-20 Biological E Limited Novel semi-synthetic meningococcal conjugate vaccine
BR112017017460A2 (pt) 2015-02-19 2018-04-10 Pfizer Inc. composições de neisseria meningitidis e métodos das mesmas
WO2016134275A1 (en) 2015-02-20 2016-08-25 Bayer Healthcare Llc Contrast imaging agent with dissolved gas-evolving fluid
KR20160011136A (ko) 2015-03-25 2016-01-29 한국기계연구원 내식성이 향상된 마그네슘 합금 및 이를 이용하여 제조한 마그네슘 합금 부재의 제조방법
GB201518668D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Immunogenic Comosition
WO2017114906A1 (en) 2015-12-30 2017-07-06 Ascendis Pharma A/S Auto injector with cartridge locking system
KR102204927B1 (ko) 2016-07-25 2021-01-19 에스케이바이오사이언스(주) 피막 다당류-단백질 접합 백신의 품질 평가 방법
SG11201901394XA (en) 2016-09-02 2019-03-28 Sanofi Pasteur Inc Neisseria meningitidis vaccine
CA3035320A1 (en) 2016-09-02 2018-03-08 Glaxosmithkline Biologicals Sa Vaccines for neisseria gonorrhoeae
AU2018215585B2 (en) 2017-01-31 2022-03-17 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2019198096A1 (en) * 2018-04-11 2019-10-17 Msd Wellcome Trust Hilleman Laboratories Pvt. Ltd. Tetravalent meningococcal vaccine composition and process to prepare thereof
EP3632465A1 (en) 2018-10-03 2020-04-08 Sanofi Pasteur Inc. Combined immunization against meningococcal disease and human papillomavirus
WO2020168146A1 (en) * 2019-02-14 2020-08-20 University Of Florida Research Foundation, Inc. Honeybee commensal snodgrassella alvi vaccine against pathogenic neisseriaceae
CN110903388B (zh) * 2019-12-03 2024-01-02 兰州生物制品研究所有限责任公司 一种将脑膜炎球菌抗血清去交叉反应的方法
WO2021119810A1 (en) 2019-12-17 2021-06-24 9286-3620 Québec Inc. Oral delivery systems based on in situ forming protein/polysaccharide coacervates
KR102610292B1 (ko) 2021-02-10 2023-12-04 에스케이바이오사이언스(주) 스트랩토코커스 뉴모니애 다당류와 운반체 단백질의 접합체 제조 방법
JP2024507828A (ja) 2021-02-19 2024-02-21 サノフィ パスツール インコーポレイテッド B群髄膜炎菌組換えワクチン
WO2023200704A1 (en) 2022-04-11 2023-10-19 Sanofi Pasteur Inc. Protein-saccharide conjugation with sodium cyanoborohydride
WO2024030931A1 (en) 2022-08-03 2024-02-08 Sanofi Pasteur Inc. Adjuvanted immunogenic composition against neisseria meningitidis b

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351761A (en) 1978-05-15 1982-09-28 Research Corporation Purified antigen to test for Neisseria gonorrhoeae antibodies
US4404371A (en) 1981-01-14 1983-09-13 Battelle Memorial Institute Carboxymethylcellulose with carbonate bridges and preparation thereof
US4351762A (en) * 1981-03-10 1982-09-28 Bioresearch, Inc. Rapid, quantitative peptide synthesis using mixed anhydrides
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
US4902506A (en) 1983-07-05 1990-02-20 The University Of Rochester Immunogenic conjugates
US4619828A (en) 1982-07-06 1986-10-28 Connaught Laboratories, Inc. Polysaccharide exotoxoid conjugate vaccines
DE3382433D1 (de) 1982-11-10 1991-11-21 Mitsubishi Heavy Ind Ltd Nickel-chromlegierung.
US4762713A (en) * 1983-07-05 1988-08-09 The University Of Rochester Boosting of immunogenic conjugate vaccinations by unconjugated bacterial capsular polymers
US4761283A (en) 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
DE3660966D1 (en) 1985-04-17 1988-11-24 Akzo Nv Method of applying a road marking composition
DE3518706A1 (de) 1985-05-24 1986-11-27 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur herstellung von formkoerpern mit verbesserten, isotropen eigenschaften
US4814276A (en) 1986-04-25 1989-03-21 Becton, Dickinson And Company Selective medium for growth of neisseria
JP3436756B2 (ja) * 1988-12-19 2003-08-18 アメリカン・サイアナミド・カンパニー 髄膜炎菌のクラスiの外膜タンパク質のワクチン
US4963534A (en) 1989-05-19 1990-10-16 Merck & Co., Inc. Process for solubilizing polyanoinic bacterial polysaccharides in aprotic solvents
NZ239643A (en) 1990-09-17 1996-05-28 North American Vaccine Inc Vaccine containing bacterial polysaccharide protein conjugate and adjuvant (c-nd-che-a-co-b-r) with a long chain alkyl group.
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
DE69231663T2 (de) 1991-03-12 2001-08-23 Nasa Polysaccharid-protein-konjugate
SK18594A3 (en) 1991-08-16 1994-08-10 Merck & Co Inc Method of production of capsular polysacharide without lipid and endotoxine
US5314811A (en) 1992-07-13 1994-05-24 Merck & Co., Inc. Process for converting lipid-containing bacterial capsular polysaccharide into lipid-free polysaccharide
US5422427A (en) 1991-09-17 1995-06-06 The United States Of America As Represented By The United States Department Of Health And Human Services Pneumococcal fimbrial protein A
FR2682388B1 (fr) 1991-10-10 1995-06-09 Pasteur Merieux Serums Vacc Procede de preparation d'un oligoside par depolymerisation d'un polyoside issu d'un agent pathogene, oligoside ainsi obtenu et son utilisation notamment comme agent vaccinal.
NZ253065A (en) * 1992-05-23 1996-10-28 Smithkline Beecham Biolog Combination vaccines comprising hepatitis b surface antigens and other antigens wherein aluminium phosphate adjuvant is used to adsorb the hepatitis antigen
US5445817A (en) 1992-08-21 1995-08-29 The United States Of America As Represented By The Department Of Health And Human Services Pertussis toxin used as a carrier protein with non-charged saccharides in conjugate vaccines
DE69331495T2 (de) * 1992-08-31 2002-10-31 Baxter Healthcare Sa Impfstoffe gegen neisseria meningitidis gruppe c
US20030157129A1 (en) 1995-06-23 2003-08-21 Smithkline Beecham Biologicals S.A. Vaccine comprising a polysaccharide antigen - carrier protein conjugate and free carrier protein
US5811102A (en) * 1995-06-07 1998-09-22 National Research Council Of Canada Modified meningococcal polysaccharide conjugate vaccines
ES2308962T3 (es) 1995-06-07 2008-12-16 Glaxosmithkline Biologicals S.A. Vacunas que comprenden un conjugado de antigeno polisacarido-proteina transportadora y una proteina transportadora libre.
SI1082965T1 (sl) 1995-06-23 2009-08-31 Glaxosmithkline Biolog Sa Sestavek cepiva, ki vsebuje antigen konjugata polisaharida, adsorbiranega na aluminijevem fosfatu
US20020054884A1 (en) 1995-06-23 2002-05-09 Smithkline Beecham Biologicals, Sa Vaccine composition comprising a polysaccharide conjugate antigen adsorbed onto aluminium phosphate
US6248334B1 (en) 1997-01-08 2001-06-19 Henry M. Jackson Foundation For The Advancement Of Military Medicine Process for preparing conjugate vaccines including free protein and the conjugate vaccines, immunogens, and immunogenic reagents produced by this process
AU722315B2 (en) 1997-01-21 2000-07-27 Pasteur Merieux Serums Et Vaccins Polysaccharide-peptide conjugates
EP0975790B1 (de) 1997-01-24 2004-09-29 Schweiz. Serum-&Impfinstitut Bern Neues verfahren zur isolierung von polysacchariden
US6403306B1 (en) * 1997-04-09 2002-06-11 Emory University Serogroup-specific nucleotide sequences in the molecular typing of bacterial isolates and the preparation of vaccines thereto
ES2230687T3 (es) 1997-04-24 2005-05-01 Henry M. Jackson Foundation For The Advancement Of Military Medicine Copulacion de proteinas nomodificadas con polisacaridos derivados de haloacilo o de dihaloacilo para la preparacion de vacunas que incluyen proteinas-polisacaridos.
EP1849860B1 (en) 1997-05-28 2010-11-17 Novartis Vaccines and Diagnostics S.r.l. Process for preparing an immunogenic factor of Corynebacterium diphtheriae using a culture medium with yeast extract as aminoacid source and no protein complexes of animal origin
JP2002506448A (ja) * 1997-06-24 2002-02-26 カイロン コーポレイション 抗髄膜炎菌ワクチン組成物を使用して成体を免疫する方法
US5965714A (en) 1997-10-02 1999-10-12 Connaught Laboratories, Inc. Method for the covalent attachment of polysaccharides to protein molecules
CA2316975C (en) 1997-12-23 2009-03-24 North American Vaccine, Inc. Procedures for the extraction and isolation of bacterial capsular polysaccharides for use as vaccines or linked to proteins as conjugate vaccines
US7018637B2 (en) * 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
US6146902A (en) 1998-12-29 2000-11-14 Aventis Pasteur, Inc. Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions
DE60011571T2 (de) 1999-02-01 2005-08-18 Eisai Co., Ltd. Verbindungen mit immunologischem adjuvanseffekt
BR0009163A (pt) * 1999-03-19 2001-12-26 Smithkline Beecham Biolog Vacina
CA2373236C (en) 1999-05-19 2014-08-26 Chiron S.P.A. Combination neisserial compositions
GB9918319D0 (en) 1999-08-03 1999-10-06 Smithkline Beecham Biolog Vaccine composition
GB9925559D0 (en) 1999-10-28 1999-12-29 Smithkline Beecham Biolog Novel method
ES2307553T3 (es) 1999-12-02 2008-12-01 Novartis Vaccines And Diagnostics, Inc. Composiciones y procedimientos para estabilizar moleculas biologicas tras liofilizacion.
US6800455B2 (en) * 2000-03-31 2004-10-05 Scios Inc. Secreted factors
AU8189501A (en) 2000-06-29 2002-01-08 Smithkline Beecham Biolog Vaccine composition
PT2332581E (pt) * 2001-01-23 2015-10-16 Sanofi Pasteur Inc Vacina meningocócica tri- ou tetravalente de conjugados de polissacárido e crm-197
GB0115176D0 (en) * 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
GB0500787D0 (en) 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination

Also Published As

Publication number Publication date
IL225522A0 (en) 2013-06-27
BE2022C502I2 (es) 2023-04-12
BE2012C050I2 (es) 2021-03-23
AP2003002829A0 (en) 2003-09-30
JP2014065745A (ja) 2014-04-17
YU66103A (sh) 2006-05-25
EP2957300A3 (en) 2016-03-30
EP2957300B1 (en) 2021-07-14
PT1355673E (pt) 2012-08-31
FR12C0072I2 (fr) 2013-11-01
IL225522A (en) 2016-04-21
HUP0302999A3 (en) 2011-05-30
US10617766B2 (en) 2020-04-14
CY1113072T1 (el) 2015-08-05
EP2332581B1 (en) 2015-07-01
NZ602682A (en) 2014-05-30
CN1610560A (zh) 2005-04-27
US20150174259A1 (en) 2015-06-25
HUS1600040I1 (hu) 2019-05-28
NZ622900A (en) 2015-11-27
KR100947757B1 (ko) 2010-03-18
GEP20053691B (en) 2005-12-12
EP1355673B1 (en) 2012-05-30
SI21352A (sl) 2004-06-30
US20030068336A1 (en) 2003-04-10
CY2012030I1 (el) 2015-08-05
UA92579C2 (ru) 2010-11-25
IL157060A0 (en) 2004-02-08
PL373710A1 (en) 2005-09-05
US20190060475A1 (en) 2019-02-28
LT5177B (lt) 2004-11-25
EA200300827A1 (ru) 2004-06-24
US8734813B2 (en) 2014-05-27
US8741314B2 (en) 2014-06-03
FR12C0072I1 (es) 2013-01-04
NO20033816L (no) 2003-09-11
LV13128B (en) 2004-07-20
KR20030084913A (ko) 2003-11-01
US9844601B2 (en) 2017-12-19
JP2005504718A (ja) 2005-02-17
US20140308311A1 (en) 2014-10-16
ZA200306176B (en) 2005-03-30
BRPI0206672B8 (pt) 2021-05-25
ES2544979T3 (es) 2015-09-07
WO2002058737A2 (en) 2002-08-01
CA2435681A1 (en) 2002-08-01
US8722062B2 (en) 2014-05-13
JP2011140522A (ja) 2011-07-21
TNSN03041A1 (en) 2005-12-23
RO122761B1 (ro) 2010-01-29
AP1897A (en) 2008-10-10
US20130224241A1 (en) 2013-08-29
DK2332581T3 (en) 2015-10-05
WO2002058737A3 (en) 2003-05-22
HU230490B1 (hu) 2016-08-29
CR7035A (es) 2008-11-25
MXPA03006561A (es) 2004-10-15
BRPI0206672B1 (pt) 2018-11-06
AU2007216743A1 (en) 2007-10-04
ES2892316T3 (es) 2022-02-03
PL226184B1 (pl) 2017-06-30
MX341760B (es) 2016-09-02
IS6881A (is) 2003-07-22
EA006947B1 (ru) 2006-06-30
US20130177588A1 (en) 2013-07-11
US20180154010A1 (en) 2018-06-07
US20130216571A1 (en) 2013-08-22
LT2003071A (en) 2004-08-25
EP1355673A2 (en) 2003-10-29
PT2332581E (pt) 2015-10-16
BR0206672A (pt) 2005-05-10
LU92108I2 (fr) 2013-01-29
US10143757B2 (en) 2018-12-04
US9173955B2 (en) 2015-11-03
HRP20030598A2 (en) 2005-06-30
DK1355673T3 (da) 2012-09-17
FR15C0094I1 (es) 2016-01-22
JP2014043475A (ja) 2014-03-13
BE2015C077I2 (es) 2021-02-04
AU2010219288A1 (en) 2010-09-23
KR100947751B1 (ko) 2010-03-18
US8999354B2 (en) 2015-04-07
NO20033816D0 (no) 2003-08-27
ECSP034701A (es) 2003-10-28
CA2435681C (en) 2011-06-21
FR22C1001I1 (fr) 2022-02-18
CY2012030I2 (el) 2016-08-31
JP5795721B2 (ja) 2015-10-14
JP2016128526A (ja) 2016-07-14
HRP20030598B1 (hr) 2013-05-31
JP2014043474A (ja) 2014-03-13
EP2332581A1 (en) 2011-06-15
FR15C0094I2 (fr) 2017-05-19
LU92108I9 (es) 2019-01-15
CN100556459C (zh) 2009-11-04
KR20090029857A (ko) 2009-03-23
US20160000928A1 (en) 2016-01-07
IL157060A (en) 2013-04-30
OA12590A (en) 2006-06-08
EP2957300A2 (en) 2015-12-23
HUP0302999A2 (hu) 2003-12-29

Similar Documents

Publication Publication Date Title
ES2388848T3 (es) Vacuna meningocócica polivalente preparada con un conjugado de polisacárido y proteína
AU2014201676B2 (en) Multivalent meningococcal polysaccharide-protein conjugate vaccine
AU2002241951A1 (en) Multivalent meningococcal polysaccharide-protein conjugate vaccine