EP3595619A1 - Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides - Google Patents

Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides

Info

Publication number
EP3595619A1
EP3595619A1 EP18711343.6A EP18711343A EP3595619A1 EP 3595619 A1 EP3595619 A1 EP 3595619A1 EP 18711343 A EP18711343 A EP 18711343A EP 3595619 A1 EP3595619 A1 EP 3595619A1
Authority
EP
European Patent Office
Prior art keywords
composition
composition according
phase
aqueous phase
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18711343.6A
Other languages
German (de)
English (en)
Inventor
Laurence REHAULT
Mathieu Goutayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capsum SAS
Original Assignee
Capsum SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capsum SAS filed Critical Capsum SAS
Publication of EP3595619A1 publication Critical patent/EP3595619A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/064Water-in-oil emulsions, e.g. Water-in-silicone emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/927Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of insects, e.g. shellac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9706Algae
    • A61K8/9717Rhodophycota or Rhodophyta [red algae], e.g. Porphyra
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • A61K8/987Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin of species other than mammals or birds
    • A61K8/988Honey; Royal jelly, Propolis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/24Thermal properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/30Characterized by the absence of a particular group of ingredients
    • A61K2800/33Free of surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material

Definitions

  • the present invention relates to compositions, in particular cosmetic, comprising a fatty phase and an aqueous phase, said aqueous phase being in the form of solid spheres. It also relates to the cosmetic use of said compositions, especially for the makeup and / or care of keratin materials, in particular lips and / or eyelids.
  • a recurring problem with cosmetic compositions such as gloss (or lip gloss), lipstick, eyeliners and eye gloss is their stickiness and / or their low ability to hydrate the lips or eyelids continuously. This is due to their predominantly anhydrous nature. Indeed, it is difficult to maintain the water in a stabilized form in such compositions.
  • the object of the present invention is to provide a composition, in particular a cosmetic composition, and in particular of lip gloss, lipstick, concrete, eyeliners and eye gloss, having both a high gloss and hydration, freshness and satisfactory application comfort.
  • the object of the present invention is also to provide a composition, in particular a cosmetic composition, and in particular of gloss type, lipsticks, concretes, eyeliners and eye gloss, having a satisfactory degree of gloss while being able to impart good resistance in the skin. time with a lower tack, good hydration and a freshness and comfort to the application.
  • the present invention also aims to provide such a composition devoid of silicone oil.
  • the object of the present invention is also to provide a composition, in particular a cosmetic composition, and in particular of the lip gloss, lipstick, eyeliners and eye gloss type, which has an immediate hydration upon application, and which can last up to more than six hours. after the application.
  • the present invention also aims to provide a composition for stabilizing over time an aqueous phase dispersed in a fatty phase without necessarily using conventional stabilization systems, for example of the membrane type, bark or coacervate, at the interface between the fatty phase and the aqueous phase.
  • the object of the present invention is also to provide a composition, in particular a cosmetic composition, and in particular of gloss, lipstick, eyeliners and eye gloss, comprising a transparent or at least translucent fatty phase.
  • the present invention relates to a composition, in particular a cosmetic composition, comprising a fatty phase and an aqueous phase, said aqueous phase being substantially immiscible with the fatty phase, at room temperature and at atmospheric pressure, in which:
  • the aqueous phase is in the form of solid spheres (S1) at room temperature and atmospheric pressure, comprising at least one hydrophilic gelling agent, preferably a heat-sensitive agent, and
  • the fatty phase comprises at least one lipophilic agent having a suspensive, preferably thixotropic, power, preferably a hydrophobic silica.
  • an agent is said to be thixotropic if under constant stress (or velocity gradient), the apparent viscosity of the phase comprising said agent decreases over time.
  • the physical property of thixotropy is therefore:
  • the thixotropic phase will restructure (its viscosity increases);
  • the phase Under stress sufficiently high to break the structure formed at rest, the phase can flow and deconstruct. Its viscosity decreases with the progression of destructuring.
  • a composition according to the invention is therefore in the form of a dispersion of spheres (S1) in the fatty phase.
  • compositions according to the invention combine satisfactory properties in terms of gloss and withstand over time, as well as good hydration (immediate hydration), freshness and comfort on application on the skin. keratinous materials (especially less sticky and non-braking). In addition, the hydration is all the more interesting that it is immediate to the application and lasts up to more than 6 hours after application.
  • composition according to the invention is a new alternative for stabilizing over time an aqueous phase dispersed in a fatty phase without necessarily having to resort to conventional stabilization systems, for example membrane, bark, coacervate, at the interface between the fatty phase and the aqueous phase.
  • the stability in time of the spheres (S1) is all the more interesting and novel when they are macroscopic.
  • a differentiating visualization is obtained, in particular in the field of cosmetic compositions such as gloss, lipstick, eyeliners and eye gloss.
  • the composition according to the invention is not a macroscopically homogeneous mixture.
  • the hydrophilic gelling agent and the lipophilic agent having a suspending power which makes it possible to stabilize the composition according to the invention, and in particular to prevent and / or avoid the coalescence of the spheres (S1) between them and the creaming of the spheres (S1) in the fatty phase.
  • a composition according to the invention is preferably devoid of surfactant. They are therefore different from the usual cosmetic compositions.
  • a composition according to the invention is a topical and therefore non-oral composition.
  • a composition according to the invention is not a food composition.
  • a composition according to the invention is translucent, or even transparent.
  • the transparency or translucency property of the composition according to the invention is determined in the following way: the composition to be tested is cast in a 30ml Volga pot, the composition is left for 24 hours at room temperature and a white sheet is placed underneath. on which is traced in black felt a cross about 2mm thick. If the cross is visible to the naked eye in daylight at an observation distance of 40 cm, the composition is transparent or translucent.
  • This transparent or translucent appearance is very satisfactory, especially for the consumer, from an aesthetic point of view and can, therefore, be of great commercial interest.
  • the viscosity of the compositions according to the invention can vary significantly, which makes it possible to obtain varied textures.
  • composition according to the invention dedicated to the makeup and / or care of keratin materials, in particular lips and / or eyelids, may be a gloss, a lipstick, a eyeliners and an eye gloss.
  • the composition according to the invention has a viscosity of between 1 mPa.s and 500,000 mPa.s, preferably between 10 mPa.s and 300,000 mPa.s, and better still between 1,000 mPa.s. and 100,000 mPa.s as measured at 25 ° C.
  • a composition according to the invention of gloss type has a viscosity of between 1,000 mPa.s and 20,000 mPa.s, preferably between 2,000 mPa.s and 15,000 mPa.s, and better still between 5,000 mPa.s .s and 10,000 mPa.s as measured at 25 ° C.
  • a composition according to the invention of gloss type has a viscosity of less than 20,000 mPa.s, better still less than 15,000 mPa.s, and more particularly less than or equal to 10,000 mPa.s.
  • a Brookfield type viscometer typically a Brookfield RVDV-E digital viscometer (spring torque of 7187.0 dyne-cm) is used, which is a rotational speed viscometer provided with a mobile (referred to as "Spindle").
  • a speed is imposed on the mobile in rotation and the measurement of the torque exerted on the mobile makes it possible to determine the viscosity knowing the geometry / shape parameters of the mobile used.
  • a mobile of size No. 05 (Brookfield reference: RV5) is used.
  • the shear rate corresponding to the measurement of the viscosity is defined by the mobile used and the speed of rotation thereof.
  • compositions according to the invention comprise an aqueous phase in the form of spheres (S1) which are solid at ambient temperature and at atmospheric pressure.
  • the ambient temperature corresponds to a temperature of 25 ° C ⁇ 2 ° C, and the atmospheric pressure to a pressure equal to 1013 mbar.
  • the spheres (S1) are preferably soft solids.
  • the term "flexible solid” is understood to mean in particular that the spheres (S1) according to the invention do not flow under their own weight, but may be deformed by pressure, for example with a finger. Thus, their consistency is similar to that of a butter (without the bold character), with a malleable and prehensible character.
  • the spheres (S1) can be spread easily by hand, in particular on a keratinous material, in particular the skin.
  • a sphere (S1) solid flexible according to the invention meets at least one of the physicochemical criteria 1, 2. a, 2.b, 2.c and 2.d below, including at least two criteria , preferably at least three criteria, better at least four criteria, or even preferentially the five criteria 1, 2. a, 2.b, 2.c and 2.d, made on the basis of a bulk of aqueous phase used to manufacture said spheres (S1). Unless otherwise indicated, these criteria are measured at room temperature (25 ° C) and atmospheric pressure (1 atm).
  • the aqueous phase according to the invention has a viscoelastic curve at 25 ° C, measured between 10 ⁇ 2 Hz and 100 Hz, such that there is no point of intersection between the curves G 'and G " G 'being always strictly greater than G "(for measurements made at a frequency between 10 ⁇ 2 Hz and 100 Hz).
  • the viscoelastic curve is established using a Bohlin Gemini rheometer constraint imposed in plane-plane geometry. The temperature was regulated by a Peltier plan and an anti-evaporation device (water-filled solvent trap for measurements at 25 ° C). Oscillation measurements were made between 10-2 Hz and 100 Hz at 1% strain with a streaked P40 plane. The deformation of 1% was determined by performing an amplitude scan to lie in the linear domain.
  • G ' corresponds to the conservation module reflecting the elastic response and the solid character of the sample; we also measure G "which corresponds to the loss modulus reflecting the viscous response and the liquid character of the sample.
  • aqueous phase according to the invention is such that it has:
  • the firmness corresponds to the maximum force measured during the compression phase (descent) of the probe in the product. In general, the maximum force is reached when the product breaks. That is why firmness can be called breaking force;
  • breaking work in g s) less than 1500 g. s, preferably less than 1000 g. s, or even less than 800 g. s, and better still less than 500 g. s, especially between 100 g. s and 1500 g. s, and better between 250 g. s and 1100 g. s.
  • a deformation work (g s) of less than 1500 g. s, preferably less than 1000 g. s, or even less than 500 g. s, and better still less than 300 g. s, especially between 10 g and 1500 g. s, and better between 100 g. s and 1300 gs
  • a tack less than or equal to 25 g, preferably less than 15 g, and better still less than 10 g, especially between 1 g and 25 g, and better still between 5 g and 15 g.
  • the adhesive corresponds to the maximum force measured during the withdrawal phase (ascent) of the product probe.
  • the solid spheres (S1) are solid.
  • the solid spheres (S1) comprise at least one, preferably a single, internal drop of a liquid composition at room temperature, as described below.
  • a composition according to the invention is prepared by implementing a "non-microfluidic" process, namely by simple emulsification.
  • the size of the spheres (S1) is then less than 500 ⁇ , or even less than 200 ⁇ .
  • the size of the spheres (S1) is between 0.5 ⁇ and 50 ⁇ , preferably between 1 ⁇ and 20 ⁇ .
  • the composition according to the invention comprises spheres (S1) of reduced size, especially with respect to spheres (S1) obtained by a microfluidic process. This small size will have an effect on the texture. Indeed, a composition according to the invention, formed of spheres (S1) finely dispersed, has improved lubricity qualities.
  • a composition according to the invention is prepared by implementing a "microfluidic" method, in particular as described below.
  • the size of the spheres (S1) is macroscopic, that is to say visible to the naked eye, in particular greater than 500 ⁇ , even greater than 1000 ⁇ .
  • the size of the spheres (S1) is between 500 and 3,000 ⁇ , preferably between 1,000 ⁇ and 2,000 ⁇ .
  • compositions comprising such spheres (S1) of size greater than 500 ⁇ are stable.
  • size refers to the diameter, in particular the mean diameter, of the drops.
  • a composition according to the invention of the gloss / eye gloss type, manufactured with a microfluidic process has lower viscosities than for conventional liquid gloss / eye glosses (i.e. to remain compatible with the microfluidic device). Nevertheless, this lower viscosity does not affect the behavior over time on the keratin materials, in particular the lips or the eyelids, of a composition according to the invention, and in particular does not affect the brightness hold. On the contrary, it improves the comfort / sliding application and finesse of the film on keratin materials.
  • compositions of the invention have a new sensoriality different from a microfluidic dispersion stabilized with a coacervate (as described for example in the application WO 2012/120043).
  • the spheres (S1) which can be defined as gelled water beads, have a mechanical strength, more particularly a crush resistance, more important; the user therefore really feels the balls crush on application, without prejudice to the homogeneity of the composition to the application.
  • a composition according to the invention can be described as a macroscopically inhomogeneous mixture of two immiscible phases, in particular when the spheres (S1) are macroscopic.
  • each of the phases can be individualized, in particular with the naked eye.
  • the spheres (S1) are translucent, or even transparent.
  • the spheres (S1) are monodisperse.
  • the term "monodisperse spheres” means that the population of spheres according to the invention has a uniform size distribution.
  • the spheres (S1) of a composition according to the invention are devoid of bark or membrane, in particular of polymeric membrane or formed by interfacial polymerization.
  • the spheres (S1) of a dispersion according to the invention are not stabilized using a coacervate (anionic polymer type (carbomer) / cationic polymer (amodimethicone)).
  • the contact between the aqueous phase and the fatty phase is direct, without prejudice to the stability of the composition according to the invention.
  • the aqueous phase of the compositions of the invention comprises water, in a content of preferably between 5% and 99% by weight relative to the weight of aqueous phase.
  • water suitable for the invention may also be natural spring water or floral water.
  • the aqueous phase represents at least 1%, in particular at least 3%, preferably at least 5%, and more preferably at least 10%, by weight relative to the total weight of the composition.
  • the content by weight of aqueous phase is between 1% and 30%, especially between 1.5% and 20%, in particular between 2% and 10%, preferably between 3% and 7%, and preferably between 4% and 6%, by weight relative to the total weight of said composition.
  • the spheres (S1) of a dispersion according to the invention are stabilized by means of a coacervate at the interface between the aqueous phase and the fatty phase, in which case the aqueous phase comprises at least minus a first precursor polymer of the coacervate (anionic type polymer) and the fatty phase comprises at least one second coacervate precursor polymer (cationic type polymer).
  • the formation of the coacervate between these two polymers is generally caused by a modification of the conditions of the reaction medium (temperature, pH, reagent concentration, etc.).
  • the coacervation reaction results from the neutralization of these two charged polymers of opposite polarities and allows the formation of a membrane structure by electrostatic interactions between the anionic polymer and the cationic polymer.
  • the membrane thus formed around each sphere typically forms a bark which completely encapsulates the heart of the sphere and thus isolates the heart of the sphere from the fatty phase.
  • anionic polymer (or “anionic type polymer”) a polymer having chemical functions of anionic type. We can also speak of anionic polyelectrolyte.
  • anionic type polymer there may be mentioned any polymer formed by the polymerization of monomers at least a part of which carries anionic type chemical functions, such as carboxylic acid functions.
  • Such monomers are, for example, acrylic acid, maleic acid, or any ethylenically unsaturated monomer containing at least one carboxylic acid function. It may for example be anionic polymer comprising monomeric units comprising at least one chemical function of carboxylic acid type.
  • the anionic polymer is hydrophilic, i.e., soluble or dispersible in water.
  • anionic polymer suitable for carrying out the invention include copolymers of acrylic acid or maleic acid and other monomers, such as acrylamide, alkyl acrylates, alkyl acrylates, C 5 -C 8 alkyl acrylates oC -C 30 alkyl methacrylates C12-C22, methoxypolyethylene glycol methacrylates, acrylates hydroxyester, the crosspolym Guatemala acrylates, and mixtures thereof.
  • the anionic polymer according to the invention is a crosslinked carbomer or copolymer acrylates / Ci-30 alkyl acrylate.
  • the anionic polymer according to the invention is a carbomer.
  • the term “carbomer” means an optionally crosslinked homopolymer resulting from the polymerization of acrylic acid. It is therefore a poly (acrylic acid) optionally crosslinked.
  • carbomers of the invention mention may be made of those sold under the trade names Tego ® Carbomer 340FD from Evonik, Carbopol ® 981 from Lubrizol, Carbopol ETD 2050 from Lubrizol, or Carbopol Ultrez 10 from Lubrizol.
  • the term "carbomer” or “carbomer” or “Carbopol ®” an acrylic acid polymer of high molecular weight cross-linked with allyl sucrose or allyl ethers of pentaerythritol (Handbook of Pharmaceutical Excipients, 5 th Edition, plll).
  • it is the Carbopol ® 10, Carbopol ® 934, Carbopol ® 934P, Carbopol 940 ®, Carbopol ® 941, Carbopol ® 71 G, carbopol ® 980, Carbopol ® 971 P or Carbopol ® 974P.
  • the viscosity of said carbomer is between 4,000 and 60,000 cP at 0.5% w / w.
  • the carbomers have other names: polyacrylic acids, carboxyvinyl polymers or carboxy polyethylenes.
  • the anionic polymer can also be a crosslinked copolymer acrylates / Cio-alkyl acrylate (INCI name: acrylates / Cio-30 alkyl acrylate Crosspolymer) as defined above.
  • compositions according to the invention may comprise a carbomer and a crosslinked copolymer acrylates / Cio-30 alkyl acrylate.
  • cationic polymer (or “cationic type polymer”) a polymer having chemical functions of cationic type. We can also speak of cationic polyelectrolyte.
  • the cationic polymer is lipophilic or fat-soluble.
  • a cationic polymer there may be mentioned any polymer formed by the polymerization of monomers at least a part of which carries chemical functions of cationic type, such as primary, secondary or tertiary amine functions.
  • amodimethicone derived from a silicone polymer (polydimethylsiloxane, also called dimethicone), modified by primary amine functions and secondary amine.
  • amodimethicone derivatives for example copolymers of amodimethicone, aminopropyl dimethicone, and more generally linear or branched silicone polymers containing amine functions.
  • the bis-isobutyl copolymer PEG-14 / amodimethicone, Bis (C 13-15 Alkoxy) PG-Amodimethicone, Bis-Cetearyl Amodimethicone and bis-hydroxy / methoxy amodimethicone may be mentioned.
  • polysaccharide-type polymers comprising amine functions, such as chitosan or guar gum derivatives (hydroxypropyltrimonium guar chloride).
  • polypeptide-type polymers comprising amine functions, such as polylysine.
  • polyethyleneimine polymers comprising amine functions, such as linear or branched polyethyleneimine.
  • the cationic polymer corresponds to the following formula
  • R 2 and R 3 independently of each other, represent OH or CH 3 ;
  • R 4 represents a -CH 2 - group or a -X-NH- group in which X is a divalent C 3 or C 4 alkylene radical;
  • x is an integer between 10 and 5000, preferably between 30 and 1000, and more preferably between 80 and 300;
  • y is an integer between 2 and 1000, preferably between 4 and 100, and more preferably between 5 and 20;
  • z is an integer between 0 and 10, preferably between 0 and 1, and more preferably equal to 1.
  • R 4 when R 4 is -X-NH-, X is attached to the silicon atom.
  • R 1, R 2 and R 3 are preferably CH 3 .
  • R 4 is preferably - (CH 2 ) 3 -NH-.
  • a composition according to the invention further comprises at least one hydrophilic gelling agent in the aqueous phase, and therefore in the spheres (S1).
  • the hydrophilic gelling agent is selected from the group consisting of natural texturing agents, semi-synthetic texturing agents, synthetic texturing agents, and mixtures thereof.
  • hydrophilic texture agents that is to say those which are soluble or dispersible in water, and therefore present in the aqueous phase of a composition according to the invention, mention may be made of:
  • natural texture agents chosen in particular from algae extracts, plant exudates, seed extracts, exudates from microorganisms, such as alcasealan (INCI: Alcaligenes Polysaccharides), and other natural agents,
  • synthetic texturizing agents chosen in particular from homopolymers of (meth) acrylic acid or one of their esters, (meth) acrylic acid copolymers or one of their esters, copolymers of AMPS (2-acrylamido); 2-methylpropanesulfonic acid), associative polymers,
  • the other texturing agents especially chosen from polyethylene glycols (sold under the name Carbowax), clays, silicas such as those sold under the names Aerosil® 90/130/150/200/300/380), glycerin, and
  • the term "associative polymer” means any amphiphilic polymer comprising in its structure at least one fatty chain and at least one hydrophilic portion; the associative polymers according to the present invention may be anionic, cationic, nonionic or amphoteric; these include those described in FR 2 999 921. Preferably, these are amphiphilic and anionic associative polymers and amphiphilic and nonionic associative polymers as described below.
  • algae extracts represented by agar-agar, carrageenans, alginates, and mixtures thereof.
  • seed extracts represented by locust bean gum, guar gum, tara gum, konjac gum, pectins, and mixtures thereof.
  • natural texturing agents mention may also be made of other natural agents represented, in particular, by gelatin, collagen, keratin, vegetable proteins, in particular wheat and / or soy, polymers of chitin or anionic, cationic, nonionic or amphoteric chitosan, hyaluronic acid or a salt thereof, especially sodium hyaluronate such as that sold under the names HA Oligo, SC Hyaluronic Acid or HyaCare, and mixtures thereof.
  • natural agents represented, in particular, by gelatin, collagen, keratin, vegetable proteins, in particular wheat and / or soy, polymers of chitin or anionic, cationic, nonionic or amphoteric chitosan, hyaluronic acid or a salt thereof, especially sodium hyaluronate such as that sold under the names HA Oligo, SC Hyaluronic Acid or HyaCare, and mixtures thereof.
  • the cellulose derivatives are in particular represented by carboxymethylcellulose (CMC) such as that sold under the names Aqualon series or Walocel series; hydroxypropylcellulose (HPC) such as that sold under the name Klucel HPC; hydroxyethylcellulose (HEC) such as that sold under the names Cellosize series or Natrosol 250 series; hydroxyethyl methylcellulose such as that marketed under the name Walocel series; hydroxypropyl methylcellulose such as that sold under the names Methocel E / F / J / K series from Dow Chemicals, VIVAPHARM CS 152 HV, Benecel E4M, E10M, K100M; methylcellulose such as that sold under the name Methocel A series; ethylcellulose such as that marketed under the name Ethocel series; microcrystalline cellulose such as that marketed under the name Avicel PH series; alkylhydroxyethylcellulose such as cetylhydroxyethy
  • the modified starches are derivatives of starch resulting from the modification of the native starch by etherification, esterification or crosslinking, such as in particular sodium carboxymethyl starch such as that marketed under the names COVAGEL, VIVASTAR® CS 352 SV or VIVASTAR CS 302 SV; hydroxypropyl starch such as that sold under the names Zeina B860, Amaze NI, Amycol SQ, Penon PKW; hydroxypropyl starch phosphate such as that marketed under the names Structure ZEA / style / XL; and their mixtures.
  • etherification, esterification or crosslinking such as in particular sodium carboxymethyl starch such as that marketed under the names COVAGEL, VIVASTAR® CS 352 SV or VIVASTAR CS 302 SV
  • hydroxypropyl starch such as that sold under the names Zeina B860, Amaze NI, Amycol SQ, Penon PKW
  • homopolymers of (meth) acrylic acid or an ester thereof are in particular represented by sodium polyacrylates such as those sold under the names Cosmedia SP, Covacryl MV60 / MV40, Cosmedia SPL or Luvigel EM; crosslinked (or carbomeric) (meth) acrylic acid polymers, such as those sold under the names Carbopol 900 series, Carbopol 2984/5984, Carbopol Ultrez 10/30, in particular Carbopole Ultrez 21, Tego Carbomer 134/140 / 141, Aqupec HV- 505, HV-505HC, HV-504, HV-501, HV-505E, HV-504E, HV-501 E, HV-505ED, Ashland 941 carbomer, or Ashland 981 carbomer; and their mixtures.
  • the anionic polymers as mentioned above, in particular the carbomers defined above.
  • the AMPS copolymers are in particular represented by AMPS NH 4 / vinylpyrrolidone copolymers, such as the product sold under the name Aristoflex AVC (INCI: Ammonium Acryloyldimethyltaurate / VP Copolymer); AMPS NH 4 / Beheneth-25 methacrylate copolymer, such as the product sold under the name Aristoflex HMB (INCI: Ammonium Acryloyldimethyltaurate / Beheneth-25 Methacrylate Crosspolymer); AMPS Na / Vinylpyrrolidone copolymers, such as the product sold under the name Aristoflex AVS (INCI: Sodium Acryloyldimethyltaurate / VP Copolymer); AMPS NH4 / 2-Carboxyethylacrylate copolymers, such as that sold under the name Aristoflex TAC (INCI: Ammonium Acryloyldimethyl
  • the amphiphilic and anionic associative polymers are especially represented by the acrylates / Steareth-20 Methacrylate Copolymer such as that marketed under the name Aculyn 22; acrylates / Beheneth-25 Methacrylate Copolymer such as that sold under the name Aculyn 28; C 30 -3 8 Olefin / Isopropyl Maleate / MA Copolymer such as that sold under the name Performa V 1608; Acrylates / Steareth-20 Methacrylate Crosspolymer such as that sold under the name Aculyn 88; Polyacrylate Crosspolymer-6 such as that sold under the name Sepimax Zen; Acrylates / C 10 -C 30 Alkyl Acrylate Crosspolymers such as those mentioned above; and their mixtures.
  • the amphiphilic and nonionic associative polymers are especially represented by PEG-150 distearate such as that marketed under the name Emanon 3299V; the PEG-150 / Decyl Alcohol / SMDI Copolymer such as the one sold under the name Aculyn 44; PEG-150 / stearyl alcohol / SMDI copolymer such as that sold under the name Aculyn 46; acrylates / ceteth-20 itaconate copolymer such as that marketed under the name Structure 3001 by AkzoNobel Personal Care; polyurethane polyethers such as those sold under the names Rheolate FX 1100, Rheolate 205, Rheolate 208/204/212, Elfacos T1212, Acrysol RM 184 / RM 2020, Adeka Nol GT-700 / GT-730; polyurethane-39 such as that sold under the name Luvigel Star; cetyl hydroxyethy
  • clays in particular represented by bentonite such as that sold under the names Veegum, Veegum HS or Vanatural; montmorillonite, hectorite such as that marketed under the names Bentone series or Hectone series; kaolinite, and mixtures thereof.
  • composition according to the invention may comprise a single hydrophilic gelling agent as defined above, or a mixture of at least two hydrophilic gelling agents as defined above.
  • a composition according to the invention comprises a sufficient amount of gelling agent (s) hydrophilic (s), including heat-sensitive (s), to prevent / limit the coalescence phenomena of the spheres (S1) between them.
  • the content of gelling agent (s) hydrophilic (s) is between 0.1% and 15%, preferably between 0.3% and 10%, preferably between 0.5% and 5%, especially between 0.8% and 3%, in particular between 1% and 2%, by weight relative to the weight of the aqueous phase of said composition.
  • the content of gelling agent (s) hydrophilic (s) is between 0.5% and 0.9% by weight relative to the weight of aqueous phase of said composition.
  • This range is particularly advantageous in that it provides a fair compromise between good mechanical strength of the spheres (S1) and crushing application; this property confers a particular sensoriality to the application since the user really feels the spheres (S1) crashing to the application.
  • the aqueous phase comprises at least two hydrophilic gelling agents, at least one being a heat-sensitive hydrophilic gelling agent.
  • hydrophilic hydrophilic gelling agent designates a hydrophilic gelling agent making it possible to increase the viscosity of the aqueous phase of the spheres (S1) without said gelling agent, this viscosity evolving reversibly as a function of their temperature. .
  • thermosensitive in the sense of the present invention is a compound having a melting point above which it is in a liquid form, but below which it is in a solid form and therefore contributes to increasing the viscosity of the phase comprising it.
  • hydrophilic heat-sensitive gelling agents include, for example, gelatin, pectin, agar-agar, and mixtures thereof.
  • the agar-agar is used as a heat-sensitive hydrophilic gelling agent.
  • a preferred composition according to the invention therefore comprises agar-agar as a gelling agent.
  • the agar-agar is particularly advantageous in that it has a good cold transparency as well as a good "speed of gelling / crushing on application" ratio.
  • the content of heat-sensitive hydrophilic gelling agent (s), in particular of agar-agar, is between 0.1% and 15%, preferably between 0.3%. % and 10%, preferably between 0.5% and 5%, especially between 0.8% and 3%, in particular between 1% and 2% or even between 0.3% and 0.8%, by weight relative to aqueous phase weight of said composition.
  • compositions according to the invention comprise a fatty phase (or continuous phase) in which the aforementioned solid spheres (S1) are dispersed.
  • the fatty phase according to the invention may represent at least 70%, in particular at least 80%, preferably at least 90%, and more preferably at least 95%, by weight relative to the total weight of the composition.
  • the fatty phase content is between 70% and 99%, preferably between 70% and 95%, especially between 75% and 90%, and preferably between 80% and 85%, by weight relative to the total weight of said composition.
  • the fatty phase is suspensive with respect to the spheres (S1).
  • the spheres (S1) remain suspended in the fatty phase over a prolonged period of time, for example greater than 1 month, preferably greater than 3 months, and better still greater than 6 months.
  • this variant is advantageous in that it makes it possible to prevent / limit the coalescence phenomena of the spheres (S1) between them and / or the creaming of the spheres (S1) in the fatty phase.
  • the fatty phase is non-suspensive with respect to the spheres (S1).
  • a separation of the spheres (S1) with respect to the fatty phase is observed over a period of time of less than 1 month, preferably less than 15 days, better less than 1 week, or even less than 1 day.
  • Such a composition according to the invention is then described as a bi-phasic composition. This separation can result from sedimentation or creaming of the spheres (S1) in the fatty phase.
  • This separation can be immediate after mixing a composition according to the invention.
  • the separation between the spheres (S1) and the fat phase can take place over a period of time between 5 and 60 seconds.
  • This separation of the two phases of a composition according to the invention can be carried out over a longer period of time after mixing a composition according to the invention.
  • the separation between the spheres (S1) and the fatty phase can take place over a period of time greater than 1 minute, in particular between 1 minute and 300 minutes.
  • the separation of the spheres (S1) relative to the aqueous continuous phase is by sedimentation of the spheres (S1), given their hydrophilic nature, and therefore their density generally greater than that of the fatty phase.
  • the separation of the spheres (S1) with respect to the fatty phase can also be done by creaming the spheres (S1), in which case the skilled person must make a selection of oil (s) so that the spheres (S1) have a density lower than that of the fatty phase.
  • oil s
  • selections are general knowledge of the skilled person. For example, one can choose a fluorosilicone type oil (known to have a density greater than 1).
  • These properties of suspensivity / non suspensivity of the spheres (S1) in the fatty phase are in particular conditioned by the nature and / or the content of oil (s) and / or lipophilic agent (s) having suspensive power.
  • the fatty phase is shear thinning or pseudoplastic at room temperature and atmospheric pressure.
  • Rheofluidification refers to the fact, for a fluid, of "becoming more fluid" when the flow velocity increases. Specifically, this refers to the fact that the dynamic viscosity decreases as the shear rate increases. Shear thinning or shear thinning is also referred to as pseudo-plasticity.
  • the fatty phase is thixotropic at room temperature and atmospheric pressure.
  • a composition according to the invention comprises at least one lipophilic agent having suspensive power.
  • lipophilic agent having suspensive power is meant an agent capable of increasing the viscosity of the fatty phase so as to improve the character (or power) suspensive of said fatty phase, in particular with respect to the spheres (S1 ).
  • This lipophilic agent having suspensive power thus participates in stabilizing the composition according to the invention, and in particular in preventing and / or preventing the coalescence of the spheres (S1) between them and / or their creaming or sedimentation in the fatty phase.
  • It may also comprise a mixture of at least two lipophilic agents having suspensive power.
  • the lipophilic agent having a suspending power according to the invention is chosen from lipophilic gelling agents well known to those skilled in the art, and this is detailed below.
  • the lipophilic gelling agent having suspensive power is chosen from organic or inorganic lipophilic gelling agents, polymeric or molecular; solid fatty substances at room temperature and pressure; and their mixtures.
  • lipophilic gelling agent is intended to mean a compound capable of gelling the fatty phase of the compositions according to the invention.
  • the gelling agent is liposoluble or lipodispersible.
  • the lipophilic gelling agent is advantageously chosen from particulate gelling agents; organopolysiloxane elastomers; semi-crystalline polymers; polyacrylates; sugar / polysaccharide esters, in particular dextrin esters, inulin esters, glycerol esters; hydrogen-bonded polymers; hydrocarbon block copolymers and mixtures thereof.
  • the particulate gelling agent used in the composition according to the invention is in the form of particles, preferably spherical.
  • polar, polar and apolar waxes, butters, modified clays, silicas such as pyrogenic silicas and hydrophobic silica aerogels may be particularly mentioned.
  • wax considered in the context of the present invention, is generally meant a lipophilic compound, solid at room temperature (25 ° C), reversible solid state / liquid change, having a higher melting point or equal to 30 ° C up to 200 ° C and in particular up to 120 ° C.
  • the melting temperature corresponds to the temperature of the most endothermic peak observed in thermal analysis (DSC) as described in the ISO 1 1357-3 standard; 1999.
  • the melting point of the wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "MDSC 2920" by the company TA Instruments.
  • the measurement protocol is as follows: A sample of 5 mg of wax placed in a crucible is subjected to a first temperature rise from -20 ° C to 100 ° C, at the heating rate of 10 ° C / minute, then cooled from 100 ° C to -20 ° C at a cooling rate of 10 ° C / minute and finally subjected to a second temperature rise from -20 ° C to 100 ° C at a heating rate of 5 ° C / minute. During the second temperature rise, the variation of the power difference absorbed by the empty crucible and the crucible containing the wax sample as a function of temperature is measured.
  • the melting point of the compound is the value of the temperature corresponding to the peak apex of the curve representing the variation of the difference in power absorbed as a function of the temperature.
  • the waxes that may be used in the compositions according to the invention are chosen from waxes, solid, at room temperature of animal, vegetable, mineral or synthetic origin, and mixtures thereof.
  • the waxes within the meaning of the invention, may be those used generally in the cosmetic or dermatological fields. They can in particular be polar or apolar, silicone hydrocarbon and / or fluorinated, optionally comprising ester or hydroxyl functions. They can also be of natural or synthetic origin.
  • apolar wax within the meaning of the present invention, is meant a wax whose solubility parameter at 25 ° C as defined below, a is equal to 0 (J / cm 3 ) 1/2 .
  • solubility parameters in the three-dimensional solubility space of Hansen are described in the article by CM Hansen: "The three dimensional solubility parameters” J. Paint Technol. 39, 105 (1967).
  • the apolar waxes are in particular hydrocarbon waxes consisting solely of carbon and hydrogen atoms and free of heteroatoms such as N, O, Si and P.
  • the apolar waxes are chosen from microcrystalline waxes, paraffin waxes, ozokerite, polyethylene waxes, and mixtures thereof.
  • ozokerite mention may be made of Ozokerite Wax SP 1020 P.
  • microcrystalline waxes that may be used, mention may be made of Multiwax W 445® marketed by Sonneborn, Microwax HW® and Base Wax 30540® 25 marketed by Paramelt, and Cerewax ® N ° 3 marketed by the company Baerlocher.
  • microwaves which can be used in the compositions according to the invention as apolar wax
  • polyethylene such as those marketed under the names Micropoly 200®, 30 220®, 220L® and 2505® by the company Micro Powders.
  • polyethylene wax mention may be made of Performalene 500-L Polyethylene and Performalene 400 Polyethylene marketed by New Phase Technologies, Asensa® SC 21 1 sold by the company Honeywell.
  • polar wax within the meaning of the present invention, is meant a wax whose solubility parameter at 25 ° C 5 a is different from 0 (J / cm 3 ) 1/2 .
  • polar wax is understood to mean a wax whose chemical structure is formed essentially or even consisting of carbon and hydrogen atoms, and comprising at least one highly electronegative heteroatom such as an oxygen atom. , nitrogen, silicon or phosphorus.
  • the polar waxes may especially be hydrocarbon, fluorinated or silicone.
  • the polar waxes may be hydrocarbon-based.
  • hydrocarbon wax is meant a wax formed essentially, or even constituted, of carbon and hydrogen atoms, and possibly of oxygen, nitrogen and not containing a silicon or fluorine atom. . It may contain alcohol, ester, ether, carboxylic acid, amine and / or amide groups.
  • ester wax is meant according to the invention a wax comprising at least one ester function.
  • alcohol wax is meant according to the invention a wax comprising at least one alcohol function, that is to say comprising at least one free hydroxyl (OH) group.
  • ester wax
  • ester waxes such as those chosen from:
  • waxes obtained by catalytic hydrogenation of animal or vegetable oils having fatty chains, linear or branched, at C-8-C32 for example such as hydrogenated jojoba oil, sunflower oil hydrogenated, hydrogenated castor oil, hydrogenated coconut oil, and waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol; v) beeswax, synthetic beeswax, polyglycerolated beeswax, carnauba wax, candelilla wax, oxypropylene lanolin wax, rice bran wax, Ouricury wax , Alfa wax, cork fiber wax, sugar cane wax, Japanese wax, sumac wax, montan wax, orange wax, laurel wax, wax Hydrogenated Jojoba, sunflower wax, lemon wax, olive wax, berry wax.
  • the polar wax may be an alcohol wax.
  • alcohol wax is meant according to the invention a wax comprising at least one alcohol function, that is to say comprising at least one free hydroxyl (OH) group.
  • alcohol wax mention may be made, for example, of the wax C30-50 Alcohols Performacol 0 550 Alcohol sold by New Phase Technologie, stearyl alcohol and cetyl alcohol.
  • silicone waxes which may advantageously be substituted polysiloxanes, preferably at a low melting point.
  • silicone wax is meant an oil comprising at least one silicon atom, and in particular comprising Si-O groups.
  • the silicone waxes that may be used may also be alkyl or alkoxydimethicones, as well as (C 2 -C 60 ) alkyldimethicones, in particular (C 30 -C 45 ) alkyldimethicones, such as the silicone wax sold under the name SF-1642 by the company GE -Bayer Silicones or C 5 30 -4 Alkyldiméthylsilyl polypropylsilsesquioxane under the name SW-C30 Resin Wax 8005® marketed by Dow Corning.
  • polyethylene waxes, jojoba wax, and silicone waxes may be mentioned as particularly advantageous waxes.
  • waxes with a melting point greater than 45 ° C. comprising one or more C 4 o C 7 o ester compounds and not comprising a C 20 -C 39 ester compound will be used.
  • ester compound is meant any organic molecule comprising a linear or branched, saturated or unsaturated hydrocarbon chain, comprising at least one ester function of formula - COOR where R represents a hydrocarbon radical, in particular a linear and saturated alkyl radical.
  • wax not comprising a C 2 -C 39 ester compound is meant any wax containing less than 1% by weight of C 20 -C 39 ester compound, preferably less than 0.5% by weight relative to the weight of wax or even free of C20-C39 ester compound.
  • the waxes according to the invention can also be used in the form of a mixture of waxes.
  • the ester content comprising from 40 to 70 carbon atoms preferably ranges from 20 to 100% by weight and preferably from 20 to 90% by weight relative to the total weight of wax (es).
  • CRYSTALWAX (INCI: Hydroxystearic Acid (and) Synthetic Wax (and) Triisostearin (and) Polybutene (and) Pentaerythrityl Tetraisostearate) marketed by the company Sensient Cosmetic Technologies.
  • the term “butter” (also referred to as “pasty fatty substance”) is understood to mean a lipophilic fatty compound with a reversible solid / liquid state change and comprising at the temperature of 25 ° C. a liquid fraction and a fraction. solid, and at atmospheric pressure (760 mm Hg).
  • the starting melting temperature of the pasty compound may be less than 25 ° C.
  • the liquid fraction of the pasty compound measured at 25 ° C. may represent from 9% to 97% by weight of the compound. This liquid fraction at 25 ° C is preferably between 15% and 85%, more preferably between 40 and 85% by weight.
  • the one or more butters have an end-of-melting temperature of less than 60 ° C.
  • the one or more butters have a hardness less than or equal to 6 MPa.
  • the butters or pasty fatty substances have in the solid state an anisotropic crystalline organization, visible by X-ray observations.
  • the melting temperature corresponds to the temperature of the endothermic peak observed in thermal analysis (DSC) as described in the ISO 1 1357-3 standard; 1999.
  • the melting point of a paste or a wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name "DSC Q2000" by the company TA Instruments .
  • DSC differential scanning calorimeter
  • sample preparation and measurement protocols are as follows: A sample of 5 mg of pasty fatty substance (or butter) or wax previously heated at 80 ° C. and taken with magnetic stirring using an equally heated spatula is placed in an airtight aluminum capsule or crucible. Two tests are carried out to ensure the reproducibility of the results.
  • the measurements are carried out on the calorimeter mentioned above.
  • the oven is subjected to a nitrogen sweep.
  • the cooling is ensured by the RCS 90 heat exchanger.
  • the sample is then subjected to the following protocol, first being brought to a temperature of 20 ° C and then subjected to a first temperature rise ranging from 20 ° C to 80 ° C. ° C, at the heating rate of 5 ° C / minute, then cooled from 80 ° C to -80 ° C at a cooling rate of 5 ° C / minute and finally subjected to a second temperature rise from - 80 ° C to 80 ° C at a heating rate of 5 ° C / minute.
  • the variation of the power difference absorbed by the empty crucible and the crucible containing the butter sample is measured as a function of temperature.
  • the melting point of the compound is the value of the temperature corresponding to the peak apex of the curve representing the variation of the difference in power absorbed as a function of the temperature.
  • the end of melting temperature corresponds to the temperature at which 95% of the sample melted.
  • the liquid fraction by weight of the butter (or pasty fatty substance) at 25 ° C. is equal to the ratio of the heat of fusion consumed at 25 ° C. on the enthalpy of melting of the butter.
  • the enthalpy of melting of the butter or pasty compound is the enthalpy consumed by the compound to pass from the solid state to the liquid state.
  • the butter is said to be in the solid state when the entirety of its mass is in crystalline solid form.
  • the butter is said to be in the liquid state when the entirety of its mass is in liquid form.
  • the melting enthalpy of the butter is equal to the integral of the whole of the melting curve obtained with the aid of the calorimeter evoked, with a rise in temperature of 5 ° C. or 10 ° C. per minute, according to the standard ISO 1,1357-3: 1999.
  • the melting enthalpy of the butter is the amount of energy required to pass the compound from the solid state to the liquid state. It is expressed in J / g.
  • the enthalpy of fusion consumed at 25 ° C is the amount of energy absorbed by the sample to change from the solid state to the state it has at 25 ° C consisting of a liquid fraction and a solid fraction.
  • the liquid fraction of the butter measured at 32 ° C preferably represents from 30% to 100% by weight of the compound, preferably from 50% to 100%, more preferably from 60% to 100% by weight of the compound.
  • the temperature of the end of the melting range of the pasty compound is less than or equal to 32 ° C.
  • the liquid fraction of the butter measured at 32 ° C. is equal to the ratio of the enthalpy of fusion consumed at 32 ° C. on the enthalpy of melting of the butter.
  • the enthalpy of fusion consumed at 32 ° C. is calculated in the same way as the heat of fusion consumed at 23 ° C.
  • the sample preparation and measurement protocols are as follows: the composition according to the invention or the butter is placed in a mold 75 mm in diameter which is filled to about 75% of its height.
  • the mold is placed in the Vôtsch VC0018 programmable oven where it is first heated to 80 ° C for 60 minutes, then cooled from 80 ° C to 0 ° C at a cooling rate of 5 ° C / minute, then left at the stabilized temperature of 0 ° C for 60 minutes, then subjected to a temperature rise from 0 ° C to 20 ° C, at a rate of heat of 5 ° C / minute, then left at the stabilized temperature of 20 ° C for 180 minutes.
  • the compression force measurement is performed with Swantech TA / TX2i texturometer.
  • the mobile used is chosen according to the texture: - mobile cylindrical steel 2 mm in diameter for very rigid raw materials; - Cylindrical 12 mm diameter steel for rigid raw materials.
  • the measurement comprises 3 steps: a first step after automatic detection of the surface of the sample where the mobile moves at the measurement speed of 0.1 mm / s, and enters the composition according to the invention or the butter at a penetration depth of 0.3 mm, the software records the value of the maximum force reached; a second so-called relaxation stage where the mobile stays at this position for one second and where the force is noted after 1 second of relaxation; finally a third so-called withdrawal step where the mobile returns to its initial position at the speed of 1 mm / s and the energy of withdrawal of the probe (negative force) is recorded.
  • the value of the hardness measured during the first step corresponds to the maximum compression force measured in Newton divided by the surface of the texturometer cylinder expressed in mm 2 in contact with the butter or composition according to the invention.
  • the value of hardness obtained is expressed in megapascals or MPa.
  • the pasty fatty substance or butter may be chosen from synthetic compounds and compounds of plant origin.
  • a pasty fatty substance can be obtained synthetically from starting materials of plant origin.
  • lanolin and its derivatives such as lanolin alcohol, oxyethylenated lanolins, acetylated lanolin, lanolin esters such as isopropyl lanolate, oxypropylenated lanolines,
  • polymeric or non-polymeric silicone compounds such as polydimethylsiloxanes of high molecular weight, polydimethylsiloxanes with side chains of the alkyl or alkoxy type having from 8 to 24 carbon atoms, especially stearyl dimethicones,
  • linear or branched oligomers homo or copolymers of alkyl (meth) acrylates preferably having a C 8 -C 3 o alkyl group,
  • the particular butter or butters are of plant origin such as those described in Ullmann's Encyclopedia of Industrial Chemistry ("Fats and Fatty Oils", A. Thomas, published on 15/06/2000, D01 : 10.1002 / 14356007.a10_173, point 13.2.2.2 Shea Butter, Borneo Tallow, and Related Fats (Vegetable Butters).
  • C10-C18 triglycerides having at a temperature of 25 ° C and at atmospheric pressure (760 mm Hg) a liquid fraction and a solid fraction, the butter of shea butter, Shea Butter Nilotica (Butyrospermum parkii), Galam butter, (Butyrospermum parkii), Borneo butter or fat or Tengkawang tallow) (Shorea stenoptera), Shorea butter, Illipé butter, Madhuca butter or Bassia Madhuca longifolia, mowrah butter (Madhuca Latifolia), Katiau butter (Madhuca mottleyana), Phulwara butter (M.
  • C10-C18 triglycerides having at a temperature of 25 ° C and at atmospheric pressure (760 mm Hg) a liquid fraction and a solid fraction
  • the butter of shea butter Shea Butter Nilotica (Butyrospermum parkii), Galam butter, (Butyrospermum parkii), Born
  • the composition according to the invention may comprise at least one lipophilic clay.
  • the clays can be natural or synthetic and are made lipophilic by treatment with an alkylammonium salt such as a C10-C22 ammonium chloride, for example di-stearyl dimethyl ammonium chloride. They may be chosen from bentonites, in particular hectorites and montmorillonites, beidellites, saponites, nontronites, sepiolites, biotites, attapulgites, vermiculites and zeolites.
  • the lipophilic clays used are hectorites modified with a C 10 to C 22 ammonium chloride, such as hectorite modified with distearyl dimethyl ammonium chloride such as, for example, that marketed under the name of Bentone 38V® by Elementis or the bentone gel in isododecane sold under the name Bentone Gel ISD V® (Isododecane 87% / Disteardimonium Hectorite 10% / Propylene carbonate 3%) by Elementis.
  • the fatty phase of a composition according to the invention may also comprise, as gelling agent, a fumed silica or silica airgel particles.
  • the hydrophobic treated silica treated surface It is indeed possible to chemically modify the surface of the silica, by chemical reaction generating a decrease in the number of silanol groups present on the surface of the silica. In particular, it is possible to substitute silanol groups with hydrophobic groups: a hydrophobic silica is then obtained.
  • hydrophobic groups can be:
  • Silicas thus treated are called “Silica silylate” according to the CTFA (8th edition, 2000). They are for example marketed under the references Aerosil R812® by the company Degussa, CAB-O-SIL TS-530® by Cabot.
  • silica dimethyl silylate is marketed under the references Aerosil R972®, and Aerosil R974® by Degussa, CAB-O-SIL TS-610® and CAB-O-SIL TS-720® by Cabot.
  • the oily phase of a composition according to the invention may also comprise, as gelling agent, at least silica aerogel particles.
  • Silica aerogels are porous materials obtained by replacing (by drying) the liquid component of a silica gel with air. They are generally synthesized by sol-gel process in a liquid medium and then usually dried by extraction of a supercritical fluid, the most commonly used being the supercritical CO 2 . This type of drying avoids the contraction of the pores and the material.
  • the sol-gel process and the various dryings are described in detail in Brinker CJ, and Scherer GW, Sol-Gel Science: New York: Academic Press, 1990.
  • the hydrophobic silica airgel particles used in the present invention exhibit a specific surface per unit mass (SM) ranging from 500 to 1500 m 2 / g, preferably from 600 to 1200 m 2 / g and better still from 600 to 800 m 2 / g, and a size expressed in average diameter in terms of volume (D [0.5]) ranging from 1 to 1500 ⁇ , better still from 1 to 1000 ⁇ , preferably from 1 to 100 ⁇ , in particular from 1 to 30 ⁇ , more preferably from 5 to 25 ⁇ , better from 5 to 20 ⁇ and even better from 5 to 15 ⁇ .
  • SM surface per unit mass
  • D [0.5] size expressed in average diameter in terms of volume
  • the hydrophobic silica airgel particles used in the present invention have a size expressed in volume mean diameter (D [0.5]) ranging from 1 to 30 ⁇ , preferably from 5 to 25 ⁇ . , better from 5 to 20 ⁇ and even better from 5 to 15 ⁇ .
  • the specific surface area per unit mass can be determined by the nitrogen absorption method called the BET method (Brunauer - Emmet - Teller) described in "The Journal of the American Chemical Society", vol. 60, page 309, February 1938 and corresponding to the international standard ISO 5794/1 (Appendix D).
  • the BET surface area corresponds to the total specific surface area of the particles under consideration.
  • the silica airgel particle sizes can be measured by static light scattering using a MasterSizer 2000 commercial particle size analyzer from Malvern.
  • the data is processed on the basis of Mie scattering theory.
  • This theory which is accurate for isotropic particles, makes it possible to determine, in the case of non-spherical particles, an "effective" diameter of particles. This theory is particularly described in Van de Hulst, H.C., "Light Scattering by Small Particles", Chapters 9 and 10, Wiley, New York, 1957.
  • the hydrophobic silica airgel particles used in the present invention have a specific surface per unit mass (SM) ranging from 600 to 800 m 2 / g.
  • the silica airgel particles used in the present invention may advantageously have a packed density p ranging from 0.02 g / cm 3 to 0.10 g / cm 3 , preferably from 0.03 g / cm 3 to 0, 08 g / cm 3 , in particular ranging from 0.05 g / cm 3 to 0.08 g / cm 3 .
  • this density can be assessed according to the following protocol, called the packed density: 40 g of powder are poured into a graduated test tube; then the specimen is placed on the STAV 2003 machine from Stampf Volumeter; the test piece is then subjected to a series of 2,500 settlements (this operation is repeated until the difference in volume between two consecutive tests is less than 2%); then the final volume Vf of compacted powder is measured directly on the test piece.
  • the packed density is determined by the ratio m / Vf, in this case 40 / Vf (Vf being expressed in cm 3 and m in g).
  • the hydrophobic silica airgel particles used in the present invention have a specific surface area per unit volume SV ranging from 5 to 60 m 2 / cm 3 , preferably from 10 to 50 m 2 / cm 3 and better from 15 to 40 m 2 / cm 3 .
  • the hydrophobic silica aerogel particles according to the invention have an oil absorption capacity measured at Wet Point ranging from 5 to 18 ml / g, preferably from 6 to 15 ml / g and better still from 8 to 18 ml / g. at 12 ml / g.
  • the absorption capacity measured at Wet Point, and denoted by Wp corresponds to the amount of oil that must be added to 100 g of particles in order to obtain a homogeneous paste. It is measured according to the so-called Wet Point method or method for determining the setting of powder oil described in standard NF T 30-022.
  • the aerogels used according to the present invention are aerogels of hydrophobic silica, preferably of silylated silica (INCI name: silica silylate).
  • hydrophobic silica any silica whose surface is treated with silylating agents, for example by halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes, in order to functionalize the OH groups by Si-Rn silyl groups, for example trimethylsilyl groups.
  • silylating agents for example by halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes
  • silylating agents for example by halogenated silanes such as alkylchlorosilanes, siloxanes, in particular dimethylsiloxanes such as hexamethyldisiloxane, or silazanes, in order to functionalize the OH groups by Si-Rn silyl groups, for
  • hydrophobic silica aerogels examples include, for example, the airgel marketed under the name VM-2260 or VM-2270 (INCI name: Silica silylate), by the company Dow Corning, of which the particles have an average size of about 1000 microns and a specific surface area per unit mass of 600 to 800 m 2 / g. Mention may also be made of the aerogels marketed by Cabot under the references Aerogel TLD 201, Aerogel OGD 201, Aerogel TLD 203, ENOVA Aerogel MT 1100, ENOVA Aerogel MT 1200. The airgel marketed under the trade name VM will preferably be used. -2270 (INCI name Silica silylate), by Dow Corning, whose particles have an average size ranging from 5-15 microns and a specific surface area per unit mass ranging from 600 to 800 m 2 / g.
  • the organopolysiloxane elastomer has the advantage of giving the composition according to the invention good application properties. It provides a very soft touch after application, especially advantageous for application on the skin. It can also allow an effective filling of the hollows present on the keratin materials.
  • organopolysiloxane elastomer or "silicone elastomer” is meant a flexible, deformable organopolysiloxane having viscoelastic properties and especially the consistency of a sponge or a flexible sphere. Its modulus of elasticity is such that this material resists deformation and has a limited capacity for extension and contraction. This material is able to recover its original shape after stretching. It is more particularly a crosslinked organopolysiloxane elastomer.
  • the organopolysiloxane elastomer can be obtained by crosslinking addition reaction of diorganopolysiloxane containing at least one silicon-bonded hydrogen and diorganopolysiloxane having silicon-bonded ethylenically unsaturated groups, especially in the presence of platinum catalyst; or by condensation-crosslinking dehydrogenation reaction between a hydroxyl-terminated diorganopolysiloxane and a diorganopolysiloxane containing at least one silicon-bonded hydrogen, especially in the presence of an organotin; or by crosslinking condensation reaction of a hydroxyl-terminated diorganopolysiloxane and a hydrolyzable organopolysilane; or by thermal crosslinking of organopolysiloxane, especially in the presence of organoperoxide catalyst; or by crosslinking of organopolysiloxane by high energy radiation such as gamma rays, ultraviolet rays, electron beam.
  • the organopolysiloxane elastomer is obtained by addition reaction crosslinking (A) of diorganopolysiloxane containing at least two hydrogens each bonded to a silicon, and (B) diorganopolysiloxane having at least two ethylenically unsaturated groups bonded to silicon, especially in the presence (C) of platinum catalyst, as for example described in application EP-A-295886.
  • the organopolysiloxane elastomer can be obtained by reaction of dimethylvinylsiloxy-terminated dimethylpolysiloxane and trimethylsiloxy-terminated methylhydrogenpolysiloxane in the presence of platinum catalyst.
  • the compound (A) is the basic reagent for the formation of organopolysiloxane elastomer and the crosslinking is carried out by addition reaction of the compound (A) with the compound (B) in the presence of the catalyst (C).
  • the compound (A) is in particular an organopolysiloxane having at least two hydrogen atoms bonded to distinct silicon atoms in each molecule.
  • the compound (A) may have any molecular structure, in particular a linear chain or branched chain structure or a cyclic structure.
  • the compound (A) may have a viscosity at 25 ° C ranging from 1 to 50,000 centistokes, in particular to be well miscible with the compound (B).
  • the organic groups bonded to the silicon atoms of the compound (A) can be alkyl groups such as methyl, ethyl, propyl, butyl, octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl, xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon groups such as an epoxy group, a carboxylate ester group, or a mercapto group.
  • alkyl groups such as methyl, ethyl, propyl, butyl, octyl
  • substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, 3,3,3-trifluoropropyl
  • aryl groups such as phenyl, tolyl, xylyl
  • substituted aryl groups such as
  • the compound (A) may thus be chosen from trimethylsiloxy-terminated methylhydrogenpolysiloxanes, dimethylsiloxane-methylhydrogensiloxane trimethylsiloxy endblock copolymers and cyclic dimethylsiloxane-methylhydrogensiloxane copolymers.
  • the compound (B) is advantageously a diorganopolysiloxane having at least two lower alkenyl groups (for example C 2 -C 4 ); the lower alkenyl group may be chosen from vinyl, allyl and propenyl groups. These lower alkenyl groups may be located at any position of the organopolysiloxane molecule but are preferably located at the ends of the organopolysiloxane molecule.
  • the organopolysiloxane (B) may have a branched chain, straight chain, cyclic or network structure but the linear chain structure is preferred.
  • the compound (B) may have a viscosity ranging from the liquid state to the gum state.
  • the compound (B) has a viscosity of at least 100 centistokes at 25 ° C.
  • the other organic groups bonded to the silicon atoms in the compound (B) can be alkyl groups such as methyl, ethyl, propyl, butyl or octyl; substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl or xylyl; substituted aryl groups such as phenylethyl; and substituted monovalent hydrocarbon groups such as an epoxy group, a carboxylate ester group, or a mercapto group.
  • alkyl groups such as methyl, ethyl, propyl, butyl or octyl
  • substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl or 3,3,3-trifluoropropyl
  • aryl groups such as phenyl, tolyl or xylyl
  • substituted aryl groups such
  • the organopolysiloxane (B) can be chosen from methylvinylpolysiloxanes, methylvinylsiloxane-dimethylsiloxane copolymers, dimethylpolysiloxanes comprising dimethylvinylsiloxy endings, dimethylsiloxane-methylphenylsiloxane copolymers containing dimethylvinylsiloxy end groups, dimethylsiloxane-diphenylsiloxane copolymers, dimethylvinylsiloxy-terminated methylvinylsiloxane, dimethylsiloxane-methylvinylsiloxane copolymers endings trimethylsiloxy, trimethylsiloxy-terminated dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymers, dimethylvinylsiloxy-terminated methyl (3,3,3-trifluoropropyl) -polys
  • the organopolysiloxane elastomer can be obtained by reaction of dimethylvinylsiloxy-terminated dimethylpolysiloxane and trimethylsiloxy-terminated methylhydrogenpolysiloxane in the presence of platinum catalyst.
  • the sum of the number of ethylenic groups per molecule of the compound (B) and the number of hydrogen atoms bonded to silicon atoms per molecule of the compound (A) is at least 5.
  • the compound (A) is added in an amount such that the molecular ratio between the total amount of hydrogen atoms bonded to silicon atoms in the compound (A) and the total amount of all the groups to Ethylenic unsaturation in the compound (B) is in the range of 1.5: 1 to 20: 1.
  • Compound (C) is the catalyst for the crosslinking reaction, and is especially chloroplatinic acid, chloroplatinic acid-olefin complexes, chloroplatinic acid-alkenylsiloxane complexes, chloroplatinic acidketone complexes, platinum black, and platinum on support.
  • the catalyst (C) is preferably added from 0.1 to 1000 parts by weight, more preferably from 1 to 100 parts by weight, as clean platinum metal per 1000 parts by weight of the total amount of the compounds (A). and B).
  • the elastomer is advantageously a non-emulsifying elastomer.
  • non-emulsifying defines organopolysiloxane elastomers that do not contain a hydrophilic chain, and in particular that do not contain any motifs.
  • polyoxyalkylene especially polyoxyethylene or polyoxypropylene
  • polyglyceryl unit especially polyoxyethylene or polyoxypropylene
  • the composition comprises an organopolysiloxane elastomer devoid of polyoxyalkylene units and a polyglyceryl unit.
  • the silicone elastomer used in the present invention is selected from Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone / Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name) .
  • the organopolysiloxane elastomer particles may be conveyed in the form of a gel consisting of an elastomeric organopolysiloxane included in at least one hydrocarbon oil and / or a silicone oil. In these gels, the organopolysiloxane particles are often non-spherical particles.
  • Non-emulsifying elastomers are described in EP 242 219, EP 285 886, EP 765 656 and JP-A-61-194009.
  • the silicone elastomer is generally in the form of a gel, a paste or a powder, but advantageously in the form of a gel in which the silicone elastomer is dispersed in a linear silicone oil (dimethicone ) or cyclic (eg cyclopentasiloxane), advantageously in a linear silicone oil.
  • a linear silicone oil dimethicone
  • cyclic eg cyclopentasiloxane
  • non-emulsifying elastomers As non-emulsifying elastomers, it is more particularly possible to use those sold under the names "KSG-6", “KSG-15”, “KSG-16”, “KSG-18”, “KSG-41”, “KSG-42” , “KSG-43”, “KSG-44”, by the company Shin Etsu, “DC9040”, “DC9041”, by the company Dow Corning, "SFE 839" by the company General Electric.
  • a silicone elastomer gel dispersed in a silicone oil chosen from a non-exhaustive list comprising cyclopentadimethylsiloxane, dimethicones, dimethylsiloxanes, methyl trimethicone, phenylmethicone, phenyldimethicone, phenyltrimethicone, and cyclomethicone, is used.
  • a linear silicone oil chosen from polydimethylsiloxanes (PDMS) or dimethicones with a viscosity at 25 ° C. ranging from 1 to 500 ° C. at 25 ° C., optionally modified with aliphatic groups, optionally fluorinated, or with functional groups such as hydroxyl, thiol and / or amine groups.
  • Dimethicone / Vinyl Dimethicone Crosspolymer such as USG-105 and USG-107A from Shin Etsu; “DC9506” and “DC9701” from Dow Corning; Dimethicone / Dimethicone Vinyl Crosspolymer (and) Dimethicone, such as "KSG-6" and “KSG-16” from Shin Etsu;
  • Cyclopentasiloxane (and) Dimethicone Crosspolymer such as "DC9040", “DC9045” and “DC5930” from Dow Corning;
  • Dimethicone (and) Dimethicone Crosspolymer such as "DC9041" from Dow Corning;
  • Dimethicone (and) Dimethicone Crosspolymer such as Dow Corning EL-9240 Silicone Elastomer Blend from Dow Corning (Polydimethylsiloxane mixture cross-linked with hexadiene / polydimethyl siloxane (2 cSt));
  • Dimethicone (and) Dimethicone Crosspolymer such as "DC9041" from Dow Corning;
  • Dimethicone (and) Dimethicone Crosspolymer such as Dow Corning EL-9240 silicone elastomer blend from Dow Corning (Hexadiene / polydimethyl silane crosslinked polydimethylsiloxane mixture (2 cSt)); and
  • DIMETHICONE (and) VINYLDIMETHYL / TRIMETHYLSILOXYSILICATE / DIMETHICONE CROSSPOLYMER, BELSIL REG 1 100 from Wacker Silicone.
  • the organopolysiloxane elastomer particles may also be used in powder form, mention may be made in particular of the powders sold under the names "Dow Corning 9505 Powder” and “Dow Corning 9506 Powder” by the company Dow Corning. These powders are intended INCI name: dimethicone / vinyl dimethicone crosspolymer, as well as “Dow Corning® 9701 Cosmetic Powder” (INCI: Dimethicone / Vinyl Dimethicone Crosspolymer (and) Silica).
  • the organopolysiloxane powder may also be coated with silsesquioxane resin, as described, for example, in US Pat. No. 5,538,793.
  • silsesquioxane resin as described, for example, in US Pat. No. 5,538,793.
  • elastomer powders are sold under the names "KSP-100", “KSP-101” and “KSP102”. ",” KSP-103 ",” KSP-104 ",” KSP-105 "by Shin Etsu, and are INCI name: vinyl dimethicone / methicone silsesquioxane Crosspolymer.
  • organopolysiloxane powders coated with silsesquioxane resin that can advantageously be used according to the invention, there may be mentioned especially the reference “KSP-100" from Shin Etsu.
  • organopolysiloxane elastomer type As preferred lipophilic gelling agent of the organopolysiloxane elastomer type, there may be mentioned in particular cross-linked organopolysiloxane elastomers chosen from Dimethicone Crosspolymer (INCI name), Dimethicone (and) Dimethicone Crosspolymer (INCI name), Vinyl Dimethicone Crosspolymer ( INCI name), Dimethicone / Vinyl Dimethicone Crosspolymer (INCI name), Dimethicone Crosspolymer-3 (INCI name), DIMETHICONE (and) VINYLDIMETHYIJTRIMETHYLSILOXYSILICATE / DIMETH ICONE
  • CROSSPOLYMER and in particular DIMETHICONE (and) DIMETHICONE / VINYL DIMETHICONE CROSSPOLYMER, KSG16 from Shin Etsu or DIMETHICONE (and) VINYLDIMETHYL / TRIMETHYLSILOXYSILICATE / DIMETHICONE CROSSPOLYMER, BELSIL REG 1 100 from Wacker silicone.
  • composition according to the invention may comprise at least one semicrystalline polymer.
  • the semi-crystalline polymer has an organic structure, and a melting temperature greater than or equal to 30 ° C.
  • the term "semi-crystalline polymer” is intended to mean polymers comprising a crystallizable part and an amorphous part and having a first-order reversible phase change temperature, in particular melting (solid-liquid transition). .
  • the crystallizable portion is either a side chain (or pendant chain) or a sequence in the backbone.
  • this crystallizable block is of a different chemical nature from that of the amorphous sequences; in this case, the semicrystalline polymer is a block copolymer, for example of the diblock, triblock or multiblock type.
  • the semi-crystalline polymer may be a homopolymer or a copolymer.
  • the melting temperature of the semi-crystalline polymer is preferably less than 150 ° C.
  • the melting temperature of the semi-crystalline polymer is preferably greater than or equal to 30 ° C and less than 100 ° C. More preferably, the melting temperature of the semi-crystalline polymer is greater than or equal to 30 ° C and less than 70 ° C.
  • the Semi-crystalline polymers according to the invention are solids at ambient temperature (25 ° C.) and atmospheric pressure (760 mmHg), whose melting temperature is greater than or equal to 30 ° C.
  • the melting point values correspond to the melting point measured using a differential scanning calorimeter (DSC), such as the calorimeter sold under the name DSC 30 by the Mettler company, with a temperature rise of 5 or 10 ° C per minute (The melting point considered is the point corresponding to the temperature of the most endothermic peak of the thermogram).
  • DSC differential scanning calorimeter
  • the semi-crystalline polymer (s) according to the invention preferably have a melting point higher than the temperature of the keratinous support intended to receive said composition, in particular the skin, the lips or the eyelids.
  • the semi-crystalline polymers are advantageously soluble in the fatty phase, especially at least 1% by weight, at a temperature above their melting point.
  • the sequences of the polymers are amorphous.
  • chain or crystallizable block is meant, in the sense of the invention, a chain or sequence which, if it were alone, would pass from the amorphous state to the crystalline state, reversibly, depending on whether it is above or below below the melting temperature.
  • a chain within the meaning of the invention is a group of atoms, during or lateral to the backbone of the polymer.
  • a sequence is a group of atoms belonging to the backbone, a group constituting one of the repeating units of the polymer.
  • the polymer backbone of the semi-crystalline polymers is soluble in the fatty phase at a temperature above their melting point.
  • the crystallizable sequences or chains of the semi-crystalline polymers represent at least 30% of the total weight of each polymer and better still at least 40%.
  • Crystallizable side-chain semi-crystalline polymers are homo- or co-polymers.
  • the semicrystalline polymers of the invention with crystallizable sequences are copolymers, sequential or multisequenced. They can be obtained by reactive (or ethylenic) double bond monomer polymerization or by polycondensation. When the polymers of the invention are crystallizable side chain polymers, the latter are advantageously in random or statistical form.
  • the semi-crystalline polymers of the invention are of synthetic origin.
  • the semi-crystalline polymer is chosen from:
  • homopolymers and copolymers comprising units resulting from the polymerization of one or more monomers bearing crystallizable hydrophobic side chain (s),
  • the semicrystalline polymers that may be used in the invention may be chosen in particular from:
  • polycondensates and in particular of polyester, aliphatic or aromatic or aliphatic / aromatic type,
  • homopolymers or copolymers carrying at least one crystallizable side chain and homopolymers bearing in the backbone at least one crystallizable block such as those described in document US Pat. No. 5,156,91, such as -C 30 ) alkyl polyacrylates corresponding to Intelimer® from Landec described in the brochure "Intelimere polymers", Landec 1 P22 (Rev. 4-97) and for example the product Intelimer® IPA 13-1 from Landec, which is a stearyl polyacrylate with a molecular weight of about 145,000 and a melting temperature of 49 ° C,
  • acrylate / silicone copolymers such as copolymers of acrylic acid and polydimethylsiloxane grafted stearyl acrylate, polydimethylsiloxane grafted stearyl methacrylate copolymers, and polydimethylsiloxane grafted stearyl methacrylate and acrylic acid copolymers, the copolymers of methyl methacrylate, butyl methacrylate, ethyl-2-hexyl acrylate and stearyl methacrylate with polydimethylsiloxane grafts.
  • KP-561 CFA name: acrylates / dimethicone
  • KP-541 CFA name: acrylates / dimethicone and isopropyl alcohol
  • KP-545 CFA name acrylates / dimethicone and cyclopentasiloxane
  • the gelling agent is chosen from polyacrylates resulting from the polymerization of C 10 -C 30 alkyl acrylate (s), preferably of C 14 alkyl acrylate (s). C 2 4, and even more preferably C 18 -C 22 alkyl acrylate (s) .
  • the polyacrylates are polymers of acrylic acid esterified with a fatty alcohol whose saturated carbon chain comprises from 10 to 30 carbon atoms, preferably from 14 to 24 carbon atoms, or a mixture of said fatty alcohols .
  • the fatty alcohol comprises 18 carbon atoms or 22 carbon atoms.
  • the polyacrylates there may be mentioned more particularly stearyl polyacrylate, behenyl polyacrylate.
  • the gelling agent is stearyl polyacrylate or behenyl polyacrylate.
  • Interlimer® ICI name: Poly Cio-C 30 alkyl acrylate
  • the composition according to the invention may comprise at least one dextrin ester.
  • the composition preferably comprises at least one ester of dextrin and fatty acid, preferably C 12 to C 24 , in particular C 14 to C 18 , or mixtures thereof.
  • the dextrin ester is a C 12 -C 18 , in particular C 14 -C 18, fatty acid dextrin ester.
  • the dextrin ester is selected from dextrin myristate and / or dextrin palmitate, and mixtures thereof.
  • the dextrin ester is dextrin myristate, such as that sold especially under the name Rheopearl MKL-2 by Chiba Flour Milling.
  • the dextrin ester is dextrin palmitate. This may for example be chosen from those sold under the names Rheopearl TL® or Rheopearl KL® or Rheopearl® KL2 by the company Chiba Flour Milling.
  • composition according to the invention may comprise at least one ester of inulin and of fatty acid.
  • esters of inulin and fatty acid sold under the names Rheopearl® ISK2 or Rheopearl® ISL2 (INCI name: Stearoyl Inulin) by the company Miyoshi Europe
  • composition according to the invention may comprise at least one ester of glycerol and of fatty acid (s), in particular a mono-, di- or triester of glycerol and of fatty acid (s).
  • ester of glycerol and fatty acid (s) may be used alone or as a mixture.
  • it may be a glycerol ester and a fatty acid or a glycerol ester and a mixture of fatty acids.
  • the fatty acid is selected from the group consisting of behenic acid, isooctadecanoic acid, stearic acid, eicosanoic acid, and mixtures thereof.
  • esters of glycerol and of fatty acid (s) marketed under the names Nomcort HK-G (INCI name: Glyceryl behenate / eicosadioate) and Nomcort SG (INCI name: Glyceryl tribehenate, isostearate, eicosadioate), by the Nisshin Oillio company.
  • polyamides and in particular hydrocarbon polyamides and silicone polyamides may be mentioned in particular.
  • the oily phase of a composition according to the invention may comprise at least one polyamide chosen from hydrocarbon polyamides, silicone polyamides, and mixtures thereof.
  • polyamide means a compound having at least 2 amide repeating units, preferably at least 3 amide repeating units and more preferably 10 amide repeating units.
  • hydrocarbon-based polyamide is meant a polyamide formed essentially or even consisting of carbon and hydrogen atoms, and optionally of oxygen, nitrogen, and not containing a silicon atom or fluorine. It may contain alcohol, ester, ether, carboxylic acid, amine and / or amide groups.
  • this polyamide of the composition according to the invention has a weight average molecular weight of less than 100,000 g / mol, especially ranging from 1,000 to 100,000 g / mol, in particular less than 50,000 g / mol, in particular ranging from 1 000 to 50,000 g / mol, and more preferably from 1,000 to 30,000 g / mol, preferably from 2,000 to 20,000 g / mol, and more preferably from 2,000 to 10,000 g / mol.
  • This polyamide is insoluble in water, especially at 25 ° C.
  • the polyamide used is a polyamide of formula (I):
  • X represents a group -N (R 1 ) 2 or a group -ORi in which R 1 is a linear or branched C 8 -C 2 alkyl radical, which may be identical to or different from one another, R 2 is a C 28 -C 42 diacid dimer residue, R 3 is an ethylene diamine radical, n is 2 to 5; and their mixtures.
  • the polyamide used is an amide-terminated polyamide of formula (Ia):
  • X represents a group -N (R 1 ) 2 in which R 1 is a linear or branched C 8 -C 22 alkyl radical, which may be identical or different from one another, R 2 is a dimer residue diacid C28-C42, R3 is an ethylene diamine radical, n is between 2 and 5; and their mixtures.
  • the fatty phase of a composition according to the invention may furthermore additionally comprise, in this case, at least one additional polyamide of formula (Ib): -CR; ⁇ C- NH -R-7 NH-C-R "-cx
  • X represents a group -ORi in which R 1 is a linear or branched C 8 to C 2 2, preferably C 1 to C 2 2, alkyl radical, which may be identical to or different from each other, R 2 is a diacid dimer residue C 28 - C 42 , R 3 is an ethylene diamine radical, n is between 2 and 5, such as commercial products sold by Arizona Chemical under the names Uniclear 80 and Uniclear 100 or Uniclear 80 V, Uniclear 100 V and Uniclear 100 VG, whose INCI name is "ethylenediamine / stearyl dimer dilinoleate copolymer".
  • the silicone polyamides are preferably solid at room temperature (25 ° C.) and atmospheric pressure (760 mmHg).
  • the silicone polyamides may preferentially be polymers comprising at least one unit of formula III) or (IV):
  • R 4 , R 5 , R 6 and R 7 which may be identical or different, represent a group chosen from:
  • X which are identical or different, represent alkylene di-yl, linear or branched Ci to C 30, possibly containing in its chain one or more oxygen atoms and / or nitrogen,
  • Y is a divalent linear or branched alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene, saturated or unsaturated, d to C 50 group , which may comprise one or more oxygen, sulfur and / or nitrogen atoms, and or substitute one of the following atoms or groups of atoms: fluorine, hydroxy, C 3 -C 8 cycloalkyl, C 1 -C 40 alkyl, C 5 -C 10 aryl, phenyl optionally substituted with 1 to 3 alkyl of -C 3 hydroxyalkyl d -C 3 alkyl and amino d -C 6, or
  • Y represents a group corresponding to the formula
  • T represents a trivalent or tetravalent hydrocarbon group, linear or branched, saturated or unsaturated, C 3 to C 24 optionally substituted with a polyorganosiloxane chain, and which may contain one or more atoms selected from O, N and S, or T represents a trivalent atom selected from N, P and Al, and
  • R 8 represents a linear or branched C 1 -C 5 alkyl group, or a polyorganosiloxane chain, which may comprise one or more ester, amide, urethane, thiocarbamate, urea, thiourea and / or sulphonamide groups which may or may not be bonded; to another polymer chain,
  • N is an integer from 2 to 500, preferably from 2 to 200 and m is an integer from 1 to 1000, preferably from 1 to 700 and more preferably from 6 to 200.
  • the silicone polyamide comprises at least one unit of formula (III) in which m is from 50 to 200, in particular from 75 to 150, and preferably of the order of 100.
  • R 4 , R 5 , R 6 and R 7 independently represent a linear or branched C 1 to C 40 alkyl group, preferably a CH 3 , C 2 H 5 , n C 3 H 7 or isopropyl group in the formula formula (III).
  • a silicone polymer which can be used, mention may be made of one of the silicone polyamides obtained according to Examples 1 to 3 of US Pat. No. 5,981,680. Mention may be made of the compounds marketed by Dow Corning under the name DC 2-8179. (DP 100) and DC 2-8178 (DP 15) whose INCI name is "nylon61 / dimethicone copolymers" ie nylon-61 / dimethicone copolymers.
  • the silicone polymers and / or copolymers advantageously have a transition temperature of the solid state in the liquid state ranging from 45 ° C. to 190 ° C. Preferably, they have a solid state transition temperature in the liquid state of from 70 ° C to 130 ° C and more preferably from 80 ° C to 105 ° C.
  • hydrocarbon block copolymers also called block copolymers, are chosen from those capable of thickening or gelling the fatty phase of the composition.
  • amorphous polymer is meant a polymer that does not have a crystalline form.
  • the polymeric gelling agent is preferably also film-forming, that is to say that it is capable of forming a film when it is applied to the skin and / or the lips.
  • the hydrocarbon block copolymer may in particular be a diblock, triblock, multiblock, radial or star copolymer, or mixtures thereof. Such hydrocarbon block copolymers are described in application US-A-2002/005562 and in US-A-5 221 534.
  • the copolymer may have at least one block whose glass transition temperature is preferably less than 20. ° C, preferably less than or equal to 0 ° C, preferably less than or equal to -20 ° C, more preferably less than or equal to -40 ° C.
  • the glass transition temperature of said block may be between -150 ° C. and 20 ° C., in particular between -100 ° C. and 0 ° C.
  • the hydrocarbon block copolymer present in the composition according to the invention is an amorphous copolymer formed by polymerization of an olefin.
  • the olefin may in particular be an ethylenically unsaturated elastomeric monomer.
  • ethylenic carbide monomers especially having one or two ethylenic unsaturations, having from 2 to 5 carbon atoms, such as ethylene, propylene, butadiene, isoprene or pentadiene. .
  • the hydrocarbon-based block copolymer is an amorphous block copolymer of styrene and olefin.
  • block copolymers comprising at least one styrene block and at least one block comprising units selected from butadiene, ethylene, propylene, butylene, isoprene or a mixture thereof.
  • the hydrocarbon block copolymer is hydrogenated to reduce the residual ethylenic unsaturations after polymerization of the monomers.
  • the hydrocarbon-based block copolymer is a copolymer, optionally hydrogenated, with styrene blocks and with ethylene / C 3 -C 4 alkylene blocks.
  • the composition according to the invention comprises at least one diblock copolymer, preferably hydrogenated, preferably chosen from styrene-ethylene / propylene copolymers, styrene / butadiene copolymers and styrene-ethylene copolymers. / butylene.
  • Diblock polymers are in particular sold under the name Kraton® G1701 E by Kraton Polymers.
  • a diblock copolymer such as those described above, in particular a diblock copolymer of styrene / propylene, or a mixture of diblock, as described above, is used as polymeric gelling agent.
  • a composition according to the invention comprises, as lipophilic gelling agent, at least one hydrocarbon-based block copolymer, preferably a copolymer, optionally hydrogenated, with styrene blocks and with ethylene / C 3 -C 4 alkylene blocks, more preferably selected from a diblock copolymer, preferably hydrogenated, such as a styrene / propylene copolymer, a styrene-ethylene / butadiene copolymer
  • EstoGel M (INCI: CASTOR OIL / IPDI COPOLYMER & CAPRYLIC / CAPRIC TRIGLYCERIDE) marketed by the company Polymer Expert.
  • the content of lipophilic agent (s) having suspensive power is between 0.5% and 99.50%, preferably between 1.5% and 70%, especially between 2.5% and 60%, and preferably between 3% and 50%, or even between 1% and 8%, and more preferably between 2.5% and 6%, by weight relative to the total weight of the fatty phase, or even with respect to the total weight of the composition .
  • the fatty phase of a composition according to the invention may further comprise at least one oil.
  • the fatty phase may therefore comprise a single oil or a mixture of several oils.
  • the fatty phase according to the invention may therefore comprise at least one, at least two, at least three, at least four, at least five or more of oil (s) as described above. after.
  • oil means a fatty substance that is liquid at room temperature (25 ° C.).
  • oils that can be used in the composition of the invention, mention may be made for example of:
  • hydrocarbon oils of plant origin in particular as described below;
  • hydrocarbon oils of animal origin such as perhydrosqualene and squalane
  • esters and synthetic ethers in particular of fatty acids, such as the oils of formulas R 1 COOR 2 and RiOR 2 in which R 1 represents the residue of a C 8 to C 29 fatty acid, and R 2 represents a branched or unbranched C 3 -C 30 hydrocarbon-based chain, such as, for example, purcellin oil, isononyl isononanoate, isodecyl neopentanoate, isopropyl myristate, ethyl-2- palmitate, hexyl, octyl-2-dodecyl stearate, octyl-2-dodecyl erucate, isostearyl isostearate; hydroxylated esters such as isostearyl lactate, octyl hydroxystearate, octyldodecyl hydroxystearate, diisostearyl malate, triisocetyl citrate, heptan
  • silicone oils for example volatile or non-volatile polymethylsiloxanes (PDMSs) with a linear or cyclic silicone chain, which are liquid or pasty at room temperature, in particular cyclopolydimethylsiloxanes (cyclomethicones) such as cyclohexasiloxane and cyclopentasiloxane; polydimethylsiloxanes (or dimethicones) comprising alkyl, alkoxy or phenyl groups, during or at the end of the silicone chain, groups having from 2 to 24 carbon atoms; phenyl silicones such as phenyltrimethicones, phenyldimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenyl-dimethicones
  • fatty alcohols having from 8 to 26 carbon atoms such as cetyl alcohol, stearyl alcohol and their mixture (cetylstearyl alcohol), or alternatively octyldodecanol;
  • the oil is chosen from esters and synthetic ethers, preferably esters of formula R 1 COOR 2 , in which R 1 represents the residue of a C 8 to C 2 fatty acid. and R 2 represents a hydrocarbon chain, branched or unbranched, C 3 to C 30 .
  • the oil is chosen from fatty alcohols having from 8 to 26 carbon atoms.
  • the oil is chosen from hydrocarbon oils having from 8 to 16 carbon atoms, and especially branched alkanes, C 8 -C 6 (also known as isoparaffins or isoalkanes), for instance isododecane (also known as 2-méthylundécane) isodecane, isohexadecane and, for example, the oils sold under the trade names Isopar ® or Permethyls® ®.
  • hydrocarbon oils having from 8 to 16 carbon atoms, and especially branched alkanes, C 8 -C 6 (also known as isoparaffins or isoalkanes), for instance isododecane (also known as 2-méthylundécane) isodecane, isohexadecane and, for example, the oils sold under the trade names Isopar ® or Permethyls® ®.
  • the fatty phase of the compositions of the invention comprises an oil chosen from silicone oils.
  • the fatty phase does not include other oils other than silicone oils.
  • the oils present in the fatty phase are silicone oils.
  • a composition according to the invention comprises at least 1% by weight of oil (s) relative to the total weight of said composition.
  • a composition according to the invention in particular the fatty phase of the compositions of the invention, does not comprise polydimethylsiloxane (PDMS), and preferably does not comprise silicone oil.
  • PDMS polydimethylsiloxane
  • composition according to the invention does not comprise vegetable oil.
  • the fatty phase of the compositions according to the invention comprises at least one hydrocarbon oil of plant origin.
  • vegetable oils that may be mentioned include liquid triglycerides of C 4 -C 10 fatty acids, such as triglycerides of heptanoic or octanoic acids, or, for example, sunflower, corn, soybean, pumpkin and seed oils.
  • caprylic / Capric Triglyceride such as those marketed by the company Stearineries Dubois or those available under the trade names "Miglyol 810", “Miglyol 812” and “Miglyol 818” by the company Dynamit Nobel, jojoba oil, shea butter oil, and mixtures thereof.
  • the vegetable oil is chosen from those rich in polyunsaturated fatty acids.
  • unsaturated fatty acid means a fatty acid comprising at least one double bond. It is more particularly long chain fatty acids, that is to say can have more than 14 carbon atoms.
  • the unsaturated fatty acids may be in acid form, or in salt form, for example their calcium salt, or in the form of derivatives, especially fatty acid ester (s).
  • the continuous fat phase comprises at least one non-volatile oil.
  • non-volatile is meant an oil whose vapor pressure at ambient temperature and atmospheric pressure is non-zero and less than 0.02 mm Hg (2.66 Pa) and better still less than 10 -3 mm Hg (0.13 Pa).
  • non-volatile oils chosen from silicone oils, fluorinated oils or their mixtures, and more particularly from non-volatile, non-phenylated silicone oils; phenylated nonvolatile silicone oils, with or without at least one dimethicone fragment; the oils fluorinated; or mixtures thereof, or non-volatile polar hydrocarbon oils, in particular chosen from non-volatile oils comprising at most one free or non-free hydroxyl group, or from non-volatile oils comprising at least two free hydroxyl groups, or non-volatile hydrocarbon oils apolar.
  • non-volatile, non-phenyl silicone oils include polydimethylsiloxanes; alkyldimethicones; vinylmethylmethicones; and also silicones modified with aliphatic groups and / or with functional groups such as hydroxyl, thiol and / or amine groups.
  • nonvolatile polar hydrocarbon oils there may be mentioned ester oils as described above.
  • non-volatile apolar hydrocarbon oils mention may be made of linear or branched hydrocarbons of mineral or synthetic origin, such as:
  • Parleam ® sold by NIPPON OIL FATS
  • Viseal 20000 sold or manufactured by the SYNTEAL company
  • the PARLEAM LITE marketed by NOF Corporation
  • decene / butene copolymers polybutene / polyisobutene copolymers, in particular Indopol L-14,
  • the oil is chosen from the group consisting of isononyl isononanoate, dimethicone, polybutene, hydrogenated or not, diisostearyl malate, and mixtures thereof.
  • the oil content (s) is between 0.5% and 99% by weight relative to the total weight of the fatty phase of said composition.
  • the oil content (s) is greater than 70%, especially greater than 80%, or even greater than 90%, by weight relative to the weight of the fatty phase.
  • the fatty phase of the composition according to the invention remains perfectly transparent, this transparency being unapproachable with conventional gloss / lipstick. in the form of inverse emulsions.
  • This is also an advantage over an emulsion with an anionic polymer co-polymer (carbomer) / cationic polymer (amodimethicone) obtained via a microfluidic process, as described in particular in the application WO 2012/120043, where the amodimethicone tends to "disturb »The oily phase.
  • the aqueous phase and / or the fatty phase may further comprise at least one additional compound other than hydrophilic gelling agents, lipophilic agents having suspensive power and oils, or even anionic and cationic polymers, mentioned above. .
  • a composition according to the invention in particular the aqueous phase and / or the fatty phase of said composition, can thus additionally comprise, as additional compound, powders, flakes, coloring agents, in particular chosen from water-soluble or non-fat-soluble coloring agents, whether or not organic or inorganic, pigments, optical effect materials, liquid crystals, and mixtures thereof, particulate agents insoluble in the fatty phase, emulsifying and / or non-emulsifying silicone elastomers , especially as described in the application EP 2 353 577, preservatives, humectants, stabilizers, chelators, emollients, agents modifiers selected from pH, osmotic strength agents and / or refractive index modifiers etc. or any conventional cosmetic additive, and mixtures thereof.
  • coloring agents in particular chosen from water-soluble or non-fat-soluble coloring agents, whether or not organic or inorganic, pigments, optical effect materials, liquid crystals, and mixtures thereof, particulate agents insoluble in the fatty phase,
  • a composition according to the invention in particular the aqueous phase and / or the fatty phase of said composition, may furthermore comprise at least one active agent, in particular a biological or a cosmetic active agent, preferably chosen from moisturizing agents, healing agents, depigmenting agents, UV filters, desquamating agents, antioxidants, active agents stimulating the synthesis of dermal and / or epidermal macromoleculars, dermodecontracting agents, antiperspirants, soothing agents, anti-inflammatory agents, age, perfuming agents and their mixtures.
  • active agent in particular a biological or a cosmetic active agent, preferably chosen from moisturizing agents, healing agents, depigmenting agents, UV filters, desquamating agents, antioxidants, active agents stimulating the synthesis of dermal and / or epidermal macromoleculars, dermodecontracting agents, antiperspirants, soothing agents, anti-inflammatory agents, age, perfuming agents and their mixtures.
  • active agent in particular a biological or a cosmetic active agent, preferably chosen from moisturizing agents
  • the fatty phase may further comprise at least one hydrophobic film-forming polymer, in particular as described in application FR 3025100 or WO 2016/030842, and for example the polymer sold under the names FA 4002 ID (TIB 4 -202) or FA 4001 CM (TIB 4-230) by Dow Corning.
  • the presence of such a polymer makes it possible to improve the resistance over time, in particular the gloss resistance over time, and if necessary while maintaining a viscosity of the fatty phase compatible with the microfluidic device.
  • it makes it possible to reduce the migration phenomena of the composition applied to a keratin material, in particular the skin or the eyelids.
  • the content by weight of hydrophobic polymer (s) film (s) is between 0.1% and 40%, in particular between 0.2% and 20%, preferably between 0, 5% and 15%, based on the weight of the fatty phase.
  • a composition according to the invention does not comprise a hydrophilic film-forming polymer, in particular such as described in FR 3 025 100, and / or tackifying resin, in particular such as described in FR 3 025 099.
  • any additional compound (s) and / or active (s) mentioned above and / or their respective amounts so that the advantageous properties of the composition according to the invention do not are not or not substantially impaired by the addition envisaged.
  • the nature and / or the amount of the additional compound (s) and / or active (s) depends (s) on the aqueous nature or fat of the phase considered of the composition according to the invention.
  • a composition according to the invention comprises at least one coloring agent.
  • the aqueous phase and / or the fatty phase comprises / comprise at least one coloring agent.
  • the fatty phase of a composition according to the invention comprises at least one coloring agent
  • said composition has a compromise "transparency / coloring lips" advantageous. Indeed, in the presence of such a coloring agent, the dispersion is colored but has a transparency such that the spheres (S1) remain perfectly visible. On application, the coloration of the lips is real, which may seem surprising, given the transparency of the composition before application.
  • coloring agent or “coloring agent” is intended to mean a material intended to give the composition a coloration, and in particular a durable coloration.
  • coloring is meant for example white, black, and any other color of the visible spectrum, such as blue, red, yellow ... optionally in iridescent, shiny or any other known forms.
  • coloring agent in the sense of the present invention, a compound capable of producing a colored optical effect when it is formulated in sufficient quantity in a suitable cosmetic medium.
  • a composition according to the invention comprises at least one coloring agent chosen from water-soluble or non-fat-soluble, organic or inorganic, liposoluble or non-soluble dyes, optical effect materials, liquid crystals, and mixtures thereof.
  • water-soluble coloring agent is intended to mean any generally organic compound, natural or synthetic, soluble in an aqueous phase or water-miscible and colorable solvents.
  • water-soluble the ability of a compound to solubilize in water, measured at 25 ° C., at a concentration of at least 0.1 g / l (obtaining a macroscopically isotropic and transparent solution, colored or not). This solubility is in particular greater than or equal to 1 g / l.
  • a coloring agent according to the invention is preferably chosen from pigments, dyes, liquid crystals and their mixtures.
  • the coloring agent is chosen from dyes.
  • the dyes are typically essentially soluble in their environment of use, as defined in particular in DIN 55944 (December 201 1).
  • the coloring agent according to the invention is chosen from optically effective materials.
  • the particles with a metallic sheen that can be used in the invention are in particular chosen from:
  • particles comprising an organic or inorganic substrate, monomaterial or multimaterial, at least partially covered by at least one metal-reflecting layer comprising at least one metal and / or at least one metal derivative, and
  • metals that may be present in said particles, mention may be made, for example, of Ag, Au, Cu, Al, Ni, Sn, Mg, Cr, Mo, Ti, Zr, Pt, Va, Rb, W, Zn, Ge, Te. Se and their mixtures or alloys.
  • Ag, Au, Cu, Al, Zn, Ni, Mo, Cr, and mixtures or alloys thereof are preferred metals.
  • Metal derivatives means compounds derived from metals, in particular oxides, fluorides, chlorides and sulphides.
  • the coloring agent according to the invention is chosen from liquid crystals.
  • liquid crystal or “liquid crystal type dye” means liquid crystals dyeing the composition, that is to say providing a coloration to said composition as specified above.
  • the liquid crystals are typically characterized by an intermediate state between the crystalline phase, where there is a three-dimensional positional order and the liquid phase where no order exists.
  • the color effect of the fat phase can be achieved by the implementation of naturally colored oil (s), such as Rocou oil, Lipocarotte, or gremil extract from the dyers.
  • s naturally colored oil
  • the aqueous phase of a composition of the invention comprises between 0.0001% and 15% by weight of agent (s) dye (s), preferably dye (s), relative to weight of the aqueous phase.
  • the fatty phase of a composition of the invention comprises between 0.0001% and 15% by weight of agent (s) dye (s), preferably dye (s), relative to weight of the fatty phase.
  • a composition according to the invention comprises less than 2%, in particular less than 1%, preferably less than 0.5%, and in particular less than 0.1% by weight of pigments relative to the total weight of said composition.
  • a composition according to the invention in particular the fatty phase, is devoid of pigments.
  • the aqueous phase and / or the fatty phase comprises at least one coloring agent, in particular at least one dye
  • said aqueous phase and / or said fatty phase preferably at least the fatty phase additionally comprises UV sunscreens, so as to prevent / avoid changes in unwanted hues.
  • the aqueous phase may further comprise glycerine.
  • a composition of the invention comprises at least 2%, preferably at least 5%, in particular at least 10%, in particular at least 20%, or at least 30%, or even at least 40%, or at least less than 50% by weight of glycerin relative to the weight of the aqueous phase.
  • the limits of the formulation are therefore pushed back with this type of raw material without altering the finish on the keratin material.
  • the aqueous phase comprises an intermediate phase, the intermediate phase being placed in contact with the fatty phase, and at least one internal phase disposed in the intermediate phase.
  • Such an embodiment corresponds to spheres with a "drop-in-drop" architecture.
  • the internal phase is disposed completely away from the fatty phase, the intermediate phase being interposed between the or each internal phase and the fatty phase.
  • the intermediate phase is therefore characterized by the aqueous phase as described above.
  • the inner phase may be hydrophilic or lipophilic in nature.
  • the inner phase can be solid or liquid at room temperature and atmospheric pressure.
  • the internal phase may further comprise at least one gelling agent and / or any additional compound / active agent, especially as described above.
  • the aqueous phase may be in the form of a direct emulsion (oil-in-water), the said emulsion comprising a continuous aqueous phase and a dispersed fatty phase in the form of drops (G 2), the size of the drops (G 2) being necessarily less than the size of the spheres (S1).
  • the size of the drops (G2) is less than 500 ⁇ , preferably less than 400 ⁇ , in particular less than 300 ⁇ , better than 200 ⁇ , in particular less than 100 ⁇ , or even less than 20 ⁇ , and better than 10 ⁇ .
  • the size of the drops (G2) is between 0.1 ⁇ and 200 ⁇ , preferably between 0.25 ⁇ and 100 ⁇ , in particular between 0.5 ⁇ and 50 ⁇ , preferably between 1 ⁇ and 20 ⁇ . , and better between 1 ⁇ and 10 ⁇ , or even between 3 ⁇ and 5 ⁇ ;
  • the fatty phase may be in the form of an inverse emulsion (water-in-oil), the said emulsion comprising a continuous fatty phase and an aqueous phase dispersed in the form of drops (G3), the size of the drops (G3); preferably being microscopic.
  • the droplet size (G3) is less than 500 ⁇ , preferably less than 400 ⁇ , in particular less than 300 ⁇ , better than 200 ⁇ , in particular less than 100 ⁇ , or even less than 20 ⁇ , and better than 10 ⁇ .
  • the size of the drops (G3) is between 0.1 ⁇ and 200 ⁇ , preferably between 0.25 ⁇ and 100 ⁇ , in particular between 0.5 ⁇ and 50 ⁇ , preferably between 1 ⁇ and 20 ⁇ . , and better between 1 ⁇ and 10 ⁇ , or even between 3 ⁇ and 5 ⁇ .
  • the drops (G2) and / or (G3) comprise a bark formed of at least one anionic polymer, in particular a carbomer, and at least one cationic polymer, in particular an amodimethicone, said anionic and cationic polymers being as defined above.
  • the drops (G2) and / or (G3) are not macroscopic, and are therefore microscopic, that is to say, not visible to the naked eye.
  • the drops (G2) and / or (G3) are different and independent of the spheres (S1).
  • drops (G2) and / or (G3) of reduced size allow to have an effect on the texture.
  • a composition according to the invention comprising such drops (G2) and / or (G3) finely dispersed has yet improved lubricity qualities.
  • a composition according to the invention comprising drops (G2) and / or (G3) spread easily on a keratinous material, in particular the lips. This texture is particularly advantageous and surprising to the skilled person.
  • a composition according to the invention is mainly dedicated to the makeup and / or care of keratin materials, in particular the lips and / or the eyelids.
  • Those skilled in the art will be able to make the adjustments in terms of the nature and / or quantity of the raw materials to focus the composition according to the invention on the makeup or care of keratin materials, in particular with regard to the choice of oils that may be used. implemented in the fatty phase.
  • compositions according to the invention can be prepared by various methods.
  • a composition according to the invention is advantageously produced in a single step in that there is no prior step of forming the spheres (S1) before mixing with the suspensive fatty phase, which is advantageous on the industrial level.
  • compositions according to the invention have the advantage of being able to be prepared according to a simple "non-microfluidic" method, namely by simple emulsification.
  • a simple emulsion an aqueous solution and a fat solution (or oily) are prepared separately.
  • microfluidic in particular as described in international applications WO 2012/120043 or WO 2015/055748, and in particular in "jet jet” mode (in English: jetting).
  • jet jet in English: jetting
  • drip in English: dripping
  • an internal fluid IF
  • an external fluid OF
  • the fluid (IF) comprises at least one hydrophilic gelling agent and water, and additionally, optionally, at least one additional component as mentioned above.
  • the fluid (OF) comprises at least one lipophilic agent having suspensive power, preferably at least one oil, and in addition, optionally, at least one additional component as mentioned above.
  • the process for preparing a composition according to the invention comprises a step of contacting a fluid (IF) and a fluid (OF) as defined above.
  • the step of contacting the fluids (IF) and (OF) must be with an aqueous phase and / or a fatty phase previously heated to a temperature assuring them a liquid character sufficient for:
  • the preparation method an emulsion according to the invention may require the implementation of at least fluid (IF) and / or (OF) at a temperature of 40 ° C to 150 ° C.
  • the fluid (IF) and / or (OF) can be heated at a temperature of from 40 ° C to 150 ° C.
  • the microfluidic device as such is advantageously heated to a temperature of 40 ° C to 150 ° C.
  • compositions according to the invention can in particular be used in the cosmetics field.
  • They may comprise, in addition to the aforementioned ingredients, at least one physiologically acceptable medium.
  • physiologically acceptable medium is meant a medium which is particularly suitable for the application of a composition of the invention to keratin materials, in particular the skin, the lips, the nails, the eyelashes or the eyebrows, and preferably the skin.
  • the physiologically acceptable medium is generally adapted to the nature of the medium to which the composition is to be applied, as well as to the appearance under which the composition is to be packaged.
  • the physiologically acceptable medium is the aqueous continuous phase as described above.
  • the cosmetic compositions are used for the makeup and / or care of keratin materials, especially the skin.
  • the cosmetic compositions according to the invention may be skincare, sun protection, cleaning (makeup removal), hygiene or make-up products for the skin.
  • compositions are therefore intended to be applied especially to the skin.
  • the present invention also relates to the non-therapeutic cosmetic use of a cosmetic composition mentioned above, as a makeup, hygiene, cleaning and / or care product for keratinous substances, in particular the skin.
  • the compositions of the invention are in the form of a foundation, a makeup remover, a facial and / or body and / or hair care, anti age, a sunscreen, a oily skin care, a whitening care, a moisturizer, a BB cream, tinted cream or foundation, a face and / or body cleanser , a shower gel or a shampoo.
  • a care composition according to the invention can be in particular a solar composition, a care cream, a serum or a deodorant.
  • compositions according to the invention may be in various forms, in particular in the form of cream, balm, lotion, serum, gel, gel-cream or mist.
  • compositions according to the invention are intended to be applied to the lips or the eyelids.
  • compositions according to the invention are in the form of gloss (or lip gloss), lipstick, concrete, eyeliners or eye gloss.
  • the present invention also relates to a non-therapeutic method for the cosmetic treatment of a keratin material, in particular the lips and / or the eyelids, comprising at least one step of applying to said keratin material at least one composition as defined herein. -above.
  • the present invention relates to a non-therapeutic method for the cosmetic treatment of the skin, in particular the lips and / or the eyelids, comprising a step of applying to the skin at least one layer of a cosmetic composition as defined above.
  • A2 is added to the mixture a) without stirring and allowed to stand for 15 minutes until hydration of B2; then, stirring until a homogeneous mixture is obtained, c) adding A3 to the mixture b) with stirring until a homogeneous mixture is obtained, so as to obtain aqueous NF.
  • aqueous NF is added at 85 ° C. in the oily filler at 85 ° C. with stirring, and c) when the mixture b) is at 40 ° C., C is added with stirring.
  • the eye gloss according to Example 1 has both a high gloss and hydration capabilities, freshness and comfort to the application particularly satisfactory. This satisfactory degree of gloss is accompanied by a good behavior over time and a feeling in terms of tackiness and curbing the acceptable application.
  • composition according to Example 2 is a transparent lip gloss formulation obtained by a microfluidic method in dripping mode.
  • composition according to Example 3 is a lip gloss formula for the lipids in the fatty phase and obtained by a microfluidic method in dripping mode.
  • composition according to Example 4 is a lip gloss formula for the aqueous phase colored lips obtained by a microfluidic method in dripping mode.
  • composition according to Example 5 is a gloss formula for the lips obtained by a microfluidic process in jetting mode.
  • compositions according to Examples 2 to 5 are obtained by a microfluidic process, namely a double-wall microfluidic nozzle as described in WO2012 / 120043, the internal diameter of the outlet of the nozzle is 0.8 mm.
  • the parameters are as follows:
  • Dripping Dripping Dripping Jetting Dripping In addition to a new visual linked to the presence of macroscopic aqueous bubbles in the oily continuous phase and a transparency / translucency of the compositions, these lip gloss compositions have both a high gloss and hydration, freshness and comfort to the application particularly satisfactory. This degree of satisfactory gloss is accompanied by a good behavior over time without a feeling of stickiness or braking application nor braking application.
  • composition according to Example 6 has an oily continuous phase with a satisfactory transparency.
  • the mixture is heated (a) to 80 ° C. and, on the other hand, the A2 are heated to 80 ° C.
  • Example 7 The composition according to Example 7 is obtained according to a microfluidic process, namely a double-wall microfluidic nozzle as described in WO2012 / 120043, the internal diameter of the outlet of the nozzle is 0.8 mm.
  • composition according to Example 7 is in the form of a perfume concrete at room temperature (RT).
  • Example 8 The composition according to Example 8 is obtained according to a microfluidic process, namely a double-skin microfluidic nozzle as described in WO 2012/120043.
  • composition according to Example 8 is in the form of a serum at room temperature (RT).
  • this composition In addition to a new visual linked to the presence of macroscopic aqueous bubbles in the oily continuous phase, this composition has both a texture and a satisfactory sensoriality.
  • a composition according to Example 8 was also carried out without amodimethicone in the oily phase, with a visual, a texture and a satisfactory sensoriality.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Insects & Arthropods (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne une composition, notamment cosmétique, comprenant une phase grasse et une phase aqueuse, ladite phase aqueuse étant sensiblement immiscible avec la phase grasse, à température ambiante et à pression atmosphérique, dans laquelle : - la phase aqueuse est sous forme de sphères (S1) solides à température ambiante et pression atmosphérique, comprenant au moins un agent gélifiant hydrophile, de préférence thermosensible, et - la phase grasse comprend au moins un agent lipophile ayant un pouvoir suspensif, de préférence thixotrope, de préférence une silice hydrophobe.

Description

COMPOSITIONS COMPRENANT UNE PHASE GRASSE ET UNE PHASE AQUEUSE SOUS FORME DE SPHÈRES SOLIDES
La présente invention a pour objet des compositions, notamment cosmétiques, comprenant une phase grasse et une phase aqueuse, ladite phase aqueuse étant sous forme de sphères solides. Elle a également pour objet l'utilisation cosmétique desdites compositions, notamment pour le maquillage et/ou le soin des matières kératiniques, en particulier des lèvres et/ou des paupières.
Un problème récurrent avec des compositions cosmétiques de type gloss (ou brillant à lèvres), rouges à lèvres, eyeliners et eye gloss, est leur caractère collant et/ou leur faible capacité à hydrater les lèvres ou les paupières en continu. Cela s'explique par leur caractère majoritairement anhydre. En effet, il est difficile de maintenir l'eau sous une forme stabilisée dans de telles compositions.
Egalement, de telles compositions classiques de type gloss, rouges à lèvres, eyeliners et eye gloss, qui confèrent un degré élevé de brillance sur la surface des lèvres ou des paupières, nécessitent la présence de fluides de silicone dans la composition. Les silicones liquides sont connues pour leurs indices de réfraction élevés qui fournissent brillance. Cependant, il y a un souhait de s'affranchir de la mise en œuvre de ces types de fluides de silicone, compte tenu de leurs profils environnementaux pauvres et en ce qu'ils sont relativement coûteux.
Il existe donc à ce jour un besoin pour de nouvelles compositions, ayant à la fois une brillance élevée et des capacités d'hydratation, de fraîcheur et de confort à l'application satisfaisantes, de préférence dénuées d'huiles de silicone.
La présente invention a pour but de fournir une composition, notamment cosmétique, et en particulier de type gloss, rouges à lèvres, concrètes, eyeliners et eye gloss, ayant à la fois une brillance élevée et des capacités d'hydratation, de fraîcheur et de confort à l'application satisfaisantes.
La présente invention a également pour but de fournir une composition, notamment cosmétique, et en particulier de type gloss, rouges à lèvres, concrètes, eyeliners et eye gloss, présentant un degré de brillance satisfaisant tout en étant capable de conférer une bonne tenue dans le temps avec un collant moindre, une bonne hydratation ainsi qu'une fraîcheur et un confort à l'application. La présente invention a également pour but de fournir une telle composition dénuée d'huile de silicone.
La présente invention a également pour but de fournir une composition, notamment cosmétique, et en particulier de type gloss, rouges à lèvres, eyeliners et eye gloss, présentant une hydratation immédiate à l'application, et pouvant durer jusqu'à plus de six heures après l'application.
La présente invention a également pour but de fournir une composition permettant de stabiliser dans le temps une phase aqueuse dispersée dans une phase grasse sans recourir nécessairement à des systèmes de stabilisation classiques, par exemple de type membrane, écorce ou coacervat, à l'interface entre la phase grasse et la phase aqueuse.
Selon un mode de réalisation particulier, la présente invention a également pour but de fournir une composition, notamment cosmétique, et en particulier de type gloss, rouges à lèvres, eyeliners et eye gloss, comprenant une phase grasse transparente ou tout du moins translucide.
Ainsi, la présente invention concerne une composition, notamment cosmétique, comprenant une phase grasse et une phase aqueuse, ladite phase aqueuse étant sensiblement immiscible avec la phase grasse, à température ambiante et à pression atmosphérique, dans laquelle :
- la phase aqueuse est sous forme de sphères (S1 ) solides à température ambiante et pression atmosphérique, comprenant au moins un agent gélifiant hydrophile, de préférence thermosensible, et
- la phase grasse comprend au moins un agent lipophile ayant un pouvoir suspensif, de préférence thixotrope, de préférence une silice hydrophobe.
Selon l'invention, un agent est dit thixotrope si sous contrainte (ou gradient de vitesse) constante, la viscosité apparente de la phase comprenant ledit agent diminue au cours du temps. La propriété physique de la thixotropie est donc :
- laissée au repos prolongé, la phase thixotrope va se restructurer (sa viscosité augmente) ;
- sous contrainte suffisamment élevée pour casser la structure formée au repos, la phase peut s'écouler et se déstructurer. Sa viscosité baisse avec la progression de la déstructuration.
Une composition selon l'invention se présente donc sous forme d'une dispersion de sphères (S1 ) dans la phase grasse. Une composition selon l'invention comprend donc une phase aqueuse dans une phase grasse continue, la phase aqueuse étant non miscible avec la phase grasse, à température ambiante (par exemple T=25°C ± 2°C) et à pression atmosphérique (760 mm de Hg, soit 1 ,013.105 Pa ou 1 013 mbar).
Il a été constaté de façon surprenante que les compositions selon l'invention combinent des propriétés satisfaisantes en termes de brillance et de tenue dans le temps ainsi qu'une bonne hydratation (hydratation immédiate), une fraîcheur et un confort à l'application sur les matières kératiniques (notamment collant moindre et non freinant). En outre, l'hydratation est d'autant plus intéressante qu'elle est immédiate à l'application et dure jusqu'à plus de 6 heures après application.
Ainsi, une composition selon l'invention est une nouvelle alternative pour stabiliser dans le temps une phase aqueuse dispersée dans une phase grasse sans recourir nécessairement à des systèmes de stabilisation classiques, par exemple de type membrane, écorce, coacervat, à l'interface entre la phase grasse et la phase aqueuse.
La stabilité dans le temps des sphères (S1 ) est d'autant plus intéressante et inédite quand elles sont macroscopiques. Lorsque les sphères (S1 ) sont macroscopiques, on obtient un visuel différenciant, en particulier dans le domaine des compositions cosmétiques de type gloss, rouges à lèvres, eyeliners et eye gloss.
Selon un mode de réalisation, à température ambiante, c'est-à-dire à une température égale à 25°C ± 2°C, la composition selon l'invention n'est pas un mélange macroscopiquement homogène.
Selon l'invention, c'est la combinaison entre l'agent gélifiant hydrophile et l'agent lipophile ayant un pouvoir suspensif qui permet de stabiliser la composition selon l'invention, et en particulier de prévenir et/ou d'éviter la coalescence des sphères (S1 ) entre elles et le crémage des sphères (S1 ) dans la phase grasse.
Une composition selon l'invention est de préférence dénuée de tensioactif. Elles se différencient donc des compositions cosmétiques usuelles.
Une composition selon l'invention est une composition topique, et donc non orale. De préférence, une composition selon l'invention n'est pas une composition alimentaire. De préférence, une composition selon l'invention est translucide, voire transparente.
La propriété de transparence ou de translucidité de la composition selon l'invention est déterminée de la façon suivante : on coule la composition à tester dans un pot Volga 30ml_, on laisse la composition pendant 24h à température ambiante et on place en dessous une feuille blanche sur laquelle est tracée au feutre noir une croix d'environ 2mm d'épaisseur. Si la croix est visible à l'œil nu à la lumière du jour à une distance d'observation de 40 cm, la composition est transparente ou translucide.
Cet aspect transparent ou translucide est très satisfaisant, notamment pour la consommatrice, d'un point de vue esthétique et peut, de ce fait, être d'un grand intérêt commercial.
Viscosité
La viscosité des compositions selon l'invention peut varier de façon importante ce qui permet d'obtenir des textures variées.
En particulier la palette de viscosité atteignable est telle qu'une composition selon l'invention dédiée au maquillage et/ou au soin des matières kératiniques, en particulier des lèvres et/ou des paupières, peut être un gloss, un rouge à lèvres, un eyeliners et un eye gloss.
Selon un mode de réalisation, la composition selon l'invention a une viscosité comprise entre 1 mPa.s et 500 000 mPa.s, de préférence entre 10 mPa.s et 300 000 mPa.s, et mieux entre 1 000 mPa.s et 100 000 mPa.s, telle que mesurée à 25°C.
En particulier, une composition selon l'invention de type gloss a une viscosité comprise entre 1 000 mPa.s et 20 000 mPa.s, de préférence entre 2 000 mPa.s et 15 000 mPa.s, et mieux entre 5 000 mPa.s et 10 000 mPa.s, telle que mesurée à 25°C.
De préférence, une composition selon l'invention de type gloss a une viscosité inférieure à 20 000 mPa.s, mieux inférieure à 15 000 mPa.s, et plus particulièrement inférieure ou égale à 10 000 mPa.s.
La viscosité est mesurée à température ambiante, par exemple T=25°C ± 2°C et à pression ambiante, par exemple 1 013 mbar, par la méthode décrite ci-après.
On utilise un viscosimètre de type Brookfield, typiquement un viscosimètre numérique Brookfield RVDV-E (couple de torsion du ressort de 7187,0 dyne-cm), qui est un viscosimètre rotationnel à vitesse imposée muni d'un mobile (désigné par le terme anglais « Spindle »). Une vitesse est imposée au mobile en rotation et la mesure du couple exercé sur le mobile permet de déterminer la viscosité en connaissant les paramètres de géométrie/forme du mobile utilisé.
On utilise par exemple un mobile de taille No. 05 (référence Brookfield: RV5). Le taux de cisaillement correspondant à la mesure de la viscosité est défini par le mobile utilisé et la vitesse de rotation de celui-ci.
La mesure de viscosité est effectuée sur 1 minute à température ambiante (T=25°C ± 2°C). On place environ 150 g de solution dans un bêcher de 250 ml de volume, ayant un diamètre d'environ 7 cm de façon à ce que la hauteur du volume occupée par les 150 g de solution soit suffisante pour arriver à la jauge marquée sur le mobile. Ensuite, on démarre le viscosimètre sur une vitesse de 10 tours/min et on attend que la valeur affichée sur l'écran soit stable. Cette mesure donne la viscosité du fluide testé, telle que mentionnée dans le cadre de la présente invention.
Phase aqueuse
Selon l'invention, les compositions selon l'invention comprennent une phase aqueuse sous forme de sphères (S1 ) solides à température ambiante et à pression atmosphérique.
Comme indiqué ci-dessus, la température ambiante correspond à une température de 25°C ± 2°C, et la pression atmosphérique à une pression égale à 1 013 mbar.
Les sphères (S1 ) sont de préférence des solides souples. Selon l'invention, par « solide souple », on entend notamment le fait que les sphères (S1 ) selon l'invention ne s'écoulent pas sous leur propre poids, mais peuvent être déformées par pression, par exemple avec un doigt. Ainsi, leur consistance se rapproche de celle d'un beurre (sans le caractère gras), avec un caractère malléable et préhensible. Les sphères (S1 ) peuvent être étalées facilement à la main, notamment sur une matière kératinique, en particulier la peau.
De préférence, une sphère (S1 ) solide souple selon l'invention répond à au moins l'un des critères physicochimiques 1 , 2. a, 2.b, 2.c et 2.d ci-après, notamment au moins deux critères, préférentiellement au moins trois critères, mieux au moins quatre critères, voire préférentiellement les cinq critères 1 , 2. a, 2.b, 2.c et 2.d, réalisés sur base d'un bulk de phase aqueuse utilisé pour fabriquer lesdites sphères (S1 ). Sans indication contraire, ces critères sont mesurés à température ambiante (25°C) et pression atmosphérique (1 atm).
Critère 1 : la phase aqueuse selon l'invention présente une courbe viscoélastique à 25°C, mesuré entre 10~2 Hz et 100 Hz, tel qu'il n'y a pas de point de croisement entre les courbes G' et G" ; G' étant toujours strictement supérieur à G" (pour des mesures effectuées à une fréquence comprise entre 10~2 Hz et 100 Hz). La courbe viscoélastique est établie à l'aide d'un rhéomètre Bohlin Gemini à contrainte imposée en géométrie plan-plan. La température a été régulée par un plan à effet Peltier et un dispositif anti-évaporation (piège à solvant rempli d'eau pour les mesures à 25°C). On a effectué des mesures en oscillation entre 10-2 Hz et 100 Hz, à la déformation de 1 % avec un plan P40 strié. La déformation de 1 % a été déterminée en réalisant un balayage en amplitude pour se situer dans le domaine linéaire.
On mesure G' qui correspond au module de conservation traduisant la réponse élastique et le caractère solide de l'échantillon ; on mesure également G" qui correspond au module de perte traduisant la réponse visqueuse et le caractère liquide de l'échantillon.
Critères 2. a à 2.d : la phase aqueuse selon l'invention est telle qu'elle présente :
2.a) une fermeté (en g) inférieure à 400 g, de préférence inférieure à 300 g, voire inférieure à 200 g, notamment comprise entre 10 g et 400 g, et mieux entre 100 g et 300 g. La fermeté correspond à la force maximale mesurée lors de la phase de compression (descente) de la sonde dans le produit. En général la force maximale est atteinte au moment où le produit se rompt. C'est pourquoi la fermeté peut être appelée force de rupture ;
2.b) un travail de rupture (en g. s) inférieur à 1500 g. s, de préférence inférieur à 1000 g. s, voire inférieur à 800 g. s, et mieux inférieur à 500 g. s, notamment compris entre 100 g. s et 1500 g. s, et mieux entre 250 g. s et 1 100 g. s. Le travail de rupture correspond à l'aire sous la courbe Force=f(temps) entre le moment ou la sonde touche la surface du produit et le moment ou la fermeté maximale est mesurée ;
2.c) un travail de déformation (g. s) inférieur à 1500 g. s, de préférence inférieur à 1000 g. s, voire inférieur à 500 g. s, et mieux inférieur à 300 g. s, notamment compris entre 10 g.s et 1500 g. s, et mieux entre 100 g. s et 1300 g. s. Le travail de déformation correspond à l'aire sous la courbe Force=f(temps) entre le moment ou la fermeté maximale est atteinte et le moment ou la sonde est retirée du produit ; et/ou
2.d) un collant (g) inférieur ou égal à 25 g, de préférence inférieure à 15 g, et mieux inférieur à 10 g, notamment compris entre 1 g et 25 g, et mieux entre 5 g et 15 g. Le collant correspond à la force maximale mesurée lors de la phase de retrait (remontée) de la sonde du produit.
Les mesures de fermeté, travail de rupture, travail de déformation et collant ont été effectuées avec un texturomètre TAXT Microstable System avec les paramètres suivants :
- procédure : Sonde cylindrique en téflon en forme de doigt (P/ 0,5HS), - 10 mm de pénétration,
- Vitesse 1 mm/s,
- Trigger force = 2g, et
- Mesure réalisée dans des pots parfumeurs 30mL à 20°C.
Selon un mode de réalisation, les sphères (S1 ) solides sont pleines.
Selon un autre mode de réalisation, les sphères (S1 ) solides comprennent au moins une, de préférence une unique, goutte interne d'une composition liquide à température ambiante, comme décrit plus loin.
Selon un mode de réalisation, une composition selon l'invention est préparée par mise en œuvre d'un procédé « non-microfluidique », à savoir par simple émulsification. La taille des sphères (S1 ) est alors inférieure à 500 μηι, voire inférieure à 200 μηι. Préférentiellement, la taille des sphères (S1 ) est comprise entre 0,5 μηι et 50 μηι, de préférence entre 1 μηι et 20 μηι.
Selon ce mode de réalisation, la composition selon l'invention comprend des sphères (S1 ) de taille réduite, notamment par rapport à des sphères (S1 ) obtenues par un procédé microfluidique. Cette petite taille va avoir un effet sur la texture. En effet, une composition selon l'invention, formée de sphères (S1 ) finement dispersées, présente des qualités d'onctuosité améliorée.
Selon un autre mode de réalisation, une composition selon l'invention est préparée par mise en œuvre d'un procédé « microfluidique », notamment tel que décrit ci-après. Selon ce mode de réalisation, la taille des sphères (S1 ) est macroscopique, c'est-à-dire visible à l'œil nu, en particulier supérieure à 500 μηι, voire supérieure à 1 000 μηι. Préférentiellement, selon ce mode de réalisation, la taille des sphères (S1 ) est comprise entre 500 et 3 000 μηι, de préférence entre 1 000 μηι et 2 000 μπι.
A ce titre, il n'était pas évident que les compositions comprenant de telles sphères (S1 ) de taille supérieure à 500 μηι soient stables.
Dans le cadre de la présente invention, le terme "taille" désigne le diamètre, notamment le diamètre moyen, des gouttes.
Une composition selon l'invention de type gloss/eye gloss, fabriquée avec un procédé microfluidique, présente des viscosités plus faibles que pour des gloss/eye gloss liquides classiques (i.e. pour demeurer compatible avec le dispositif microfluidique). Néanmoins, cette viscosité moindre n'affecte pas la tenue dans le temps sur les matières kératiniques, en particulier les lèvres ou les paupières, d'une composition selon l'invention, et en particulier n'affecte pas la tenue de la brillance. Au contraire, cela améliore le confort/glissant à l'application et la finesse du film sur les matières kératiniques.
En outre, les compositions de l'invention présentent une sensorialité inédite et différente d'une dispersion microfluidique stabilisée avec un coacervat (telle que décrite par exemple dans la demande WO 2012/120043). En effet, les sphères (S1 ), pouvant être définies comme des billes d'eau gélifiée, présentent une résistance mécanique, plus particulièrement une résistance à l'écrasement, plus importante ; l'utilisateur sent donc réellement les billes s'écraser à l'application, sans préjudice quant à l'homogénéité de la composition à l'application.
Une composition selon l'invention peut être qualifiée de mélange macroscopiquement inhomogène de deux phases non miscibles, en particulier lorsque les sphères (S1 ) sont macroscopiques. En d'autres termes, dans une composition selon l'invention, chacune des phases peut être individualisée, notamment à l'œil nu.
De préférence, les sphères (S1 ) sont translucides, voire transparentes.
De préférence, les sphères (S1 ) sont monodisperses. Dans le cadre de la présente description, on entend par "sphères monodisperses" le fait que la population de sphères selon l'invention possède une distribution de taille uniforme. Au vu de ce qui précède, les sphères (S1 ) d'une composition selon l'invention sont dénuées d'écorce ou de membrane, en particulier de membrane polymérique ou formée par polymérisation interfaciale. En particulier, les sphères (S1 ) d'une dispersion selon l'invention ne sont pas stabilisées à l'aide d'un coacervat (type polymère anionique (carbomère)/polymère cationique (amodiméthicone)).
En d'autres termes, le contact entre la phase aqueuse et la phase grasse est direct, sans préjudice à la stabilité de la composition selon l'invention.
La phase aqueuse des compositions de l'invention comprend de l'eau, et ce en une teneur comprise de préférence entre 5% et 99% en poids par rapport au poids de phase aqueuse.
Outre l'eau distillée ou déionisée, une eau convenant à l'invention peut être aussi une eau de source naturelle ou une eau florale.
Selon un mode de réalisation, la phase aqueuse représente au moins 1 %, en particulier au moins 3%, de préférence au moins 5%, et mieux au moins 10%, en poids par rapport au poids total de la composition.
De préférence, la teneur en poids de phase aqueuse est comprise entre 1 % et 30%, notamment entre 1 ,5% et 20%, en particulier entre 2% et 10%, de préférence entre 3% et 7%, et préférentiellement entre 4% et 6%, en poids par rapport au poids total de ladite composition.
Selon un mode de réalisation particulier, les sphères (S1 ) d'une dispersion selon l'invention sont stabilisées à l'aide d'un coacervat à l'interface entre la phase aqueuse et la phase grasse, auquel cas la phase aqueuse comprend au moins un premier polymère précurseur du coacervat (polymère de type anionique) et la phase grasse comprend au moins un deuxième polymère précurseur du coacervat (polymère de type cationique).
La formation du coacervat entre ces deux polymères est généralement provoquée par une modification des conditions du milieu réactionnel (température, pH, concentration en réactifs, etc.). La réaction de coacervation résulte de la neutralisation de ces deux polymères chargés de polarités opposées et permet la formation d'une structure membranaire par interactions électrostatiques entre le polymère anionique et le polymère cationique. La membrane ainsi formée autour de chaque sphère forme typiquement une écorce qui encapsule totalement le cœur de la sphère et isole ainsi le cœur de la sphère de la phase grasse. Dans le cadre de la présente description, on entend par "polymère anionique" (ou "polymère de type anionique") un polymère comportant des fonctions chimiques de type anionique. On peut aussi parler de polyélectrolyte anionique.
Comme exemple de polymère de type anionique, on peut citer tout polymère formé par la polymérisation de monomères dont au moins une partie porte des fonctions chimiques de type anionique, tel que des fonctions acide carboxylique. De tels monomères sont par exemple l'acide acrylique, l'acide maléique, ou tout monomère éthyléniquement insaturé comportant au moins une fonction acide carboxylique. Il peut par exemple s'agir de polymère anionique comprenant des unités monomères comportant au moins une fonction chimique de type acide carboxylique.
De préférence, le polymère anionique est hydrophile, c'est-à-dire soluble ou dispersible dans l'eau.
Parmi les exemples de polymère anionique appropriés à la mise en œuvre de l'invention, on peut citer les copolymères d'acide acrylique ou d'acide maléique et d'autres monomères, tels que l'acrylamide, les acrylates d'alkyle, les acrylates d'alkyle en C5-C8, les acrylates d'alkyle en Ci o-C30, les méthacrylates d'alkyle en C12-C22, les méthacrylates méthoxypolyéthylèneglycol, les acrylates d'hydroxyester, les acrylates crosspolymères, et leurs mélanges.
Selon un mode de réalisation, le polymère anionique selon l'invention est un carbomère ou un copolymère réticulé acrylates/Ci o-30 alkyl acrylate. De préférence, le polymère anionique selon l'invention est un carbomère.
Dans le cadre de l'invention, et sauf mention contraire, on entend par "carbomère", un homopolymère éventuellement réticulé, issu de la polymérisation de l'acide acrylique. Il s'agit donc d'un poly(acide acrylique) éventuellement réticulé.
Parmi les carbomères de l'invention, on peut citer ceux commercialisés sous les noms Tego®Carbomer 340FD de Evonik, Carbopol® 981 de Lubrizol, Carbopol ETD 2050 de Lubrizol, ou encore Carbopol Ultrez 10 de Lubrizol.
Selon un mode de réalisation, on entend par "carbomère" ou "carbomer" ou "Carbopol®" un polymère d'acide acrylique de haut poids moléculaire réticulé avec du sucrose allylique ou des éthers allyliques de pentaérythritol (handbook of Pharmaceutical Excipients, 5eme Edition, plll). Par exemple, il s'agit du Carbopol ®10, du Carbopol®934, Carbopol®934P, du Carbopol®940, du Carbopol®941 , du Carbopol®71 G, du Carbopol®980, du Carbopol®971 P ou du Carbopol®974P. Selon un mode de réalisation, la viscosité dudit carbomère est comprise entre 4 000 et 60 000 cP à 0,5% w/w. Les carbomères ont d'autres dénominations : acides polyacryliques, polymères carboxyvinyliques ou carboxy polyéthylènes.
Selon l'invention, le polymère anionique peut également être un copolymère réticulé acrylates/Cio-30 alkyl acrylate (nom INCI : acrylates/Cio-30 alkyl acrylate Crosspolymer) tel que défini ci-dessus.
Selon l'invention, les compositions selon l'invention peuvent comprendre un carbomère et un copolymère réticulé acrylates/Cio-30 alkyl acrylate.
Dans le cadre de la présente demande, et sauf mention contraire, on entend par "polymère cationique" (ou "polymère de type cationique") un polymère comportant des fonctions chimiques de type cationique. On peut aussi parler de polyélectrolyte cationique.
De préférence, le polymère cationique est lipophile ou liposoluble.
Comme exemple de polymère cationique, on peut citer tout polymère formé par la polymérisation de monomères dont au moins une partie porte des fonctions chimiques de type cationique, tel que des fonctions aminé primaire, secondaire ou tertiaire.
Parmi les exemples de polymères cationiques appropriés à la mise en œuvre de l'invention, on peut citer l'amodiméthicone, dérivé d'un polymère silicone (polydiméthylsiloxane, aussi appelé diméthicone), modifié par des fonctions aminé primaire et aminé secondaire.
On peut également citer des dérivés de l'amodiméthicone, comme par exemple des copolymères de l'amodiméthicone, l'aminopropyl diméthicone, et plus généralement des polymères silicones linéaires ou ramifiés comportant des fonctions aminés.
On peut citer le copolymère de bis-isobutyl PEG-14/amodiméthicone, le Bis (C13-15 Alkoxy) PG-Amodimethicone, le Bis-Cetearyl Amodimethicone et le bis- hydroxy/méthoxy amodiméthicone.
On peut également citer les polymères de type polysaccharide comprenant des fonctions aminé, tel que le chitosan ou les dérivés de gomme guar (chlorure d'hydroxypropyltrimonium guar).
On peut également citer les polymères de type polypeptide comprenant des fonctions aminé, tel que la polylysine.
On peut également citer les polymères de type polyéthylèneimine comprenant des fonctions aminé, tel que la polyéthylèneimine linéaire ou branchée. Selon un mode de réalisation particulièrement préféré, le polymère cationique répond à la formule suiv
dans laquelle :
- Ri , R2 et R3, indépendamment les uns des autres, représentent OH ou CH3 ;
- R4 représente un groupe -CH2- ou un groupe -X-NH- dans lequel X est un radical alkylène divalent en C3 ou C4 ;
- x est un nombre entier compris entre 10 et 5 000, de préférence entre 30 et 1 000, et mieux entre 80 et 300 ;
- y est un nombre entier compris entre 2 et 1 000, de préférence entre 4 et 100, et mieux entre 5 et 20 ; et
- z est un nombre entier compris entre 0 et 10, de préférence entre 0 et 1 , et mieux est égal à 1 .
Dans la formule susmentionnée, lorsque R4 représente un groupe -X-NH-, X est relié à l'atome de silicium. Dans la formule susmentionnée, Ri , R2 et R3 représentent de préférence CH3. Dans la formule susmentionnée, R4 est de préférence un groupe -(CH2)3-NH-.
Gélifiant hydrophile
Une composition selon l'invention comprend en outre au moins un agent gélifiant hydrophile dans la phase aqueuse, et donc dans les sphères (S1 ).
Selon un mode de réalisation, l'agent gélifiant hydrophile est choisi dans le groupe constitué des agents de texture naturels, des agents de texture semi- synthétiques, des agents de texture synthétiques, et de leurs mélanges.
Comme agents de texture hydrophiles, c'est-à-dire solubles ou dispersibles dans l'eau, et donc présents dans la phase aqueuse d'une composition selon l'invention, on peut citer :
- les agents de texture naturels, notamment choisis parmi les extraits d'algues, les exsudais de plantes, les extraits de graines, les exsudais de microorganismes, tel que l'alcasealan (INCI : Alcaligenes Polysaccharides), et autres agents naturels,
- les agents de texture semi-synthétiques, notamment choisis parmi les dérivés de la cellulose et les amidons modifiés,
- les agents de texture synthétiques, notamment choisis parmi les homopolymères d'acide (méth)acrylique ou un de leurs esters, les copolymères d'acide (méth)acrylique ou un de leurs esters, les copolymères d'AMPS (2- acrylamido-2-méthylpropane sulfoniques acide), les polymères associatifs,
- les autres agents de texture, notamment choisis parmi les polyéthylèneglycols (commercialisé sous la dénomination Carbowax), les argiles, les silices telles que celles commercialisées sous les dénominations Aérosil® 90/130/150/200/300/380), la glycérine, et
- leurs mélanges.
Par « polymère associatif » au sens de la présente invention, on entend tout polymère amphiphile comportant dans sa structure au moins une chaîne grasse et au moins une portion hydrophile ; les polymères associatifs conformes à la présente invention peuvent être anioniques, cationiques, non-ioniques ou amphotères ; il s'agit notamment de ceux décrits dans FR 2 999 921 . De préférence, il s'agit des polymères associatifs amphiphiles et anioniques et des polymères associatifs amphiphiles et non-ioniques tels que décrits ci-après.
Parmi les agents de texture naturels, on peut plus particulièrement citer les extraits d'algues figurés par l'agar-agar, les carraghénanes, les alginates, et leurs mélanges.
Parmi les agents de texture naturels, on peut plus particulièrement citer les exsudais de plantes figurés par la gomme adragante, la gomme de Karaya, la gomme de gatty, la gomme arabique, et leurs mélanges.
Parmi les agents de texture naturels, on peut plus particulièrement citer les extraits de graines figurés par la gomme de caroube, la gomme de guar, la gomme de tara, la gomme de konjac, les pectines, et leurs mélanges.
Parmi les agents de texture naturels, on peut plus particulièrement citer les exsudais de microorganismes figurés par la gomme de xanthane, la gomme de gellane, la pullulane, et leurs mélanges.
Parmi les agents de texture naturels, on peut encore citer d'autres agents naturels figurés notamment par la gélatine, le collagène, la kératine, les protéines végétales en particulier de blé et/ou de soja, les polymères de chitine ou de chitosane anioniques, cationiques, non-ioniques ou amphotères, l'acide hyaluronique ou un de ses sels, notamment le hyaluronate de sodium tel que celui commercialisé sous les dénominations HA Oligo, SC Hyaluronic Acid ou HyaCare, et leurs mélanges.
Parmi les agents de texture semi-synthétiques, les dérivés de la cellulose sont notamment figurés par la carboxyméthylcellulose (CMC) telle que celle commercialisée sous les dénominations Aqualon séries ou Walocel séries ; l'hydroxypropylcellulose (HPC) telle que celle commercialisée sous la dénomination Klucel HPC ; l'hydroxyéthylcellulose (HEC) telle que celle commercialisée sous les dénominations Cellosize séries ou Natrosol 250 séries ; l'hydroxyéthyl méthylcellulose telle que celle commercialisée sous la dénomination Walocel séries ; l'hydroxypropyl méthylcellulose telle que celle commercialisée sous les dénominations Methocel E/F/J/K séries de Dow Chemicals, VIVAPHARM CS 152 HV, Benecel E4M, E10M, K100M; la méthylcellulose telle que celle commercialisée sous la dénomination Methocel A séries ; l'éthylcellulose telle que celle commercialisée sous la dénomination Ethocel séries ; la cellulose microcristalline telle que celle commercialisée sous la dénomination Avicel PH séries ; l'alkylhydroxyéthylcellulose telle que la cétylhydroxyéthylcellulose commercialisée sous la dénomination Polysurf 67, et leurs mélanges.
Parmi les agents de texture semi-synthétiques, les amidons modifiés sont des dérivés de l'amidon résultant de la modification de l'amidon natif par éthérification, estérification ou réticulation, tels que notamment le carboxyméthylamidon sodique tel que celui commercialisé sous les dénominations COVAGEL, VIVASTAR® CS 352 SV ou VIVASTAR CS 302 SV ; l'hydroxypropylamidon tel que celui commercialisé sous les dénominations Zeina B860, Amaze NI, Amycol SQ, Penon PKW ; l'hydroxypropylamidon phosphate tel que celui commercialisé sous les dénominations Structure ZEA/style/XL ; et leurs mélanges.
Parmi les agents de texture synthétiques, les homopolymères d'acide (méth)acrylique ou un de leurs esters sont notamment figurés par les polyacrylates de sodium tels que ceux commercialisés sous les dénominations Cosmedia SP, Covacryl MV60/MV40, Cosmedia SPL ou Luvigel EM ; les polymères d'acide (méth)acryliques réticulés (ou carbomères), tels que ceux commercialisés sous les dénominations Carbopol 900 séries, Carbopol 2984/ 5984, Carbopol Ultrez 10/30, en particulier le Carbopole Ultrez 21 , Tego Carbomer 134 / 140 / 141 , Aqupec HV- 505, HV-505HC, HV-504, HV-501 , HV-505E, HV-504E, HV-501 E, HV-505ED, Ashland 941 carbomer, ou Ashland 981 carbomer ; et leurs mélanges. Parmi ces agents de texture, on peut également mentionner les polymères anioniques tels que mentionnés ci-dessus, notamment les carbomères définis plus haut.
Parmi les agents de texture synthétiques, les copolymères d'acide (méth)acrylique ou un de leurs esters sont notamment figurés par l'acrylate de glycéryle/copolymère d'acide acrylique tels que celui commercialisé sous les dénominations Lubrajel séries, Lubrasil séries ou Norgel ; les copolymères acrylates tels que ceux commercialisés sous les dénominations Carbopol Aqua SF-1 OS Polymer (nom INCI = Acrylates copolymer) ; les sodium acrylates crosspolymer-2 tel que celui commercialisé sous la dénomination Aquakeep 10 SH NF ; les acrylates/C10-C30 alkyl acrylate crosspolymers tels que ceux commercialisés sous les dénominations Carbopol 1342/1382, Carbopol ETD 2020, Pemulen TR-1/TR-2, Carbopol Ultrez 20/21 ,Tego Carbomer 341 ER, Tego Carbomer 750 HD, Tego Carbomer 841 SER, Aqupec HV-501 ER, HV-701 EDR, HV-501 EM, SER W-150C ou SER W-300C ; les sodium acrylates/beheneth-25 méthacrylate crosspolymer tels que celui commercialisé sous la dénomination Novemer EC-2 ; les acrylates/acrylamide copolymers tel que celui commercialisé sous la dénomination Novemer EC-1 par Lubrizol ; les acrylamide/sodium acrylate copolymers tel que celui commercialisé sous la dénomination Aquagel 55 ; les acrylic Acid/VP crosspolymers tel que celui commercialisé sous la dénomination Ultrathix P-100 ; et leurs mélanges.
Parmi les agents de texture synthétiques, les copolymères d'AMPS sont notamment figurés par les copolymères AMPS NH4/Vinylpyrrolidone tel que celui commercialisé sous la dénomination Aristoflex AVC (INCI : Ammonium Acryloyldimethyltaurate/VP Copolymer) ; les copolymère AMPS NH4/Beheneth-25 méthacrylate tel que celui commercialisé sous la dénomination Aristoflex HMB (INCI : Ammonium Acryloyldimethyltaurate/Beheneth-25 méthacrylate Crosspolymer) ; les copolymères AMPS Na/Vinylpyrrolidone tel que celui commercialisé sous la dénomination Aristoflex AVS (INCI : Sodium Acryloyldimethyl taurate/VP Copolymer) ; les copolymères AMPS NH4/2-Carboxyéthylacrylate tel que celui commercialisé sous la dénomination Aristoflex TAC (INCI : Ammonium Acryloyldimethyltaurate/carboxyethyl crosspolymer) ; les copolymères AMPS Na Acrylic acid/Sodium Acrylate/Diméthyl acrylamide tel que celui commercialisé sous la dénomination Simulgel SMS88 (INCI : Sodium Acrylate/ Acryloyldimethyltaurate/Dimethylacrylamide Crosspolymer & Isohexadecane & Polysorbate 60) ; les copolymères AMPS Na/Sodium Acrylate tels que ceux commercialisés sous les dénominations Simulgel EG (INCI : Sodium Acrylate/Sodium Acryloyldimethyl Taurate Copolymer & Isohexadecane & Polysorbate 80) ou Simulgel EPG (INCI : Sodium Acrylate/Sodium Acryloyldimethyl Taurate Copolymer & Polyisobutene & Caprylyl/Capryl Glucoside) ; les copolymères AMPS Na Acrylamide tels que ceux commercialisés sous les dénominations Simulgel 600 (INCI : Acrylamide/Sodium Acryloyldimethyltaurate/lsohexadecane/ Polysorbate-80) ou Sepigel 305 (INCI : Polyacrylamide/C13-C14 lsoparaffin/Laureth-7) ; les copolymères AMPS Na/hydroxyéthyl acrylate tels que ceux commercialisés sous les dénominations Simulgel NS (INCI : hydroxyéthyl acrylate/sodium acryloyldimethyltaurate copolymer & squalane & polysorbate-60), Simulgel INS 100 (INCI : Hydroxyéthyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer & Isohexadecane & Polysorbate 60), Simulgel FL (INCI : Hydroxyéthyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer & Isohexadecane & Polysorbate 60), Sepinov WEO ou Sepinov EMT 10 (INCI : hydroxyéthyl acrylate/sodium acryloyldimethyltaurate copolymer) ; les acryloyl Dimethyltaurate/Sodium Acrylate/Dimethylacrylamide crosspolymers tel que celui commercialisé sous la dénomination Sepinov P88 (INCI : Sodium Acrylate/Acryloyldimethyltaurate/Dimethylacrylamide Crosspolymer) ; et leurs mélanges.
Parmi les agents de texture synthétiques, on peut en outre citer le PVP tel que celui commercialisé sous la dénomination FlexiThix polymer.
Parmi les agents de texture synthétiques, les polymères associatifs amphiphiles et anioniques sont notamment figurés par les acrylates/Steareth-20 Methacrylate Copolymer tel que celui commercialisé sous la dénomination Aculyn 22 ; les acrylates/Beheneth-25 Methacrylate Copolymer tel que celui commercialisé sous la dénomination Aculyn 28 ; les C30-38 Olefin/lsopropyl Maleate/MA Copolymer tel que celui commercialisé sous la dénomination Performa V 1608 ; les Acrylates/Steareth-20 Methacrylate Crosspolymer tel que celui commercialisé sous la dénomination Aculyn 88 ; le Polyacrylate Crosspolymer-6 tel que celui commercialisé sous la dénomination Sepimax Zen ; les Acrylates/C10-C30 Alkyl Acrylate Crosspolymers tels que ceux susmentionnés; et leurs mélanges.
Parmi les agents de texture synthétiques, les polymères associatifs amphiphiles et non-ioniques sont notamment figurés par le PEG-150 distéarate tel que celui commercialisé sous la dénomination Emanon 3299V ; les PEG-150/Decyl Alcohol/SMDI Copolymer tel que celui commercialisé sous la dénomination Aculyn 44; les PEG-150/stearyl alcohol/SMDI copolymer tel que celui commercialisé sous la dénomination Aculyn 46 ; les acrylates/ceteth-20 itaconate copolymer tel que celui commercialisé sous la dénomination Structure 3001 par AkzoNobel Personal Care ; les polyurethane polyethers tels que ceux commercialisés sous les dénominations Rheolate FX 1 100, Rheolate 205, Rheolate 208 / 204 / 212, Elfacos T1212, Acrysol RM 184 / RM 2020, Adeka Nol GT-700 / GT-730 ; le polyurethane- 39 tel que celui commercialisé sous la dénomination Luvigel Star ; les cetyl hydroxyethylcellulose tels que ceux commercialisés sous les dénominations Natrosol™ Plus ou PolySurf™ 67 ; et leurs mélanges.
Comme agents de texture de la phase aqueuse, on peut encore citer les argiles, notamment figurées par la bentonite telle que celle commercialisée sous les dénominations Veegum, Veegum HS ou Vanatural ; la montmorillonite, l'hectorite telle que celle commercialisée sous les dénominations Bentone séries ou Hectone séries ; la kaolinite, et leurs mélanges.
La composition selon l'invention peut comprendre un unique agent gélifiant hydrophile tel que défini ci-dessus, ou un mélange d'au moins deux agents gélifiants hydrophiles tels que définis ci-dessus.
Une composition selon l'invention comprend une quantité suffisante en agent(s) gélifiant(s) hydrophile(s), notamment thermosensible(s), pour prévenir/limiter les phénomènes de coalescence des sphères (S1 ) entre elles. Avantageusement, la teneur en agent(s) gélifiant(s) hydrophile(s) est comprise entre 0,1 % et 15%, de préférence entre 0,3% et 10%, préférentiellement entre 0,5% et 5%, notamment entre 0,8% et 3%, en particulier entre 1 % et 2%, en poids par rapport au poids de phase aqueuse de ladite composition.
De préférence, la teneur en agent(s) gélifiant(s) hydrophile(s) est comprise entre 0,5% et 0,9% en poids par rapport au poids de phase aqueuse de ladite composition. Cette gamme est particulièrement avantageuse en ce qu'elle apporte un juste compromis entre une bonne résistance mécanique des sphères (S1 ) et un écrasement à l'application ; cette propriété confère une sensorialité particulière à l'application puisque l'utilisateur sent réellement les sphères (S1 ) s'écraser à l'application. Selon un mode de réalisation, la phase aqueuse comprend au moins deux agents gélifiants hydrophiles, l'un au moins étant un agent gélifiant hydrophile thermosensible.
Selon l'invention, l'expression « agent gélifiant hydrophile thermosensible » désigne un agent gélifiant hydrophile permettant d'augmenter la viscosité de la phase aqueuse des sphères (S1 ) dépourvue dudit agent gélifiant, cette viscosité évoluant de façon réversible en fonction de leur température.
Ainsi, un agent gélifiant hydrophile thermosensible au sens de la présente invention est un composé présentant un point de fusion au-dessus duquel il se présente sous une forme liquide, mais en dessous duquel il se présente sous une forme solide et contribue donc à augmenter la viscosité de la phase le comprenant.
Parmi ces agents gélifiants hydrophiles thermosensibles, on peut citer par exemple la gélatine, la pectine, l'agar-agar, et leurs mélanges.
Préférentiellement, on utilise l'agar-agar à titre d'agent gélifiant hydrophile thermosensible. Une composition préférée selon l'invention comprend donc de l'agar-agar à titre d'agent gélifiant. L'agar-agar est particulièrement avantageux en ce qu'il présente une bonne transparence à froid ainsi qu'un bon rapport « vitesse de gélification / écrasement à l'application ».
Selon un mode de réalisation préféré, la teneur en agent(s) gélifiant(s) hydrophile(s) thermosensible(s), notamment en agar-agar, est comprise entre 0,1 % et 15%, de préférence entre 0,3% et 10%, préférentiellement entre 0,5% et 5%, notamment entre 0,8% et 3%, en particulier entre 1 % et 2% voire entre 0,3% et 0,8%, en poids par rapport au poids de phase aqueuse de ladite composition.
Phase grasse
Selon l'invention, les compositions selon l'invention comprennent une phase grasse (ou phase continue) dans laquelle les sphères (S1 ) solides susmentionnées sont dispersées.
La phase grasse selon l'invention peut représenter au moins 70%, en particulier au moins 80%, de préférence au moins 90%, et mieux au moins 95%, en poids par rapport au poids total de la composition.
Selon un mode de réalisation, dans les compositions selon l'invention, la teneur en phase grasse est comprise entre 70% et 99%, de préférence entre 70% et 95%, notamment entre 75% et 90%, et préférentiellement entre 80% et 85%, en poids par rapport au poids total de ladite composition.
Selon une première variante de réalisation, la phase grasse est suspensive vis à vis des sphères (S1 ). Ainsi, les sphères (S1 ) demeurent suspendues dans la phase grasse sur une période de temps prolongée, par exemple supérieure à 1 mois, de préférence supérieure à 3 mois, et mieux supérieure à 6 mois. Outre le visuel associé, cette variante est avantageuse en ce qu'elle permet de prévenir/limiter les phénomènes de coalescence des sphères (S1 ) entre elles et/ou de crémage des sphères (S1 ) dans la phase grasse.
Selon une deuxième variante de réalisation, la phase grasse, est non- suspensive vis à vis des sphères (S1 ). Ainsi, à l'œil nu, une séparation des sphères (S1 ) par rapport à la phase grasse est observée sur une période de temps inférieure à 1 mois, de préférence inférieure à 15 jours, mieux inférieure à 1 semaine, voire même inférieure à 1 jour. Une telle composition selon l'invention est alors qualifiée de composition bi-phasique. Cette séparation peut résulter d'une sédimentation ou d'un crémage des sphères (S1 ) dans la phase grasse.
Cette séparation peut être immédiate après mélange d'une composition selon l'invention. En d'autres termes, la séparation entre les sphères (S1 ) et la phase grasse peut se dérouler sur une période de temps entre 5 et 60 secondes.
Cette séparation des deux phases d'une composition selon l'invention peut être réalisée sur une période de temps plus prolongée après mélange d'une composition selon l'invention. En d'autres termes, la séparation entre les sphères (S1 ) et la phase grasse peut se dérouler sur une période de temps supérieure à 1 minute, en particulier entre 1 minute et 300 minutes.
Généralement, la séparation des sphères (S1 ) par rapport à la phase continue aqueuse se fait par sédimentation des sphères (S1 ), compte tenu de leur caractère hydrophile, et donc de leur densité généralement supérieure à celle de la phase grasse.
Toutefois, la séparation des sphères (S1 ) par rapport à la phase grasse peut également se faire par crémage des sphères (S1 ), auquel cas l'homme du métier doit procéder à une sélection d'huile(s) de telle sorte que les sphères (S1 ) présentent une densité inférieure à celle de la phase grasse. Ces sélections relèvent des connaissances générales de l'homme du métier. Par exemple, on peut choisir une huile de type fluorosilicone (connue pour avoir une densité supérieure à 1 ). Ces propriétés de suspensivité / non suspensivité des sphères (S1 ) dans la phase grasse sont notamment conditionnées par la nature et/ou la teneur en huile(s) et/ou en agent(s) lipophile(s) ayant un pouvoir suspensif.
Les adaptations de la phase grasse, notamment au niveau de la nature et/ou de la teneur en huile(s) et/ou agent(s) lipophile(s) ayant un pouvoir suspensif vis-à- vis de cette suspensivité / non suspensivité des sphères (S1 ) dans la phase grasse relèvent des connaissances générales de l'homme du métier à la lumière de l'enseignement de la présente description.
Avantageusement, la phase grasse est rhéofluidifiante ou pseudoplastique à température ambiante et pression atmosphérique. La rhéofluidification désigne le fait, pour un fluide, de « devenir plus fluide » lorsque la vitesse d'écoulement augmente. Plus précisément, cela désigne le fait que la viscosité dynamique diminue lorsque le taux de cisaillement augmente. On parle aussi de désépaississement au cisaillement ou d'amincissement au cisaillement (shear thinning en anglais) ou encore de pseudo-plasticité.
Avantageusement, la phase grasse est thixotrope à température ambiante et pression atmosphérique.
Agent lipophile ayant un pouvoir suspensif
Une composition selon l'invention comprend au moins un agent lipophile ayant un pouvoir suspensif. Par "agent lipophile ayant un pouvoir suspensif", on entend désigner un agent apte à augmenter la viscosité de la phase grasse de manière à améliorer le caractère (ou pouvoir) suspensif de ladite phase grasse, notamment vis-à-vis des sphères (S1 ). Cet agent lipophile ayant un pouvoir suspensif participe ainsi à stabiliser la composition selon l'invention, et en particulier à prévenir et/ou éviter la coalescence des sphères (S1 ) entre elles et/ou leur crémage ou sédimentation dans la phase grasse.
Elle peut également comprendre un mélange d'au moins deux agents lipophiles ayant un pouvoir suspensif.
De préférence, l'agent lipophile ayant un pouvoir suspensif selon l'invention est choisi parmi les agents gélifiants lipophiles bien connus de l'homme du métier, et ce comme détaillé ci-après.
Selon un mode de réalisation, l'agent gélifiant lipophile ayant un pouvoir suspensif est choisi parmi les agents gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires ; les corps gras solides à température et pression ambiante ; et leurs mélanges.
On entend par « gélifiant lipophile » au sens de la présente invention, un composé apte à gélifier la phase grasse des compositions selon l'invention.
Le gélifiant est liposoluble ou lipodispersible.
Comme il ressort de ce qui suit, le gélifiant lipophile est avantageusement choisi parmi les gélifiants particulaires ; les élastomères d'organopolysiloxane ; les polymères semi-cristallins ; les polyacrylates ; les esters de sucre/polysaccharide, en particulier les esters de dextrine, les esters d'inuline, les esters de glycérol ; les polymères à liaison hydrogène ; les copolymères séquencés hydrocarbonés et leurs mélanges.
Gélifiants particulaires
Le gélifiant particulaire mis en œuvre dans la composition selon l'invention se présente sous forme de particules, de préférence sphériques. A titre représentatif des gélifiants particulaires lipophiles convenant à l'invention peuvent être tout particulièrement citées les cires, polaires et apolaires, les beurres, les argiles modifiées, les silices comme les silices pyrogénées et les aérogels de silice hydrophobes.
Par « cire » considérée dans le cadre de la présente invention, on entend d'une manière générale un composé lipophile, solide à température ambiante (25°C), changement d'état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 30°C pouvant aller jusqu'à 200°C et notamment jusqu'à 120°C. Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 1 1357-3 ; 1999. Le point de fusion de la cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination « MDSC 2920 » par la société TA Instruments. Le protocole de mesure est le suivant : Un échantillon de 5 mg de cire disposé dans un creuset est soumis à une première montée en température allant de -20°C à 100°C, à la vitesse de chauffe de 10°C/minute, puis est refroidi de 100°C à -20°C à une vitesse de refroidissement de 10°C/minute et enfin soumis à une deuxième montée en température allant de -20°C à 100°C à une vitesse de chauffe de 5°C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon de cire en fonction de la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. Les cires susceptibles d'être utilisées dans les compositions selon l'invention sont choisies parmi les cires, solides, à température ambiante d'origine animale, végétale, minérale ou de synthèse et leurs mélanges.
Les cires, au sens de l'invention, peuvent être celles utilisées généralement dans les domaines cosmétiques ou dermatologiques. Elles peuvent notamment être polaires ou apolaires, hydrocarbonées siliconées et/ou fluorées, comportant éventuellement des fonctions esters ou hydroxyles. Elles peuvent être également d'origine naturelle ou synthétique.
Par « cire apolaire », au sens de la présente invention, on entend une cire dont le paramètre de solubilité à 25°C tel que défini ci-après, 5a est égal à 0 (J/cm3)1/2. La définition et le calcul des paramètres de solubilité dans l'espace de solubilité tridimensionnel de Hansen sont décrits dans l'article de C. M. Hansen : « The three dimensionnal solubility parameters » J. Paint Technol. 39, 105 (1967).
Selon cet espace de Hansen :
- 5D caractérise les forces de dispersion de London issues de la formation de dipôles induits lors des chocs moléculaires ;
- δρ caractérise les forces d'interactions de Debye entre dipôles permanents ainsi que les forces d'interactions de Keesom entre dipôles induits et dipôles permanents ;
- 5h caractérise les forces d'interactions spécifiques (type liaisons hydrogène, acide/base, donneur/accepteur, etc.) ;
- 5a est déterminé par l'équation : 5a = ((δρ 2 + 5h 2)1/2.
Les paramètres δρ, 5h, 5D et 5a sont exprimés en (J/cm3)1/2.
Les cires apolaires sont en particulier les cires hydrocarbonées constituées uniquement d'atomes de carbone et d'hydrogène et exempte d'hétéroatomes tel que N, O, Si et P.
Les cires apolaires sont choisies parmi les cires microcristallines, les cires de paraffines, l'ozokérite, les cires de polyéthylène, et leurs mélanges. Comme ozokérite on peut citer l'Ozokérite Wax SP 1020 P. Comme cires microcristallines pouvant être utilisées, on peut citer Multiwax W 445® commercialisé par la société Sonneborn, Microwax HW® et Base Wax 30540® 25 commercialisés par la société Paramelt, et Cerewax® N°3 commercialisé par la société Baerlocher.
Comme microcires pouvant être utilisées dans les compositions selon l'invention en tant que cire apolaire, on peut citer notamment les microcires de polyéthylène telles que celles commercialisées sous les dénominations de Micropoly 200®, 30 220®, 220L® et 2505® par la société Micro Powders. 3025096 34 Comme cire de polyéthylène, on peut citer Performalene 500-L Polyéthylène et Performalene 400 Polyéthylène commercialisés par New Phase Technologies, Asensa® SC 21 1 commercialisé par la société Honeywell.
Par « cire polaire », au sens de la présente invention, on entend une cire dont le paramètre de solubilité à 25°C 5a est différent de 0 (J/cm3)1/2. En particulier, par « cire polaire », on entend une cire dont la structure chimique est formée essentiellement, voire constituée, d'atomes de carbone et d'hydrogène, et comprenant au moins un hétéroatome fortement électronégatif tel qu'un atome d'oxygène, d'azote, de silicium ou de phosphore. Les cires polaires peuvent notamment être hydrocarbonées, fluorées ou siliconées. Préférentiellement, les cires polaires peuvent être hydrocarbonées.
Par « cire hydrocarbonée », on entend une cire formée essentiellement, voire constituée, d'atomes de carbone et d'hydrogène, et éventuellement d'atomes d'oxygène, d'azote et ne contenant pas d'atome de silicium ou de fluor. Elle peut contenir des groupes alcool, ester, éther, acide carboxylique, aminé et/ou amide.
Par « cire ester », on entend selon l'invention une cire comprenant au moins une fonction ester.
Par « cire alcool », on entend selon l'invention une cire comprenant au moins une fonction alcool, c'est-à-dire comprenant au moins un groupe hydroxyle (OH) libre.
On peut notamment utiliser en tant que cire ester :
- les cires esters, telles que celles choisies parmi :
i) les cires de formule P^COOF^ dans laquelle Ri et R2 représentent des chaînes aliphatiques linéaires, ramifiées ou cycliques dont le nombre d'atomes varie de 10 à 50, pouvant contenir un hétéroatome tel que O, N ou P et dont la température de point de fusion varie de 25 à 120°C ;
ii) le tétrastéarate de di-(triméthylol-1 ,1 ,1 propane), vendu sous la dénomination de Hest 2T-4S par la société Heterene ;
iii) les cires diesters d'un diacide carboxylique de formule générale R3-(- OCOR4-COO-R5), dans laquelle R3 et R5 sont identiques ou différents, de préférence identiques, et représentent un groupe alkyle en C4-C30 (groupe alkyle comprenant de 4 à 30 atomes de carbone) et R4 représente un groupe aliphatique en C4-C30 (groupe alkyle comprenant de 4 à 30 atomes de carbone) linéaire ramifié pouvant contenir ou non une ou plusieurs insaturation(s), et de préférence linéaire et insaturé ;
iv) On peut aussi citer les cires obtenues par hydrogénation catalytique d'huiles animales ou végétales ayant des chaînes grasses, linéaires ou ramifiées, en C-8-C32, par exemple telles que l'huile de jojoba hydrogénée, l'huile de tournesol hydrogénée, l'huile de ricin hydrogénée, l'huile de coprah hydrogénée, ainsi que les cires obtenues par hydrogénation d'huile de ricin estérifiée avec l'alcool cétylique ; v) la cire d'abeille, la cire d'abeille synthétique, la cire d'abeille polyglycérolée, la cire de carnauba, la cire de candellila, la cire de lanoline oxypropylénée, la cire de son de riz, la cire d'Ouricury, la cire d'Alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon, la cire de sumac, la cire de montan, la cire d'Orange, la cire de Laurier, la cire de Jojoba hydrogénée, la cire de tournesol, cire de citron, cire d'olive, cire du berry.
De manière particulière, on peut mentionner l'HYDROXYSTEAROYL STEARATE D'ALCOOLS GRAS EN C18-C38 ; Nom INCI : SYNTHETIC BEESWAX et vendu sous le nom KESTERWAX K82P par la société Koster Keunen.
Selon un autre mode de réalisation, la cire polaire peut être une cire alcool. Par « cire alcool », on entend selon l'invention une cire comprenant au moins une fonction alcool, c'est-à-dire comprenant au moins un groupe hydroxyle (OH) libre. A titre de cire alcool, on peut citer par exemple la cire C30-50 Alcools Performacol0 550 Alcohol commercialisé par la société New Phase Technologie, l'alcool stéarique, l'alcool cétylique.
On peut aussi utiliser des cires siliconées qui peuvent être avantageusement des polysiloxanes substitués, de préférence à bas point de fusion. Par « cire siliconée », on entend une huile comprenant au moins un atome de silicium, et notamment comprenant des groupes Si-O. Parmi les cires de silicones commerciales de ce type, on peut citer notamment celles vendues sous les dénominations Abilwax 9800, 9801 ou 9810 (Goldschmidt), KF910 et KF7002 (Shin Etsu), ou 176-1 1 18-3 et 176-1 1481 (General Electric).
Les cires de silicone utilisables peuvent également être des alkyl ou alcoxydiméthicones, ainsi que les (C2o-C60)alkyldiméthicones, en particulier les (C30- C45)alkyldiméthicones comme la cire siliconée vendue sous la dénomination SF- 1642 par la société GE-Bayer Silicones ou la C30-45 Alkyldiméthylsilyl Polypropylsilsesquioxane sous la dénomination SW-8005® C30 Resin Wax commercialisé par la société Dow Corning. Dans le cadre de la présente invention, on peut citer à titre de cires particulièrement avantageuses les cires de polyéthylène, la cire de jojoba, et les cires siliconées.
Selon une forme particulière de l'invention, on utilisera des cires de point de fusion supérieur à 45°C comprenant un ou plusieurs composés esters en C4o-C7o et ne comprenant pas de composé ester en C20-C39. Par « composé ester », on entend toute molécule organique comprenant une chaîne hydrocarbonée linéaire ou ramifiée, saturée ou insaturée, comprenant au moins une fonction ester de formule - COOR où R représente un radical hydrocarboné en particulier un radical alkyle linéaire et saturé. Par « cire ne comprenant pas de composé ester en C2o-C39 », on entend toute cire contenant moins de 1 % en poids de composé ester en C20-C39, de préférence moins de 0,5% en poids par rapport au poids de la cire, voire exempte de composé ester en C20-C39.
Les cires selon l'invention peuvent utilisées également sous forme de mélange de cires. Le teneur en ester comprenant de 40 à 70 atomes de carbone varie de préférence de 20 à 100% en poids et de préférence de 20 à 90% en poids par rapport au poids total en cire(s).
On utilisera plus particulièrement la cire de Candellila et/ou la cire d'abeille.
On peut également citer la CRYSTALWAX (INCI : Hydroxystearic Acid (and) Synthetic Wax (and) Triisostearin (and) Polybutene (and) Pentaerythrityl Tetraisostearate) commercilisée par la société Sensient Cosmetic Technologies.
Par « beurre » (également appelé « corps gras pâteux ») au sens de la présente invention, on entend un composé gras lipophile à changement d'état solide/liquide réversible et comportant à la température de 25°C une fraction liquide et une fraction solide, et à pression atmosphérique (760 mm Hg). En d'autres termes, la température de fusion commençante du composé pâteux peut être inférieure à 25°C. La fraction liquide du composé pâteux mesurée à 25°C peut représenter de 9% à 97 % en poids du composé. Cette fraction liquide à 25°C représente de préférence entre 15% et 85 %, de préférence encore entre 40 et 85 % en poids. De préférence, le ou les beurres présentent une température de fin de fusion inférieure à 60°C. De préférence, le ou les beurres présentent une dureté inférieure ou égale à 6 MPa.
De préférence, les beurres ou corps gras pâteux présentent à l'état solide une organisation cristalline anisotrope, visible par observations aux rayons X.
Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 1 1357-3 ; 1999. Le point de fusion d'un pâteux ou d'une cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination "DSC Q2000" par la société TA Instruments.
Concernant la mesure de la température de fusion et la détermination de la température de fin de fusion, les protocoles de préparation des échantillons et de mesure sont les suivants : Un échantillon de 5 mg de corps gras pâteux (ou beurre) ou de cire préalablement chauffé à 80°C et prélevés sous agitation magnétique à l'aide d'une spatule également chauffée est placé dans une capsule hermétique en aluminium, ou creuset. Deux essais sont réalisés pour s'assurer de la reproductibilité des résultats.
Les mesures sont réalisées sur le calorimètre mentionné ci-dessus. Le four est soumis à un balayage d'azote. Le refroidissement est assuré par l'échangeur thermique RCS 90. L'échantillon est ensuite soumis au protocole suivant en étant tout d'abord mis en température à 20°C, puis soumis à une première montée en température allant de 20°C à 80°C, à la vitesse de chauffe de 5°C/minute, puis est refroidi de 80°C à -80°C à une vitesse de refroidissement de 5°C/minute et enfin soumis à une deuxième montée en température allant de -80°C à 80°C à une vitesse de chauffe de 5°C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon de beurre en fonction de la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. La température de fin de fusion correspond à la température à laquelle 95% de l'échantillon a fondu.
La fraction liquide en poids du beurre (ou corps gras pâteux) à 25°C est égale au rapport de l'enthalpie de fusion consommée à 25°C sur l'enthalpie de fusion du beurre. L'enthalpie de fusion du beurre ou composé pâteux est l'enthalpie consommée par le composé pour passer de l'état solide à l'état liquide.
Le beurre est dit à l'état solide lorsque l'intégralité de sa masse est sous forme solide cristalline. Le beurre est dit à l'état liquide lorsque l'intégralité de sa masse est sous forme liquide. L'enthalpie de fusion du beurre est égale à l'intégrale de l'ensemble de la courbe de fusion obtenue à l'aide du calorimètre suscité, avec une montée en température de 5°C ou 10°C par minute, selon la norme ISO 1 1357- 3:1999. L'enthalpie de fusion du beurre est la quantité d'énergie nécessaire pour faire passer le composé de l'état solide à l'état liquide. Elle est exprimée en J/g. L'enthalpie de fusion consommée à 25°C est la quantité d'énergie absorbée par l'échantillon pour passer de l'état solide à l'état qu'il présente à 25°C constitué d'une fraction liquide et d'une fraction solide. La fraction liquide du beurre mesurée à 32°C représente de préférence de 30% à 100 % en poids du composé, de préférence de 50% à 100%, de préférence encore de 60% à 100 % en poids du composé. Lorsque la fraction liquide du beurre mesurée à 32°C est égale à 100%, la température de la fin de la plage de fusion du composé pâteux est inférieure ou égale à 32°C. La fraction liquide du beurre mesurée à 32°C est égale au rapport de l'enthalpie de fusion consommée à 32°C sur l'enthalpie de fusion du beurre. L'enthalpie de fusion consommée à 32°C est calculée de la même façon que l'enthalpie de fusion consommée à 23°C.
Concernant la mesure de la dureté, les protocoles de préparation des échantillons et de mesure sont les suivants : la composition selon l'invention ou le beurre est placé dans un moule de 75 mm de diamètre qui est rempli à environ 75% de sa hauteur. Afin de s'affranchir du passé thermique et de contrôler la cristallisation, le moule est placé à l'étuve programmable Vôtsch VC0018 où il est tout d'abord mis en température à 80°C pendant 60 minutes, puis refroidi de 80°C à 0°C à une vitesse de refroidissement de 5°C/minute, puis laissé à la température stabilisée de 0°C pendant 60 minutes, puis soumis à une montée en température allant de 0°C à 20°C, à une vitesse de chauffe de 5°C/minute, puis laissé à la température stabilisée de 20°C pendant 180 minutes. La mesure de la force de compression est réalisée avec le texturomètre TA/TX2i de Swantech. Le mobile utilisé est choisi selon la texture : - mobile cylindrique en acier de 2 mm de diamètre pour les matières premières très rigides ; - mobile cylindrique en acier de 12 mm de diamètre pour les matières premières peu rigides. La mesure comporte 3 étapes : une 1 ère étape après détection automatique de la surface de l'échantillon où le mobile se déplace à la vitesse de mesure de 0,1 mm/s, et pénètre dans la composition selon l'invention ou le beurre à une profondeur de pénétration de 0,3 mm, le logiciel note la valeur de la force maximale atteinte ; une 2ème étape dite de relaxation ou le mobile reste à cette position pendant une seconde et où on note la force après 1 seconde de relaxation ; enfin une 3ème étape dite de retrait ou le mobile revient à sa position initiale à la vitesse de 1 mm/s et on note l'énergie de retrait de la sonde (force négative).
La valeur de la dureté mesurée lors de la première étape correspond à la force de compression maximale mesurée en Newton divisée par la surface du cylindre du texturomètre exprimée en mm2 en contact avec le beurre ou la composition selon l'invention. La valeur de dureté obtenue est exprimée en mégapascals ou MPa.
Le corps gras pâteux ou beurre peut être choisi parmi les composés synthétiques et les composés d'origine végétale. Un corps gras pâteux peut être obtenu par synthèse à partir de produits de départ d'origine végétale.
Le corps gras pâteux est avantageusement choisi parmi :
- la lanoline et ses dérivés tels que l'alcool de lanoline, les lanolines oxyéthylénées, la lanoline acétylée, les esters de lanoline tels que le lanolate d'isopropyle, les lanolines oxypropylénées,
- les composés siliconés polymères ou non-polymères comme les polydiméthysiloxanes de masses moléculaires élevées, les polydiméthysiloxanes à chaînes latérales du type alkyle ou alcoxy ayant de 8 à 24 atomes de carbone, notamment les stéaryl diméthicones,
- les composés fluorés polymères ou non-polymères, 4- les polymères vinyliques, notamment
- les homopolymères d'oléfines,
- les copolymères d'oléfines,
- les homopolymères et copolymères de diènes hydrogénés,
- les oligomères linéaires ou ramifiés, homo ou copolymères de (méth)acrylates d'alkyle ayant de préférence un groupement alkyle en C8-C3o,
- les oligomères homo et copolymères d'esters vinyliques ayant des groupements alkyles en C8-C3o,
- les oligomères homo et copolymères de vinyléthers ayant des groupements alkyles en C8-C3o,
- les polyéthers liposolubles résultant de la polyéthérification entre un ou plusieurs diols en C2-C10o, de préférence en C2-C50,
- les esters et les polyesters, et
- leurs mélanges.
Selon un mode préféré de l'invention, le ou les beurres particuliers sont d'origine végétale tels que ceux décrit dans Ullmann's Encyclopedia of Industrial Chemistry (« Fats and Fatty Oils», A. Thomas, publié le 15/06/2000, D01 : 10.1002/14356007.a10_173, point 13.2.2.2. Shea Butter, Bornéo Tallow, and Related Fats (Vegetable Butters)).
On peut citer plus particulièrement les triglycérides en C10-C18 (nom INCI : C10-18 Triglycérides) comportant à la température de 25°C et à pression atmosphérique (760 mm Hg) une fraction liquide et une fraction solide, le beurre de karité, le beurre de Karité Nilotica (Butyrospermum parkii), le beurre de Galam, (Butyrospermum parkii), le beurre ou graisse de Bornéo ou tengkawang tallow) (Shorea stenoptera), beurre de Shorea, beurre d'Illipé , beurre de Madhuca ou Bassia Madhuca longifolia, beurre de mowrah (Madhuca Latifolia), beurre de Katiau (Madhuca mottleyana), le beurre de Phulwara (M. butyracea), le beurre de mangue (Mangifera indica), le beurre de Murumuru (Astrocatyum murumuru), le beurre de Kokum (Garcinia Indica), le beurre d'Ucuuba ( Virola sebifera), le beurre de Tucuma, le beurre de Painya (Kpangnan) (Pentadesma butyracea), le beurre de café (Coffea arabica), le beurre d'abricot (Prunus Armeniaca), le beurre de Macadamia (Macadamia Temifolia), le beurre de pépin de raisin ( Vitis vinifera), le beurre d'avocat (Persea gratissima), le beurre d'olives (Olea europaea), le beurre d'amande douce (Prunus amygdalus dulcis), le beurre de cacao ( Theobroma cacao) et le beurre de tournesol, le beurre sous le nom INCI Astrocaryum Murumuru Seed Butter, le beurre sous le nom INCI Theobroma Grandiflorum Seed Butter, et le beurre sous le nom INCI Irvingia Gabonensis Kernel Butter, les esters de jojoba (mélange de cire et d'huile de jojoba hydrogénée)(nom INCI : Jojoba esters) et les esters éthyliques de beurre de karité (nom INCI : Shea butter ethyl esters), et leurs mélanges.
La composition selon l'invention peut comprendre au moins une argile lipophile. Les argiles peuvent être naturelles ou synthétiques et elles sont rendues lipophiles par un traitement avec un sel d'alkyl ammonium comme un chlorure d'ammonium en C10 à C22, par exemple le chlorure de di-stéaryl di-méthyl ammonium. Elles peuvent être choisies parmi les bentonites en particulier les hectorites et les montmorillonites, les beidellites, les saponites, les nontronites, les sépiolites, les biotites, les attapulgites, les vermiculites et les zéolites.
De préférence, elles sont choisies parmi les hectorites. De préférence, on utilise à titre d'argiles lipophiles les hectorites modifiées par un chlorure d'ammonium en C10 à C22, comme l'hectorite modifiée par du chlorure de distéaryl di-méthyl ammonium telle que, par exemple, celle commercialisée sous la dénomination de Bentone 38V® par la société Elementis ou le gel de bentone dans isododécane commercialisé sous la dénomination Bentone Gel ISD V® (Isododécane 87%/Disteardimonium Hectorite 10%/Propylène carbonate 3%) par la société Elementis. La phase grasse d'une composition selon l'invention peut également comprendre à titre de gélifiant une silice pyrogénée ou des particules d'aérogel de silice.
Convient tout particulièrement à l'invention, la silice pyrogénée traitée hydrophobe en surface. Il est en effet possible de modifier chimiquement la surface de la silice, par réaction chimique générant une diminution du nombre de groupes silanol présents à la surface de la silice. On peut notamment substituer des groupes silanol par des groupements hydrophobes : on obtient alors une silice hydrophobe.
Les groupements hydrophobes peuvent être :
- des groupements triméthylsiloxyle, qui sont notamment obtenus par traitement de silice pyrogénée en présence de l'hexaméthyldisilazane. Des silices ainsi traitées sont dénommées « Silica silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R812® par la société Degussa, CAB-O-SIL TS-530® par la société Cabot.
- des groupements diméthylsilyloxyle ou polydiméthylsiloxane, qui sont notamment obtenus par traitement de silice pyrogénée en présence de polydiméthylsiloxane ou du diméthyldichlorosilane. Des silices ainsi traitées sont dénommées « Silica diméthyl silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R972®, et Aerosil R974® par la société Degussa, CAB-O-SIL TS-610® et CAB-O-SIL TS-720® par la société Cabot.
La phase huileuse d'une composition selon l'invention peut également comprendre à titre de gélifiant au moins des particules d'aérogels de silice. Les aérogels de silice sont des matériaux poreux obtenus en remplaçant (par séchage) la composante liquide d'un gel de silice par de l'air. Ils sont généralement synthétisés par procédé sol-gel en milieu liquide puis séchés usuellement par extraction d'un fluide supercritique, le plus communément utilisé étant le C02 supercritique. Ce type de séchage permet d'éviter la contraction des pores et du matériau. Le procédé sol-gel et les différents séchages sont décrits en détail dans Brinker CJ., and Scherer G.W., Sol-Gel Science : New York : Académie Press, 1990. Les particules d'aérogels de silice hydrophobe utilisées dans la présente invention présentent une surface spécifique par unité de masse (SM) allant de 500 à 1 500 m2/g, de préférence de 600 à 1 200 m2/g et mieux de 600 à 800 m2/g, et une taille exprimée en diamètre moyen en volume (D[0,5]) allant de 1 à 1 500 μηι, mieux de 1 à 1 000 μηι, de préférence de 1 à 100 μηι, en particulier de 1 à 30 μηι, de préférence encore de 5 à 25 μηι, mieux de 5 à 20 μηι et encore mieux de mieux de 5 à 15 μηι.
Selon un mode de réalisation, les particules d'aérogels de silice hydrophobe utilisées dans la présente invention présentent une taille exprimée en diamètre moyen en volume (D[0,5]) allant de 1 à 30 μηι, de préférence de 5 à 25 μηι, mieux de 5 à 20 μηι et encore mieux de mieux de 5 à 15 μηι. La surface spécifique par unité de masse peut être déterminée par la méthode d'absorption d'azote appelée méthode BET (Brunauer - Emmet - Teller) décrite dans « The journal of the American Chemical Society », vol. 60, page 309, février 1938 et correspondant à la norme internationale ISO 5794/1 (annexe D). La surface spécifique BET correspond à la surface spécifique totale des particules considérées. Les tailles des particules d'aérogel de silice peuvent être mesurées par diffusion statique de la lumière au moyen d'un granulomètre commercial de type MasterSizer 2000 de chez Malvern. Les données sont traitées sur la base de la théorie de diffusion de Mie. Cette théorie, exacte pour des particules isotropes, permet de déterminer dans le cas de particules non sphériques, un diamètre « effectif» de particules. Cette théorie est notamment décrite dans l'ouvrage de Van de Hulst, H.C., « Light Scattering by 20 Small Particles », Chapitres 9 et 10, Wiley, New York, 1957.
Selon un mode de réalisation avantageux, les particules d'aérogels de silice hydrophobe utilisées dans la présente invention présentent une surface spécifique par unité de masse (SM) allant de 600 à 800 m2/g.
Les particules d'aérogel de silice utilisées dans la présente invention peuvent avantageusement présenter une densité tassée p allant de 0,02 g/cm3 à 0,10 g/cm3, de préférence de 0,03 g/cm3 à 0,08 g/cm3, en particulier allant de 0,05 g/cm3 à 0,08 g/cm3. Dans le cadre de la présente invention, cette densité peut être appréciée selon le protocole suivant, dit de la densité tassée : On verse 40 g de poudre dans une éprouvette graduée ; puis on place l'éprouvette sur l'appareil STAV 2003 de chez Stampf Volumeter ; l'éprouvette est ensuite soumise à une série de 2 500 tassements (cette opération est recommencée jusqu'à ce que la différence de volume entre 2 essais consécutifs soit inférieure à 2 %) ; puis on mesure directement sur l'éprouvette le volume final Vf de poudre tassée. La densité tassée est déterminée par le rapport m/Vf, en l'occurrence 40/Vf (Vf étant exprimé en cm3 et m en g).
Selon un mode de réalisation préféré, les particules d'aérogels de silice hydrophobe utilisées dans la présente invention présentent une surface spécifique par unité de volume SV allant de 5 à 60 m2/cm3, de préférence de 10 à 50 m2/cm3 et mieux de 15 à 40 m2/cm3. La surface spécifique par unité de volume est donnée par la relation : Sv = SM x p ; où p est la densité tassée exprimée en g/cm3 et SM est la surface spécifique par unité de masse exprimée en m2/g, telles que définie plus haut.
De préférence, les particules d'aérogels de silice hydrophobe selon l'invention ont une capacité d'absorption d'huile mesurée au Wet Point allant de 5 à 18 ml/g, de préférence de 6 à 15 ml/g et mieux de 8 à 12 ml/g. La capacité d'absorption mesurée au Wet Point, et notée Wp, correspond à la quantité d'huile qu'il faut additionner à 100 g de particules pour obtenir une pâte homogène. Elle est mesurée selon la méthode dite de Wet Point ou méthode de détermination de prise d'huile de poudre décrite dans la norme NF T 30-022. Elle correspond à la quantité d'huile adsorbée sur la surface disponible de la poudre et/ou absorbée par la poudre par mesure du Wet Point, décrite ci-dessous : On place une quantité m = 2 g de poudre sur une plaque de verre puis on ajoute goutte à goutte l'huile (isononyl isononanoate). Après addition de 4 à 5 gouttes d'huile dans la poudre, on mélange à l'aide d'une spatule et on continue d'ajouter de l'huile jusqu'à la formation de conglomérats d'huile et de poudre. A partir de ce moment, on ajoute l'huile à raison d'une goutte à la fois et on triture ensuite le mélange avec la spatule. On cesse l'addition d'huile lorsque l'on obtient une pâte ferme et lisse. Cette pâte doit se laisser étendre sur la plaque de verre sans craquelures ni formation de grumeaux. On note alors le volume Vs (exprimé en ml) d'huile utilisé. La prise d'huile correspond au rapport Vs/m.
Les aérogels utilisés selon la présente invention sont des aérogels de silice hydrophobe, de préférence de silice silylée (nom INCI : silica silylate).
Par « silice hydrophobe », on entend toute silice dont la surface est traitée par des agents de silylation, par exemple par des silanes halogénés tels que des alkylchlorosilanes, des siloxanes, en particulier des dimethylsiloxanes tel que l'hexamethyldisiloxane, ou des silazanes, de manière à fonctionnaliser les groupements OH par des groupements silyles Si-Rn, par exemple des groupements triméthylsilyles. Concernant la préparation de particules d'aérogels de silice hydrophobe modifiés en surface par silylation, on peut se référer au document US 7 470 725. On utilisera de préférence des particules d'aérogels de silice hydrophobe modifiée en surface par groupements triméthylsilyles, de préférence de nom INCI Silica silylate. A titre de d'aérogels de silice hydrophobe utilisables dans l'invention, on peut citer par exemple l'aérogel commercialisé sous la dénomination VM-2260 ou VM-2270 (nom INCI : Silica silylate), par la société Dow Corning, dont les particules présentent une taille moyenne d'environ 1 000 microns et une surface spécifique par unité de masse allant de 600 à 800 m2/g. On peut également citer les aérogels commercialisés par la société Cabot sous les références Aerogel TLD 201 , Aerogel OGD 201 , Aerogel TLD 203, ENOVA® Aerogel MT 1 100, ENOVA Aerogel MT 1200. On utilisera de préférence l'aérogel commercialisé sous la dénomination VM-2270 (nom INCI Silica silylate), par la société Dow Corning, dont les particules présentent une taille moyenne allant de 5-15 microns et une surface spécifique par unité de masse allant de 600 à 800 m2/g.
Elastomère d'organopolysiloxane
L'élastomère d'organopolysiloxane a pour avantage de conférer à la composition selon l'invention de bonnes propriétés d'application. Il procure un toucher très doux après l'application, avantageux notamment pour une application sur la peau. Il peut également permettre un comblement efficace des creux présents sur les matières kératiniques.
Par « élastomère d'organopolysiloxane » ou « élastomère de silicone », on entend un organopolysiloxane souple, déformable ayant des propriétés viscoélastiques et notamment la consistance d'une éponge ou d'une sphère souple. Son module d'élasticité est tel que ce matériau résiste à la déformation et possède une capacité limitée à l'extension et à la contraction. Ce matériau est capable de retrouver sa forme originelle suite à un étirement. Il s'agit plus particulièrement d'un élastomère d'organopolysiloxane réticulé.
Ainsi, l'élastomère d'organopolysiloxane peut être obtenu par réaction d'addition réticulation de diorganopolysiloxane contenant au moins un hydrogène lié au silicium et de diorganopolysiloxane ayant des groupements à insaturation éthylénique liés au silicium, notamment en présence de catalyseur platine ; ou par réaction de condensation réticulation déhydrogénation entre un diorganopolysiloxane à terminaisons hydroxyle et un diorganopolysiloxane contenant au moins un hydrogène lié au silicium, notamment en présence d'un organoétain ; ou par réaction de condensation réticulation d'un diorganopolysiloxane à terminaisons hydroxyle et d'un organopolysilane hydrolysable ; ou par réticulation thermique d'organopolysiloxane, notamment en présence de catalyseur organopéroxyde ; ou par réticulation d'organopolysiloxane par radiations de haute énergie telles que rayons gamma, rayons ultraviolet, faisceau électronique.
De préférence, l'élastomère d'organopolysiloxane est obtenu par réaction d'addition réticulation (A) de diorganopolysiloxane contenant au moins deux hydrogènes liés chacun à un silicium, et (B) de diorganopolysiloxane ayant au moins deux groupements à insaturation éthylénique liés au silicium, notamment en présence (C) de catalyseur platine, comme par exemple décrit dans la demande EP-A-295886.
En particulier, l'élastomère d'organopolysiloxane peut être obtenu par réaction de diméthylpolysiloxane à terminaisons diméthylvinylsiloxy et de méthylhydrogénopolysiloxane à terminaisons triméthylsiloxy, en présence de catalyseur platine. Le composé (A) est le réactif de base pour la formation d'organopolysiloxane élastomère et la réticulation s'effectue par réaction d'addition du composé (A) avec le composé (B) en présence du catalyseur (C). Le composé (A) est en particulier un organopolysiloxane ayant au moins deux atomes d'hydrogène liés à des atomes de silicium distincts dans chaque molécule. Le composé (A) peut présenter toute structure moléculaire, notamment une structure chaîne linéaire ou chaîne ramifiée ou une structure cyclique. Le composé (A) peut avoir une viscosité à 25°C allant de 1 à 50 000 centistokes, notamment pour être bien miscible avec le composé (B). Les groupes organiques liés aux atomes de silicium du composé (A) peuvent être des groupes alkyles tels que méthyle, éthyle, propyle, butyle, octyle ; des groupes alkyles substitués tels que 2-phényléthyle, 2- phénylpropyle, 3,3,3-trifluoropropyle ; des groupes aryles tels que phényle, tolyle, xylyle ; des groupes aryles substitués tels que phényléthyle ; et des groupes hydrocarbonés monovalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. Le composé (A) peut ainsi être choisi parmi les méthylhydrogénopolysiloxanes à terminaisons triméthylsiloxy, les copolymères diméthylsiloxane-méthylhydrogénosiloxane terminaisons triméthylsiloxy, les copolymères cycliques diméthylsiloxane-méthylhydrogénosiloxane. Le composé (B) est avantageusement un diorganopolysiloxane ayant au moins deux groupes alkényles inférieurs (par exemple en C2-C4) ; le groupe alkényle inférieur peut être choisi parmi les groupes vinyle, allyle, et propényle. Ces groupements alkényles inférieurs peuvent être situés en toute position de la molécule organopolysiloxane mais sont de préférence situés aux extrémités de la molécule organopolysiloxane.
L'organopolysiloxane (B) peut avoir une structure à chaîne ramifiée, à chaîne linéaire, cyclique ou en réseau mais la structure en chaîne linéaire est préférée. Le composé (B) peut avoir une viscosité allant de l'état liquide à l'état de gomme. De préférence, le composé (B) a une viscosité d'au moins 100 centistokes à 25°C. Outre les groupes alkényle précités, les autres groupes organiques liés aux atomes de silicium dans le composé (B) peuvent être des groupes alkyles tels que méthyle, éthyle, propyle, butyle ou octyle ; des groupes alkyles substitués tels que 2- phényléthyle, 2-phénylpropyle ou 3,3,3-trifluoropropyle ; des groupes aryles tels que phényl, tolyl ou xylyl ; des groupes aryles substitués tels que phényléthyle ; et des groupes hydrocarbonés monovalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. Les organopolysiloxanes (B) peuvent être choisis parmi les méthylvinylpolysiloxanes, les copolymères méthylvinylsiloxane-diméthylsiloxane, les diméthylpolysiloxanes à terminaisons diméthylvinylsiloxy, les copolymères diméthylsiloxane-méthylphénylsiloxane à terminaisons diméthylvinylsiloxy, les copolymères diméthylsiloxane- diphénylsiloxane-méthylvinylsiloxane à terminaisons diméthylvinylsiloxy, les copolymères diméthylsiloxane-méthylvinylsiloxane terminaisons triméthylsiloxy, les copolymères diméthylsiloxane-méthylphénylsiloxane-méthylvinylsiloxane à terminaisons triméthylsiloxy, les méthyl(3,3,3-trifluoropropy1 )-polysiloxane à terminaisons diméthylvinylsiloxy, et les copolymères diméthylsiloxaneméthyl(3,3,3- trifluoropropyl)siloxane à terminaisons diméthylvinylsiloxy.
En particulier, l'organopolysiloxane élastomère peut être obtenu par réaction de diméthylpolysiloxane à terminaisons diméthylvinylsiloxy et de méthylhydrogéno- polysiloxane à terminaisons triméthylsiloxy, en présence de catalyseur platine.
Avantageusement, la somme du nombre de groupements éthyléniques par molécule du composé (B) et du nombre d'atomes d'hydrogène liés à des atomes de silicium par molécule du composé (A) est d'au moins 5.
Il est avantageux que le composé (A) soit ajouté en une quantité telle que le rapport moléculaire entre la quantité totale d'atomes d'hydrogène liés à des atomes de silicium dans le composé (A) et la quantité totale de tous les groupements à insaturation éthylénique dans le composé (B) soit compris dans la gamme de 1 ,5/1 à 20/1 .
Le composé (C) est le catalyseur de la réaction de réticulation, et est 25 notamment l'acide chloroplatinique, les complexes acide chloroplatinique-oléfine, les complexes acide chloroplatinique-alkenylsiloxane, les complexes acide chloroplatiniquedicétone, le platine noir, et le platine sur support. Le catalyseur (C) est de préférence ajouté de 0,1 à 1 000 parts en poids, mieux de 1 à 100 parts en poids, en tant que métal platine propre pour 1 000 parts en poids de la quantité totale des composés (A) et (B). L'élastomère est avantageusement un élastomère non émulsionnant.
Le terme « non émulsionnant » définit des élastomères d'organopolysiloxane ne contenant pas de chaîne hydrophile, et en particulier ne contenant pas de motifs polyoxyalkylène (notamment polyoxyéthylène ou polyoxypropylène), ni de motif polyglycéryle. Ainsi, selon un mode particulier de l'invention, la composition comprend un élastomère d'organopolysiloxane dénué de motifs polyoxyalkylène et de motif polyglycéryle. En particulier, l'élastomère de silicone utilisé dans la présente invention est choisi parmi des Dimethicone Crosspolymer (Nom INCI), Vinyl Dimethicone Crosspolymer (Nom INCI), Dimethicone/Vinyl Dimethicone Crosspolymer (Nom INCI), Dimethicone Crosspolymer-3 (Nom INCI). Les particules d'élastomères d'organopolysiloxane peuvent être véhiculées sous forme d'un gel constitué d'un organopolysiloxane élastomérique inclus dans au moins une huile hydrocarbonée et/ou une huile siliconée. Dans ces gels, les particules d'organopolysiloxanes sont souvent des particules non-sphériques.
Des élastomères non émulsionnants sont notamment décrits dans les brevets EP 242 219, EP 285 886, EP 765 656 et dans la demande JP-A-61 -194009.
L'élastomère de silicone se présente généralement sous la forme d'un gel, d'une pâte ou d'une poudre mais avantageusement sous la forme d'un gel dans lequel l'élastomère de silicone est dispersé dans une huile siliconée linéaire (dimethicone) ou cyclique (ex : cyclopentasiloxane), avantageusement dans une huile siliconée linéaire.
Comme élastomères non émulsionnants, on peut plus particulièrement utiliser ceux vendus sous les dénominations « KSG-6 », « KSG-15 », « KSG-16 », « KSG- 18 », « KSG-41 », « KSG-42 », « KSG-43 », « KSG-44 », par la société Shin Etsu, « DC9040 », « DC9041 », par la société Dow Corning, « SFE 839 » par la société General Electric.
Selon un mode particulier, on utilise un gel d'élastomère de silicone dispersé dans une huile siliconée choisie parmi une liste non exhaustive comprenant la cyclopentadimethylsiloxane, les dimethicones, les dimethylsiloxanes, la methyl trimethicone, phenylmethicone, phenyldimethicone, phenyltrimethicone, et la cyclomethicone, de préférence une huile siliconée linéaire choisie parmi les polydiméthylsiloxanes (PDMS) ou dimethicones de viscosité à 25°C allant de 1 à 500 est à 25°C, éventuellement modifiées par des groupements aliphatiques, éventuellement 3025096 46 fluorés, ou par des groupements fonctionnels tels que des groupements hydroxyles, thiols et/ou aminés.
On peut citer notamment les composés de nom INCI suivants :
- Dimethicone/Vinyl Dimethicone Crosspolymer, tels que « USG-105 » et « USG-107A » de la société Shin Etsu ; « DC9506 » et « DC9701 » de la société Dow Corning ; - Dimethicone/Vinyl Dimethicone Crosspolymer (and) Dimethicone, tels que « KSG-6 » et « KSG-16 » de la société Shin Etsu ;
- Dimethicone/Vinyl Dimethicone Crosspolymer (and) Cyclopentasiloxane, tels que « KSG-15 » ;
- Cyclopentasiloxane (and) Dimethicone Crosspolymer, tels que « DC9040 », « DC9045 » et « DC5930 » de la société Dow Corning ;
- Dimethicone (and) Dimethicone Crosspolymer, tels que « DC9041 » de la société Dow Corning ;
- Dimethicone (and) Dimethicone Crosspolymer, tels que « Dow Corning EL- 9240® silicone elastomer blend » de la société Dow Corning (mélange de polydiméthylsiloxane réticulé avec hexadiène/polydiméthysiloxane (2 cSt)) ;
- C4-24 Alkyl Dimethicone/DivinyIDimethicone Crosspolymer, tels que NuLastic Silk MA par la société Alzo.
Comme exemples d'élastomères de silicone dispersés dans une huile de silicone linéaire utilisables avantageusement selon l'invention, on peut citer notamment les références suivantes :
- Dimethicone/Vinyl Dimethicone Crosspolymer (and) Dimethicone, tels que « KSG-6 » et « KSG-16 » de la société Shin Etsu ;
- Dimethicone (and) Dimethicone Crosspolymer, tels que « DC9041 » de la société Dow Corning ;
- Dimethicone (and) Dimethicone Crosspolymer, tels que « Dow Corning EL- 9240® silicone elastomer blend » de la société Dow Corning (mélange de polydiméthylsiloxane réticulé par Hexadiène/Polydiméthysiloxane (2 cSt)) ; et
- DIMETHICONE (and) VINYLDIMETHYL/TRIMETHYLSILOXYSILICATE/ DIMETHICONE CROSSPOLYMER, BELSIL REG 1 100 de chez Wacker silicone.
Les particules d'élastomères d'organopolysiloxane peuvent également être utilisées sous forme de poudre, on peut notamment citer les poudres vendues sous les dénominations « Dow Corning 9505 Powder », « Dow Corning 9506 Powder » par la société Dow Corning, ces poudres ont pour nom INCI : dimethicone/vinyl dimethicone crosspolymer, ainsi que « Dow Corning® 9701 Cosmetic Powder » (INCI : Dimethicone/Vinyl Dimethicone Crosspolymer (and) Silica).
La poudre d'organopolysiloxane peut également être enrobée de résine silsesquioxane, comme décrit par exemple dans le brevet US 5 538 793. De telles poudres d'élastomères sont vendues sous les dénominations « KSP-100 », « KSP- 101 », « KSP102 », « KSP-103 », « KSP-104 », « KSP-105 » par la société Shin Etsu, et ont pour nom INCI : vinyl dimethicone/methicone silsesquioxane Crosspolymer.
Comme exemples de poudres d'organopolysiloxane enrobées de résine silsesquioxane utilisables avantageusement selon l'invention, on peut citer notamment la référence « KSP-100 » de la société Shin Etsu.
A titre d'agent gélifiant lipophile préféré de type élastomère d'organopolysiloxane, on peut notamment mentionner les élastomères d'organopolysiloxane réticulés choisis parmi les Dimethicone Crosspolymer (nom INCI), Dimethicone (and) Dimethicone Crosspolymer (nom INCI), Vinyl Dimethicone Crosspolymer (nom INCI), Dimethicone/Vinyl Dimethicone Crosspolymer (nom INCI), Dimethicone Crosspolymer-3 (nom INCI), DIMETHICONE (and) VINYLDIMETHYIJTRIMETHYLSILOXYSILICATE/DIMETH ICONE
CROSSPOLYMER et en particulier le DIMETHICONE (and) DIMETHICONE/VINYL DIMETHICONE CROSSPOLYMER, KSG16 de chez Shin Etsu ou bien le DIMETHICONE (and) VINYLDIMETHYL/TRIMETHYLSILOXYSILICATE/ DIMETHICONE CROSSPOLYMER, BELSIL REG 1 100 de chez Wacker silicone.
Polymères semi-cristallins
La composition selon l'invention peut comprendre au moins un polymère semi- cristallin. De préférence, le polymère semi-cristallin a une structure organique, et une température de fusion supérieure ou égale à 30°C.
Par « polymère semi-cristallin », on entend au sens de l'invention, des polymères comportant une partie cristallisable et une partie amorphe et présentant une température de changement de phase réversible du premier ordre, en particulier de fusion (transition solide-liquide). La partie cristallisable est soit une chaîne latérale (ou chaîne pendante), soit une séquence dans le squelette. Lorsque la partie cristallisable du polymère semi-cristallin est une séquence du squelette polymérique, cette séquence cristallisable est de nature chimique différente de celle des séquences amorphes ; le polymère semi-cristallin est dans ce cas un copolymère séquence par exemple du type dibloc, tribloc ou multibloc. Lorsque la partie cristallisable est une chaîne pendante au squelette, le polymère semi cristallin peut être un homopolymère ou un copolymère. La température de fusion du polymère semi-cristallin est de préférence inférieure à 150°C. La température de fusion du polymère semi-cristallin est de préférence supérieure ou égale à 30°C et inférieure à 100°C. De préférence encore, la température de fusion du polymère semi-cristallin est supérieure ou égale à 30°C et inférieure à 70°C. Le ou les polymères semi-cristallins selon l'invention sont des solides à température ambiante (25°C) et pression atmosphérique (760 mm de Hg), dont la température de fusion est supérieure ou égale à 30°C. Les valeurs de point de fusion correspondent au point de fusion mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), tel que le calorimètre vendu sous la dénomination DSC 30 par la société Mettler, avec une montée en température de 5 ou 10°C par minute (Le point de fusion considéré est le point correspondant à la température du pic le plus endotherme du thermogramme).
Le ou les polymères semi-cristallins selon l'invention ont de préférence une température de fusion supérieure à la température du support kératinique destiné à recevoir ladite composition, en particulier la peau, les lèvres ou les paupières.
Selon l'invention les polymères semi-cristallins sont avantageusement solubles dans la phase grasse, notamment à au moins 1 % en poids, à une température supérieure à leur température de fusion. En dehors des chaînes ou séquences cristallisables, les séquences des polymères sont amorphes. Par « chaîne ou séquence cristallisable », on entend au sens de l'invention une chaîne ou séquence qui si elle était seule passerait de l'état amorphe à l'état cristallin, de façon réversible, selon qu'on est au-dessus ou en dessous de la température de fusion. Une chaîne au sens de l'invention est un groupement d'atomes, pendant ou latéral par rapport au squelette du polymère. Une séquence est un groupement d'atomes appartenant au squelette, groupement constituant un des motifs répétitifs du polymère.
De préférence, le squelette polymérique des polymères semi-cristallins est soluble dans la phase grasse à une température supérieure à leur température de fusion. De préférence, les séquences ou chaînes cristallisables des polymères semi-cristallins représentent au moins 30% du poids total de chaque polymère et mieux au moins 40%. Les polymères semi-cristallins à chaînes latérales cristallisables sont des homo- ou des co-polymères. Les polymères semi-cristallins de l'invention à séquences cristallisables sont des copolymères, séquences ou multiséquencés. Ils peuvent être obtenus par polymérisation de monomère à double liaisons réactives (ou éthyléniques) ou par polycondensation. Lorsque les polymères de l'invention sont des polymères à chaînes latérales cristallisables, ces derniers sont avantageusement sous forme aléatoire ou statistique.
De préférence, les polymères semi-cristallins de l'invention sont d'origine synthétique. Selon un mode de réalisation préféré, le polymère semi-cristallin est choisi parmi :
- les homopolymères et copolymères comportant des motifs résultant de la polymérisation de un ou plusieurs monomères porteurs de chaîne(s) latérale(s) hydrophobe(s) cristallisable(s),
- les polymères portant dans le squelette au moins une séquence cristallisable,
- les polycondensats de type polyester, aliphatique ou aromatique ou aliphatique/aromatique,
- les copolymères d'éthylène et de propylène préparés par catalyse métallocène, et
- les copolymères acrylates/silicone.
Les polymères semi-cristallins utilisables dans l'invention peuvent être choisis en particulier parmi :
- les copolymères séquences de polyoléfines à cristallisation contrôlée, dont les monomères sont décrits dans EP 0 951 897,
- les polycondensats et notamment de type polyester, aliphatique ou aromatique ou aliphatique/aromatique,
- les copolymères d'éthylène et de propylène préparés par catalyse métallocène,
- les homo- ou co-polymères portant au moins une chaîne latérale cristallisable et les homo- ou co-polymères portant dans le squelette au moins une séquence cristallisable, comme ceux décrits dans le document US 5,156,91 1 , tels que les (Cio-C30)alkyle polyacrylates correspondant aux Intelimer® de la société Landec décrits dans la brochure « Intelimere polymers », Landec 1 P22 (Rev. 4-97) et par exemple le produit Intelimer® IPA 13-1 de la société Landec, qui est un polyacrylate de stéaryle de poids moléculaire d'environ 145 000 et dont la température de fusion est égale à 49°C,
- les homo- ou co-polymères portant au moins une chaîne latérale cristallisable en particulier à groupement(s) fluoré(s), tels que décrits dans le document WO 01/19333,
- les copolymères acrylates/silicone, tels que les copolymères d'acide acrylique et d'acrylate de stéaryle à greffons polydiméthylsiloxane, les copolymères de méthacrylate de stéaryle à greffons polydiméthylsiloxane, les copolymères d'acide acrylique et de méthacrylate de stéaryle à greffons polydiméthylsiloxane, les copolymères de méthacrylate de méthyle, méthacrylate de butyle, d'acrylate d'éthyl- 2-hexyle et de méthacrylate de stéaryle à greffons polydiméthylsiloxane. On peut citer en particulier les copolymères commercialisés par la société SHIN-ETSU sous les dénominations KP-561 (nom CTFA : acrylates/dimethicone), KP-541 (nom CTFA : acrylates/dimethicone and Isopropyl alcohol), KP-545 (nom CTFA : acrylates/dimethicone and Cyclopentasiloxane),
- et leurs mélanges.
Polyacrylates
Selon un mode de réalisation, l'agent gélifiant est choisi parmi les polyacrylates résultant de la polymérisation d'acrylate(s) d'alkyle en C10-C30, de préférence d'acrylate(s) d'alkyle en C14-C24, et encore plus préférentiellement d'acrylate(s) d'alkyle en C18-C22.
Selon un mode de réalisation, les polyacrylates sont des polymères d'acide acrylique estérifié avec un alcool gras dont la chaîne carbonée saturée comprend de 10 à 30 atomes de carbone, de préférence de 14 à 24 atomes de carbone, ou un mélange desdits alcools gras. De préférence, l'alcool gras comprend 18 atomes de carbone ou 22 atomes de carbone.
Parmi les polyacrylates, on peut citer plus particulièrement le polyacrylate de stéaryle, le polyacrylate de béhényle. De préférence, l'agent gélifiant est le polyacrylate de stéaryle ou le polyacrylate de béhényle.
On peut notamment citer les polyacrylates commercialisés sous les dénominations Interlimer® (nom INCI : Poly Cio-C30 alkyl acrylate), notamment Interlimer® 13.1 et Interlimer® 13.6, par la société Airproducts.
Esters de dextrine
La composition selon l'invention peut comprendre au moins un ester de dextrine. En particulier, la composition comprend de préférence au moins un ester de dextrine et d'acide gras, de préférence en C12 à C24, en particulier en C14 à C18, ou leurs mélanges. De préférence, l'ester de dextrine est un ester de dextrine et d'acide gras en C12-C18, en particulier en C14-C18.
De préférence, l'ester de dextrine est choisi parmi le myristate de dextrine et/ou le palmitate de dextrine, et leurs mélanges.
Selon un mode de réalisation particulier, l'ester de dextrine est le myristate de dextrine, tel que celui notamment commercialisé sous le nom de Rheopearl MKL-2 par la société Chiba Flour Milling. Selon un mode de réalisation préféré, l'ester de dextrine est le palmitate de dextrine. Celui-ci peut par exemple être choisi parmi ceux commercialisés sous les dénominations Rheopearl TL® ou Rheopearl KL® ou Rheopearl® KL2 par la société Chiba Flour Milling.
Ester d'inuline
La composition selon l'invention peut comprendre au moins un ester d'inuline et d'acide gras. On peut notamment citer les esters d'inuline et d'acide(s) gras commercialisés sous les dénominations Rheopearl® ISK2 ou Rheopearl® ISL2 (nom INCI : Stearoyl Inulin) par la société Miyoshi Europe
Ester de glycérol
La composition selon l'invention peut comprendre au moins un ester de glycérol et d'acide(s) gras, en particulier un mono-, di- ou triester de glycérol et d'acide(s) gras. Typiquement, ledit ester de glycérol et d'acide(s) gras peut être utilisé seul ou en mélange.
Selon l'invention, il peut s'agir d'un ester de glycérol et d'un acide gras ou d'un ester de glycérol et d'un mélange d'acides gras.
Selon un mode de réalisation, l'acide gras est choisi dans le groupe constitué de l'acide béhénique, de l'acide isooctadécanoique, de l'acide stéarique, de l'acide eicosanoïque, et de leurs mélanges.
On peut notamment citer les esters de glycérol et d'acide(s) gras commercialisés sous les dénominations Nomcort HK-G (nom INCI : Glyceryl behenate/eicosadioate) et Nomcort SG (nom INCI : Glyceryl tribehenate, isostearate, eicosadioate), par la société Nisshin Oillio.
Polymères à liaison hydrogène
A titre représentatif des polymères à liaison hydrogène convenant à l'invention, on peut tout particulièrement citer les polyamides et en particulier les polyamides hydrocarbonés et les polyamides siliconés.
La phase huileuse d'une composition selon l'invention peut comprendre au moins un polyamide choisi parmi les polyamides hydrocarbonés, les polyamides siliconés, et leurs mélanges. Par « polyamide », on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition amide, de préférence au moins 3 motifs de répétition amide et mieux encore 10 motifs de répétition amide. Par « polyamide hydrocarboné», on entend un polyamide formé essentiellement, voire constitué, d'atomes de carbone et d'hydrogène, et éventuellement d'atomes d'oxygène, d'azote, et ne contenant pas d'atome de silicium ou de fluor. Il peut contenir des groupes alcool, ester, éther, acide carboxylique, aminé et/ou amide. Par « chaîne fonctionnalisée » au sens de l'invention, on entend une chaîne alkyle comportant un ou plusieurs groupes fonctionnels ou réactifs notamment choisis parmi les groupes hydroxyle, éther, les esters, oxyalkylène ou polyoxyalkylène. Avantageusement, ce polyamide de la composition selon l'invention présente une masse moléculaire moyenne en poids inférieure à 100 000 g/mol notamment allant de 1 000 à 100 000 g/mol, en particulier inférieure à 50 000 g/mol notamment allant de 1 000 à 50 000 g/mol, et plus particulièrement allant de 1 000 à 30 000 g/mol, de préférence de 2 000 à 20 000 g/mol, et mieux de 2 000 à 10 000 g/mol. Ce polyamide est non soluble dans l'eau, notamment à 25°C.
Selon un premier mode de réalisation de l'invention le polyamide utilisé est un polyamide de formule (I) :
X— C K.-C— NH - r-N H -j-C— R— C— X
t. m - H * in „ 2 i ,
O O O O dans laquelle X représente un groupe -N(R1)2 ou un groupe -ORi dans lequel Ri est un radical alkyle linéaire ou ramifié en C8 à C22, pouvant être identiques ou différents l'un de l'autre, R2 est un résidu de dimère diacide en C28-C42, R3 est un radical éthylène diamine, n est compris entre 2 et 5 ; et leurs mélanges.
Selon un mode particulier, le polyamide utilisé est un polyamide à terminaison amide de formule (la) :
X— I— C— R-— C— H— R^— NH— *— C— — C— X
{ 11 H I I i l
0 0 0 0 n . dans laquelle X représente un groupe -N(R1)2 dans lequel Ri est un radical alkyle linéaire ou ramifié en C8 à C22, pouvant être identiques ou différents l'un de l'autre, R2 est un résidu de dimère diacide en C28-C42, R3 est un radical éthylène diamine, n est compris entre 2 et 5 ; et leurs mélanges.
La phase grasse d'une composition selon l'invention peut comprendre en outre, de façon additionnelle dans ce cas, au moins un polyamide additionnel de formule (Ib) : -C-R;~~C— NH -R-7 NH - C- -R» -c-x
II I !
0 0 0 0
(!)
dans laquelle X représente un groupe -ORi dans lequel Ri est un radical alkyle linéaire ou ramifié en C8 à C22 de préférence en Ci6 à C22, pouvant être identiques ou différents l'un de l'autre, R2 est un résidu de dimère diacide en C28- C42, R3 est un radical éthylène diamine, n est compris entre 2 et 5, tels que les produits commerciaux vendus par la société Arizona Chemical sous les noms Uniclear 80 et Uniclear 100 ou encore Uniclear 80 V, Uniclear 100 V et Uniclear 100 VG, dont le nom INCI est «éthylènediamine/stéaryl dimère dilinoléate copolymère».
Les polyamides siliconés sont de préférence solides à la température ambiante (25°C) et pression atmosphérique (760 mm de Hg). Les polyamides siliconés peuvent préférentiellement être des polymères comprenant au moins un motif de formule III) ou (IV) :
01}
O
R
—us— χ- -SiO -Si— X—» ÏH— - R' ) dans lesquelles :
• R4, R5, R6 et R7, identiques ou différents, représentent un groupe choisi parmi :
- les groupes hydrocarbonés, linéaires, ramifiés ou cycliques, en Ci à C40, saturés ou insaturés, pouvant contenir dans leur chaîne un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et pouvant être substitués en partie ou totalement par des atomes de fluor,
- les groupes aryles en C6 à C10, éventuellement substitués par un ou plusieurs groupes alkyle en d à C4, - les chaînes polyorganosiloxanes contenant ou non un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote,
• les X, identiques ou différents, représentent un groupe alkylène di-yle, linéaire ou ramifié en Ci à C30, pouvant contenir dans sa chaîne un ou plusieurs atomes d'oxygène et/ou d'azote,
• Y est un groupe divalent alkylène linéaire ou ramifié, arylène, cycloalkylène, alkylarylène ou arylalkylène, saturé ou insaturé, en d à C50, pouvant comporter un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et/ou porter comme substituant l'un des atomes ou groupes d'atomes suivants : fluor, hydroxy, cycloalkyle en C3 à C8, alkyle en d à C40, aryle en C5 à C10, phényle éventuellement substitué par 1 à 3 groupes alkyle en d à C3, hydroxyalkyle en d à C3 et amino alkyle en d à C6, ou
Y représente un groupe répondant à la formule
dans laquelle
- T représente un groupe hydrocarboné trivalent ou tétravalent, linéaire ou ramifié, saturé ou insaturé, en C3 à C24 éventuellement substitué par une chaîne polyorganosiloxane, et pouvant contenir un ou plusieurs atomes choisis parmi O, N et S, ou T représente un atome trivalent choisi parmi N, P et Al, et
- R8 représente un groupe alkyle en Ci à C5o, linéaire ou ramifié, ou une chaîne polyorganosiloxane, pouvant comporter un ou plusieurs groupes ester, amide, uréthane, thiocarbamate, urée, thiourée et/ou sulfonamide qui peut être lié ou non à une autre chaîne du polymère,
• n est un nombre entier allant de 2 à 500, de préférence de 2 à 200 et m est un nombre entier allant de 1 à 1 000, de préférence de 1 à 700 et mieux encore de 6 à 200.
Selon un mode particulier, le polyamide silicone comprend au moins un motif de formule (III) où m va de 50 à 200, en particulier de 75 à 150, et de préférence de l'ordre de 100.
De préférence encore R4, R5, R6 et R7 représentent indépendamment, un groupe alkyle en d à C40, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H7 ou isopropyle dans la formule (III). A titre d'exemple de polymère silicone utilisable, on peut citer un des polyamides siliconés, obtenus conformément aux exemples 1 à 3 du document US 5 981 680. On peut citer les composés commercialisés par la société Dow Corning sous le nom DC 2-8179 (DP 100) et DC 2-8178 (DP 15) dont le nom INCI est « Nylon61 1/dimethicone copolymères » c'est-à-dire des copolymères Nylon-61 1 /dimethicone.
Les polymères et/ou copolymères siliconés ont avantageusement une température de transition de l'état solide à l'état liquide allant de 45°C à 190°C. De préférence, ils présentent une température de transition de l'état solide à l'état liquide allant de 70°C à 130°C et mieux de 80°C à 105°C.
Copolymère séquencé hydrocarboné
Les copolymères séquencés hydrocarbonés, également nommés copolymères blocs, sont choisis parmi ceux aptes à épaissir ou gélifier la phase grasse de la composition.
Par « polymère amorphe », on entend un polymère qui n'a pas de forme cristalline. Le gélifiant polymérique est de préférence également filmogène, c'est-à- dire qu'il est capable de former un film lors de son application sur la peau et/ou les lèvres.
Le copolymère bloc hydrocarboné peut être notamment un copolymère dibloc, tribloc, multibloc, radial, étoile, ou leurs mélanges. De tels copolymères blocs hydrocarbonés sont décrits dans la demande US-A-2002/005562 et dans le brevet US-A-5 221 534. Le copolymère peut présenter au moins un bloc dont la température de transition vitreuse, est de préférence inférieure à 20°C, de préférence inférieure ou égale à 0°C, de préférence inférieure ou égale à -20°C, de préférence encore inférieure ou égale à -40°C. La température de transition vitreuse dudit bloc peut être comprise entre -150°C et 20°C, notamment entre -100°C et 0°C. Le copolymère bloc hydrocarboné présent dans la composition selon l'invention est un copolymère amorphe formé par polymérisation d'une oléfine. L'oléfine peut être notamment un monomère à insaturation éthylénique élastomérique. Comme exemple d'oléfine, on peut citer les monomères de carbure éthylénique, ayant notamment une ou deux insaturations éthyléniques, ayant de 2 à 5 atomes de carbone tels que l'éthylène, le propylène, le butadiène, l'isoprène, ou le pentadiène.
Avantageusement, le copolymère bloc hydrocarboné est un copolymère bloc amorphe de styrène et d'oléfine. On préfère notamment les copolymères séquencés comprenant au moins un bloc styrène et au moins un bloc comprenant des motifs choisis parmi le butadiène, l'éthylène, le propylène, le butylène, l'isoprène ou un de leurs mélanges.
Selon un mode préféré de réalisation, le copolymère bloc hydrocarboné est hydrogéné pour réduire les insaturations éthyléniques résiduelles après la polymérisation des monomères. En particulier, le copolymère bloc hydrocarboné est un copolymère, éventuellement hydrogéné, à blocs styrène et à blocs éthylène/alkylène en C3-C4.
Selon un mode de réalisation préféré, la composition selon l'invention comprend au moins un copolymère dibloc, de préférence hydrogéné, de préférence choisi parmi les copolymères de styrène-éthylène/propylène, les copolymères de styrèneéthylène/butadiène, les copolymères de styrène-éthylène/butylène. Des polymères diblocs sont notamment vendus sous la dénomination Kraton® G1701 E par la société Kraton Polymers. Avantageusement, on utilise comme gélifiant polymérique un copolymère dibloc tel que ceux décrits précédemment, en particulier un copolymère dibloc de styrèneéthylène/propylène, ou un mélange de dibloc, tel que décrit précédemment.
Ainsi, selon une variante de réalisation, une composition selon l'invention comprend à titre de gélifiant lipophile au moins un copolymère séquencé hydrocarboné, de préférence un copolymère, éventuellement hydrogéné, à blocs styrène et à blocs éthylène/alkylène en C3-C4, encore plus préférentiellement choisi parmi un copolymère dibloc, de préférence hydrogéné, tel qu'un copolymère de styrèneéthylène/propylène, un copolymère de styrène-éthylène/butadiène
A titre d'agent lipophile ayant un pouvoir suspensif, on peut encore citer l'EstoGel M (INCI : CASTOR OIL / IPDI COPOLYMER & CAPRYLIC / CAPRIC TRIGLYCERIDE) commercialisé par la société Polymer Expert.
L'homme du métier veillera à choisir la nature et/ou la quantité en agent(s) lipophile(s) ayant un pouvoir suspensif de manière à parvenir à une viscosité de la phase grasse souhaitée, et en particulier parvenir au caractère (ou pouvoir) suspensif de ladite phase grasse souhaité, notamment vis-à-vis des sphères (S1 ). Ces ajustements relèvent des compétences de l'homme du métier.
Selon un mode de réalisation, dans les compositions de l'invention, la teneur en agent(s) lipophile(s) ayant un pouvoir suspensif est comprise entre 0,5% et 99,50%, de préférence entre 1 ,5% et 70%, en particulier entre 2,5% et 60%, et préférentiellement entre 3% et 50%, voire encore entre 1 % et 8%, et mieux encore entre 2,5% et 6%, en poids par rapport au poids total de la phase grasse, voire par rapport au poids total de la composition.
Huiles
La phase grasse d'une composition selon l'invention peut en outre comprendre au moins une huile.
La phase grasse peut donc comprendre une seule huile ou un mélange de plusieurs huiles. La phase grasse selon l'invention peut donc comprendre au moins une, au moins deux, au moins trois, au moins quatre, asu moins cinq, voire plus, d'huile(s) telle(s) que décrite(s) ci-après.
On entend par « huile » un corps gras liquide à la température ambiante (25°C).
Comme huiles utilisables dans la composition de l'invention, on peut citer par exemple :
- les huiles hydrocarbonées d'origine végétale, notamment telles que décrites ci-après ;
- les huiles hydrocarbonées d'origine animale, telles que le perhydrosqualène et le squalane ;
- les esters et les éthers de synthèse, notamment d'acides gras, comme les huiles de formules R1COOR2 et RiOR2 dans laquelle Ri représente le reste d'un acide gras en C8 à C29, et R2 représente une chaîne hydrocarbonée, ramifiée ou non, en C3 à C30, comme par exemple l'huile de Purcellin, l'isononanoate d'isononyle, le néopentanoate d'isodécyle, le myristate d'isopropyle, le palmitate d'éthyl-2-hexyle, le stéarate d'octyl-2-dodécyle, l'érucate d'octyl-2-dodécyle, l'isostéarate d'isostéaryle ; les esters hydroxylés comme l'isostéaryl lactate, l'octylhydroxystéarate, l'hydroxystéarate d'octyldodécyle, le diisostéaryl-malate, le citrate de triisocétyle, les heptanoates, octanoates, décanoates d'alcools gras ; les esters de polyol, comme le dioctanoate de propylène glycol, le diheptanoate de néopentylglycol et le diisononanoate de diéthylèneglycol ; et les esters du pentaérythritol comme le tétrabéhénate de pentaérythrityle (DUB PTB) ou le tétraisostéarate de pentaérythrityle (Prisorine 3631 ), ou Plandool G (INCI : Bis- Behenyl/lsostearyl/Phytosteryl/Dimer Dilinoleyl Dimer Dilinoleate) ;
- les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique, tels que les huiles de paraffine, volatiles ou non, et leurs dérivés, la vaseline, les polydécènes, le polyisobutène hydrogéné tel que l'huile de Parléam ; - les huiles de silicone, comme par exemple les polyméthylsiloxanes (PDMS) volatiles ou non à chaîne siliconée linéaire ou cyclique, liquides ou pâteux à température ambiante, notamment les cyclopolydiméthylsiloxanes (cyclométhicones) telles que la cyclohexasiloxane et la cyclopentasiloxane ; les polydiméthylsiloxanes (ou diméthicones) comportant des groupements alkyle, alcoxy ou phényle, pendant ou en bout de chaîne siliconée, groupements ayant de 2 à 24 atomes de carbone ; les silicones phénylées comme les phényltriméthicones, les phényldiméthicones, les phényltriméthylsiloxydiphényl-siloxanes, les diphényl- diméthicones, les diphénylméthyldiphényl trisiloxanes, les 2-phényléthyltriméthyl- siloxysilicates, et les polyméthylphénylsiloxanes ;
- les alcools gras ayant de 8 à 26 atomes de carbone, comme l'alcool cétylique, l'alcool stéarylique et leur mélange (alcool cétylstéarylique), ou encore l'octyldodécanol ;
- les huiles fluorées partiellement hydrocarbonées et/ou siliconées comme celles décrites dans le document JP-A-2-295912 ;
- et leurs mélanges.
Selon un mode de réalisation préféré, l'huile est choisie parmi les esters et les éthers de synthèse, de préférence les esters de formule R1COOR2, dans laquelle Ri représente le reste d'un acide gras en C8 à C2g, et R2 représente une chaîne hydrocarbonée, ramifiée ou non, en C3 à C30.
Selon un mode de réalisation, l'huile est choisie parmi les alcools gras ayant de 8 à 26 atomes de carbone.
Selon un mode de réalisation, l'huile est choisie parmi les huiles hydrocarbonées ayant de 8 à 16 atomes de carbone, et notamment les alcanes ramifiés en C8-Ci6 (appelés aussi isoparaffines ou isoalcanes), comme l'isododécane (encore appelé 2-méthylundécane), l'isodécane, l'isohexadécane, et, par exemple, les huiles vendues sous les noms commerciaux d'Isopars® ou de Permethyls®.
Selon un autre mode de réalisation préféré, la phase grasse des compositions de l'invention comprend une huile choisie parmi les huiles de silicone. De préférence, la phase grasse ne comprend pas d'autres huiles différentes des huiles de silicone. De préférence, les huiles présentes dans la phase grasse sont des huiles de silicone. Selon un mode de réalisation préféré, une composition selon l'invention comprend au moins 1 % en poids d'huile(s) par rapport au poids total de ladite composition.
Selon un autre mode de réalisation, une composition selon l'invention, en particulier la phase grasse des compositions de l'invention, ne comprend pas de polydiméthylsiloxane (PDMS), et de préférence ne comprend pas d'huile de silicone.
Selon un autre mode de réalisation, une composition selon l'invention ne comprend pas d'huile végétale.
Selon encore un autre mode de réalisation, la phase grasse des compositions selon l'invention comprend au moins une huile hydrocarbonée d'origine végétale. Comme huiles végétales, on peut notamment citer les triglycérides liquides d'acides gras en C4-C10 comme les triglycérides des acides heptanoïque ou octanoïque ou encore, par exemple les huiles de tournesol, de maïs, de soja, de courge, de pépins de raisin, de sésame, de noisette, d'abricot, de macadamia, d'arara, de ricin, d'avocat, les triglycérides des acides caprylique/caprique (nom INCI : Caprylic/Capric Triglycéride) comme ceux commercialisés par la société Stearineries Dubois ou ceux disponibles sous les dénominations commerciales « Miglyol 810 », « Miglyol 812 » et « Miglyol 818 » par la société Dynamit Nobel, l'huile de jojoba, l'huile de beurre de karité, et leurs mélanges.
De préférence, l'huile végétale est choisie parmi celles riches en acides gras polyinsaturés. On entend par "acide gras insaturé" au sens de la présente invention, un acide gras comprenant au moins une double liaison. Il s'agit plus particulièrement d'acides gras à longues chaînes, c'est-à-dire pouvant posséder plus de 14 atomes de carbone. Les acides gras insaturés peuvent être sous forme acide, ou sous forme de sel, comme par exemple leur sel de calcium, ou encore sous forme de dérivés, notamment d'ester(s) d'acide(s) gras.
De préférence, la phase grasse continue comprend au moins une huile non volatile.
Par « non volatile », on entend une huile dont la pression de vapeur à température ambiante et pression atmosphérique, est non nulle et inférieure à 0,02 mm de Hg (2,66 Pa) et mieux inférieure à 10~3 mm de Hg (0,13 Pa).
En particulier, on peut citer les huiles non volatiles choisies parmi les huiles siliconées, les huiles fluorées ou leurs mélanges, et plus particulièrement parmi les huiles siliconées non volatiles non phénylées ; les huiles siliconées non volatiles phénylées, possédant ou non au moins un fragment diméthicone ; les huiles fluorées ; ou leurs mélanges, ou encore les huiles non volatiles hydrocarbonées polaires, en particulier choisies parmi les huiles non volatiles comprenant au plus un groupement hydroxyle libre ou n'en comprenant pas, ou parmi les huiles non volatiles comprenant au moins deux groupements hydroxyles libres, ou les huiles non volatiles hydrocarbonées apolaires.
Des exemples représentatifs d'huiles siliconées non phénylées non volatiles qui peuvent être mentionnés, comprennent des polydiméthylsiloxanes ; des alkyldiméthicones ; des vinylméthylméthicones ; et également des silicones modifiées avec des groupes aliphatiques et/ou avec des groupes fonctionnels tels que des groupes hydroxyles, thiols et/ou aminés.
Parmi les huiles non volatiles hydrocarbonées polaires, on peut mentionner les huiles esters comme décrit ci-dessus.
Parmi les huiles hydrocarbonées apolaires non volatiles, on peut citer les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que :
- l'huile de paraffine ou ses dérivés,
- le squalane,
- l'isoeicosane,
- l'huile de naphtalène,
- les polybutylènes tels que L'INDOPOL H-100 (de masse molaire ou MW=965 g/mol), L'INDOPOL H-300 (MW=1340 g/mol), L'INDOPOL H-1500 (MW=2160g/mol) commercialisés ou fabriqués par la société AMOCO,
- les polyisobutènes
- les polyisobutylènes hydrogénés tels que le Parléam® commercialisé par la société NIPPON OIL FATS, le PANALANE H-300 E commercialisé ou fabriqué par la société AMOCO (MW =1340 g/mol), le VISEAL 20000 commercialisé ou fabriqué par la société SYNTEAL (MW=6000 g/mol), le REWOPAL PIB 1000 commercialisé ou fabriqué par la société WITCO (MW=1000 g/mol), ou encore le PARLEAM LITE commercialisé par NOF Corporation,
- les copolymères décène/butène, les copolymères polybutène/polyisobutène notamment l'Indopol L-14,
- les polydécènes et les polydécènes hydrogénés tels que : le PURESYN 10 (MW=723 g/mol), le PURESYN 150 (MW=9200 g/mol) commercialisés ou fabriqués par la société MOBIL CHEMICALS, ou encore le PURESYN 6 commercialisé par EXXONMOBIL CHEMICAL),
- et leurs mélanges. Selon un mode de réalisation préféré, l'huile est choisie dans le groupe constitué de l'isononanoate d'isononyle, de la diméthicone, du polybutène, hydrogéné ou non, du malate de diisostéaryle, et de leurs mélanges.
La sélection d'huile(s) satisfaisant au critère de brillance recherchée pour une composition selon l'invention relève des connaissances générales de l'homme du métier.
Selon un mode de réalisation, la teneur en huile(s) est comprise entre 0,5% et 99% en poids par rapport au poids total de la phase grasse de ladite composition. De préférence, la teneur en huile(s) est supérieure à 70%, notamment supérieure à 80%, voire supérieure à 90%, en poids par rapport au poids de la phase grasse.
Indépendamment de la mise en œuvre d'agent(s) colorant(s) (comme mentionné plus loin), la phase grasse de la composition selon l'invention demeure parfaitement transparente, cette transparence étant non atteignable avec les gloss/rouges à lèvres classiques sous forme d'émulsions inverses. C'est également un avantage par rapport à une émulsion avec un coacervat polymère anionique (carbomère)/polymère cationique (amodiméthicone) obtenue via un procédé microfluidique, comme décrit notamment dans la demande WO 2012/120043, où l'amodiméthicone tend à « troubler » la phase huileuse.
Composés additionnels
Selon l'invention, la phase aqueuse et/ou la phase grasse peut/peuvent en outre comprendre au moins un composé additionnel différent des agents gélifiants hydrophiles, des agents lipophiles ayant un pouvoir suspensif et des huiles, voire des polymères anioniques et cationiques, susmentionnées.
Une composition selon l'invention, en particulier la phase aqueuse et/ou la phase grasse de ladite composition, peu(ven)t ainsi en outre comprendre à titre de composé additionnel des poudres, des paillettes, des agents colorants, notamment choisis parmi les agents colorants hydrosolubles ou non, liposolubles ou non, organiques ou inorganiques, les pigments, les matériaux à effet optique, les cristaux liquides, et leurs mélanges, des agents particulaires insolubles dans la phase grasse, des élastomères de silicone émulsionnants et/ou non émulsionnants, notamment tels que décrits dans la demande EP 2 353 577, des conservateurs, des humectants, des stabilisateurs, des chélateurs, des émollients, des agents modificateurs choisis parmi les agents de pH, de force osmotique et/ou des modificateurs d'indice de réfraction etc .. ou tout additif cosmétique usuel, et leurs mélanges.
Une composition selon l'invention, en particulier la phase aqueuse et/ou la phase grasse de ladite composition, peu(ven)t encore en outre comprendre au moins un actif, notamment biologique ou cosmétique, de préférence choisi parmi les agents hydratants, les agents cicatrisants, les agents dépigmentants, les filtres UV, les agents desquamants, les agents antioxydants, les actifs stimulant la synthèse des macromoléculaires dermiques et/ou épidermiques, les agents dermodécontractants, les agents anti-transpirants, les agents apaisants, les agents anti-âge, les agents parfumants et leurs mélanges. De tels actifs sont notamment décrits dans la demande FR 1 558 849.
En particulier, la phase grasse peut en outre comprendre au moins un polymère filmogène hydrophobe, en particulier tel que décrit dans la demande FR 3 025 100 ou WO 2016/030842, et par exemple le polymère vendu sous les dénominations FA 4002 ID (TIB 4-202) ou FA 4001 CM (TIB 4-230) par la société Dow Corning. La présence d'un tel polymère permet d'améliorer la tenue dans le temps, notamment la tenue dans le temps de la brillance, et le cas échéant tout en conservant une viscosité de la phase grasse compatible avec le dispositif microfluidique. En outre, il permet de réduire les phénomènes de migration de la composition appliquée sur une matière kératinique, en particulier la peau ou les paupières.
Selon un mode de réalisation, la teneur en poids de polymère(s) filmogène(s) hydrophobe(s) est comprise entre 0,1 % et 40%, en particulier entre 0,2% et 20 %, de préférence entre 0,5% et 15%, par rapport au poids de la phase grasse.
Selon un mode de réalisation particulier, une composition selon l'invention ne comprend pas de polymère filmogène hydrophile, notamment tel que décrit dans FR 3 025 100, et/ou de résine tackifiante, notamment telle que décrite dans FR 3 025 099.
Bien entendu, l'homme du métier veillera à choisir les éventuels composé(s) additionnel(s) et/ou actif(s) susmentionnés et/ou leurs quantités respectives de telle manière que les propriétés avantageuses de la composition selon l'invention ne soient pas ou substantiellement pas altérées par l'adjonction envisagée. En particulier, la nature et/ou la quantité du/des composé(s) additionnel(s) et/ou actif(s) dépend(ent) de la nature aqueuse ou grasse de la phase considérée de la composition selon l'invention. Ces ajustements relèvent des compétences de l'homme du métier.
Agent colorant
Selon un mode de réalisation, une composition selon l'invention comprend au moins un agent colorant.
Selon un mode de réalisation, la phase aqueuse et/ou la phase grasse comprend/comprennent au moins un agent colorant.
Quand la phase grasse d'une composition selon l'invention comprend au moins un agent colorant, ladite composition présente un compromis « transparence / coloration des lèvres » avantageux. En effet, en présence d'un tel agent colorant, la dispersion est colorée mais présente une transparence telle que les sphères (S1 ) demeurent parfaitement visibles. A l'application, la coloration des lèvres est réelle, ce qui peut paraître surprenant, compte tenu de la transparence de la composition avant application.
Dans le cadre de l'invention, et sauf mention contraire, on entend par « agent colorant » ou « agent de coloration », un matériau destiné à donner à la composition une coloration, et notamment une coloration durable. Par « coloration », on entend par exemple le blanc, le noir, et toutes autres couleurs du spectre visible, telles que le bleu, le rouge, le jaune... éventuellement sous forme irisées, brillantes ou tout autres formes connues.
En d'autres termes, on entend par « agent colorant » au sens de la présente invention, un composé susceptible de produire un effet optique coloré lorsqu'il est formulé en quantité suffisante dans un milieu cosmétique approprié.
Au sens de la présente invention, une composition selon l'invention comprend au moins un agent colorant choisi parmi les agents colorants hydrosolubles ou non, liposolubles ou non, organiques ou inorganiques, les matériaux à effet optique, les cristaux liquides, et leurs mélanges.
Par « agent colorant hydrosoluble », on entend au sens de l'invention, tout composé généralement organique, naturel ou synthétique, soluble dans une phase aqueuse ou les solvants miscibles à l'eau et apte à colorer. En particulier, on entend caractériser par le terme hydrosoluble, l'aptitude d'un composé à se solubiliser dans l'eau, mesurée à 25 °C, à raison d'une concentration au moins égale à 0,1 g/l (obtention d'une solution macroscopiquement isotrope et transparente, colorée ou non). Cette solubilité est en particulier supérieure ou égale à 1 g/l. Un agent colorant selon l'invention est de préférence choisi parmi les pigments, les colorants, les cristaux liquides et leurs mélanges.
De préférence, l'agent colorant est choisi parmi les colorants.
Selon l'invention, les colorants sont typiquement essentiellement solubles dans leur milieu d'utilisation, tel que défini notamment dans la norme DIN 55944 (décembre 201 1 ).
Selon un mode de réalisation, l'agent colorant selon l'invention est choisi parmi les matériaux à effet optique.
Les particules à reflet métallique utilisables dans l'invention sont en particulier choisies parmi :
- les particules d'au moins un métal et/ou d'au moins un dérivé métallique,
- les particules comportant un substrat organique ou minéral, monomatière ou multimatériaux, recouvert au moins partiellement par au moins une couche à reflet métallique comprenant au moins un métal et/ou au moins un dérivé métallique, et
- les mélanges desdites particules.
Parmi les métaux pouvant être présents dans lesdites particules, on peut citer par exemple Ag, Au, Cu, Al, Ni, Sn, Mg, Cr, Mo, Ti, Zr, Pt, Va, Rb, W, Zn, Ge, Te, Se et leurs mélanges ou alliages. Ag, Au, Cu, Al, Zn, Ni, Mo, Cr, et leurs mélanges ou alliages (par exemple, les bronzes et les laitons) sont des métaux préférés.
Par « dérivés métalliques », on désigne des composés dérivés de métaux, notamment, des oxydes, des fluorures, des chlorures et des sulfures
Selon un mode de réalisation, l'agent colorant selon l'invention est choisi parmi les cristaux liquides. Selon l'invention, on entend par « cristaux liquides » ou « agent colorant de type cristaux liquides », des cristaux liquides colorant la composition, c'est-à-dire apportant une coloration à ladite composition tel que précisé ci-dessus. Les cristaux liquides sont typiquement caractérisés par un état intermédiaire entre la phase cristalline, où règne un ordre de position tridimensionnel et la phase liquide où aucun ordre n'existe.
Alternativement, l'effet coloriel de la phase grasse peut être obtenu par la mise en œuvre d'huile(s) naturellement colorée(s), telles que l'huile de Rocou, Lipocarotte, ou un extrait de gremil des teinturiers. Selon un mode de réalisation, la phase aqueuse d'une composition de l'invention comprend entre 0,0001 % et 15 % en poids d'agent(s) colorant(s), de préférence de colorant(s), par rapport au poids de la phase aqueuse.
Selon un mode de réalisation, la phase grasse d'une composition de l'invention comprend entre 0,0001 % et 15 % en poids d'agent(s) colorant(s), de préférence de colorant(s), par rapport au poids de la phase grasse.
De préférence, une composition selon l'invention comprend moins de 2%, notamment moins de 1 %, de préférence moins de 0,5%, et en particulier moins de 0,1 % en poids de pigments par rapport au poids total de ladite composition.
De préférence, une composition selon l'invention, en particulier la phase grasse, est dénuée de pigments.
Selon un mode de réalisation, lorsque la phase aqueuse et/ou la phase grasse comprend au moins un agent colorant, en particulier au moins un colorant, ladite phase aqueuse et/ou ladite phase grasse, de préférence au moins la phase grasse comprend en outre des filtres solaires UV, de manière à prévenir/éviter les évolutions de teintes non souhaitées.
Selon un mode de réalisation, la phase aqueuse peut en outre comprendre de la glycérine.
De préférence, une composition de l'invention comprend au moins 2%, de préférence au moins 5%, notamment au moins 10%, en particulier au moins 20%, ou encore au moins 30%, voire au moins 40%, ou au moins 50% en poids de glycérine par rapport au poids de la phase aqueuse. Les limites de la formulation sont donc repoussées avec ce type de matière première sans altérer le fini sur la matière kératinique.
Autres modes de réalisation
Selon un mode de réalisation particulier, la phase aqueuse comporte une phase intermédiaire, la phase intermédiaire étant placée au contact de la phase grasse, et au moins une phase interne disposée dans la phase intermédiaire. Un tel mode de réalisation correspond à des sphères dotées d'une architecture de type « goutte-dans-goutte ». En d'autres termes, la phase interne est disposée totalement à l'écart de la phase grasse, la phase intermédiaire étant interposée entre la ou chaque phase interne et la phase grasse. La phase intermédiaire est donc caractérisée par la phase aqueuse telle que décrite précédemment.
La phase interne peut être de nature hydrophile ou lipophile. La phase interne peut être solide ou liquide à température ambiante et pression atmosphérique.
La phase interne peut en outre comprendre au moins un agent gélifiant et/ou tout composé/actif additionnel, notamment tel que décrit ci-dessus.
Selon un autre mode de réalisation particulier :
- la phase aqueuse peut se présenter sous la forme d'une émulsion directe (huile-dans-eau), ladite émulsion comprenant une phase aqueuse continue et une phase grasse dispersée sous forme de gouttes (G2), la taille des gouttes (G2) étant nécessairement inférieure à la taille des sphères (S1 ). En particulier, la taille des gouttes (G2) est inférieure à 500 μηι, de préférence inférieure à 400 μηι, en particulier inférieure à 300 μηι, mieux inférieure à 200 μηι, en particulier inférieure à 100 μηι, voire inférieure à 20 μηι, et mieux inférieure à 10 μηι. Préférentiellement, la taille des gouttes (G2) est comprise entre 0,1 μηι et 200 μηι, de préférence entre 0,25 μηι et 100 μηι, en particulier entre 0,5 μηι et 50 μηι, de préférence entre 1 μηι et 20 μηι, et mieux entre 1 μηι et 10 μηι, voire entre 3 μηι et 5 μηι ;
et/ou
- la phase grasse peut se présenter sous la forme d'une émulsion inverse (eau-dans-huile), ladite émulsion comprenant une phase grasse continue et une phase aqueuse dispersée sous forme de gouttes (G3), la taille des gouttes (G3) étant de préférence microscopique. En particulier, la taille des gouttes (G3) est inférieure à 500 μηι, de préférence inférieure à 400 μηι, en particulier inférieure à 300 μηι, mieux inférieure à 200 μηι, en particulier inférieure à 100 μηι, voire inférieure à 20 μηι, et mieux inférieure à 10 μηι. Préférentiellement, la taille des gouttes (G3) est comprise entre 0,1 μηι et 200 μηι, de préférence entre 0,25 μηι et 100 μηι, en particulier entre 0,5 μηι et 50 μηι, de préférence entre 1 μηι et 20 μηι, et mieux entre 1 μηι et 10 μηι, voire entre 3 μηι et 5 μηι.
Optionnellement, les gouttes (G2) et/ou (G3) comprennent une écorce formée d'au moins un polymère anionique, en particulier un carbomère, et d'au moins un polymère cationique, en particulier une amodiméthicone, lesdits polymères anionique et cationique étant tels que définis ci-dessus.
Avantageusement, les gouttes (G2) et/ou (G3) ne sont pas macroscopiques, et sont donc microscopiques, c'est-à-dire non visibles à l'œil nu. En d'autres termes, les gouttes (G2) et/ou (G3) sont différentes et indépendantes des sphères (S1 ).
Ces gouttes (G2) et/ou (G3) de taille réduite permettent d'avoir un effet sur la texture. En effet, une composition selon l'invention comprenant de telles gouttes (G2) et/ou (G3) finement dispersées présente des qualités d'onctuosité encore améliorées.
La présence des gouttes (G2) et/ou (G3) renforce les caractéristiques d'une composition selon l'invention en termes de texture unique, de légèreté et de sensoriel évolutif. Plus particulièrement, une composition selon l'invention comprenant des gouttes (G2) et/ou (G3) s'étalent facilement sur une matière kératinique, en particulier les lèvres. Cette texture est particulièrement avantageuse et surprenante pour l'homme du métier.
Une composition selon l'invention est au principal dédiée au maquillage et/ou au soin des matières kératiniques, en particulier les lèvres et/ou les paupières. L'homme du métier saura procéder aux ajustements en termes de nature et/ou quantité des matières premières pour axer la composition selon l'invention vers le maquillage ou le soin des matières kératiniques, notamment au niveau du choix des huiles susceptibles d'être mises en œuvre dans la phase grasse.
Procédé
Les compositions selon l'invention peuvent être préparées par différents procédés.
Au niveau du procédé de fabrication, une composition selon l'invention est avantageusement produite en une seule étape en ce qu'il n'y a pas d'étape préalable de formation des sphères (S1 ) avant mélange avec la phase grasse suspensive, ce qui est avantageux sur le plan industriel.
Ainsi, les compositions selon l'invention présentent l'avantage de pouvoir être préparées selon un procédé simple « non-microfluidique », à savoir par simple émulsification. Comme dans une émulsion classique, une solution aqueuse et une solution grasse (ou huileuse) sont préparées séparément.
Elles peuvent également être préparées, comme indiqué précédemment, par un procédé « microfluidique », notamment comme décrit dans les demandes internationales WO 2012/120043 ou WO 2015/055748, et en particulier en mode « jet de liquide » (en anglais : jetting)(par formation d'un jet liquide à la sortie du dispositif microfluidique, puis fragmentation du jet dans l'air ambiant sous l'effet de la gravité) ou en goutte-à-goutte (en anglais : dripping) tel que décrit dans la demande WO 2012/120043.
Pour préparer une composition selon l'invention, on utilise, pour constituer la phase aqueuse dispersée, un fluide interne (IF), et, pour constituer la phase grasse continue, un fluide externe (OF).
Au vu de ce qui précède, le fluide (IF) comprend au moins un agent gélifiant hydrophile et de l'eau, et en outre, de façon optionnelle, au moins un composant additionnel tel que susmentionné.
Le fluide (OF) comprend au moins un agent lipophile ayant un pouvoir suspensif, de préférence au moins une huile, et en outre, de façon optionnelle, au moins un composant additionnel tel que susmentionné.
Selon un mode de réalisation, le procédé de préparation d'une composition selon l'invention comprend une étape de mise en contact d'un fluide (IF) et d'un fluide (OF) tels que définis ci-dessus.
Selon la nature et/ou la teneur en agent(s) gélifiant hydrophile(s) et agent(s) lipophile(s) ayant un pouvoir suspensif, l'étape de mise en contact des fluides (IF) et (OF) doit se faire avec une phase aqueuse et/ou une phase grasse préalablement chauffée à une température leur assurant un caractère liquide suffisant pour :
- un mélange homogène et une bonne formation des sphères (S1 ) si le procédé est non-microfluidique, ou
- une bonne formation des sphères (S1 ) dans la phase grasse si le procédé est microfluidique (avec le cas échéant un dispositif de refroidissement postfabrication des sphères (S1 ) pour solidifier plus rapidement les sphères (S1 ) et ainsi éviter leur altération).
Selon encore un autre mode de réalisation, lorsque le fluide (IF) comprend au moins un agent gélifiant thermosensible et/ou le fluide (OF) comprend au moins un agent lipophile ayant un pouvoir suspensif thermosensible, tels que décrit précédemment, le procédé de préparation d'une émulsion selon l'invention peut requérir la mise en œuvre au moins du fluide (IF) et/ou (OF) à une température comprise de 40°C à 150°C. Ainsi, selon ce mode de réalisation, le fluide (IF) et/ou (OF) peu(ven)t être chauffé(s) à une température comprise de 40°C à 150°C.
Dans le cas où le procédé de préparation d'une émulsion selon l'invention est un procédé microfluidique, le dispositif microfluidique en tant que tel est avantageusement chauffé à une température comprise de 40°C à 150°C.
Utilisations
Les compositions selon l'invention peuvent notamment être utilisées dans le domaine cosmétique.
Elles peuvent comprendre, outre les ingrédients susmentionnés, au moins un milieu physiologiquement acceptable.
Par "milieu physiologiquement acceptable", on entend désigner un milieu convenant particulièrement à l'application d'une composition de l'invention sur les matières kératiniques, notamment la peau, les lèvres, les ongles, les cils ou les sourcils, et de préférence la peau.
Le milieu physiologiquement acceptable est généralement adapté à la nature du support sur lequel doit être appliquée la composition, ainsi qu'à l'aspect sous lequel la composition doit être conditionnée.
Selon un mode de réalisation, le milieu physiologiquement acceptable est la phase continue aqueuse telle que décrite ci-dessus.
Selon un mode de réalisation, les compositions cosmétiques sont utilisées pour le maquillage et/ou le soin de matières kératiniques, notamment de la peau.
Les compositions cosmétiques selon l'invention peuvent être des produits de soin, de protection solaire, de nettoyage (démaquillage), d'hygiène ou de maquillage de la peau.
Ces compositions sont donc destinées à être appliquées notamment sur la peau.
Ainsi, la présente invention concerne également l'utilisation cosmétique non thérapeutique d'une composition cosmétique susmentionnée, comme produit de maquillage, d'hygiène, de nettoyage et/ou de soin de matières kératiniques, notamment de la peau.
Selon un mode de réalisation, les compositions de l'invention sont sous la forme d'un fond de teint, d'un démaquillant, d'un soin du visage et/ou du corps et/ou du cheveu, d'un soin anti-âge, d'un protecteur solaire, d'un soin peau grasse, d'un soin whitening, d'un soin hydratant, d'une BB cream, crème teintée ou fond de teint, d'un nettoyant visage et/ou corps, d'un gel douche ou d'un shampoing. Une composition de soin selon l'invention peut être en particulier une composition solaire, une crème de soin, un sérum ou un déodorant.
Les compositions selon l'invention peuvent être sous diverses formes, notamment sous forme de crème, de baume, de lotion, de sérum, de gel, de gel- crème ou encore de brume.
En particulier, les compositions selon l'invention sont destinées à être appliquées sur les lèvres ou les paupières.
De préférence, les compositions selon l'invention sont sous forme de gloss (ou brillant à lèvres), de rouge à lèvres, de concrète, d'eyeliners ou d'eye gloss.
La présente invention concerne également un procédé non thérapeutique de traitement cosmétique d'une matière kératinique, en particulier les lèvres et/ou les paupières, comprenant au moins une étape d'application sur ladite matière kératinique d'au moins une composition telle que définie ci-dessus.
En particulier, la présente invention concerne un procédé non thérapeutique de traitement cosmétique de la peau, notamment des lèvres et/ou des paupières, comprenant une étape d'application sur la peau d'au moins une couche d'une composition cosmétique telle que définie ci-dessus.
Dans toute la description, l'expression « comprenant un » doit être comprise comme étant synonyme de « comprenant au moins un », sauf si le contraire est spécifié.
Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.
Les quantités des ingrédients figurant dans les exemples sont exprimées en pourcentage en poids par rapport au poids total de la composition, sauf indication contraire.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée. EXEMPLES
Exemple 1 : Préparation d'un eye gloss par un procédé non microfluidique
Le tableau ci-dessous indique les ingrédients de la composition finale (eye gloss) ainsi que la nature des différentes phases mises en œuvre.
Préparation de la phase aqueuse (IF)
a) On mélange les A1 ensemble sous agitation à 85°C jusqu'à obtention d'un mélange homogène,
b) on ajoute A2 au mélange a) sans agitation et on laisse au repos 15 minutes jusqu'à hydratation de B2 ; ensuite, on agite jusqu'à obtention d'un mélange homogène, c) on ajoute A3 au mélange b) sous agitation jusqu'à obtention d'un mélange homogène, de manière à obtenir NF aqueuse.
Préparation de la phase huileuse (OF)
a) on mélange les B1 ensemble sous agitation jusqu'à obtention d'un mélange homogène, et
b) on ajoute les B2 jusqu'à obtention d'un mélange homogène, de manière à obtenir l'OF huileuse.
Préparation de la composition de l'invention
a) On dispose de l'OF huileuse à 85°C et de NF aqueuse à 85°C,
b) on ajoute NF aqueuse à 85°C dans l'OF huileuse à 85°C sous agitation, et c) lorsque le mélange b) est à 40°C, on ajoute C sous agitation.
L'eye gloss selon l'exemple 1 présente à la fois une brillance élevée et des capacités d'hydratation, de fraîcheur et de confort à l'application particulièrement satisfaisantes. Ce degré de brillance satisfaisant s'accompagne d'une bonne tenue dans le temps et une sensation en termes de collant et de freinant à l'application acceptable.
Exemples 2 à 5 : Préparation de compositions cosmétiques selon l'invention
La composition selon l'exemple 2 est une formule transparente de gloss pour les lèvres obtenue par un procédé microfluidique en mode dripping.
La composition selon l'exemple 3 est une formule de gloss pour les lèvres colorée en phase grasse et obtenue par un procédé microfluidique en mode dripping.
La composition selon l'exemple 4 est une formule de gloss pour les lèvres colorée en phase aqueuse et obtenue par un procédé microfluidique en mode dripping.
La composition selon l'exemple 5 est une formule de gloss pour les lèvres obtenue par un procédé microfluidique en mode jetting.
Les phases utilisées pour préparer ces formulations sont les suivantes : - Phase aqueuse (IF)
- Phase grasse (OF)
Préparation de la phase aqueuse (IF)
a) On mélange les B1 ensemble sous agitation jusqu'à obtention d'un mélange homogène,
b) on ajoute B2 au mélange a) sans agitation et on laisse au repos 15 minutes jusqu'à hydratation de B2 ; ensuite, on agite jusqu'à obtention d'un mélange homogène,
c) en parallèle, on prépare un mélange avec les B3 à 90°C jusqu'à obtention d'un mélange homogène sous forme liquide (fondue),
d) on ajoute le mélange c) au mélange b), sous agitation à 90°C, jusqu'à obtention d'un mélange homogène de manière à obtenir NF aqueuse, et
e) lorsque présents, on ajoute les B4 au mélange d).
Préparation de la phase huileuse (OF)
a) On mélange les A1 ensemble sous agitation jusqu'à obtention d'un mélange homogène,
b) on ajoute A2 au mélange a) sous agitation et on agite jusqu'à obtention d'un mélange homogène, et
c) lorsque présents, on ajoute les A3 sous agitation jusqu'à obtention d'un mélange homogène de manière à obtenir l'OF huileuse.
Préparation des compositions
Les compositions selon les exemples 2 à 5 sont obtenues selon un procédé microfluidique, à savoir une buse microfluidique double enveloppe telles que décrites dans WO2012/120043, le diamètre interne de la sortie de la buse est de 0,8 mm.
Au niveau du dispositif microfluidique, les paramètres sont les suivants :
Ex 2 Ex 3 Ex 4 Ex 5 Ex 6
Débit OF (en mL/h/buse) 100 100 80 300 100
Débit IF (en mL/h/buse) 5 5 4 35 3
T°C OF TA TA TA TA TA
T°C IF 85 90 85 90 80
% IF dans la composition
4,76 4,76 4,76 9,1 2,91 finale
% OF dans la
95,24 95,24 95,24 90,9 97,09 composition finale
Remarques Dripping Dripping Dripping Jetting Dripping Outre un visuel inédit lié à la présence de bulles aqueuse macroscopiques dans la phase continue huileuse et à une transparence/translucidité des compositions, ces compositions de brillants à lèvres présentent à la fois une brillance élevée et des capacités d'hydratation, de fraîcheur et de confort à l'application particulièrement satisfaisantes. Ce degré de brillance satisfaisant s'accompagne d'une bonne tenue dans le temps sans une sensation de collant ni de freinant à l'application ni de freinant à l'application.
Enfin, la composition selon l'exemple 6 présente une phase continue huileuse avec une transparence satisfaisante.
Exemple 7 : Préparation d'une concrète de parfum par un procédé microfluidique en mode dripping
Les phases utilisées pour préparer cette formulation sont les suivantes :
- Phase aqueuse (IF)
- Phase grasse (OF)
Préparation de la phase aqueuse (IF)
a) On mélange les B1 ensemble sous agitation jusqu'à obtention d'un mélange homogène, b) on ajoute B2 au mélange a) sans agitation et on laisse au repos 15 minutes jusqu'à hydratation de B2 ; ensuite, on agite jusqu'à obtention d'un mélange homogène,
c) en parallèle, on prépare un mélange avec les B3 à 90°C jusqu'à obtention d'un mélange homogène sous forme liquide (fondue), et
d) on ajoute le mélange c) au mélange b), sous agitation à 90°C, jusqu'à obtention d'un mélange homogène de manière à obtenir NF aqueuse.
Préparation de la phase huileuse (OF)
a) On mélange les A1 ensemble sous agitation jusqu'à obtention d'un mélange homogène,
b) d'une part, on chauffe le mélange a) à 80°C et, d'autre part, on chauffe à 80°C les A2, et
c) on ajoute les A2 sous forme liquide (fondue) au mélange a), jusqu'à obtention d'un mélange homogène de manière à obtenir l'OF huileuse.
Préparation de la composition de l'invention
La composition selon l'exemple 7 est obtenue selon un procédé microfluidique, à savoir une buse microfluidique double enveloppe telles que décrites dans WO2012/120043, le diamètre interne de la sortie de la buse est de 0,8 mm.
Les paramètres sont les suivants :
La composition selon l'exemple 7 se présente sous la forme d'une concrète de parfum à température ambiante (TA).
Outre un visuel inédit lié à la présence de bulles aqueuse macroscopiques dans la phase continue huileuse, cette composition présente à la fois un pouvoir parfumant important et une sensorialité fondante satisfaisante. Exemple 8 : Préparation d'une composition cosmétique (sérum) par procédé microfluidique à température ambiante
Les phases utilisées pour préparer cette formulation sont les suivantes
- Phase aqueuse (IF)
* Quantité Suffisante Pour
- Phase grasse (OF)
Préparation de la phase aqueuse (IF)
a) On mélange les B1 ensemble sous agitation jusqu'à obtention d'un mélange homogène,
b) on ajoute B2 au mélange a) sous agitation au Silverson (2500 rpm) jusqu'à obtention d'un mélange homogène (environ 15 minutes),
c) on ajoute B3 sans agitation et on laisse hydrater B3 (environ 15 minutes) ; ensuite on agite au Rayneri jusqu'à obtention d'un mélange homogène, d) on ajoute les B4 au mélange c) sous agitation jusqu'à obtention d'un mélange homogène, et
e) on ajoute B5 au mélange d) sous agitation jusqu'à obtention d'un mélange homogène.
Préparation de la phase huileuse (OF)
a) On mélange les A1 ensemble sous agitation forte à 95°C pendant 1 heure, b) En parallèle, on mélange les A2 sous agitation à 80°C,
b) On ajoute le mélange b) au mélange a) et on agite à 80°C jusqu'à obtention d'un mélange homogène,
c) on ajoute les A3 au mélange b), jusqu'à obtention d'un mélange homogène, et
d) on laisse refroidir jusqu'à retour à température ambiante puis utilisation pour former la composition selon l'exemple 8.
Préparation de la composition de l'invention
La composition selon l'exemple 8 est obtenue selon un procédé microfluidique, à savoir une buse microfluidique double enveloppe telle que décrite dans WO 2012/120043.
Les paramètres sont les suivants :
* TA = Température Ambiante
La composition selon l'exemple 8 se présente sous la forme d'un sérum à température ambiante (TA).
Outre un visuel inédit lié à la présence de bulles aqueuses macroscopiques dans la phase continue huileuse, cette composition présente à la fois une texture et une sensorialité satisfaisantes.
Une composition selon l'exemple 8 a également été réalisée sans amodiméthicone dans la phase huileuse, avec un visuel, une texture et une sensorialité satisfaisantes.

Claims

REVENDICATIONS
1. Composition, notamment cosmétique, comprenant une phase grasse et une phase aqueuse, dans laquelle :
- la phase aqueuse est sous forme de sphères (S1 ) solides à température ambiante et pression atmosphérique, comprenant au moins un agent gélifiant hydrophile, de préférence thermosensible, et
- la phase grasse comprend au moins un agent lipophile ayant un pouvoir suspensif, de préférence thixotrope, de préférence une silice hydrophobe.
2. Composition selon la revendication 1 , dans laquelle l'agent gélifiant hydrophile est choisi dans le groupe constitué des agents de texture naturels, des agents de texture semi-synthétiques, des agents de texture synthétiques, et de leurs mélanges.
3. Composition selon la revendication 1 ou 2, dans laquelle l'agent gélifiant hydrophile est choisi parmi les agents de texture naturels thermosensibles, en particulier l'agar-agar.
4. Composition selon la revendication 1 à 3, dans laquelle la teneur en agent(s) gélif iant(s) hydrophile(s) est comprise entre 0,1 % et 15%, de préférence entre 0,3% et 10%, préférentiellement entre 0,5% et 5%, notamment entre 0,8% et 3%, en particulier entre 1 % et 2%, en poids par rapport au poids de phase aqueuse de ladite composition.
5. Composition selon l'une quelconque des revendications 1 à 4, dans laquelle la teneur en agent(s) gélifiant(s) hydrophile(s) est comprise entre 0,5% et 0,9% en poids par rapport au poids de phase aqueuse de ladite composition.
6. Composition selon l'une quelconque des revendications 1 à 5, dans laquelle la phase aqueuse comprend au moins deux agents gélifiants hydrophiles, l'un au moins étant un agent gélifiant hydrophile thermosensible.
FEU I LLE RECTI FI ÉE (RÈG LE 91) ISA/ EP
7. Composition selon la revendication 1 à 6, dans laquelle la teneur en agent(s) gélifiant(s) hydrophile(s) thermosensible(s) est comprise entre 0,1 % et 15%, de préférence entre 0,3% et 10%, préférentiellement entre 0,5% et 5%, notamment entre 0,8% et 3%, en particulier entre 1 % et 2% voire entre 0,3% et 0,8%, en poids par rapport au poids de phase aqueuse de ladite composition.
8. Composition selon l'une quelconque des revendications 1 à 7, dans laquelle la teneur en phase aqueuse est comprise entre 1 % et 30%, notamment entre 1 ,5% et 20%, en particulier entre 2% et 10%, de préférence entre 3% et 7%, et préférentiellement entre 4% et 6%, en poids par rapport au poids total de ladite composition.
9. Composition selon l'une quelconque des revendications 1 à 8, dans laquelle la teneur en phase grasse est comprise entre 70% et 99%, de préférence entre 70% et 95%, notamment entre 75% et 90%, et préférentiellement entre 80% et 85%, en poids par rapport au poids total de ladite composition.
10. Composition selon l'une quelconque des revendications 1 à 9, dans laquelle l'agent lipophile ayant un pouvoir suspensif est choisi parmi les agents gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires ; les corps gras solides à température et pression ambiante ; et leurs mélanges.
11. Composition selon l'une quelconque des revendications 1 à 10, dans laquelle l'agent lipophile ayant un pouvoir suspensif est choisi parmi les silices comme les silices pyrogénées et les aérogels de silice hydrophobes.
12. Composition selon l'une quelconque des revendications 1 à 1 1 , dans laquelle la teneur en agent(s) lipophile(s) ayant un pouvoir suspensif est comprise entre 0,5% et 99,50%, de préférence entre 1 ,5% et 70%, en particulier entre 2,5% et 60%, et préférentiellement entre 3% et 50%, voire encore entre 1 % et 8%, et mieux encore entre 2,5% et 6%, en poids par rapport au poids total de la phase grasse, voire par rapport au poids total de la composition.
13. Composition selon l'une quelconque des revendications 1 à 12, dans laquelle la phase grasse comprend au moins une huile, de préférence au moins une
FEU I LLE RECTI FI ÉE (RÈG LE 91) ISA/ EP huile non volatile, la teneur en huile(s) étant de préférence comprise entre 0,5% et 99% en poids par rapport au poids total de la phase grasse de ladite composition.
14. Composition selon l'une quelconque des revendications 1 à 13, comprenant au moins un agent colorant dans la phase aqueuse et/ou la phase grasse.
15. Composition selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle ne comprend pas de tensioactif.
16. Procédé non thérapeutique de traitement cosmétique d'une matière kératinique, en particulier les lèvres et/ou les paupières, comprenant au moins une étape d'application sur ladite matière kératinique d'au moins une composition selon l'une quelconque des revendications 1 à 15.
FEU I LLE RECTI FI ÉE (RÈG LE 91) ISA/ EP
EP18711343.6A 2017-03-17 2018-03-16 Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides Withdrawn EP3595619A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752208A FR3063899B1 (fr) 2017-03-17 2017-03-17 Compositions comprenant une phase grasse et une phase aqueuse sous forme de spheres solides
PCT/EP2018/056755 WO2018167309A1 (fr) 2017-03-17 2018-03-16 Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides

Publications (1)

Publication Number Publication Date
EP3595619A1 true EP3595619A1 (fr) 2020-01-22

Family

ID=59296970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18711343.6A Withdrawn EP3595619A1 (fr) 2017-03-17 2018-03-16 Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides

Country Status (5)

Country Link
US (1) US20210077362A1 (fr)
EP (1) EP3595619A1 (fr)
CN (1) CN110636827A (fr)
FR (1) FR3063899B1 (fr)
WO (1) WO2018167309A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094232B1 (fr) 2018-10-23 2023-09-29 Capsum Unite de fabrication d’un extrait d’interet d’au moins un vegetal, microorganisme et/ou champignon
FR3091165B1 (fr) * 2018-12-31 2021-12-31 Lvmh Rech Composition cosmétique solide comprenant des sphéroïdes aqueux en dispersion dans une phase continue anhydre solide
FR3110405B1 (fr) 2020-05-21 2022-05-13 Capsum Emulsion double stable sans écorce
FR3110406B1 (fr) 2020-05-21 2022-12-23 Capsum Dispersion stable sans écorce
FR3115995B1 (fr) 2020-11-09 2022-10-28 Capsum Appareil de décontamination d’un objet creux définissant une cavité interne, machine de distribution et procédé associés
WO2022133733A1 (fr) * 2020-12-22 2022-06-30 L'oreal Composition pour le soin et/ou le maquillage de matières kératiniques
FR3119317B1 (fr) 2021-02-04 2024-05-03 Capsum Composition sous forme d’émulsion macroscopique stable comprenant un pourcentage d’ingrédients d’origine naturelle supérieur ou égale à 95% selon la norme ISO 16128
FR3129286A1 (fr) 2021-11-24 2023-05-26 Capsum Dispersion macroscopique
FR3129590A1 (fr) 2021-11-26 2023-06-02 Capsum Dispersion macroscopique solaire sans écorce
CN115813844B (zh) * 2022-03-03 2024-09-06 广州真极和美生物科技有限公司 一种凝脂油珠精华组合物及其制备方法
FR3135982A1 (fr) 2022-05-30 2023-12-01 Capsum Dispersions de gouttes contenant un polymère anionique et un polymère cationique (di)aminé
FR3135981A1 (fr) 2022-05-30 2023-12-01 Capsum Dispersions de gouttes contenant un polymère anionique et un polymère cationique aminé
FR3145288A1 (fr) 2023-01-31 2024-08-02 Capsum Procédé d’extraction d’un extrait d’intérêt d’au moins un végétal et/ou champignon

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US553893A (en) 1896-02-04 Paper doll
DE1266254B (de) 1967-09-19 1968-04-18 Spodig Heinrich Permanentmagnetscheider
DE2962738D1 (en) * 1978-11-16 1982-06-24 Unilever Nv Water-in-oil emulsion
JPS58206662A (ja) 1982-05-26 1983-12-01 Toyobo Co Ltd ポリエステルブロツク共重合体組成物
JPS61194009A (ja) 1985-02-21 1986-08-28 Toray Silicone Co Ltd メ−クアツプ化粧料
JPS62243621A (ja) 1986-04-17 1987-10-24 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
DE3712202C1 (de) 1987-04-10 1988-09-08 Kleinewefers Ramisch Gmbh Verfahren und Vorrichtung zum Gasbeheizen von Kalanderwalzen
JPS63313710A (ja) 1987-06-16 1988-12-21 Toray Silicone Co Ltd 洗顔化粧料
US5221534A (en) 1989-04-26 1993-06-22 Pennzoil Products Company Health and beauty aid compositions
JP2796990B2 (ja) 1989-05-10 1998-09-10 株式会社資生堂 肌用化粧料
US5156911A (en) 1989-05-11 1992-10-20 Landec Labs Inc. Skin-activated temperature-sensitive adhesive assemblies
FR2719769B1 (fr) * 1994-05-16 1996-07-19 Oreal Composition cosmétique ou dermatologique sous forme d'huile gélifiée contenant un mélange d'acide hydroxy-12 stéarique ou d'un dialkylamide de l'acide N-lauroylglutamique et d'un copolymère styrène/alcadiène hydrogéné.
US5919398A (en) * 1995-03-31 1999-07-06 Shiseido Co., Ltd. Oil-water mixed composition
EP0765656B1 (fr) 1995-09-29 2001-07-04 Shiseido Company Limited Composition cosmétique comprenant une émulsion eau-dans-l'huile
US5707612A (en) * 1996-04-08 1998-01-13 Alzo, Inc. Use urethane polymers of castor oil skin and personal care product compositiions
DE19648798C2 (de) 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
US6251409B1 (en) * 1997-11-11 2001-06-26 Clarigen, Inc. Use of particles in the composition of cosmetic products
FR2779438B1 (fr) * 1998-06-03 2004-12-24 Jean Marc Aiache Gel stable, son procede de preparation, et compositions pharmaceutiques le comprenant
US5981680A (en) 1998-07-13 1999-11-09 Dow Corning Corporation Method of making siloxane-based polyamides
KR100275500B1 (ko) 1998-10-28 2000-12-15 정선종 집적화된 고전압 전력 소자 제조방법
JP2000226322A (ja) * 1999-02-03 2000-08-15 Ichimaru Pharcos Co Ltd 寒天又はアルギン酸ナトリウム顆粒含有化粧料組成物
US7101928B1 (en) 1999-09-17 2006-09-05 Landec Corporation Polymeric thickeners for oil-containing compositions
US20020034525A1 (en) * 2000-06-30 2002-03-21 Kao Corporation Skin cosmetic composition
JP4726561B2 (ja) * 2005-07-14 2011-07-20 株式会社 資生堂 外用複合組成物
JP4642905B2 (ja) * 2009-01-22 2011-03-02 株式会社資生堂 乳化化粧料
FR2954104B1 (fr) 2009-12-18 2012-03-09 Oreal Emulsion e/h comprenant un elastomere de silicone emulsionnant et un alcane lineaire volatil
JP5073031B2 (ja) * 2010-09-17 2012-11-14 株式会社 資生堂 皮膚化粧料
EP3552695B1 (fr) * 2011-03-08 2021-04-14 Capsum Dispersion de gouttes d'une première phase dispersées dans une deuxième phase sensiblement immiscible avec la première phase
JP6169816B2 (ja) * 2011-09-30 2017-07-26 株式会社コーセー 化粧料
FR2999921B1 (fr) 2012-12-20 2015-04-03 Oreal Composition cosmetique aqueuse comprenant de l'alkylcellulose.
US20160175228A1 (en) * 2013-08-12 2016-06-23 Red Gold Agarose Corp. (Panama Incorporated) A cream-like solid agarose-in-water gel particles suspension as an intermediate cosmetics product
FR3012050B1 (fr) * 2013-10-17 2016-01-01 Capsum Procede de formation d'une dispersion comprenant des gouttes, et appareil associe
FR3025100B1 (fr) * 2014-08-28 2016-12-09 Oreal Composition cosmetique de type gel a tenue amelioree
FR3025099B1 (fr) * 2014-08-28 2016-12-16 Oreal Composition cosmetique de type gel a tenue amelioree et non collante

Also Published As

Publication number Publication date
WO2018167309A1 (fr) 2018-09-20
FR3063899A1 (fr) 2018-09-21
CN110636827A (zh) 2019-12-31
US20210077362A1 (en) 2021-03-18
FR3063899B1 (fr) 2019-04-19

Similar Documents

Publication Publication Date Title
EP3595619A1 (fr) Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides
EP2231283B1 (fr) Procede cosmetique utilisant une composition comprenant une resine de siloxane et une charge minerale
EP4153120A1 (fr) Dispersion stable sans écorce
FR3002449A1 (fr) Composition cosmetique de type gel
FR3021533A1 (fr) Composition cosmetique de type gel
FR3004343A1 (fr) Composition cosmetique de type gel
FR3015251A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane et des particules de polymeres expanses
FR2935269A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane.
FR2974367A1 (fr) Compositions comprenant un polymere a motif dendrimere carbosiloxane et une quantite elevee de mono-alcool
EP1941864A1 (fr) Kit de maquillage des fibres kératiniques
FR2984736A1 (fr) Composition cosmetique de maquillage et/ou de soin de la peau de type gel.
FR3063893A1 (fr) Emulsions doubles huile-dans-huile-dans-eau
FR3075623A1 (fr) Composition sous forme d’une emulsion directe comprenant une resine siliconee, un polymere filmogene en et procede la mettant en oeuvre
FR2987260A1 (fr) Composition sous forme de mousse constituee d'une emulsion huile-dans-eau comprenant des particules d'aerogel de silice hydrophobes
FR2968938A1 (fr) Composition cosmetique anhydre et solide
WO2018077977A1 (fr) Émulsions doubles comprenant une phase grasse gélifiée
CN110730653A (zh) 包含普鲁兰多糖衍生物的化妆品组合物
FR3076218A1 (fr) Composition gelifiee comprenant une microdispersion aqueuse de cire(s)
FR3060385A1 (fr) Composition comprenant de l’eau, une resine siliconee, une huile siliconee non volatile et procede la mettant en oeuvre
WO2020141274A1 (fr) Composition cosmétique solide comprenant des sphéroïdes aqueux en dispersion dans une phase continue anhydre solide
FR3060384A1 (fr) Composition sous forme d’une emulsion directe comprenant une resine siliconee, une huile siliconee non volatile et procede la mettant en oeuvre
WO2021234134A1 (fr) Emulsion double stable sans écorce
WO2018077986A1 (fr) Émulsions doubles avec double coacervat
FR3075632A1 (fr) Composition sous forme d’une emulsion comprenant une resine siliconee, une huile siliconee aminee et procede la mettant en oeuvre
FR3025099A1 (fr) Composition cosmetique de type gel a tenue amelioree et non collante

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230531