EP3738694B1 - Hydraulik-vorrichtung für eine druckgiessmaschine - Google Patents

Hydraulik-vorrichtung für eine druckgiessmaschine Download PDF

Info

Publication number
EP3738694B1
EP3738694B1 EP19174313.7A EP19174313A EP3738694B1 EP 3738694 B1 EP3738694 B1 EP 3738694B1 EP 19174313 A EP19174313 A EP 19174313A EP 3738694 B1 EP3738694 B1 EP 3738694B1
Authority
EP
European Patent Office
Prior art keywords
casting machine
die casting
base block
modules
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19174313.7A
Other languages
English (en)
French (fr)
Other versions
EP3738694A1 (de
Inventor
Dominik Widler
Beat Eberle
Lukas Hersche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler AG
Original Assignee
Buehler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buehler AG filed Critical Buehler AG
Priority to EP19174313.7A priority Critical patent/EP3738694B1/de
Priority to PCT/EP2020/058368 priority patent/WO2020229033A1/de
Priority to CN202080011551.1A priority patent/CN113365761B/zh
Priority to US17/595,226 priority patent/US11794239B2/en
Priority to JP2021567919A priority patent/JP7337957B2/ja
Publication of EP3738694A1 publication Critical patent/EP3738694A1/de
Application granted granted Critical
Publication of EP3738694B1 publication Critical patent/EP3738694B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0807Manifolds
    • F15B13/0814Monoblock manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0832Modular valves
    • F15B13/0839Stacked plate type valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0878Assembly of modular units
    • F15B13/0885Assembly of modular units using valves combined with other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0878Assembly of modular units
    • F15B13/0885Assembly of modular units using valves combined with other components
    • F15B13/0892Valves combined with fluid components

Definitions

  • the present invention relates to a device for supplying and/or controlling hydraulically operated components of a die casting machine.
  • Die casting machines are well known (cf. e.g Brunhuber, Practice of Die Casting Production, Berlin, 3rd edition 1980 ).
  • a mold consisting of two halves is closed under high pressure, molten metal (or a metal alloy) is introduced into the closed mold and, after the casting material has cooled, the finished die-cast part can be removed by opening the mold.
  • the mold halves are arranged on a fixed and a movable platen, and the mold is closed by corresponding movement of the movable platen on guide columns towards the fixed platen.
  • modules In order to operate the mold of a die-casting machine, it is necessary for modules to be provided on the die-casting machine in order to supply the corresponding components of the die-casting machine with hydraulic medium. Conventionally, these modules are placed in defined free areas on the fixed and/or moving platen. The areas available for the modules are small and can usually only be used for the corresponding module, but not for other energy modules. The arrangement of the areas for the power modules depends on the type of die casting machine, i.e. the spaces available on a specific die casting machine.
  • In 1 1 is a schematic front view of a prior art die casting machine.
  • the die casting machine 1 comprises a platen 3 (fixed here by way of example) and openings 2 in the platen 3 for guide columns (not shown) for moving a movable platen (not shown).
  • Modules 10 for supplying the die casting machine with electrical energy, modules 6 for operating core pulls, a module 7 for cooling and a module 8 for operating a booster are arranged on the sides of the clamping plate 2 .
  • the various modules are distributed over the entire die casting machine.
  • the individual hydraulic modules have to be connected to the hydraulic lines arranged in the machine frame using pipes and hoses. Depending on the module to be connected, conventional hydraulic connections or a special design can be used.
  • the procedure used in the prior art is not very flexible and requires time-consuming assembly.
  • Retrofitting a conventional die-casting machine involves considerable effort, since additional energy modules required can only be arranged, if at all, in the few remaining free areas of the die-casting machine. Relocating existing energy modules is only possible with great effort, if at all, due to the space problem and the existing cabling or supply with hoses.
  • the present invention is based on the concept of combining all the hydraulic modules previously distributed over the entire die casting machine into a single block, which is referred to here as a hydraulic tower.
  • This hydraulic tower requires only one connection to supply hydraulic medium.
  • the hydraulic medium is distributed to the individual module components within the hydraulic tower through lines running through all module components. Returned hydraulic medium is combined in the hydraulic tower and routed out of the hydraulic tower and away from the die casting machine through a single connection.
  • the number of tubes and hoses required to supply the die casting machine can be significantly reduced.
  • different numbers and types of module components can be combined in the hydraulic tower according to the invention, which offers significantly increased flexibility, space savings and easy conversion.
  • the operation of the die casting machine is easier because all module components are combined in one place. The so-called "footprint" of the die casting machine is optimized.
  • the hydraulic tower according to the invention can preferably be arranged in a receiving frame on the die casting machine, as in the European patent application filed by the applicant on the same day Patent application entitled "Die casting machine with energy frame” is described.
  • the die-casting machine is preferably a two-plate die-casting machine or a three-plate die-casting machine.
  • Components for supplying and/or controlling hydraulically operated components of a die casting machine are known per se. These are components that are supplied with hydraulic medium and forward this to the corresponding machine components in a controlled manner.
  • liquids such as mineral oils, oil-in-water emulsions, water-in-oil emulsions, water-glycol mixtures or water-free liquids such as phosphate esters can be used as the hydraulic medium.
  • module components according to the invention are designed in such a way that they can be combined to form a single block, the hydraulic tower.
  • the hydraulic tower according to the invention is only externally supplied with hydraulic medium via a single component.
  • this component is referred to as the base block.
  • the base block has a preferably cuboid or cube-shaped housing made of a suitable material (for example a metallic material).
  • the base block is preferably a hollow body.
  • the base block according to the invention preferably has means for fastening the block directly to the die-casting machine or in a receiving frame arranged on the die-casting machine, as described in the European patent application filed by the applicant on the same day, entitled "Die-casting machine with energy frame”.
  • These means are preferably bores for receiving fastening screws. Particularly preferably, these means are arranged in the side faces of the base block.
  • the base block according to the invention is equipped with a main inlet opening and a main outlet opening for hydraulic medium. These main openings are preferably located at the rear of the base block, so that no large pipes or hoses that could get in the way have to be provided at the front of the hydraulic tower.
  • the main openings of the base block according to the invention are designed in the usual way, for example as connections which can be connected to conventional pipes or hoses in a sealed manner in a conventional manner.
  • Sleeve connections are mentioned as examples.
  • the base block according to the invention is equipped with connection openings in the top surface and the bottom surface for the discharge and introduction of hydraulic medium. It is therefore possible according to the invention to arrange module components on the roof surface and/or the bottom surface of the base block, which can be supplied with hydraulic medium from the base block through the named connection openings or can return hydraulic medium to the base block.
  • connection openings which can be connected to the connection openings of the base block with a precise fit and sealing, i.e. fluidically.
  • a fluidic connection is to be understood as a connection between two lines through which a fluid, preferably a hydraulic medium, can flow unhindered and without leakage.
  • a fluid preferably a hydraulic medium
  • These fluidic connections can be realized in a conventional manner, for example by means of clamp connections equipped with sealing rings.
  • the base block and the module components arranged on its top and/or bottom surface are connected by fastening means.
  • bores are preferably provided in the top and/or bottom surface of the base block for receiving fastening screws or connectors, the respective fastening screws or connectors being arranged on the corresponding top and/or bottom surface of the module components.
  • the base block and the module components arranged on its top and/or bottom surface are particularly preferably connected by one or more threaded rods.
  • These threaded rods are passed through corresponding bores of the module components and have an end which can be fixedly arranged (e.g. screwed) in a corresponding end bore of the base block and/or a module component.
  • the other end of the thread stand is either fixed inside a module component or outside on the roof surface of a module component, where it can be screwed on in a known manner (e.g. with a nut via a threaded connection). can be attached.
  • the variant with threaded rods results in a particularly stable hydraulic tower.
  • the main inlet port and main outlet port of the base block are connected to the connection ports by ducts in the base block.
  • These ducts are formed in a conventional manner, for example in the form of tubes or in the form of bores in a base block in the form of a solid body such as a casting.
  • the base block can have additional connections for connection to a hydraulically operated component of the die casting machine.
  • the base block not only serves to distribute hydraulic medium to other module components, but also serves to control a hydraulically operated component of the die casting machine.
  • the base block is used to operate an ejector cylinder, i.e. a cylinder built into the movable platen of a die casting machine, with which the cast part is ejected from the mold after the casting process has ended.
  • an ejector cylinder i.e. a cylinder built into the movable platen of a die casting machine, with which the cast part is ejected from the mold after the casting process has ended.
  • the lines in the base block which lead from the main openings to the connection openings in the top and bottom surfaces of the base block, branch off by branch lines, which preferably have a unit for modifying the flow of hydraulic medium, preferably a valve, to the additional lead connections.
  • the quantity to be delivered to the machine component such as the ejection cylinder can be controlled be adjusted to the hydraulic medium.
  • this can be a simple black and white valve, a positioning valve or a proportional valve.
  • Such valves are known.
  • the black-and-white valve can be, for example, a 4-3-way solenoid valve with which the ejection cylinder can be moved to its end position and back again.
  • the positioning valve can consist of a combination of three valves, by means of which a very accurate movement of the cylinder to a given position can be achieved, with an accuracy of, for example, ⁇ 1 mm.
  • it can be a combination of a 4-3-way solenoid valve (main valve) with two 2-2-way solenoid valves (auxiliary valves), which are arranged in such a way that when the main valve is in the closed position, hydraulic medium can flow via the Auxiliary valves can drain and no excess pressure is created in the line.
  • the proportional valve can be a 4-3-way solenoid valve with integrated control, which allows very precise movement and positioning of the cylinder depending on a position determination of the cylinder.
  • valve is located on that side of the base block where the main ports are located.
  • the additional connections for connecting the base block to a machine component such as the ejection cylinder are preferably arranged on the side of the base block with rearward orientation.
  • the additional connections can be connected to conventional pipes or hoses in a sealed manner.
  • Sleeve connections are mentioned as examples.
  • At least one further module component is arranged on the roof surface of the base block, as described above.
  • This additional module component can be selected from the group consisting of core pull modules, core pull relief modules, booster modules, auxiliary movement modules, and vacuum modules.
  • a core pull module is preferably arranged on the top surface of the base block.
  • a core pull module is used to control a core pull cylinder, which moves a movable core or generally a movable mold element) in the mold. With the help of these moving cores, the shape of the casting to be cast can be modified. With core pull modules, cores (or mold elements in general) are moved out of the mold hydraulically, which are not mechanically removed through the opening of the mold.
  • Movable cores and core pulling cylinders are well known.
  • a plurality of, for example 1 to 10 and preferably 1 to 5, core pull cylinders and movable cores are provided in a mold of a die casting machine.
  • An associated core pull module must be provided for each core pull cylinder.
  • a core pull cylinder can be moved and, preferably, a pressure reduction can also be carried out.
  • a core pull module according to the invention has a preferably cuboid or cube-shaped housing made of a suitable material (for example a metallic material).
  • the core pull module is preferably a hollow body.
  • the core puller module are preferably in the bottom surface of the core puller module Mounting screws or connectors arranged to connect the core pull module to the base block.
  • bores are preferably provided for receiving corresponding fastening means of a core pull module arranged above. According to the invention, however, continuous bores are particularly preferably provided in the core pull module, through which threaded rods can be guided as described above.
  • means for fastening the core puller module directly to the die-casting machine or in a mounting frame arranged on the die-casting machine can be provided, as described in the European patent application filed by the applicant on the same day entitled "Die-casting machine with energy frame”. , be provided.
  • These means are preferably bores for receiving fastening screws.
  • a means for lifting the core puller module is provided in the top surface of the core puller module. This is preferably a hole for the fixed arrangement of an eye bolt or a hook in order to be able to lift the core pull module with a cable attached to it using a crane.
  • a core pull module according to the invention has connection openings for the discharge and introduction of hydraulic medium in the roof area and the bottom area.
  • these connection openings are fluidly connected to the corresponding connection openings of the base block, as described above.
  • the connection openings of the core pull module are configured analogously to the connection openings of the base block described above.
  • a core pull module according to the invention has lines in its interior which connect the connection openings in the roof surface and the base surface to one another. If several core puller modules are arranged one above the other, all core puller modules are connected to one another via their inner lines and can be supplied with hydraulic medium from the base block or return hydraulic medium to the base block.
  • a core pull cylinder is operated with the help of a core pull module.
  • the lines in the core puller module which lead from the connection openings in the bottom surface of the core puller module to the connection openings in the top surface of the core puller module, lead to secondary lines, which preferably have a unit for modifying the flow of hydraulic medium, preferably a valve, to the connections for the core pull cylinder.
  • the valve is preferably arranged on the back of the core pull module.
  • the connections for connecting the core puller module to a core puller cylinder are preferably arranged on the front of the core puller module and are therefore easily accessible for the operating personnel.
  • the additional connections can be connected to conventional pipes or hoses in a sealed manner. Sleeve connections are mentioned as examples.
  • additional connections can be provided, preferably in a side surface of the core pull module, which can also be supplied with or return hydraulic medium via a unit for modifying the flow of hydraulic medium, preferably a valve.
  • the valve can be a 4-3-way solenoid valve, for example, with which the core pulling cylinder can be moved to its end position and back again.
  • a distribution element can preferably be provided on at least one connection in order to additionally increase the available number of connections.
  • This distribution element has, for example, an inlet that is fluidically connected to a connection of the core pull module, and at least two outlets for connection to machine components.
  • the core pull module has the function of pressure reduction.
  • the core pulling module further comprises a pressure reducing valve which is arranged between the line of pressurized hydraulic medium coming from the base block and the valve described above.
  • Pressure reducing valves are well known.
  • the pressure reducing valve can preferably be controlled with the aid of an operating element, for example a rotary control.
  • the control element is preferably located on the front of the core pull module, next to the connections for the core pull cylinder.
  • the core pull module can include a connection for pressure measurement.
  • a standard pressure measuring device such as a manometer can be connected to this connection in order to determine the pressure present in the core pull module and, if necessary, to modify it with the help of the pressure reducing valve.
  • the connection for pressure measurement is preferably located on the front of the core pull module, next to the connections for the core pull cylinder.
  • a safety module can be provided on the core puller module, which is arranged in the hydraulic circuit between the valve described above and the core puller cylinder and prevents unwanted movement of the core puller cylinder due to its own weight.
  • all the core pull modules provided are preferably arranged one above the other and on the roof surface of the base block. A continuous hydraulic flow is possible through the lines in the base block and in all core pull modules.
  • a core-tension relief module is arranged above the core-tension module or the core-tension modules, ie on the roof surface of the uppermost core-tension module.
  • the core pull relief module has lines which can be fluidically connected to the connection openings in the roof surface of the uppermost core pull module and lead to a relief valve. When the relief valve is actuated, the lines are connected to the tank.
  • a core strain relief module according to the invention has a preferably cuboid or cube-shaped housing made of a suitable material (for example a metallic material).
  • the core strain relief module is preferably a hollow body.
  • the relief valve is preferably arranged at the rear, ie in the hydraulic tower on the side facing away from the connections and controls.
  • a core pull relief module instead of a core pull relief module, it can also have an end plate for closing the connection openings in the roof surface of the uppermost core pull module.
  • This is a plate made of a suitable material (for example a metallic material) with the required dimensions for closing the connection openings, which can be fastened to the roof surface of the uppermost core pull module, for example by means of helical connections.
  • the hydraulic tower according to the invention can also include at least one booster module, for example 1 to 10 and preferably 1 to 5 booster modules.
  • the booster modules are used to actuate booster cylinders in order to additionally apply pressure to the casting material in the mold before it solidifies and thus to compress it.
  • the design of the post-compression module according to the invention preferably essentially corresponds to the above-described core pull module with pressure reduction valve, so that the above statements on the core pull module apply analogously.
  • the booster module preferably has a throttle valve. From the lines leading through the booster module from the connection openings in the floor area to the connection openings in the roof area, two lines branch off, one of which lines via a unit, preferably a valve, particularly preferably a 4-3-way solenoid valve, for modifying the Flow of hydraulic medium leads to one of the connections. The other outgoing line is after exiting the valve first passed through a pressure reducing valve and then through a throttle valve known per se before it is passed to the other connection. In this way, the piston chamber side of the booster cylinder can be specifically influenced with the help of the additional valves.
  • a control element for example a rotary control, is preferably also provided for controlling the additional throttle valve.
  • the control element is preferably located on the front of the booster module, next to the connections for the booster cylinder.
  • the structure of the vacuum module according to the invention preferably essentially corresponds to the above-described core pull module with pressure reduction valve, so that the above statements on the core pull module apply analogously.
  • the booster module or modules are preferably arranged above the core puller module or modules.
  • the end plate described above is arranged on the roof surface of the uppermost secondary compressor module (and not on the roof surface of the uppermost core puller module).
  • the hydraulic tower according to the invention can also include at least one vacuum module, with the aid of which a cylinder can be actuated to influence a vacuum in the casting mold.
  • the hydraulic tower according to the invention can also include at least one auxiliary movement module.
  • Ancillary movements are understood to mean hydraulically operated movements of machine components that do not affect the main hydraulic machine movements (such as closing the mold).
  • Examples of secondary movements in a die casting machine are the movements of the clamping mechanism in the fixed platen for the guide columns, the movement of the clamping cylinders, the movement of the cylinders to move the mold carrier horizontally, or the movement of the cylinders to eject the mold.
  • the auxiliary movement module or modules are preferably arranged below the base block, with an auxiliary movement module being fluidically connected to the bottom surface of the base block, analogously to the fluidic connection of a core pull module to the top surface of the base block.
  • auxiliary movement modules in the hydraulic tower, these are preferably combined as a unit and arranged on the bottom surface of the base block.
  • the secondary movement modules are also firmly connected to one another and to the base block, for example by helical connections or preferably with one or more threaded rods that are guided through bores in the secondary movement modules.
  • an end plate is provided for closing the connection openings in the bottom surface of the base block (if there are no auxiliary movement modules) or the bottom surface of the lowermost auxiliary movement module.
  • This is a plate made of a suitable material (e.g. a metallic material) with the necessary dimensions to close the connection openings, which can be attached to the bottom surface of the base block (if there are no auxiliary movement modules) or to the bottom surface of the lowest auxiliary movement module, for example by helical connections.
  • means for fastening the auxiliary movement module directly to the die-casting machine or in a mounting frame arranged on the die-casting machine can be provided in the side surfaces of an auxiliary movement module be provided, as described in the applicant's European patent application filed on the same day, entitled "Die-casting machine with energy frame”. These means are preferably bores for receiving fastening screws.
  • a secondary movement module according to the invention has a preferably cuboid or cube-shaped housing made of a suitable material (for example a metallic material).
  • the auxiliary movement module is preferably a hollow body.
  • a secondary movement module has connection openings in the roof area and the floor area for the discharge and introduction of hydraulic medium.
  • these connection ports are fluidly connected to the corresponding connection ports of the base block as described above.
  • the connection openings of the auxiliary movement module are configured analogously to the connection openings of the base block described above.
  • a secondary movement module according to the invention has lines in its interior which connect the connection openings in the roof surface and the floor surface to one another. If several secondary movement modules are arranged one above the other, all the secondary movement modules are connected to one another via their inner lines and can be supplied with hydraulic medium from the base block or return hydraulic medium to the base block.
  • a cylinder is operated with the help of a secondary movement module, which triggers secondary movements.
  • a secondary movement module which triggers secondary movements.
  • the various secondary movement modules differ in the type and number of valves that have to be provided on the secondary movement module to carry out the respective secondary movement.
  • the valve arrangement required for a specific secondary movement is known to those skilled in the art.
  • all connections provided on module components i.e. the main connections with the exception of any secondary connections arranged on a side surface
  • all operating elements are arranged on one side, preferably on the side facing away from the main inlet opening and main outlet opening.
  • the hydraulic tower according to the invention is provided for the supply and/or control of hydraulically operated components of a die casting machine.
  • the present invention thus also relates to a die-casting machine, comprising at least one device (hydraulic tower) described above, which is arranged on the die-casting machine by means of fastening means.
  • Energy modules within the meaning of the present invention are devices with which components of the die casting machine can be supplied with energy, for example in the form of electrical energy or in the form of a pressurized hydraulic medium.
  • Such energy modules are conventionally known and available. They are basically box-shaped and have connections for supplying and discharging electrical current or hydraulic medium and, if necessary, control elements such as switches, rotary knobs, etc.
  • the above-described device (hydraulic tower) is arranged in the row of the receiving frame adjacent to the die-casting machine in such a way that the base block of the device connects the profile pieces of the row below.
  • above the base block 1 to 5 core pull modules and above the core pull modules 1 to 5 booster modules and below the base block 1 to 5 auxiliary movement modules are arranged.
  • the die-casting machine has a movable platen which has the mounting frame on both sides with a device (hydraulic tower) arranged in the row of the mounting frame adjacent to the die-casting machine.
  • the device particularly preferably comprises a base block on one side of the movable platen, which has connections for the connection of ejection cylinders.
  • the forwarding of the hydraulic medium is modified by at least one unit, preferably a valve.
  • In 1 1 is a schematic front view of a prior art die casting machine.
  • the die casting machine 1 comprises a (fixed here by way of example) platen 3 and openings 2 in the platen 3 for guide columns (not shown) for moving a movable platen (not shown).
  • Modules 10 for supplying the die casting machine with electrical energy, modules 6 for operating core pulls, a module 7 for cooling and a module 8 for operating a booster are arranged on the sides of the clamping plate 2 .
  • the various modules are distributed over the entire die casting machine.
  • the individual hydraulic modules have to be connected to the hydraulic lines arranged in the machine frame using pipes and hoses.
  • FIG. 4 a schematic view of a hydraulic tower 4 according to the invention is shown.
  • This hydraulic tower 4 comprises a base block 5 having a main inlet port 5a (not shown) and a main outlet port 5b.
  • the base block 5 has a valve 5g, with the aid of which hydraulic medium can be released in a controlled manner to additional connections 5h (not shown), for example for controlling an ejection cylinder.
  • a block of (in this embodiment) 5 core pull modules 6 is arranged on the top surface of the base block 5 .
  • the core pull modules 6 each have connections 6d, 6e on their front side for connection to a core pull cylinder and on their rear side a valve 6i, with the aid of which hydraulic medium can be released in a controlled manner to the connections 6d, 6e.
  • the valves 6i can be regulated via pressure regulators 6h.
  • the core pull modules 6 are over (in 2 not shown) connection openings with the base block 5 and fluidically connected to each other, so that hydraulic medium can circulate from the base block 5 through all core puller modules 6 and can be discharged via the connections 6d, 6e.
  • a core relief module 13 is arranged on the top core puller module 6 . As described above, the core relief module 13 serves to relieve the pressure in the hydraulic lines in the hydraulic tower 4 with the aid of a (in 2 not shown) relief valve.
  • booster modules 8 On the top surface of core relief module 13 is a block of (in 2 ) 4 booster modules 8 arranged.
  • the booster modules 8 each have connections 8d, 8e on their front side for connection to a booster cylinder and on their rear side at least one valve 8i, with the aid of which hydraulic medium can be released in a controlled manner to the connections 8d, 8e.
  • the valves 8i can be regulated via pressure regulators 8h.
  • Each booster module can also have a (in 2 not shown) have pressure reducing valve and throttle valve with associated controllers.
  • the booster modules 8 are over (in 2 not shown) connection openings with the base block 5, the core puller modules 6, the core relief module 13 and fluidically connected to one another, so that hydraulic medium can circulate from the base block 5 through all booster modules 8 and can be discharged via the connections 8d, 8e.
  • An end plate 12 for closing the lines running through the hydraulic tower 4 is fastened to the roof surface of the uppermost booster module 8 .
  • the booster modules 9 each have connections 9c, 9d on their front side for connection to a secondary movement cylinder and on their rear side at least one valve block 9e, with the aid of which hydraulic medium can be released in a controlled manner to the connections 9c, 9d.
  • An end plate 12 for closing off the lines running through the hydraulic tower 4 is fastened to the bottom surface of the lowest secondary movement module 9 .
  • Threaded rods 11a, 11b of different lengths are passed through bores in the module components 5, 6, 8, 9, 13.
  • One end 11d of the threaded rods 11a, 11b is fixed, for example screwed, in an end bore of a module component.
  • the other end 11c of the threaded rods 11a, 11b is fixed by means of a groove. In the manner shown in this embodiment, a firm connection of the module components is ensured.
  • the hydraulic tower 4 is very stable and withstands the forces occurring during the operation of a die casting machine.
  • FIG. 4A a schematic view of an embodiment of a base block 5 of the hydraulic tower 4 according to the invention is shown.
  • the base block has a main inlet opening 5a which is fluidically connected via lines 5a1, 5a2 (e.g. pipes in a hollow body or bores in a solid body) to a connection opening 5c in the roof surface of the base block 5 and a connection opening 5e in the bottom surface of the base block 5 .
  • Hydraulic medium introduced into the base block 5 through the main inlet opening 5a can be distributed through the connection openings 5c, 5e to module components (not shown here), which are arranged on the roof surface or bottom surface of the base block 5.
  • the base block 5 further has a main outlet port 5ba which is fluidically connected to a connection port 5d in the roof surface of the base block 5 and a connection port 5f in the bottom surface of the base block 5 via lines 5b1, 5b2. Hydraulic medium can be conducted from the base block 5 into a tank (not shown) through the main outlet opening 5b. The hydraulic medium to be discharged can be introduced into the base block 5 through the connection openings 5d, 5f of module components (not shown here), which are arranged on the roof surface or bottom surface of the base block 5.
  • FIG 4B a schematic view of another embodiment of a base block 5 of the hydraulic tower 4 according to the invention is shown.
  • This basic block 5 differs from that in Figure 4A shown embodiment characterized in that the base block 5 connections 5h for connecting the base block 5 with a machine component, preferably an ejection cylinder, and a Valve 5g are arranged to regulate the hydraulic flow to the ports 5h. From the (in Figure 4B (not shown) lines 5a2, 5b2 shunt into valve 5g and from there to ports 5h as described in detail above.
  • FIG. 5A a schematic view of an embodiment of a core pull module 6 of the hydraulic tower 5 according to the invention is shown.
  • the interior of the core pull module 6 has lines (not shown) which are fluidically connected to connection openings 6a, 6b in the top surface of the core pull module 6 and (not shown) connection openings in the bottom surface of the core pull module 6 .
  • Secondary lines go from the lines (not shown) into the valve 6i or via the pressure-reducing valve 6g into the valve 6g and from there to the connections 6d, 6e, as described in detail above.
  • the connections 6d, 6e can be connected to a core pull cylinder.
  • the pressure reducing valve 6g can be regulated using a pressure regulator 6h.
  • a connection 6f for pressure measurement is provided on the front side of the core pull module 6, to which a conventional pressure measuring device such as a manometer can be connected.
  • a hole 6c for receiving an eyebolt is provided in the top surface of the core pull module 6 .
  • an eyebolt (not shown)
  • the core pull module 6 can be raised and installed or removed in a simple manner.
  • auxiliary terminals 6j, 6k are provided on a side surface. These extensions are hydraulically connected in the same way as connections 6d, 6e and are used for connection to an optional hydraulic distributor (not shown).
  • FIG 5B a schematic view of another embodiment of a core pull module 6 of the hydraulic tower 5 according to the invention is shown.
  • This core pull module 6 differs from that in Figure 4A shown embodiment in that a distribution element 6l, 6l' is arranged on the connections 6d and 6e in order to increase (double here) the number of available connections.
  • the booster module 8 has lines (not shown) which are fluidically connected to connection openings 8a, 8b in the roof surface of the booster module 8 and (not shown) connection openings in the bottom surface of the booster module 8 .
  • Secondary lines go from the lines (not shown) into the valve 8i or via the pressure reducing valve 8g and the throttle valve 8l into the valve 8g and from there to the connections 8d, 8e, as described in detail above.
  • the connections 8d, 8e can be connected to a booster cylinder.
  • the pressure reducing valve 8g can be controlled using a pressure regulator 8h.
  • the throttle valve 8l can be controlled using a controller 8m.
  • a connection 8f for pressure measurement is provided on the front side of the booster module 8, to which a conventional pressure measuring device such as a manometer can be connected.
  • a hole 8c is provided in the roof surface of the booster module 8 for receiving an eyebolt (not shown). With the help of such an eye bolt, the booster module 8 can be lifted and installed or removed in a simple manner.
  • auxiliary terminals 8j, 8k are provided on a side surface. These auxiliary connections are hydraulically connected analogous to the connections 8d, 8e and are used for connection to an optional hydraulic distributor (not shown).
  • In 7 1 is a schematic view of an embodiment of an auxiliary movement module 9 of the hydraulic tower according to the invention.
  • the sub-movement module 9 has lines (not shown) in its interior which are fluidically connected to connection openings 9a, 9b in the top surface of the sub-movement module 9 and (not shown) connection openings in the bottom surface of the sub-movement module 9 . From the lines (not shown), secondary lines go into the valve block 9e and from there to the connections 9c, 9d, as described in detail above.
  • the connections 9c, 9d can be connected to an auxiliary movement cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine.
  • Druckgiessmaschinen sind hinlänglich bekannt (vgl. z.B. Brunhuber, Praxis der Druckgussfertigung, Berlin, 3. Aufl. 1980). In einer Druckgussmaschine wird eine aus zwei Hälften bestehende Form unter hohem Druck geschlossen, geschmolzenes Metall (oder eine Metall-Legierung) wird in die geschlossene Form eingeführt, und nach Erkalten des Giessmaterials kann das fertige Druckgussteil durch Öffnung der Form entnommen werden. Die Formhälften sind an einer festen und einer beweglichen Aufspannplatte angeordnet, und das Schliessen der Form erfolgt durch entsprechende Bewegung der beweglichen Aufspannplatte auf Führungssäulen zur festen Aufspannplatte hin.
  • Für den Betrieb der Giessform einer Druckgiessmaschine ist es erforderlich, dass Module an der Druckgiessmaschine bereitgestellt werden, um die entsprechenden Komponenten der Druckgiessmaschine mit Hydraulikmedium zu versorgen. Herkömmlicherweise werden diese Module in festgelegten freien Bereichen an der festen und/oder beweglichen Aufspannplatte angeordnet. Die für die Module verfügbaren Bereiche sind klein und können in der Regel nur für das entsprechende Modul, nicht aber für andere Energiemodule genutzt werden. Die Anordnung der Bereiche für die Energiemodule hängt von der Art der Druckgiessmaschine ab, d.h. von den an einer spezifischen Druckgiessmaschine verfügbaren Räumen.
  • In Fig. 1 ist schematisch eine Frontansicht einer Druckgiessmaschine aus dem Stand der Technik gezeigt. Die Druckgiessmaschine 1 umfasst eine (hier beispielhaft feste) Aufspannplatte 3 und Öffnungen 2 in der Aufspannplatte 3 für (nicht gezeigte) Führungssäulen zur Bewegung einer (nicht gezeigten) beweglichen Aufspannplatte. An den Seiten der Aufspannplatte 2 sind Module 10 zur Versorgung der Druckgiessmaschine mit elektrischer Energie, Module 6 zum Betreiben von Kernzügen, ein Modul 7 zur Kühlung und ein Modul 8 zum Betreiben eines Nachverdichters angeordnet. Die verschiedenen Module sind über die gesamte Druckgiessmaschine verteilt. Die einzelnen Hydraulikmodule müssen aufwendig mit Rohren und Schläuchen an die im Maschinenrahmen angeordneten Hydraulikleitungen angeschlossen werden. Je nach anzuschließendem Modul sind herkömmliche Hydraulikanschlüsse oder Sonderkonstruktion einzusetzen. Die im Stand der Technik eingesetzte Vorgehensweise ist wenig flexibel und erfordert eine zeitintensive Montage.
  • Eine Umrüstung einer herkömmlichen Druckgiessmaschine ist mit erheblichem Aufwand verbunden, da zusätzliche erforderliche Energiemodule wenn überhaupt nur in den wenigen verbliebenen freien Bereichen der Druckgiessmaschine angeordnet werden können. Ein Versetzen bereits vorhandener Energiemodule ist aufgrund der Platzproblematik und der bereits bestehenden Verkabelung bzw. Versorgung mit Schläuchen wenn überhaupt nur mit grossem Aufwand möglich.
  • Auch ein Umrüsten auf eine andere Maschinengrösse ist mit den herkömmlichen Energiemodulen nicht einfach möglich, da jede Maschinengrösse unterschiedliche Schnittstellen aufweist.
  • In der US-2001/0035277 A1 ist vorgeschlagen worden, mehrere Spritzgiesseinheiten über gemeinsame Energiemodule zu betreiben. Diese Lösung ist aber für voluminöse Druckgiessmaschinen offensichtlich ungeeignet, da sie enormen Platz beansprucht und zudem üblicherweise keine Vielzahl an Druckgiessmaschinen in ausreichender Nähe zueinander betrieben werden.
  • Es war die Aufgabe der vorliegenden Erfindung, eine Vorrichtung für eine Druckgiessmaschine bereitzustellen, mit welcher die erforderliche Versorgung hydraulisch betriebener Maschinenkomponenten mit geringerem Platzbedarf und mit einfachem, flexiblem und leicht umrüstbarem Aufbau bereitgestellt werden kann.
  • Diese Aufgabe wird durch eine Druckgiessmaschine gemäss Anspruch 1 gelöst.
  • Im Detail betrifft die vorliegende Erfindung eine Vorrichtung zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine, umfassend
    • einen Basisblock mit einer Haupteinlassöffnung und einer Hauptauslassöffnung für Hydraulikmedium, welche vorzugsweise an der Rückseite des Basisblocks angeordnet sind, sowie mit Verbindungsöffnungen in der Dachfläche und der Bodenfläche des Basisblocks zur Aus- und Einleitung von Hydraulikmedium, wobei die Haupteinlassöffnung und Hauptauslassöffnung durch Leitungen im Basisblock mit den Verbindungsöffnungen verbunden sind,
    • mindestens zwei verschiedene Modulkomponenten die ausgewählt sind aus der Gruppe bestehend aus Kernzugmodulen, Kernzugentlastungsmodulen, Nachverdichtermodulen, Nebenbewegungsmodulen, und Vakuummodulen, und welche in der Dachfläche und der Bodenfläche Verbindungsöffnungen zur Aus- und Einleitung von Hydraulikmedium und in ihrem Inneren diese Öffnungen verbindende Leitungen aufweisen, wobei mindestens eine der Modulkomponenten derart auf der Dachfläche oder der Bodenfläche des Basisblocks angeordnet ist, dass die entsprechenden Verbindungsöffnungen der Modulkomponente mit den entsprechenden Verbindungsöffnungen des Basisblocks eine fluidische Verbindung bilden, und wobei die mindestens zwei verschiedenen Modulkomponenten Anschlüsse zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine aufweisen,
    • Endplatten zum Verschliessen nicht verbundener Einlassöffnungen und Auslassöffnungen des Basisblocks und/oder einer Modulkomponente.
  • Die vorliegende Erfindung beruht auf dem Konzept, alle bislang über die gesamte Druckgiessmaschine verteilte Hydraulikmodule zu einem einzigen Block zusammenzufassen, der vorliegend als Hydraulikturm bezeichnet wird. Dieser Hydraulikturm benötigt nur einen Anschluss zur Zuführung von Hydraulikmedium. Das Hydraulikmedium wird innerhalb des Hydraulikturms durch alle Modulkomponenten durchlaufende Leitungen auf die einzelnen Modulkomponenten verteilt. Zurückgeführtes Hydraulikmedium wird im Hydraulikturm zusammengefasst und durch einen einzigen Anschluss aus dem Hydraulikturm heraus von der Druckgiessmaschine weggeführt.
  • Auf diese Weise kann die Anzahl von Rohren und Schläuchen, die zur Versorgung der Druckgiessmaschine erforderlich ist, erheblich reduziert werden. In dem erfindungsgemässen Hydraulikturm können zudem verschiedene Anzahlen und Arten von Modulkomponenten zusammengefasst werden, was eine deutlich erhöhte Flexibilität, Platzeinsparung und einfache Umrüstbarkeit bietet. Zudem ist die Bedienung der Druckgiessmaschine erleichtert, da sämtliche Modulkomponenten an einem Ort zusammengefasst sind. Der sogenannte "Fussabdruck" der Druckgiessmaschine ist optimiert.
  • Der erfindungsgemässe Hydraulikturm kann vorzugsweise in einem Aufnahmerahmen an der Druckgiessmaschine angeordnet werden, wie er in der von der Anmelderin am gleichen Tag eingereichten Europäischen Patentanmeldung mit dem Titel "Druckgiessmaschine mit Energierahmen" beschrieben ist.
  • Erfindungsgemäss bevorzugt handelt es sich bei der Druckgiessmaschine um eine Zwei-Platten-Druckgiessmaschine oder um eine Drei-Platten-Druckgiessmaschine.
  • Komponenten zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine, sind an sich bekannt. Es handelt sich um Komponenten, die mit Hydraulikmedium versorgt werden und dieses kontrolliert an die entsprechenden Maschinenbauteile weiterleitet.
  • Als Hydraulikmedium kommen übliche verwendete Flüssigkeiten wie Mineralöle, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Wasser-Glykol-Mischungen oder wasserfreie Flüssigkeiten wie beispielsweise Phosphatester in Frage.
  • Wie vorstehend ausgeführt weisen derartige im Stand der Technik verwendete Komponenten separate Anschlüsse zur Zu- und Abführung von Hydraulikmedium auf, d.h. zu jeder Komponente müssen eigene Versorgungsrohre oder -schläuche verlegt werden. Im Gegensatz hierzu sind die erfindungsgemässen Modulkomponenten derart konzipiert, dass sie zu einem einzigen Block, dem Hydraulikturm, zusammengeführt werden können.
  • Der erfindungsgemässe Hydraulikturm wird nur über eine einzige Komponente von extern mit Hydraulikmedium versorgt. Diese Komponente wird erfindungsgemäss als Basisblock bezeichnet. Der Basisblock weist ein vorzugsweise quaderförmiges oder würfelförmiges Gehäuse aus einem geeigneten Werkstoff (beispielsweise einem metallischen Werkstoff) auf. Aus Gewichtsgründen ist der Basisblock vorzugsweise ein Hohlkörper.
  • Der erfindungsgemässe Basisblock weist vorzugsweise Mittel zur Befestigung des Blocks direkt an der Druckgiessmaschine oder in einem an der Druckgiessmaschine angeordneten Aufnahmerahmen auf, wie er in der von der Anmelderin am gleichen Tag eingereichten Europäischen Patentanmeldung mit dem Titel "Druckgiessmaschine mit Energierahmen" beschrieben ist. Bei diesen Mitteln handelt es sich vorzugsweise um Bohrungen zur Aufnahme von Befestigungsschrauben. Besonders bevorzugt sind diese Mittel in den Seitenflächen des Basisblocks angeordnet.
  • Der erfindungsgemässe Basisblock ist mit einer Haupteinlassöffnung und einer Hauptauslassöffnung für Hydraulikmedium ausgestattet. Diese Hauptöffnungen sind vorzugsweise an der Rückseite des Basisblocks angeordnet, damit an der Vorderseite des Hydraulikturms keine gegebenenfalls störenden grossen Rohre oder Schläuche bereitzustellen sind.
  • Die Hauptöffnungen des erfindungsgemässen Basisblocks sind auf übliche Weise ausgestaltet, beispielsweise als Anschlüsse, welche mit üblichen Rohren oder Schläuchen auf herkömmliche Weise dichtend verbunden werden können. Beispielhaft seien Muffenverbindungen genannt.
  • Weiterhin ist der erfindungsgemässe Basisblock mit Verbindungsöffnungen in der Dachfläche und der Bodenfläche zur Aus- und Einleitung von Hydraulikmedium ausgestattet. Es ist daher erfindungsgemäss möglich, Modulkomponenten auf der Dachfläche und/ oder der Bodenfläche des Basisblocks anzuordnen, welche vom Basisblock durch die genannten Verbindungsöffnungen mit Hydraulikmedium versorgt werden können beziehungsweise Hydraulikmedium in den Basisblock zurückführen können.
  • Hierzu weisen die weiteren Modulkomponenten, wie nachstehend ausgeführt, entsprechende Verbindungsöffnungen auf, welche mit den Verbindungsöffnungen des Basisblocks passgenau und dichtend, d.h. fluidisch verbunden werden können.
  • Unter einer fluidischen Verbindung ist erfindungsgemäss eine Verbindung zwischen zwei Leitungen zu verstehen, durch welche ein Fluid, vorzugsweise ein Hydraulikmedium, ungehindert und ohne Leckage strömen kann. Diese fluidischen Verbindungen können auf herkömmliche Weise realisiert werden, beispielsweise durch mit Dichtringen ausgestattete Klemmverbindungen.
  • Gemäss einer bevorzugten Ausführungsform der vorliegenden Erfindung sind der Basisblock und die auf seiner Dach- und/oder Bodenfläche angeordneten Modulkomponenten durch Befestigungsmittel verbunden. Für diesen Zweck sind in der Dach- und/oder Bodenfläche des Basisblocks vorzugsweise Bohrungen zur Aufnahme von Befestigungsschrauben oder Steckverbindungen bereitgestellt, wobei die entsprechenden Befestigungsschrauben oder Steckverbindungen an der entsprechenden Dach- und/oder Bodenfläche der Modulkomponenten angeordnet sind.
  • Erfindungsgemäss besonders bevorzugt sind der Basisblock und die auf seiner Dach- und/oder Bodenfläche angeordneten Modulkomponenten durch eine oder mehrere Gewindestangen verbunden. Diese Gewindestangen werden durch entsprechende Bohrungen der Modulkomponenten geführt und weisen ein Ende auf, welches in einer entsprechenden Endbohrung des Basisblocks und/oder einer Modulkomponente fest angeordnet werden kann (beispielsweise eingeschraubt). Das andere Ende der Gewindestande befindet sich entweder fixiert innerhalb einer Modulkomponente oder ausserhalb auf der Dachfläche einer Modulkomponente, wo es auf bekannte Weise (beispielweise mit einer Mutter über eine Gewindeverbindung) befestigt werden kann. Die Variante mit Gewindestangen führt zu einem besonders stabil ausgebildeten Hydraulikturm.
  • Die Haupteinlassöffnung und Hauptauslassöffnung des Basisblocks sind durch Leitungen im Basisblock mit den Verbindungsöffnungen verbunden. Diese Leitungen sind auf herkömmliche Art ausgebildet, z.B. in Form von Rohren oder in Form von Bohrungen in einem Basisblock in Form eines massiven Körpers wie eines Gussteils.
  • Gemäss einer alternativen Ausführungsform der vorliegenden Erfindung kann der Basisblock zusätzliche Anschlüsse zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine aufweisen. In diesem Fall dient der Basisblock nicht nur zur Verteilung von Hydraulikmedium auf andere Modulkomponenten, sondern dient auch zur Steuerung einer hydraulisch betriebenen Komponente der Druckgiessmaschine.
  • Gemäss einer bevorzugten Ausführungsform wird mit Hilfe des Basisblocks ein Auswerfzylinder bedient, d.h. ein in der beweglichen Aufspannplatte einer Druckgiessmaschine eingebauter Zylinder, mit welchem das Gussteil nach beendetem Giessvorgang aus der Form ausgestossen wird.
  • Bei dieser alternativen Ausführungsform gehen von den Leitungen im Basisblock, welche von den Hauptöffnungen zu den Verbindungsöffnungen in der Dach- und Bodenfläche des Basisblocks führen, Nebenleitungen ab, welche vorzugsweise über eine Einheit zur Modifizierung des Flusses von Hydraulikmedium, vorzugsweise ein Ventil, zu den zusätzlichen Anschlüssen führen.
  • Mit Hilfe der Einheit zur Modifizierung des Flusses von Hydraulikmedium, vorzugsweise einem Ventil, kann die zur Steuerung an die Maschinenkomponente wie dem Auswerfzylinder abzugebende Menge an Hydraulikmedium eingestellt werden. Je nach Bedarf kann es sich hierbei um einfaches Schwarz-Weiss-Ventil, ein Positionierungsventil oder um ein Proportionalventil handeln. Derartige Ventile sind bekannt.
  • Das Schwarz-Weiss-Ventil kann beispielsweise ein 4-3-Wege-Solenoidventil sein, mit welchem der Auswerfzylinder bis in seine End-Position und wieder zurückgefahren werden kann.
  • Das Positionierungsventil kann aus einer Kombination von drei Ventilen bestehen, mit deren Hilfe eine sehr akkurate Bewegung des Zylinders in einer vorgegebene Position erreicht werden kann, mit einer Genauigkeit von beispielsweise ±1 mm. Beispielsweise kann es sich um eine Kombination eines 4-3-Wege-Solenoid-ventils (Hauptventil) mit zwei 2-2-Wege-Solenoidventilen (Nebenventile) handeln, welche so angeordnet sind, dass bei geschlossener Position des Hauptventils im Notfall Hydraulikmedium über die Nebenventile abfliessen kann und kein Überdruck in der Leitung entsteht.
  • Das Proportionalventil kann ein 4-3-Wege-Solenoidventil mit integrierter Regelung sein, welche eine sehr genaue Bewegung und Positionierung des Zylinders in Abhängigkeit von einer Positionsbestimmung des Zylinders erlaubt.
  • Vorzugsweise ist das Ventil auf der Seite des Basisblocks angeordnet, auf welcher sich die Hauptöffnungen befinden. Die zusätzlichen Anschlüsse zur Verbindung des Basisblocks mit einer Maschinenkomponente wie dem Auswerfzylinder sind vorzugsweise seitlich am Basisblock mit Ausrichtung nach hinten angeordnet. Die zusätzlichen Anschlüsse können mit üblichen Rohren oder Schläuchen auf herkömmliche Weise dichtend verbunden werden. Beispielhaft seien Muffenverbindungen genannt.
  • Auf der Dachfläche des Basisblocks ist mindestens eine weitere Modulkomponente angeordnet, wie vorstehend beschrieben. Diese weitere Modulkomponente kann ausgewählt sein aus der Gruppe bestehend aus Kernzugmodulen, Kernzugentlastungsmodulen, Nachverdichtermodulen, Nebenbewegungsmodulen, und Vakuummodulen.
  • Erfindungsgemäss bevorzugt ist auf der Dachfläche des Basisblocks ein Kernzugmodul angeordnet.
  • Ein Kernzugmodul dient zur Steuerung eines Kernzugzylinders, welcher einen beweglichen Kern oder allgemein ein bewegliches Formelement) in der Form bewegt. Mit Hilfe dieser beweglichen Kerne kann die Form des zu giessenden Gussteils modifiziert werden. Mit Kernzugmodulen werden Kerne (oder allgemein Formelemente) hydraulisch aus der Form bewegt, welche nicht mechanisch durch die Öffnung der Form entfernt werden.
  • Bewegliche Kerne und Kernzugzylinder sind hinlänglich bekannt. In der Regel sind in einer Giessform einer Druckgiessmaschine mehrere, beispielsweise 1 bis 10 und vorzugsweise 1 bis 5, Kernzugzylinder und bewegliche Kerne bereitgestellt. Für jeden Kernzugzylinder ist ein zugehöriges Kernzugmodul bereitzustellen. Mit Hilfe des erfindungsgemässen Kernzugmoduls kann ein Kernzugzylinder bewegt und vorzugsweise zusätzlich eine Druckverringerung durchgeführt werden.
  • Ein erfindungsgemässes Kernzugmodul weist ein vorzugsweise quaderförmiges oder würfelförmiges Gehäuse aus einem geeigneten Werkstoff (beispielsweise einen metallischen Werkstoff) auf. Aus Gewichtsgründen ist das Kernzugmodul vorzugsweise ein Hohlkörper. Gemäss einer bevorzugten Ausführungsform der vorliegenden Erfindung sind in der Bodenfläche des Kernzugmoduls vorzugsweise Befestigungsschrauben oder Steckverbindungen angeordnet, um das Kernzugmodul mit dem Basisblock zu verbinden. In der Dachfläche des Kernzugmoduls sind vorzugsweise Bohrungen zur Aufnahme entsprechender Befestigungsmittel eines darüber angeordneten Kernzugmoduls bereitgestellt. Erfindungsgemäss besonders bevorzugt sind aber im Kernzugmodul durchgehende Bohrungen vorgesehen, durch welche wie vorstehend beschrieben Gewindestangen geführt werden können. Zusätzlich können in den Seitenflächen eines Kernzugmoduls Mittel zur Befestigung des Kernzugmoduls direkt an der Druckgiessmaschine oder in einem an der Druckgiessmaschine angeordneten Aufnahmerahmen vorgesehen sein, wie er in der von der Anmelderin am gleichen Tag eingereichten Europäischen Patentanmeldung mit dem Titel "Druckgiessmaschine mit Energierahmen" beschrieben ist, vorgesehen sein. Bei diesen Mitteln handelt es sich vorzugsweise um Bohrungen zur Aufnahme von Befestigungsschrauben.
  • Gemäss einer bevorzugten Ausführungsform der vorliegenden Erfindung ist in der Dachfläche des Kernzugmoduls ein Mittel zum Anheben des Kernzugmoduls bereitgestellt. Vorzugsweise handelt es sich hierbei um eine Bohrung zur festen Anordnung einer Augenschraube oder eines Hakens, um das Kernzugmodul mit einem daran befestigten Seil mittels eines Krans hochheben zu können.
  • Ein erfindungsgemässes Kernzugmodul weist in der Dachfläche und der Bodenfläche Verbindungsöffnungen zur Aus- und Einleitung von Hydraulikmedium auf. Im Fall eines auf der Dachfläche des Basisblocks angeordneten Kernzugmoduls sind diese Verbindungsöffnungen mit den entsprechenden Verbindungsöffnungen des Basisblocks wie vorstehend beschrieben fluidisch verbunden. Die Verbindungsöffnungen des Kernzugmoduls sind analog zu den vorstehend beschriebenen Verbindungsöffnungen des Basisblocks ausgestaltet.
  • Ein erfindungsgemässes Kernzugmodul weist in seinem Inneren Leitungen auf, welche die Verbindungsöffnungen in der Dachfläche und der Bodenfläche miteinander verbinden. Sind mehrere Kernzugmodule übereinander angeordnet, sind sämtliche Kernzugmodule über ihre inneren Leitungen miteinander verbunden und können vom Basisblock mit Hydraulikmedium versorgt werden beziehungsweise Hydraulikmedium zum Basisblock zurückführen.
  • Mit Hilfe eines Kernzugmoduls wird ein Kernzugzylinder bedient. Zu diesem Zweck gehen von den Leitungen im Kernzugmodul, welche von den Verbindungsöffnungen in der Bodenfläche des Kernzugmoduls zu den Verbindungsöffnungen in der Dachfläche des Kernzugmoduls führen, Nebenleitungen ab, welche vorzugsweise über eine Einheit zur Modifizierung des Flusses von Hydraulikmedium, vorzugsweise ein Ventil, zu den Anschlüssen für den Kernzugzylinder führen.
  • Vorzugsweise ist das Ventil auf der Rückseite des Kernzugmoduls angeordnet. Die Anschlüsse zur Verbindung des Kernzugmoduls mit einem Kernzugzylinder sind vorzugsweise auf der Vorderseite des Kernzugmoduls angeordnet und somit für das Bedienungspersonal leicht zugänglich. Die zusätzlichen Anschlüsse können mit üblichen Rohren oder Schläuchen auf herkömmliche Weise dichtend verbunden werden. Beispielhaft seien Muffenverbindungen genannt.
  • Gemäss einer weiteren Ausführungsform der vorliegenden Erfindung können zusätzliche Anschlüsse, vorzugsweise in einer Seitenfläche des Kernzugmoduls, bereitgestellt sein, welche ebenfalls Hydraulikmedium über eine Einheit zur Modifizierung des Flusses von Hydraulikmedium, vorzugsweise ein Ventil, zugeführt bekommen beziehungsweise zurückführen können.
  • Das Ventil kann beispielsweise ein 4-3-Wege-Solenoidventil sein, mit welchem der Kernzugzylinder bis in seine End-Position und wieder zurückgefahren werden kann.
  • Vorzugsweise kann an mindestens einem Anschluss ein Verteilelement bereitgestellt sein, um die verfügbare Anzahl an Anschlüssen zusätzlich zu erhöhen. Dieses Verteilelement hat beispielsweise einen Einlass, der fluidisch mit einem Anschluss des Kernzugmoduls verbunden wird, und mindestens zwei Auslässe zur Verbindung mit Maschinenkomponenten.
  • Gemäss einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung weist das erfindungsgemässe Kernzugmodul die Funktion der Druckverringerung auf. In diesem Fall umfasst das Kernzugmodul weiterhin ein Druckverringerungsventil, welches zwischen der vom Basisblock kommenden Leitung mit unter Druck befindlichem Hydraulikmedium und dem vorstehend beschriebenen Ventil angeordnet ist. Druckverringerungsventile sind hinlänglich bekannt. Das Druckverringerungsventil kann vorzugsweise mit Hilfe eines Bedienelements, beispielsweise eines Drehreglers, gesteuert werden. Das Bedienelement befindet sich vorzugsweise an der Frontseite des Kernzugmoduls, neben den Anschlüssen für den Kernzugzylinder.
  • Weiterhin kann das Kernzugmodul gemäss dieser Ausführungsform einen Anschluss zur Druckmessung umfassen. An diesem Anschluss kann ein übliches Druckmessgerät wie ein Manometer angeschlossen werden, um den im Kernzugmodul anliegenden Druck zu bestimmen und erforderlichenfalls mit Hilfe des Druckreduzierventils zu modifizieren. Der Anschluss zur Druckmessung befindet sich vorzugsweise an der Frontseite des Kernzugmoduls, neben den Anschlüssen für den Kernzugzylinder.
  • Gemäss dieser Ausführungsform ist es möglich, im Fall der Bereitstellung mehrerer Kernzugmodule im Hydraulikturm den Druck in jedem Kernzugmodul separat zu bestimmen und zu verändern.
  • Gemäss einer weiteren Ausführungsform der vorliegenden Erfindung kann am Kernzugmodul ein Sicherheitsmodul bereitgestellt werden, welches im Hydraulik-Kreislauf zwischen dem vorstehend beschriebenen Ventil und dem Kernzugzylinder angeordnet ist und eine unerwünschte Bewegung des Kernzugzylinders aufgrund seines Eigengewichts verhindert.
  • Im erfindungsgemässen Hydraulikturm sind vorzugsweise sämtliche bereitgestellte Kernzugmodule übereinander und auf der Dachfläche des Basisblocks angeordnet. Durch die im Basisblock und in sämtlichen Kernzugmodulen vorhandenen Leitungen ist ein durchgehender Hydraulikfluss möglich.
  • Oberhalb des Kernzugmoduls oder der Kernzugmodule, d.h. auf der Dachfläche des obersten Kernzugmoduls, ist gemäss einer bevorzugten Ausführungsform ein Kernzugentlastungsmodul angeordnet. Mit Hilfe des Kernzugentlastungsmoduls kann in den Leitungen vorhandener Druck aus dem Hydraulikturm zum Tank abgeleitet werden, sodass beispielsweise Verbindungen zu Maschinenkomponenten einfach gelöst werden können. Hierfür weist das Kernzugentlastungsmodul Leitungen auf, welche mit den Verbindungsöffnungen in der Dachfläche des obersten Kernzugmoduls fluidisch verbunden werden können und zu einem Entlastungsventil führen. Bei Betätigung des Entlastungsventils werden die Leitungen mit dem Tank verbunden. Ein erfindungsgemässes Kernzugentlastungsmodul weist ein vorzugsweise quaderförmiges oder würfelförmiges Gehäuse aus einem geeigneten Werkstoff (beispielsweise einen metallischen Werkstoff) auf. Aus Gewichtsgründen ist das Kernzugentlastungsmodul vorzugsweise ein Hohlkörper. Das Entlastungsventil ist vorzugsweise auf der Rückseite angeordnet, d.h. im Hydraulikturm auf der von den Anschlüssen und Bedienelementen abgewandten Seite.
  • Gemäss einer alternativen Ausführungsform der vorliegenden Erfindung kann anstelle eines Kernzugentlastungsmoduls auch eine Endplatte zum Verschliessen der Verbindungsöffnungen in der Dachfläche des obersten Kernzugmoduls aufweisen. Es handelt sich hierbei um eine Platte aus einem geeigneten Werkstoff (beispielsweise einen metallischen Werkstoff) mit erforderlichen Dimensionen zum Verschliessen der Verbindungsöffnungen, welche auf der Dachfläche des obersten Kernzugmoduls befestigt werden kann, beispielsweise durch schraubenförmige Verbindungen.
  • Der erfindungsgemässe Hydraulikturm kann weiterhin mindestens ein Nachverdichtermodul umfassen, beispielsweise 1 bis 10 und vorzugsweise 1 bis 5 Nachverdichtermodule. Die Nachverdichtermodule dienen zur Betätigung von Nachverdichterzylindern, um in der Giessform befindliches Giessmaterial vor dem Erstarren zusätzlich mit Druck zu beaufschlagen und somit zu verdichten.
  • Das erfindungsgemässe Nachverdichtermodul entspricht in seinem Aufbau vorzugsweise im Wesentlichen dem vorstehend beschriebenen Kernzugmodul mit Druckverringerungsventil, sodass die vorstehenden Ausführungen zum Kernzugmodul analog gelten. Zusätzlich weist aber das Nachverdichtermodul vorzugsweise ein Drosselventil auf. Von den durch das Nachverdichtermodul von den Verbindungsöffnungen in der Bodenfläche zu den Verbindungsöffnungen in der Dachfläche führenden Leitungen gehen zwei Leitungen ab, von denen eine Leitung über eine Einheit, vorzugsweise ein Ventil, insbesondere bevorzugt ein 4-3-Wege-Solenoidventil, zur Modifizierung des Flusses von Hydraulikmedium zu einem der Anschlüsse führt. Die andere abgehende Leitung wird nach Verlassen des Ventils zunächst durch ein Druckreduzierventil und anschliessend durch ein an sich bekanntes Drosselventil geführt, ehe sie zu dem anderen Anschluss geführt wird. Auf diese Weise kann die Kolbenkammerseite des Nachverdichterzylinders mit Hilfe der zusätzlichen Ventile gezielt beeinflusst werden.
  • Für das zusätzliche Drosselventil ist vorzugsweise ebenfalls ein Bedienelement, beispielsweise ein Drehregler, zur Steuerung bereitgestellt. Das Bedienelement befindet sich vorzugsweise an der Frontseite des Nachverdichtermoduls, neben den Anschlüssen für den Nachverdichterzylinder. Das erfindungsgemässe Vakuummodul entspricht in seinem Aufbau vorzugsweise im Wesentlichen dem vorstehend beschriebenen Kernzugmodul mit Druckverringerungsventil, sodass die vorstehenden Ausführungen zum Kernzugmodul analog gelten.
  • Vorzugsweise sind der oder die Nachverdichtermodule oberhalb des oder der Kernzugmodule angeordnet. In diesem Fall ist auf der Dachfläche des obersten Nachverdichtermoduls (und nicht auf der Dachfläche des obersten Kernzugmoduls) die vorstehend beschriebene Endplatte angeordnet.
  • Der erfindungsgemässe Hydraulikturm kann weiterhin mindestens ein Vakuummodul umfassen, mit dessen Hilfe ein Zylinder zur Beeinflussung eines Vakuums in der Giessform betätigt werden kann.
  • Der erfindungsgemässe Hydraulikturm kann weiterhin mindestens ein Nebenbewegungsmodul umfassen. Unter Nebenbewegungen versteht man hydraulische betriebene Bewegungen von Maschinenkomponenten, welche nicht die hauptsächlichen hydraulischen Maschinenbewegungen (wie beispielsweise das Schliessen der Giessform) betreffen. Beispielhafte Nebenbewegungen bei einer Druckgiessmaschine sind die Bewegungen des Klemmmechanismus in der festen Aufspannplatte für die Führungssäulen, die Bewegung der Klemmzylinder, die Bewegung der Zylinder zur horizontalen Bewegung des Formträgers, oder die Bewegung der Zylinder zum Ausstossen der Giessform.
  • Das oder die Nebenbewegungsmodule sind vorzugsweise unterhalb des Basisblocks angeordnet, wobei ein Nebenbewegungsmodul mit der Bodenfläche des Basisblocks fluidisch verbunden ist, analog zur fluidischen Verbindung eines Kernzugmoduls mit der Dachfläche des Basisblocks.
  • Sind mehrere Nebenbewegungsmodule im Hydraulikturm vorhanden, sind diese vorzugsweise als Einheit zusammengefasst und auf der Bodenfläche des Basisblocks angeordnet. Analog zu den vorstehend beschriebenen Kernzugsmodulen und Nachverdichtermodulen sind auch die Nebenbewegungsmodule miteinander und dem Basisblock fest verbunden, beispielsweise durch schraubenförmige Verbindungen oder vorzugsweise mit einer oder mehreren Gewindestangen, die durch Bohrungen in den Nebenbewegungsmodulen geführt werden.
  • Gemäss der vorliegenden Erfindung ist eine Endplatte zum Verschliessen der Verbindungsöffnungen in der Bodenfläche des Basisblocks (sofern keine Nebenbewegungsmodule vorhanden sind) oder der Bodenfläche des untersten Nebenbewegungsmoduls aufweisen. Es handelt sich hierbei um eine Platte aus einem geeigneten Werkstoff (beispielsweise einen metallischen Werkstoff) mit erforderlichen Dimensionen zum Verschliessen der Verbindungsöffnungen, welche auf der Bodenfläche des Basisblocks (sofern keine Nebenbewegungsmodule vorhanden sind) oder der Bodenfläche des untersten Nebenbewegungsmoduls befestigt werden kann, beispielsweise durch schraubenförmige Verbindungen. Zusätzlich können in den Seitenflächen eines Nebenbewegungsmoduls Mittel zur Befestigung des Nebenbewegungsmoduls direkt an der Druckgiessmaschine oder in einem an der Druckgiessmaschine angeordneten Aufnahmerahmen vorgesehen sein, wie er in der von der Anmelderin am gleichen Tag eingereichten Europäischen Patentanmeldung mit dem Titel "Druckgiessmaschine mit Energierahmen" beschrieben ist, vorgesehen sein. Bei diesen Mitteln handelt es sich vorzugsweise um Bohrungen zur Aufnahme von Befestigungsschrauben.
  • Ein erfindungsgemässes Nebenbewegungsmodul weist ein vorzugsweise quaderförmiges oder würfelförmiges Gehäuse aus einem geeigneten Werkstoff (beispielsweise einen metallischen Werkstoff) auf. Aus Gewichtsgründen ist das Nebenbewegungsmodul vorzugsweise ein Hohlkörper.
  • Ein erfindungsgemässes Nebenbewegungsmodul weist in der Dachfläche und der Bodenfläche Verbindungsöffnungen zur Aus- und Einleitung von Hydraulikmedium auf. Im Fall eines auf der Bodenfläche des Basisblocks angeordneten Nebenbewegungsmoduls sind diese Verbindungsöffnungen mit den entsprechenden Verbindungsöffnungen des Basisblocks wie vorstehend beschrieben fluidisch verbunden. Die Verbindungsöffnungen des Nebenbewegungsmoduls sind analog zu den vorstehend beschriebenen Verbindungsöffnungen des Basisblocks ausgestaltet.
  • Ein erfindungsgemässes Nebenbewegungsmodul weist in seinem Inneren Leitungen auf, welche die Verbindungsöffnungen in der Dachfläche und der Bodenfläche miteinander verbinden. Sind mehrere Nebenbewegungsmodule übereinander angeordnet, sind sämtliche Nebenbewegungsmodule über ihre inneren Leitungen miteinander verbunden und können vom Basisblock mit Hydraulikmedium versorgt werden beziehungsweise Hydraulikmedium zum Basisblock zurückführen.
  • Mit Hilfe eines Nebenbewegungsmoduls wird ein Zylinder bedient, durch welchen Nebenbewegungen ausgelöst werden. Zu diesem Zweck gehen von den Leitungen im Nebenbewegungsmodul, welche von den Verbindungsöffnungen in der Bodenfläche des Nebenbewegungsmoduls zu den Verbindungsöffnungen in der Dachfläche des Nebenbewegungsmoduls führen, Nebenleitungen ab, welche vorzugsweise über eine Einheit zur Modifizierung des Flusses von Hydraulikmedium, vorzugsweise ein Ventil, zu den Anschlüssen für den Zylinder führen.
  • Die verschiedenen Nebenbewegungsmodule unterscheiden sich in der Art und Anzahl der Ventile, die zur Durchführung der jeweiligen Nebenbewegung am Nebenbewegungsmodul bereitgestellt werden müssen. Die für eine bestimmte Nebenbewegung erforderliche Ventilanordnung ist dem Fachmann bekannt.
  • Gemäss einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung sind beim vorstehend beschriebenen Hydraulikturm alle an Modulkomponenten bereitgestellten Anschlüsse (d.h. die Hauptanschlüsse mit Ausnahme etwaiger an einer Seitenfläche angeordneter Nebenanschlüsse) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine sowie alle Bedienelemente an einer Seite angeordnet, vorzugsweise an der von der Haupteinlassöffnung und Hauptauslassöffnung abgewandten Seite. Eine vor dem Hydraulikturm stehende Bedienungsperson kann somit auf einfache Weise den Hydraulikturm bedienen und verwenden.
  • Wie vorstehend bereits ausgeführt ist der erfindungsgemässe Hydraulikturm zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine vorgesehen. Die vorliegende Erfindung betrifft somit auch eine Druckgiessmaschine, umfassend mindestens eine vorstehend beschriebene Vorrichtung (Hydraulikturm), welche mittels Befestigungsmitteln an der Druckgiessmaschine angeordnet ist.
  • Gemäss einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die Druckgiessmaschine weiterhin mindestens einen Aufnahmerahmen für Energiemodule, wobei der Aufnahmerahmen aufweist:
    • Befestigungsmittel zur Befestigung des Aufnahmerahmens an der Druckgiessmaschine,
    • mindestens ein, vorzugsweise 1 bis 3, Reihen zur Aufnahme von Energiemodulen, wobei jede Reihe zwei Profilstücke umfasst, die, vorzugsweise an ihren Enden, durch jeweils ein Verbindungsstück oder ein Energiemodul unter Ausbildung eines viereckigen, vorzugsweise rechteckigen Innenraums miteinander verbunden sind, wobei die Reihen Mittel zur Anordnung von Energiemodulen in ihrem Innenraum aufweisen und, sofern mehrere Reihen vorhanden sind, miteinander verbunden sind,
    und wobei die Befestigungsmittel zur Befestigung des Aufnahmerahmens an der Druckgiessmaschine an einer eine Aussenfläche des Aufnahmerahmens bildenden Reihe angeordnet sind und der Aufnahmerahmen über die Befestigungsmittel an der Druckgiessmaschine befestigt ist, vorzugsweise unter Ausbildung eines Zwischenraums zwischen der Druckgiessmaschine und der der Druckgiessmaschine benachbarten Reihe, dadurch gekennzeichnet, dass in der der Druckgiessmaschine benachbarten Reihe des Aufnahmerahmens die vorstehend beschriebene Vorrichtung (Hydraulikturm) angeordnet ist.
  • Energiemodule im Sinn der vorliegenden Erfindung sind Geräte, mit welchen Komponenten der Druckgiessmaschine mit Energie versorgt werden können, beispielsweise in Form elektrischer Energie oder in Form eines unter Drucks stehenden Hydraulikmediums. Derartige Energiemodule sind herkömmlich bekannt und verfügbar. Sie sind grundsätzlich kastenförmig, weisen Anschlüsse zur Zu- und Ableitung von elektrischem Strom beziehungsweise Hydraulikmedium und gegebenenfalls Bedienelemente wie Schalter, Drehknöpfe etc. auf.
  • Gemäss einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist die vorstehend beschriebene Vorrichtung (Hydraulikturm) in der der Druckgiessmaschine benachbarten Reihe des Aufnahmerahmens derart angeordnet, dass der Basisblock der Vorrichtung die Profilstücke der Reihe unten verbindet.
  • Gemäss einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung sind oberhalb des Basisblocks 1 bis 5 Kernzugmodule und oberhalb der Kernzugmodule 1 bis 5 Nachverdichtermodule sowie unterhalb des Basisblocks 1 bis 5 Nebenbewegungsmodule angeordnet.
  • Gemäss einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weist die Druckgiessmaschine eine bewegliche Aufspannplatte auf, welche auf beiden Seiten den Aufnahmerahmen mit einer in der der Druckgiessmaschine benachbarten Reihe des Aufnahmerahmens angeordneten Vorrichtung (Hydraulikturm) aufweist. Besonders bevorzugt umfasst hierbei die Vorrichtung auf einer Seite der beweglichen Aufspannplatte einen Basisblock, welcher Anschlüsse für den Anschluss von Auswerfzylindern aufweist.
  • Eine derartige Druckgiessmaschine, mit Aufnahmerahmen ist in der von der Anmelderin am gleichen Tag eingereichten Europäischen Patentanmeldung mit dem Titel "Druckgiessmaschine mit Energierahmen" im Detail beschrieben.
  • Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine, umfassend die Schritte
    • Bereitstellung einer vorstehend beschriebenen Vorrichtung (Hydraulikturm) an der Druckgiessmaschine,
    • Einleiten von Hydraulikmedium in den Basisblock der Vorrichtung,
    • Weiterleiten des Hydraulikmediums durch mindestens einen mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine verbundenen Anschluss in mindestens einer Modulkomponente und/oder dem Basisblock.
  • Erfindungsgemäss bevorzugt wird hierbei das Weiterleiten des Hydraulikmediums durch mindestens eine Einheit, vorzugsweise ein Ventil, modifiziert.
  • Die vorliegende Erfindung wird nachstehend anhand von nicht einschränkenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine Frontansicht einer Druckgiessmaschine aus dem Stand der Technik
    Fig. 2
    eine schematische Ansicht eines erfindungsgemässen Hydraulikturms
    Fig. 3
    Eine schematische Ansicht einer Ausführungsform eines erfindungsgemässen Hydraulikturms mit Gewindestangen zur Befestigung der einzelnen Modulkomponenten
    Fig. 4A
    Eine schematische Ansicht einer Ausführungsform eines Basisblocks des erfindungsgemässen Hydraulikturms
    Fig. 4B
    Eine schematische Ansicht einer anderen Ausführungsform eines Basisblocks des erfindungsgemässen Hydraulikturms
    Fig. 5A
    Eine schematische Ansicht einer Ausführungsform eines Kernzugmoduls des erfindungsgemässen Hydraulikturms
    Fig. 5B
    Eine schematische Ansicht einer anderen Ausführungsform eines Kernzugmoduls des erfindungsgemässen Hydraulikturms
    Fig. 6
    Eine schematische Ansicht einer Ausführungsform eines Nachverdichtermoduls des erfindungsgemässen Hydraulikturms
    Fig. 7
    Eine schematische Ansicht einer Ausführungsform eines Nebenbewegungsmoduls des erfindungsgemässen Hydraulikturms
  • In den Zeichnungen bezeichnen gleiche Bezugszeichen gleiche Bauteile.
  • In Fig. 1 ist schematisch eine Frontansicht einer Druckgiessmaschine aus dem Stand der Technik gezeigt. Die Druckgiessmaschine 1 umfasst eine (hier beispielhaft feste) Aufspannplatte 3 und Öffnungen 2 in der Aufspannplatte 3 für (nicht gezeigte) Führungssäulen zur Bewegung einer (nicht gezeigten) beweglichen Aufspannplatte. An den Seiten der Aufspannplatte 2 sind Module 10 zur Versorgung der Druckgiessmaschine mit elektrischer Energie, Module 6 zum Betreiben von Kernzügen, ein Modul 7 zur Kühlung und ein Modul 8 zum Betreiben eines Nachverdichters angeordnet. Die verschiedenen Module sind über die gesamte Druckgiessmaschine verteilt. Die einzelnen Hydraulikmodule müssen aufwendig mit Rohren und Schläuchen an die im Maschinenrahmen angeordneten Hydraulikleitungen angeschlossen werden.
  • In Fig. 2 ist eine schematische Ansicht eines erfindungsgemässen Hydraulikturms 4 gezeigt. Dieser Hydraulikturm 4 umfasst ein Basisblock 5 mit einer (nicht gezeigten) Haupteinlassöffnung 5a und einer Hauptauslassöffnung 5b. Gemäss der in Fig. 2 gezeigten Ausführungsform weist der Basisblock 5 ein Ventil 5g auf, mit dessen Hilfe Hydraulikmedium kontrolliert an (nicht gezeigte) zusätzliche Anschlüsse 5h abgegeben werden kann, beispielsweise zur Steuerung eines Auswerfzylinders.
  • Auf der Dachfläche des Basisblocks 5 ist ein Block aus (in dieser Ausführungsform) 5 Kernzugmodulen 6 angeordnet. Die Kernzugmodule 6 weisen jeweils auf ihrer Fronseite Anschlüsse 6d, 6e zur Verbindung mit einem Kernzugzylinder und auf ihrer Rückseite ein Ventil 6i auf, mit dessen Hilfe Hydraulikmedium kontrolliert an die Anschlüsse 6d, 6e abgegeben werden kann. Die Ventile 6i können über Druckregler 6h geregelt werden.
  • Die Kernzugmodule 6 sind über (in Fig. 2 nicht gezeigte) Verbindungsöffnungen mit dem Basisblock 5 sowie untereinander fluidisch verbunden, sodass Hydraulikmedium vom Basisblock 5 aus durch alle Kernzugmodule 6 zirkulieren und über die Anschlüsse 6d, 6e abgegeben werden kann.
  • Auf dem obersten Kernzugmodul 6 ist ein Kernentlastungsmodul 13 angeordnet. Das Kernentlastungsmodul 13 dient, wie vorstehend beschrieben, zur Druckentlastung der hydraulischen Leitungen im Hydraulikturm 4, mit Hilfe eines (in Fig. 2 nicht gezeigten) Entlastungsventils.
  • Auf der Dachfläche des Kernentlastungsmoduls 13 ist ein Block aus (in Fig. 2) 4 Nachverdichtermodulen 8 angeordnet. Die Nachverdichtermodule 8 weisen jeweils auf ihrer Fronseite Anschlüsse 8d, 8e zur Verbindung mit einem Nachverdichtungszylinder und auf ihrer Rückseite mindestens ein Ventil 8i auf, mit dessen Hilfe Hydraulikmedium kontrolliert an die Anschlüsse 8d, 8e abgegeben werden kann. Die Ventile 8i können über Druckregler 8h geregelt werden. Jedes Nachverdichtermodul kann zusätzlich jeweils ein (in Fig. 2 nicht gezeigtes) Druckreduzierventil und Drosselventil mit zugehörigen Reglern aufweisen.
  • Die Nachverdichtermodule 8 sind über (in Fig. 2 nicht gezeigte) Verbindungsöffnungen mit dem Basisblock 5, den Kernzugmodulen 6, dem Kernentlastungsmodul 13 sowie untereinander fluidisch verbunden, sodass Hydraulikmedium vom Basisblock 5 aus durch alle Nachverdichtermodule 8 zirkulieren und über die Anschlüsse 8d, 8e abgegeben werden kann.
  • Auf der Dachfläche des obersten Nachverdichtermoduls 8 ist eine Endplatte 12 zum Verschliessen der den Hydraulikturm 4 durchlaufenden Leitungen befestigt.
  • Auf der Bodenfläche des Basisblocks 5 ist ein Block aus (in Fig. 2) 3 Nebenbewegungsmodulen 9 angeordnet. Die Die Nachverdichtermodule 9 weisen jeweils auf ihrer Fronseite Anschlüsse 9c, 9d zur Verbindung mit einem Nebenbewegungszylinder und auf ihrer Rückseite mindestens einen Ventilblock 9e auf, mit dessen Hilfe Hydraulikmedium kontrolliert an die Anschlüsse 9c, 9d abgegeben werden kann.
  • Auf der Bodenfläche des untersten Nebenbewegungsmoduls 9 ist eine Endplatte 12 zum Verschliessen der den Hydraulikturm 4 durchlaufenden Leitungen befestigt.
  • In Fig. 3 ist eine schematische Ansicht einer Ausführungsform eines erfindungsgemässen Hydraulikturms mit Gewindestangen zur Befestigung der einzelnen Modulkomponenten gezeigt. Gewindestangen 11a, 11b unterschiedlicher Länge sind durch Bohrungen in den Modulkomponenten, 5, 6, 8, 9, 13 geführt. Ein Ende 11d der Gewindestangen 11a, 11b ist in einer Endbohrung einer Modulkomponente befestigt, beispielsweise eingeschraubt. Das andere Ende 11c der der Gewindestangen 11a, 11b ist mit Hilfe einer Nut fixiert. Auf die in dieser Ausführungsform gezeigte Weise ist eine feste Verbindung der Modulkomponenten gewährleistet. Der Hydraulikturm 4 ist sehr stabil und hält den während des Betriebs einer Druckgiessmaschine auftretenden Kräften stand.
  • In Fig. 4A ist eine schematische Ansicht einer Ausführungsform eines Basisblocks 5 des erfindungsgemässen Hydraulikturms 4 gezeigt.
  • Der Basisblock weist eine Haupteinlassöffnung 5a auf, welche über Leitungen 5a1, 5a2 (beispielsweise Rohre in einem Hohlkörper oder Bohrungen in einem massiven Körper) mit einer Verbindungsöffnung 5c in der Dachfläche des Basisblocks 5 und einer Verbindungsöffnung 5e in der Bodenfläche des Basisblocks 5 fluidisch verbunden ist. Durch die Haupteinlassöffnung 5a in den Basisblock 5 eingeleitetes Hydraulikmedium kann durch die Verbindungsöffnungen 5c, 5e auf (hier nicht gezeigte) Modulkomponenten verteilt werden, welche auf der Dachfläche beziehungsweise Bodenfläche des Basisblocks 5 angeordnet sind.
  • Der Basisblock 5 weist weiterhin eine Hauptauslassöffnung 5ba auf, welche über Leitungen 5b1, 5b2 mit einer Verbindungsöffnung 5d in der Dachfläche des Basisblocks 5 und einer Verbindungsöffnung 5f in der Bodenfläche des Basisblocks 5 fluidisch verbunden ist. Durch die Hauptauslassöffnung 5b kann Hydraulikmedium aus den Basisblock 5 in einen (nicht gezeigten) Tank geleitet werden. Das auszuleitende Hydraulikmedium kann durch die Verbindungsöffnungen 5d, 5f von (hier nicht gezeigte) Modulkomponenten in den Basisblock 5, welche auf der Dachfläche beziehungsweise Bodenfläche des Basisblocks 5 angeordnet sind, eingeleitet werden.
  • In Fig. 4B ist eine schematische Ansicht einer anderen Ausführungsform eines Basisblocks 5 des erfindungsgemässen Hydraulikturms 4 gezeigt. Dieser Basisblock 5 unterscheidet sich von der in Fig. 4A gezeigten Ausführungsform dadurch, dass am Basisblock 5 Anschlüsse 5h zur Verbindung des Basisblocks 5 mit einer Maschinenkomponente, vorzugsweise einem Auswerfzylinder, sowie ein Ventil 5g zur Regelung des Hydraulikflusses zu den Anschlüssen 5h angeordnet sind. Von den (in Fig. 4B nicht gezeigten) Leitungen 5a2, 5b2 gehen Nebenleitungen in das Ventil 5g und von dort zu den Anschlüssen 5h, wie vorstehend im Detail beschrieben.
  • In Fig. 5A ist eine schematische Ansicht einer Ausführungsform eines Kernzugmoduls 6 des erfindungsgemässen Hydraulikturms 5 gezeigt.
  • Das Kernzugmodul 6 weist in seinem Innern (nicht gezeigte) Leitungen auf, welche mit Verbindungsöffnungen 6a, 6b in der Dachfläche des Kernzugmoduls 6 und (nicht gezeigten) Verbindungsöffnungen in der Bodenfläche des Kernzugmoduls 6 fluidisch verbunden sind. Von den (nicht gezeigten) Leitungen gehen Nebenleitungen in das Ventil 6i beziehungsweise über das Druckreduzierventil 6g in das Ventil 6g und von dort zu den Anschlüssen 6d, 6e, wie vorstehend im Detail beschrieben. Die Anschlüsse 6d, 6e können mit einem Kernzugzylinder verbunden werden.
  • Das Druckreduzierventil 6g kann mit Hilfe eines Druckreglers 6h geregelt werden. Zusätzlich ist an der Frontseite des Kernzugmoduls 6 ein Anschluss 6f zur Druckmessung bereitgestellt, an welchen ein herkömmliches Druckmessgerät wie ein Manometer angeschlossen werden kann.
  • Bei der Ausführungsform gemäss Fig. 5a ist in der Dachfläche des Kernzugmoduls 6 eine Bohrung 6c zur Aufnahme einer (nicht gezeigten) Augenschraube) vorgesehen. Mit Hilfe einer solchen Augenschraube kann das Kernzugmodul 6 angehoben und auf einfache Weise montiert beziehungsweise entfernt werden.
  • Bei der Ausführungsform gemäss Fig. 5a sind an einer Seitenfläche zusätzliche Nebenanschlüsse 6j, 6k bereitgestellt. Diese Nebenanschlüsse sind analog zu den Anschlüssen 6d, 6e hydraulisch angeschlossen und dienen zur Verbindung mit einem (nicht gezeigten) optionalen Hydraulikverteiler.
  • In Fig. 5B ist eine schematische Ansicht einer anderen Ausführungsform eines Kernzugmoduls 6 des erfindungsgemässen Hydraulikturms 5 gezeigt. Dieses Kernzugmodul 6 unterscheidet sich von der in Fig. 4A gezeigten Ausführungsform dadurch, dass auf den Anschlüssen 6d und 6e jeweils ein Verteilelement 6l, 6l' angeordnet ist, um die Zahl an verfügbaren Anschlüssen zu erhöhen (hier zu verdoppeln).
  • In Fig. 6 ist eine schematische Ansicht einer Ausführungsform eines Nachverdichtermoduls 8 des erfindungsgemässen Hydraulikturms 5 gezeigt.
  • Das Nachverdichtermodul 8 weist in seinem Innern (nicht gezeigte) Leitungen auf, welche mit Verbindungsöffnungen 8a, 8b in der Dachfläche des Nachverdichtermoduls 8 und (nicht gezeigten) Verbindungsöffnungen in der Bodenfläche des Nachverdichtermoduls 8 fluidisch verbunden sind. Von den (nicht gezeigten) Leitungen gehen Nebenleitungen in das Ventil 8i beziehungsweise über das Druckreduzierventil 8g und das Drosselventil 8l in das Ventil 8g und von dort zu den Anschlüssen 8d, 8e, wie vorstehend im Detail beschrieben. Die Anschlüsse 8d, 8e können mit einem Nachverdichterzylinder verbunden werden.
  • Das Druckreduzierventil 8g kann mit Hilfe eines Druckreglers 8h geregelt werden. Das Drosselventil 8l kann mit Hilfe eines Reglers 8m geregelt werden. Zusätzlich ist an der Frontseite des Nachverdichtermoduls 8 ein Anschluss 8f zur Druckmessung bereitgestellt, an welchen ein herkömmliches Druckmessgerät wie ein Manometer angeschlossen werden kann.
  • Bei der Ausführungsform gemäss Fig. 6 ist in der Dachfläche des Nachverdichtermoduls 8 eine Bohrung 8c zur Aufnahme einer (nicht gezeigten) Augenschraube) vorgesehen. Mit Hilfe einer solchen Augenschraube kann das Nachverdichtermodul 8 angehoben und auf einfache Weise montiert beziehungsweise entfernt werden.
  • Bei der Ausführungsform gemäss Fig. 6 sind an einer Seitenfläche zusätzliche Nebenanschlüsse 8j, 8k bereitgestellt. Diese Nebenanschlüsse sind analog zu den Anschlüssen 8d, 8e hydraulisch angeschlossen und dienen zur Verbindung mit einem (nicht gezeigten) optionalen Hydraulikverteiler.
  • In Fig. 7 ist eine schematische Ansicht einer Ausführungsform eines Nebenbewegungsmoduls 9 des erfindungsgemässen Hydraulikturms gezeigt.
  • Das Nebenbewegungsmodul 9 weist in seinem Innern (nicht gezeigte) Leitungen auf, welche mit Verbindungsöffnungen 9a, 9b in der Dachfläche des Nebenbewegungsmoduls 9 und (nicht gezeigten) Verbindungsöffnungen in der Bodenfläche des Nebenbewegungsmoduls 9 fluidisch verbunden sind. Von den (nicht gezeigten) Leitungen gehen Nebenleitungen in den Ventilblock 9e und von dort zu den Anschlüssen 9c, 9d, wie vorstehend im Detail beschrieben. Die Anschlüsse 9c, 9d können mit einem Nebenbewegungszylinder verbunden werden.

Claims (15)

  1. Vorrichtung (4) zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine (1), umfassend
    - einen Basisblock (5) mit
    einer Haupteinlassöffnung (5a) und einer Hauptauslassöffnung (5b) für Hydraulikmedium, welche vorzugsweise an der Rückseite des Basisblocks (5) angeordnet sind,
    sowie mit Verbindungsöffnungen (5c, 5d, 5e, 5f) in der Dachfläche und der Bodenfläche des Basisblocks (5) zur Aus- und Einleitung von Hydraulikmedium, wobei die Haupteinlassöffnung (5a) und Hauptauslassöffnung (5b) durch Leitungen (5a1, 5a2, 5b1, 5b2) im Basisblock (5) mit den Verbindungsöffnungen (5c, 5d, 5e, 5f) verbunden sind,
    - mindestens zwei verschiedene Modulkomponenten die ausgewählt sind aus der Gruppe bestehend aus Kernzugmodulen (6), Kernzugentlastungsmodulen (13), Nachverdichtermodulen (8), Nebenbewegungsmodulen (9), und Vakuummodulen, und
    welche in der Dachfläche und der Bodenfläche Verbindungsöffnungen (6a, 6b, 8a, 8b, 9a, 9b) zur Aus- und Einleitung von Hydraulikmedium und in ihrem Inneren diese Öffnungen verbindende Leitungen aufweisen,
    wobei mindestens eine der Modulkomponenten (6, 8, 9, 13) derart auf der Dachfläche oder der Bodenfläche des Basisblocks (5) angeordnet ist, dass die entsprechenden Verbindungsöffnungen (6a, 6b, 8a, 8b, 9a, 9b) der Modulkomponente(6, 8, 9, 13) mit den entsprechenden Verbindungsöffnungen(5c, 5d, 5e, 5f) des Basisblocks (5) eine fluidische Verbindung bilden, und
    wobei die mindestens zwei verschiedenen Modulkomponenten (6, 8, 9, 13) Anschlüsse (6d, 6e, 8d, 8e, 9c, 9d) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) aufweisen,
    - Endplatten (12) zum Verschliessen nicht verbundener Einlassöffnungen und Auslassöffnungen (5c, 5d, 5e, 5f, 6a, 6b, 8a, 8b, 9a, 9b) des Basisblocks (5) und/oder einer Modulkomponente (6, 8, 9, 13).
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass auf einer freien Dachfläche oder Bodenfläche einer Modulkomponente (6, 8, 9, 13) mindestens eine weitere Modulkomponente (6, 8, 9, 13) angeordnet ist, die ausgewählt ist aus der Gruppe bestehend aus Kernzugmodulen (6), Kernzugentlastungsmodulen (13), Nachverdichtermodulen (8), Nebenbewegungsmodulen (9), und Vakuummodulen, und welche in der Dachfläche und der Bodenfläche Verbindungsöffnungen (6a, 6b, 8a, 8b, 9a, 9b) zur Aus- und Einleitung von Hydraulikmedium und in ihrem Inneren diese Öffnungen verbindende Leitungen aufweist,
    wobei die weitere Modulkomponente (6, 8, 9, 13) derart auf der Dachfläche oder der Bodenfläche der benachbarten Modulkomponente (6, 8, 9, 13) angeordnet ist, dass die entsprechenden Verbindungsöffnungen (6a, 6b, 8a, 8b, 9a, 9b)der weiteren Modulkomponente (6, 8, 9, 13) mit den entsprechenden Verbindungsöffnungen (6a, 6b, 8a, 8b, 9a, 9b) der benachbarten Modulkomponente (6, 8, 9, 13) eine fluidische Verbindung bilden, und
    wobei die weitere Modulkomponente (6, 8, 9, 13) Anschlüsse (6d, 6e, 8d, 8e, 9c, 9d) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) aufweist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Basisblock (5) und die zwei verschiedenen und gegebenenfalls weiteren Modulkomponenten (6, 8, 9, 13) durch Befestigungsmittel, vorzugsweise eine oder mehrere Gewindestangen (11a, 11b), verbunden sind.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an mindestens einem Anschluss (6d, 6e, 8d, 8e, 9c, 9d) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) eine Verteilereinheit (6l, 6l') mit mindestens einem zusätzlichen Anschluss angeordnet ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Basisblock (5) Anschlüsse (5h) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) aufweist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Basisblock (5) und/oder mindestens eine Modulkomponente (6, 8, 9, 13) mindestens eine Einheit, vorzugsweise ein Ventil (5g, 6g, 6i, 8g, 8h, 8i, 8l, 9e), zur Modifizierung des Flusses von Hydraulikmedium zu den Anschlüssen (5h, 6d, 6e, 8d, 8e, 9c, 9d) aufweist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Basisblock (5) und/oder mindestens eine Modulkomponente (6, 8, 9, 13) mindestens ein Bedienelement (6h, 8h, 8m) aufweist, und dass alle an Modulkomponenten (6, 8, 9, 13) bereitgestellten Anschlüsse (6d, 6e, 8d, 8e, 9c, 9d) zur Verbindung mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) sowie alle Bedienelemente (6h, 8h, 8m) an einer Seite angeordnet sind, vorzugsweise an der von der Haupteinlassöffnung (5a) und Hauptauslassöffnung (5b) abgewandten Seite.
  8. Druckgiessmaschine (1), umfassend mindestens eine Vorrichtung (4) gemäss einem der Ansprüche 1 bis 7, welche mittels Befestigungsmitteln an der Druckgiessmaschine (1) angeordnet ist.
  9. Druckgiessmaschine nach Anspruch 8, dadurch gekennzeichnet, dass die Druckgiessmaschine (1) weiterhin mindestens einen Aufnahmerahmen für Energiemodule umfasst, wobei der Aufnahmerahmen aufweist:
    - Befestigungsmittel zur Befestigung des Aufnahmerahmens an der Druckgiessmaschine,
    - mindestens ein, vorzugsweise 1 bis 3, Reihen zur Aufnahme von Energiemodulen (5, 6, 7, 8, 9, 10), wobei jede Reihe zwei Profilstücke umfasst, die, vorzugsweise an ihren Enden, durch jeweils ein Verbindungsstück oder ein Energiemodul (5) unter Ausbildung eines viereckigen, vorzugsweise rechteckigen Innenraums miteinander verbunden sind,
    wobei die Reihen Mittel zur Anordnung von Energiemodulen (5, 6, 7, 8, 9, 10) in ihrem Innenraum aufweisen und, sofern mehrere Reihen vorhanden sind, miteinander verbunden sind, und,
    wobei die Befestigungsmittel zur Befestigung des Aufnahmerahmens an der Druckgiessmaschine (1) an einer eine Aussenfläche des Aufnahmerahmens bildenden Reihe angeordnet sind und der Aufnahmerahmen über die Befestigungsmittel an der Druckgiessmaschine (1) befestigt ist, vorzugsweise unter Ausbildung eines Zwischenraums zwischen der Druckgiessmaschine (1) und der der Druckgiessmaschine (1) benachbarten Reihe,
    dadurch gekennzeichnet, dass in der der Druckgiessmaschine (1) benachbarten Reihe des Aufnahmerahmens eine Vorrichtung (4) gemäss einem der Ansprüche 1 bis 8 angeordnet ist.
  10. Druckgiessmaschine nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung (4) in der der Druckgiessmaschine benachbarten Reihe des Aufnahmerahmens derart angeordnet ist, dass der Basisblock (5) der Vorrichtung (4) die Profilstücke der Reihe unten verbindet.
  11. Druckgiessmaschine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass oberhalb des Basisblocks (5) 1 bis 5 Kernzugmodule (6) und oberhalb der Kernzugmodule (6) 1 bis 5 Nachverdichtermodule (8) sowie unterhalb des Basisblocks (5) 1 bis 5 Nebenbewegungsmodule (9) angeordnet sind.
  12. Druckgiessmaschine nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Druckgiessmaschine eine bewegliche Aufspannplatte (3) aufweist, welche auf beiden Seiten den Aufnahmerahmen mit einer in der der Druckgiessmaschine (1) benachbarten Reihe des Aufnahmerahmens angeordneten Vorrichtung (4) aufweist.
  13. Druckgiessmaschine nach Anspruch 12, dadurch gekennzeichnet, dass die Vorrichtung (4) auf einer Seite der beweglichen Aufspannplatte (3) einen Basisblock (5) umfasst, welcher Anschlüsse (5h) für den Anschluss von Auswerfzylindern aufweist.
  14. Verfahren zur Versorgung und/oder Steuerung hydraulisch betriebener Komponenten einer Druckgiessmaschine (1), vorzugsweise einer Druckgiessmaschine, umfassend die Schritte
    - Bereitstellung einer Vorrichtung (4) gemäss einem der Ansprüche 1 bis 7 an der Druckgiessmaschine (1),
    - Einleiten von Hydraulikmedium in den Basisblock (5) der Vorrichtung (4),
    - Weiterleiten des Hydraulikmediums durch mindestens einen mit einer hydraulisch betriebenen Komponente der Druckgiessmaschine (1) verbundenen Anschluss (5h, 6d, 6e, 8d, 8e, 9c, 9d) in mindestens einer Modulkomponente (6, 8, 9, 13) und/oder dem Basisblock (5).
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Weiterleiten des Hydraulikmediums durch mindestens eine Einheit, vorzugsweise ein Ventil (5g, 6g, 6i, 8g, 8h, 8i, 8l, 9e), modifiziert wird.
EP19174313.7A 2019-05-14 2019-05-14 Hydraulik-vorrichtung für eine druckgiessmaschine Active EP3738694B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19174313.7A EP3738694B1 (de) 2019-05-14 2019-05-14 Hydraulik-vorrichtung für eine druckgiessmaschine
PCT/EP2020/058368 WO2020229033A1 (de) 2019-05-14 2020-03-25 Hydraulik-vorrichtung für eine druckgiessmaschine
CN202080011551.1A CN113365761B (zh) 2019-05-14 2020-03-25 用于压铸机的液压装置
US17/595,226 US11794239B2 (en) 2019-05-14 2020-03-25 Hydraulic device for a die casting machine
JP2021567919A JP7337957B2 (ja) 2019-05-14 2020-03-25 ダイカスト機用油圧装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19174313.7A EP3738694B1 (de) 2019-05-14 2019-05-14 Hydraulik-vorrichtung für eine druckgiessmaschine

Publications (2)

Publication Number Publication Date
EP3738694A1 EP3738694A1 (de) 2020-11-18
EP3738694B1 true EP3738694B1 (de) 2022-06-29

Family

ID=66624984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19174313.7A Active EP3738694B1 (de) 2019-05-14 2019-05-14 Hydraulik-vorrichtung für eine druckgiessmaschine

Country Status (5)

Country Link
US (1) US11794239B2 (de)
EP (1) EP3738694B1 (de)
JP (1) JP7337957B2 (de)
CN (1) CN113365761B (de)
WO (1) WO2020229033A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1737989S (ja) 2022-01-18 2023-03-01 鋳造機(の部分)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221654A (ja) * 1982-06-16 1983-12-23 Toshiba Mach Co Ltd ダイカストマシンの流量制御装置
JPS6098201A (ja) * 1983-10-13 1985-06-01 フルイドサーキユイツツ・インコーポレーテツド 流体圧力供給マニホールド
JPH02211965A (ja) * 1988-10-31 1990-08-23 Toshiba Mach Co Ltd 型締シリンダ装置
JP2889253B2 (ja) * 1988-11-17 1999-05-10 黒田精工株式会社 マニホルド
JPH083683Y2 (ja) * 1989-09-26 1996-01-31 東芝機械株式会社 アクチュエータの駆動速度制御回路
JPH082539Y2 (ja) * 1990-11-10 1996-01-29 エスエムシー株式会社 連結式バルブマニホールド
JP3339693B2 (ja) * 1991-03-18 2002-10-28 エスエムシー株式会社 流体制御機構付マニホールド
AU2988099A (en) * 1998-03-05 1999-09-20 Swagelok Company, The Modular surface mount manifold
JP4029417B2 (ja) * 1998-07-14 2008-01-09 Smc株式会社 電磁弁集合体用圧力調節弁及びそれを備えた電磁弁組立体
US6425435B1 (en) 1999-07-28 2002-07-30 Hayes Lemmerz Equipment & Engineering, Inc. Module casting systems with shared controls
DE10054868A1 (de) * 2000-11-06 2002-05-23 Mannesmann Rexroth Ag Block zur Ansteuerung von Ventilbaugruppen
WO2007118487A1 (de) * 2006-04-13 2007-10-25 Festo Ag & Co. Kg Modulares steuergerät, insbesondere elektro-fluidischer art
JP5612841B2 (ja) * 2009-08-31 2014-10-22 東洋機械金属株式会社 外部油圧ユニットを備えた電動型ダイカストマシン
JP6452028B2 (ja) * 2014-04-25 2019-01-16 株式会社ダイレクト21 金型鋳造用のスクイズピン回路、及び油圧ユニット
CN204692215U (zh) * 2015-06-19 2015-10-07 广东鸿特精密技术(台山)有限公司 一种防液压油污染的独立供油的压铸设备液压系统

Also Published As

Publication number Publication date
EP3738694A1 (de) 2020-11-18
JP7337957B2 (ja) 2023-09-04
CN113365761A (zh) 2021-09-07
JP2022536249A (ja) 2022-08-15
WO2020229033A1 (de) 2020-11-19
US11794239B2 (en) 2023-10-24
US20220203435A1 (en) 2022-06-30
CN113365761B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
DE3729216A1 (de) Hydraulikaggregat
DE2730287C3 (de) Ventilblock für eine Glasformmaschine
DE2656058A1 (de) Betriebsdrucksteuervorrichtung
DE3806051A1 (de) Gasdruckfeder
EP3738694B1 (de) Hydraulik-vorrichtung für eine druckgiessmaschine
DE3515762A1 (de) Mehrsaeulen-hebebuehe od. dgl. und verfahren zur gleichlaufsteuerung ihrer hubelemente
DE1775027B1 (de) Hydraulisch gesteuertes schieberventil
EP0792720B1 (de) Werkzeugmaschine mit einer Anzahl von Schmierstellen
DE4327651C2 (de) Steuermodul für eine verstellbare Hydromaschine und Verwendung eines derartigen Steuermoduls für einen hydrostatischen Fahrantrieb
EP3738693B1 (de) Druckgiessmaschine mit energierahmen
EP0439242A1 (de) Lineareinheit
WO2011038813A1 (de) Hochdruckverteilerblock einer kühl-schmierstoffversorgungseinrichtung
DE1650371B2 (de) Unmittelbar an einem druckmittelverbraucher befestigte ventileinheit
EP2541071B1 (de) Ventilanordnung für ein hydraulisches Steuerungssystem
DE4438621A1 (de) Wasserhydraulikschweißsystem sowie ein Ventil und ein Druckübersetzer für ein solches
DE2815915C2 (de) Aus Modulkomponenten zusammengesetzte Steueranordnung für ein Druck-Fluid
DE102021006222B3 (de) Pressenvorrichtung und 2/2-Wege-Proportional-Sitzventil
DE2606737A1 (de) Schliess- und verriegelungsvorrichtung fuer mindestens ein formwerkzeug
EP3000581B1 (de) Anordnung zum einspritzen von flüssigem kunststoffmaterial in eine spritzgussform einer kunststoffspritzgussmaschine
DE19629194A1 (de) Translationsvorrichtung für Gabeln an einem Hubstapler
DE1221903B (de) Hydraulikkreis mit mehreren Hydraulikmotoren
EP0878658A1 (de) Progresiv-Verteilvorrichtung für Schmieranlagen
DE19503701A1 (de) Vorrichtung zum Betätigen von Hydraulikzylindern für einen in Untertagebetriebe einsetzbaren Schildausbau
DE1426469C (de) Hydraulischer Stromkreis
DE2449934C3 (de) Vorrichtung zur Schmiermittelzuführung in die Schmiermittelbohrungen der Achsen von Strangführungsrollen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210323

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20220412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1500977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004771

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004771

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 5

Ref country code: DE

Payment date: 20230519

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230514

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531