EP4153120A1 - Dispersion stable sans écorce - Google Patents
Dispersion stable sans écorceInfo
- Publication number
- EP4153120A1 EP4153120A1 EP21726672.5A EP21726672A EP4153120A1 EP 4153120 A1 EP4153120 A1 EP 4153120A1 EP 21726672 A EP21726672 A EP 21726672A EP 4153120 A1 EP4153120 A1 EP 4153120A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- equal
- dispersion
- phase
- drops
- dispersion according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
- A61K8/062—Oil-in-water emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
- A61K8/375—Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/732—Starch; Amylose; Amylopectin; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/92—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/30—Characterized by the absence of a particular group of ingredients
- A61K2800/33—Free of surfactant
Definitions
- the present invention relates to stable oil-in-water dispersions comprising an aqueous continuous phase and drops, in particular macroscopic, of a dispersed fatty phase comprising at least one lipophilic gelling agent. It also relates to compositions, in particular cosmetic compositions, containing said dispersions as well as their uses in the cosmetic field.
- dispersions in the form of direct emulsion such as for example described in US 2004/137020 and EP 2 189 081.
- the dispersed phases of these dispersions are not in the form of macroscopic drops and are endowed with 'a hardness such that the sensoriality and / or the comfort on application are not satisfactory, moreover in the presence of phases dispersed in the form of macroscopic drops.
- amodimethicone can sometimes lead to problems of compatibility with other raw materials and / or phenomena of aggregation of the drops between them, of adhesion of the drops to the packaging and / or. drop sphericity defects, which for obvious reasons is not desirable. Indeed, such drawbacks can impact the stability of the dispersion and / or the homogeneity of delivery of the different constituent phases of the dispersion and / or the visual and aesthetic rendering of the dispersion, or even its sensoriality on application to the skin. , and these drawbacks are exacerbated the larger the diameter of the drops increases. Without wishing to be bound by any theory, the Applicant believes that the aforementioned drop sphericity defect may be related to a decrease in the elasticity of the dispersed fatty phase due to the presence of amodimethicone.
- the present invention relates to an oil-in-water dispersion comprising, or even containing, a dispersed phase comprising drops and a continuous aqueous phase, preferably in gel form, in which the drops comprise a fatty phase comprising at least one agent.
- lipophilic gelling agent and optionally at least one oil in which:
- x a hardness (x) of between 2 and 14 N, preferably between 2.5 and 12 N, and better still between 3 and 9 N, and very particularly between 4 and 6 N;
- the fatty phase of a dispersion according to the invention also has a cohesion (z) less than or equal to 40, preferably less than or equal to 35, and better still less than or equal to 30.
- a dispersion according to the invention also allows more freedom as regards the compounds and / or their contents, in particular of active ingredients, which can be encapsulated.
- stable or “kinetic stability” is understood to denote, within the meaning of the present invention, at room temperature and atmospheric pressure, the absence of creaming or sedimentation of the drops of phase dispersed in the continuous phase, the absence of opacification of the continuous aqueous phase, the absence of aggregation of the drops between them, and in particular the absence of coalescence or Oswald ripening of the drops between them, the absence of adhesion of the drops to the packaging and the absence of material leakage from the dispersed phase to the continuous phase, or vice versa, for a dispersion according to the invention over a period of time greater than or equal to 1 month, preferably greater than or equal to 3 months, and better still greater than or equal at 6 months.
- the term “gelling agent” is intended to denote an agent making it possible to increase the viscosity of the phase devoid of said gelling agent, and preferably to achieve a final viscosity of the phase thus gelled of greater than 20. 000 mPa.s, preferably greater than 50,000 mPa.s, better still greater than 100,000 mPa.s, and most particularly greater than 200,000 mPa.s.
- a dispersion in a dispersion according to the invention:
- a dispersion according to the invention does not include glyceryl trioctanoate, glycerol tricaprylate / caprate, and their mixture. According to one embodiment, a dispersion according to the invention does not include:
- the drops advantageously have an apparent monodispersity (ie they are perceived by the eye as spheres identical in diameter).
- the drops are advantageously substantially spherical.
- R 2 and R 3 independently of each other, represent OH or CH 3 ;
- R 4 represents a -CH 2 - group or a -X-NH- group in which X is a divalent C3 or C4 alkylene radical;
- - y is an integer between 1 and 1000, in particular between 2 and 1000, preferably between 4 and 100, and better still between 5 and 20;
- the sample is then subjected to the following protocol by being first of all brought to temperature at 20 ° C, then subjected to a first temperature rise ranging from 20 ° C to 130. ° C, at the heating rate of 5 ° C / minute, then is cooled from 130 ° C to -80 ° C at a cooling rate of 5 ° C / minute and finally subjected to a second temperature rise ranging from - 80 ° C to 130 ° C at a heating rate of 5 ° C / minute.
- the melting point of the compound is the value of the temperature corresponding to the top of the peak of the curve representing the variation of the difference in power absorbed as a function of the temperature.
- the end of melting temperature corresponds to the temperature at which 95% of the sample has melted.
- the cohesiveness corresponds to the way in which the tested product resists the second deformation, relative to the way which he behaved during the first deformation.
- Cohesion corresponds to the surface of the second curve (Area. 2) on the surface of the first curve (Area 1) (ie Area. 2 / Area. 1).
- cohesion represents the forces within the tested sample.
- strong bonds within the gel will allow a completely reversible deformation during the first compression which will induce a force A2 identical to the force A1, and therefore 100% cohesion. Consequently, the stronger the cohesion, the more deformable the gel.
- the weaker the cohesion the more brittle the gel (weak bonds, no resistance to stress).
- the sample to be tested is placed in a mold 40 mm in diameter filled to 75% of its height.
- a lipophilic gelling agent is a thermosensitive gelling agent, ie which reacts with heat, and in particular is a solid gelling agent at room temperature and liquid at a temperature above 50 ° C, preferably above 60 ° C, and better above 70 ° C.
- a heat-sensitive lipophilic gelling agent according to the invention has a melting point of between 50 ° C and 130 ° C, and preferably between 60 ° C and 120 ° C.
- the lipophilic gelling agent according to the invention can be chosen from organic or inorganic, polymeric or molecular lipophilic gelling agents; fatty substances which are solid at ambient temperature and pressure; and their mixtures.
- Silicas thus treated are called “Silica dimethyl silylate” according to the CTFA (8th edition, 2000). They are for example marketed under the references Aerosil R972 ⁇ , and Aerosil R974 ⁇ by the company DEGUSSA, CAB-O-SIL TS-610 ⁇ and CAB-O-SIL TS-720 ⁇ by the company CABOT.
- Polymeric organic lipophilic gelling agents are, for example, partially or totally crosslinked elastomeric organopolysiloxanes, of three-dimensional structure, such as those sold under the names KSG6 ⁇ , KSG16 ⁇ and KSG18 ⁇ by the company Shin-ETSU, Trefil E-505CO and Trefil E- 506C ⁇ by the company DOW-CORNING, de Gransil SR-CYC ⁇ , SR DMF10 ⁇ , SR-DC556 ⁇ , SR 5CYC gel ⁇ , SR DMF 10 gel ⁇ and SR DC 556 gel ⁇ by the company GRANT INDUSTRIES, from SF 1204 ⁇ and from JK 113 ⁇ by the GENERAL ELECTRIC company; ethylcellulose such as that sold under the name Ethocel6 by the company DOW CFIEMICAL; galactommanans comprising from one to six, and in particular from two to four, hydroxyl groups per dose, substituted with a saturated or unsaturated alkyl chain, such as guar gum
- the gelling agents which can be used according to the invention can be chosen from the group consisting of polyacrylates; esters of sugar / polysaccharide and fatty acid (s), in particular esters of dextrin and fatty acid (s), esters of glycerol and fatty acid (s) or esters of inulin and 'Fatty acids ; polyamides, and mixtures thereof.
- lipophilic gelling agents which can be used in the present invention, mention may also be made of dextrin and fatty acid esters, such as dextrin palmitates.
- the ester of dextrin and of fatty acid (s) is a mono- or poly-ester of dextrin and of at least one fatty acid corresponding to the following formula (II): in which: n is an integer ranging from 2 to 200, preferably ranging from 20 to 150, and in particular ranging from 25 to 50, the radicals R4, R5 and R6, which are identical or different, are chosen from hydrogen or an acyl group -CORa in which the radical Ra represents a hydrocarbon radical, linear or branched, saturated or unsaturated, having from 5 to 50, preferably from 5 to 25 carbon atoms, with the proviso that at least one of said radicals R4, R5 or R6 is different from hydrogen.
- formula (II) in which: n is an integer ranging from 2 to 200, preferably ranging from 20 to 150, and in particular ranging from 25 to 50, the radicals R4, R5 and R6, which are identical or different, are chosen from hydrogen or an acyl group -CORa in
- esters of dextrin and of fatty acid (s) there may be mentioned, for example, dextrin palmitates, dextrin myristates, dextrin palmitates / ethylhexanoates, and mixtures thereof. Mention may in particular be made of the esters of dextrin and of fatty acid (s) marketed under the names Rheopearl® KL2 or D2 (INCI name: dextrin palmitate), Rheopearl® TT2 (INCI name: dextrin palmitate ethylhexanoate), and Rheopearl® MKL2 ( INCI name: dextrin myristate) by the company Miyoshi Europe.
- the polyacrylates resulting from the polymerization of C10-C30 alkyl acrylate (s), preferably of C14- alkyl acrylate (s). C24, and even more preferably of C18-C22 alkyl acrylate (s).
- the polyacrylates are polymers of acrylic acid esterified with a fatty alcohol whose saturated carbon chain comprises from 10 to 30 carbon atoms, preferably from 14 to 24 carbon atoms, or a mixture of said fatty alcohols.
- the fatty alcohol comprises 18 carbon atoms or 22 carbon atoms.
- the polyacrylates mention may more particularly be made of stearyl polyacrylate and behenyl polyacrylate.
- the gelling agent is stearyl polyacrylate or behenyl polyacrylate.
- Interlimer® INCCI name: Poly C10-C30 alkyl acrylate
- said ester of glycerol and fatty acid (s) can be used alone or as a mixture.
- it may be an ester of glycerol and a fatty acid or an ester of glycerol and a mixture of fatty acids.
- the fatty acid is selected from the group consisting of behenic acid, isooctadecanoic acid, stearic acid, eicosanoic acid, and mixtures thereof.
- esters of glycerol and of fatty acid (s) marketed under the names Nomcort HK-G (INCI name: Glyceryl behenate / eicosadioate) and Nomcort SG (INCI name: Glyceryl tribehenate, isostearate, eicosadioate), by the Nisshin Oillio company.
- the fatty substance which is solid at ambient temperature and pressure is in particular chosen from the group consisting of waxes, pasty fatty substances, butters and their mixtures.
- the term “wax” is understood to mean a lipophilic compound, solid at room temperature (25 ° C), with a reversible solid / liquid change of state, having a melting point greater than or equal to 50 ° C. up to 120 ° C.
- waxes obtained by catalytic hydrogenation of animal or vegetable oils having fatty chains, linear or branched, C8-C32.
- animal or vegetable oils having fatty chains linear or branched, C8-C32.
- hydrogenated jojoba oil hydrogenated sunflower oil, hydrogenated castor oil, hydrogenated coconut oil and hydrogenated lanolin oil, di- (tetrastearate) trimethylol-1,1,1 propane) sold under the name "HEST 2T-4S" by the company HETERENE, tetrabhenate of di- (trimethylol-1, 1, 1 propane) sold under the name HEST 2T-4B by the company HETERENE.
- waxes obtained by transesterification and hydrogenation of vegetable oils such as castor or olive oil, such as the waxes sold under the names of Phytowax ricin 16L64® and 22L73® and Phytowax Olive 18L57 by the company SOPHIM.
- Such waxes are described in application FR2792190.
- silicone waxes which can advantageously be substituted polysiloxanes, preferably with a low melting point.
- the silicone waxes which can be used can also be alkyl or alkoxydimethicones such as the following commercial products: Abilwax 2428, 2434 and 2440 (GOLDSCHMIDT), or VP 1622 and VP 1621 (WACKER), as well as (C20-C60) alkyldimethicones, in in particular (C30-C45) alkyldimethicones such as the silicone wax sold under the name SF-1642 by the company GE-Bayer Silicones. It is also possible to use hydrocarbon waxes modified with silicone or fluorinated groups, such as, for example: siliconyl candelilla, siliconyl beeswax and Fluorobeeswax from Koster Keunen.
- the waxes can also be chosen from fluorinated waxes.
- the term “butter” (also called “pasty fatty substance”) means a lipophilic fatty compound with a reversible solid / liquid change of state and comprising, at a temperature of 25 ° C., a liquid fraction and a fraction. solid, and at atmospheric pressure (760 mm Hg).
- the starting melting point of the pasty compound can be less than 25 ° C.
- the liquid fraction of the pasty compound measured at 25 ° C. can represent from 9% to 97% by weight of the compound. This fraction which is liquid at 25 ° C. preferably represents between 15% and 85%, more preferably between 40 and 85% by weight.
- the butter (s) have an end-of-melting temperature of less than 60 ° C.
- the butter (s) have a hardness less than or equal to 6 MPa.
- the butters or pasty fatty substances exhibit in the solid state an anisotropic crystalline organization, visible by X-ray observations.
- the melting temperature corresponds to the temperature of the most endothermic peak observed in thermal analysis (DSC) as described in standard ISO 11357-3; 1999.
- the melting point of a paste or a wax can be measured using a differential scanning calorimeter (DSC), for example the calorimeter sold under the name “DSC Q2000” by the company TA Instruments .
- the enthalpy of fusion of the butter is equal to the integral of the whole of the melting curve obtained using the calorimeter involved, with a temperature rise of 5 ° C or 10 ° C per minute, according to the standard ISO 11357-3: 1999.
- the enthalpy of fusion of butter is the amount of energy required to change the compound from the solid state to the liquid state. It is expressed in J / g.
- the enthalpy of fusion consumed at 25 ° C is the quantity of energy absorbed by the sample to change from the solid state to the state that it presents at 25 ° C consisting of a liquid fraction and a solid fraction.
- the liquid fraction of the butter measured at 32 ° C. preferably represents from 30% to 100% by weight of the compound, preferably from 50% to 100%, more preferably from 60% to 100% by weight of the compound.
- the temperature of the end of the melting range of the pasty compound is less than or equal to 32 ° C.
- the liquid fraction of butter measured at 32 ° C is equal to the ratio of the enthalpy of fusion consumed at 32 ° C to the enthalpy of fusion of the butter.
- the enthalpy of fusion consumed at 32 ° C is calculated in the same way as the enthalpy of fusion consumed at 23 ° C.
- sample preparation and measurement protocols are as described in WO2017046305.
- the pasty fatty substance or butter can be chosen from synthetic compounds and compounds of plant origin.
- a pasty fatty substance can be obtained by synthesis from starting products of plant origin.
- the particular butter (s) are of plant origin such as those described in Ullmann's Encyclopedia of Industrial Chemistry (“Fats and Fatty Oils”, A. Thomas, published on 06/15/2000, D01 : 10.1002 / 14356007.a10_173, point 13.2.2.2. Shea Butter, Borneo Tallow, and Related Fats (Vegetable Butters)).
- the lipophilic gelling agent is chosen from Castor Oil / IPDI Copolymer (and) Caprylic / Capric Triglyceride, in particular sold under the name Estogel M by PolymerExpert, Caprylic / Capric Triglycéride (and) Polyurethane- 79, in particular marketed under the name OILKEMIA TM 5S polymer by the company Lubrizol, Trihydroxystearin, in particular marketed under the name THIXCIN® R by the company Elementis Specialties, and their mixtures, and better still Castor Oil / IPDI Copolymer (and) Caprylic / Capric Triglyceride.
- a dispersion according to the invention in particular the fatty phase, does not comprise an elastomer gel comprising at least a dimethicone, in particular as marketed by NuSil Technology under the name CareSil TM CXG-1104 (INCI: Dimethicone (and) Dimethicone / Vinyl Dimethicone Crosspolymer).
- the dispersed fatty phase can comprise at least one oil.
- oils according to the invention there may be mentioned, for example: - hydrocarbon-based oils of plant origin, as described below;
- hydrocarbon oils of animal origin such as perhydrosqualene and squalane
- esters and ethers in particular of fatty acids, such as oils of formulas R1COOR2 and R1OR2 in which R1 represents the residue of a Cs to C29 fatty acid, and R2 represents a hydrocarbon chain, branched or not, C3 to C30, such as, for example, Purcellin oil, isononyl isononanoate, isodecyl neopentanoate, isostearyl neopentanoate, isopropyl myristate, octyldodecyl myristate, 2-ethylhexyl palmitate, 2-octyl-dodecyl stearate, 2-octyl-dodecyl erucate, isostearyl isostearate; hydroxylated esters such as isostearyl lactate, octylhydroxystearate, octyldodecyl hydroxystearate
- silicone oils such as for example polymethylsiloxanes (PDMS) volatile or not with a linear or cyclic silicone chain, liquid or pasty at room temperature, in particular cyclopolydimethylsiloxanes (cyclomethicones) such as cyclohexasiloxane and cyclopentasiloxane; polydimethylsiloxanes (or dimethicones) comprising alkyl, alkoxy or phenyl groups, pendant or at the end of the silicone chain, groups having from 2 to 24 carbon atoms; phenylated silicones such as phenyltrimethicones, phenyldimethicones, phenyltrimethylsiloxydiphenylsiloxanes, diphenyl-dimethicones, diphenylmethyldiphenyl trisiloxanes, 2-phenylethyltrimethyl-siloxysilicates, and polymethylsiloxysilicates;
- PDMS polymethylsilox
- - fatty alcohols having 8 to 26 carbon atoms such as cetyl alcohol, stearyl alcohol and their mixture (cetylstearyl alcohol), or octyldodecanol;
- the fatty phase of a dispersion according to the invention comprises at least one vegetable oil.
- hydrocarbon oil (s) of vegetable origin mention may be made of triglycerides of caprylic and capric acids, triglycerides of caprylic and capric acids (also known under the name of "MCT oil"), myristic and stearic (INCI name: Caprylic / capric / myristic / stearic Triglyceride), triethylhexanoine, Limnanthes Alba seed oil (INCI name: Limnanthes Alba (Meadowfoam) Seed Oil), macadamia nut oil ( INCI name: Macadamia Ternifolia Seed Oil), rosehip oil Rosa Canina (INCI name: Rosa Canina Fruit Oil), soybean oil (INCI name: Glycine Soja (Soybean) Oil), seed oil sunflower (INCI name: Helianthus Annuus (Sunflower) Seed Oil), tribhenin (INCI name: tribehenin), triisostearin (INCI name: triisostearin),
- Sinensis Seed Oil sea buckthorn oil (INCI name: Hippophae Rhamnoides Oil), Camellia Kissi seed oil (INCI name: Camellia Kissi Seed Oil), Moringa seed oil (INCI name: Moringa Pterygosperma Seed Oil), canola oil (INCI name: Canola Oil), tea seed oil (INCI name: Camellia Oleifera Seed Oil), carrot seed oil (INCI name: Daucus Carota Sativa Seed Oil), triheptanoine (INCI name: Triheptanoin), vanilla oil (INCI name: Vanilla Planifolia Fruit Oil), canola oil glycerides and phytosterols (INCI name: Phytosteryl Canola Glycerides), blackcurrant seed (INCI name: Ribes Nigrum (Black Currant) Seed Oil), karanja seed oil (INCI name: Pongamia Glabra Seed Oil), annatto oil (INCI name: Roucou (Bixa orellana) Oil)
- the oil is chosen from vegetable oils rich in polyunsaturated fatty acids.
- unsaturated fatty acid means a fatty acid comprising at least one double bond.
- unsaturated fatty acids comprising from 18 to 22 carbon atoms, in particular polyunsaturated fatty acids, in particular w-3 and w-6 fatty acids, are used as the oil.
- the fatty phase comprises at least one oil having a refractive index close to that of the aqueous continuous phase, namely an oil having a refractive index, at room temperature and atmospheric pressure, preferably between 1, 2 and 1. , 6, preferably between 1, 25 and 1, 5, in particular between 1, 3 and 1, 4.
- an oil having a refractive index close to that of the aqueous continuous phase, namely an oil having a refractive index, at room temperature and atmospheric pressure, preferably between 1, 2 and 1. , 6, preferably between 1, 25 and 1, 5, in particular between 1, 3 and 1, 4.
- the oil having a refractive index of between 1, 2 and 1, 6 is a silicone oil, in particular a phenylated silicone oil.
- the fatty phase of a dispersion according to the invention comprises at least one, or even at least two, oil (s), preferably chosen from one or more hydrocarbon oil (s) of vegetable origin. , and preferably chosen from limnanthes seed oil Limnanthes Alba (INCI name: Limnanthes Alba (Meadowfoam) Seed Oil, triglycerides of caprylic and capric acids, and their mixture.
- the oil may be present in the fatty phase of a dispersion according to the invention is not a silicone oil or a fluorinated oil.
- a dispersion according to the invention does not comprise polydimethylsiloxane (PDMS or dimethicone) or a derivative thereof, and preferably does not include silicone oil, and in particular octamethylcyclotetrasiloxane (or Cyclotetrasiloxane or D4), decamethylcyclopentasiloxane (or Cyclopentasiloxane or D5) and Cyclohexasiloxane (or D6).
- PDMS or dimethicone polydimethylsiloxane
- D4 octamethylcyclotetrasiloxane
- decamethylcyclopentasiloxane or Cyclopentasiloxane or D5
- Cyclohexasiloxane or D6
- a dispersion according to the invention may comprise between 10% and 99.5%, preferably between 20% and 90%, better still between 30% and 85%, and in particular between 50% and 80%, by weight of oil ( s) relative to the total weight of the fatty phase.
- a dispersion according to the invention is also advantageous in that its kinetic stability allows high percentages of dispersed fatty phase.
- a dispersion according to the invention may comprise from 1% to 60%, in particular from 5% to 50%, preferably from 10% to 40%, and better still from 15% to 30%, by weight of dispersed fatty phase. relative to the total weight of the dispersion. Additional compound (s)
- a dispersion according to the invention in particular the continuous aqueous phase and / or the dispersed fatty phase, may / may further comprise at least one additional compound other than the lipophilic gelling agent and the aforementioned oils.
- a dispersion according to the invention in particular the continuous aqueous phase and / or the dispersed fatty phase, can / can thus further comprise powders; charges ; Glitter ; coloring agents, in particular chosen from coloring agents which are water-soluble or not, liposoluble or not, organic or inorganic, materials with an optical effect, liquid crystals, and mixtures thereof; particulate agents insoluble in the fatty phase; preservatives; humectants; perfuming agents, in particular as defined in WO2019002308; stabilizers; chelators; emollients; modifiers chosen from gelling / texture agents, viscosity different from the base and lipophilic gelling agents mentioned above, pH, osmotic strength and / or refr
- the term "filler” means colorless or white particles, solid of all shapes, which are in an insoluble form and dispersed in the medium of the composition. Mineral or organic in nature, they make it possible to impart body or rigidity and / or softness, and uniformity to the deposit, in particular in a makeup context, and improved stability with regard to exudation and properties. non-migration after application and / or mattness and / or coverage.
- a dispersion according to the invention in particular the continuous aqueous phase and / or the dispersed fatty phase, may / may further comprise at least one biological / cosmetic active agent, in particular chosen from moisturizing agents, agents. healing agents, depigmenting agents, UV filters, desquamating agents, antioxidants, active agents stimulating the synthesis of dermal and / or epidermal macromoleculars, dermodecontracting agents, antiperspirants, soothing agents and / or anti-aging agents. -age, and their mixtures.
- active agents are in particular described in FR1558849.
- hydrophilic gelling agents there may be mentioned:
- - natural gelling agents in particular chosen from algae extracts, plant exudates, seed extracts, microorganism exudates, such as alkasealan marketed by the company Hakuto (INCI: Alcaligenes Polysaccharides), and other agents natural, in particular hyaluronic acid,
- - semi-synthetic gelling agents in particular chosen from cellulose derivatives and modified starches,
- gelling agents in particular chosen from polyethylene glycols (marketed under the name Carbowax), clays, silicas such as those marketed under the names Aerosil® 90/130/150/200/300/380), glycerin, and
- the term “associative polymer” means any amphiphilic polymer comprising in its structure at least one fatty chain and at least one hydrophilic portion; the associative polymers in accordance with the present invention can be anionic, cationic, nonionic or amphoteric; these are in particular those described in FR2999921. Preferably, they are amphiphilic and anionic associative polymers and amphiphilic and nonionic associative polymers as described below.
- hydrophilic gelling agents are described in more detail in FR3041251.
- the dispersion according to the invention comprises from 0.0001% to 20%, preferably from 0.001% to 15%, in particular from 0.01% to 10%, and better still from 0.1% to 5% by weight of hydrophilic gelling agent (s) relative to the total weight of the aqueous continuous phase.
- hydrophilic gelling agent (s) refer to hydrophilic gelling agent (s) only present in the continuous aqueous phase.
- the dispersion according to the invention comprises from 0.0001% to 20%, preferably from 0.001% to 15%, and preferably from 0.01% to 10%, by weight of additional compound (s) (s) relative to the total weight of said dispersion.
- additional compound (s) s
- a person skilled in the art will take care to choose the optional additional compound (s) and / or their quantity in such a way that the advantageous properties of the dispersion according to the invention, in particular its kinetic stability and, having regard to in the dispersed fatty phase, its melting point and its physicochemical properties x and y, or even z, mentioned above, are not or not substantially altered by the addition envisaged.
- a dispersion according to the invention can be prepared by various methods.
- an aqueous solution and a fatty solution are prepared separately. It is the stirring of the fatty phase in the aqueous phase that creates the direct emulsion.
- the viscosity of the aqueous phase and the shear force applied to the mixture are the two main parameters which influence the size and the monodispersity of the drops of the emulsion.
- a person skilled in the art will know how to adjust the parameters of the non-microfluidic process in order to achieve the dispersion according to the invention, and in particular to satisfy the desired drop diameter criterion.
- the dispersions according to the invention can also be prepared according to a microfluidic process, in particular as described in applications WO2012 / 120043 or WO2019 / 145424.
- the microfluidic nozzle (s) used can have a configuration according to the T geometry, in co-flow (or co-currents), or flow-focusing.
- the drops obtained by this microfluidic process advantageously have a uniform size distribution.
- the dispersions of the invention consist of a population of monodisperse drops, in particular such that they have an average diameter D of from 100 ⁇ m to 3,000 ⁇ m, in particular from 500 ⁇ m to 3,000 ⁇ m and a coefficient variation Cv less than 10%, or even less than 3%.
- the term "monodisperse drops” is understood to mean the fact that the population of drops of the dispersion according to the invention has a uniform size distribution. Monodispersed drops exhibit good monodispersity. Conversely, drops with poor monodispersity are said to be “polydisperse”.
- the mean diameter D of the drops is for example measured by analyzing a photograph of a batch consisting of N drops, by image processing software (Image J).
- Image J image processing software
- the diameter is measured in pixels, then reported in ⁇ m, as a function of the size of the container containing the drops of the dispersion.
- the value of N is chosen to be greater than or equal to 30, so that this analysis reflects in a statistically significant manner the distribution of diameters of the drops of said emulsion.
- N is advantageously greater than or equal to 100, in particular in the case where the dispersion is polydispersed.
- the standard deviation s of a dispersion reflects the distribution of the diameters Di of the drops of i dispersion around the mean diameter D.
- the coefficient of variation can be calculated:
- This parameter reflects the distribution of the diameters of the drops as a function of their average diameter.
- the coefficient of variation Cv of the diameters of the drops according to this embodiment of the invention is less than 10%, preferably less than 5%, or even less than 3%.
- monodispersity can be demonstrated by placing a dispersion sample in a flask with constant circular section. A gentle agitation by rotation of a quarter of a turn for half a second around the axis of symmetry crossing the bottle, followed by a rest of half a second is carried out, before repeating the operation in the opposite direction, and this four times in a row.
- the drops of the dispersed phase organize in a crystalline form when they are monodispersed. Thus, they present a stack according to a pattern repeating itself following in the three dimensions. It is then possible to observe a regular stacking which indicates good monodispersity, an irregular stacking reflecting the polydispersity of the dispersion.
- the presence, in the dispersed fatty phase, of lipophilic gelling agent (s), or even in the aqueous continuous phase, of hydrophilic gelling agent (s), may require adjustments. at the level of the process for preparing a dispersion according to the invention.
- the process for preparing such a dispersion according to the invention comprises a heating step (between 50 ° C and 150 ° C, in particular between 60 ° C and 90 ° C) at least of the fatty phase before mixing / bringing said fatty phase into contact with the aqueous phase and, where appropriate, maintaining this heating (i) during stirring in the case of a “non-microfluidic” process or (ii) at the device level microfluidics in the case of a “microfluidic” process, until the desired dispersion is obtained.
- the process for preparing a dispersion of the invention comprises at least the following steps: a) heating an oily fluid F1 to a temperature between 50 ° C and 150 ° C, preferably from 60 ° C to 120 ° C, and better still from 70 ° C to 100 ° C; b) optionally heating an aqueous fluid FE to a temperature of from 50 ° C to 150 ° C, preferably from 60 ° C to 120 ° C, and better still from 70 ° C to 100 ° C; c) contacting the aqueous fluid FE and the oily fluid F1; and d) the formation of drops of fatty phase, consisting of oily fluid F1, dispersed in a continuous aqueous phase, consisting of aqueous fluid FE, in which:
- the oily fluid F1 comprises at least one lipophilic gelling agent and optionally at least one oil and has a melting point of between 50 ° C and 100 ° C, preferably between 60 ° C and 90 ° C, and at room temperature and atmospheric pressure, meets the following physicochemical criteria:
- x a hardness (x) of between 2 and 14 N, preferably between 2.5 and 12 N, better still between 3 and 9 N, and very particularly between 4 and 6 N;
- oily fluid F1 further being devoid of amodimethicone and, optionally, further comprises at least one additional compound as mentioned above;
- Steps (c) and (d) are carried out at a temperature greater than or equal to the melting point of the gelling agent (s) used.
- steps (c) and (d) are carried out with an oily fluid F1 in a form capable of emulsifying with the aqueous fluid FE, and therefore capable of ensuring the formation of drops, and in particular with a oily fluid F1 in liquid form.
- the FE fluid is initially prepared by mixing an aqueous phase intended to form the continuous phase of the dispersion with, optionally, at least one base, at least one additional compound, preservatives and / or other products.
- soluble in water such as glycerin, and very particularly at least one hydrophilic gelling agent.
- the viscosity increasing solution comprises a base, in particular an alkali hydroxide, such as sodium hydroxide.
- step c) is represented by stirring during which heating can be maintained during this stirring, allowing the desired dispersion to be obtained.
- step d) of formation of drops may comprise the formation of drops of oily fluid F1 at the outlet of a first duct opening into the aqueous fluid FE.
- the aqueous fluid FE is circulated in a second conduit, the outlet of the first conduit opening into the second conduit, advantageously coaxially with the local axis of the second conduit.
- the present invention also relates to a dispersion that can be obtained by a process such as those described above.
- a dispersion according to the invention can be used directly, at the end of the aforementioned preparation processes, as a composition, in particular a cosmetic.
- the dispersion according to the invention when prepared by means of a microfluidic process as described above, can also be used as a composition, in particular cosmetic, after separation of the drops and redispersion of the latter in an appropriate second phase.
- the invention also relates to the use of a dispersion according to the invention for the preparation of a composition, in particular cosmetic, pharmaceutical, in nutrition or in food industry, preferably a cosmetic composition and in particular a care and / or makeup composition for a keratin material, in particular the skin.
- a composition in particular cosmetic, pharmaceutical, in nutrition or in food industry, preferably a cosmetic composition and in particular a care and / or makeup composition for a keratin material, in particular the skin.
- the present invention thus also relates to a composition, in particular cosmetic, in particular for caring for and / or making up a keratin material, in particular the skin and / or the hair, and more particularly the skin, comprising at least one dispersion according to FIG. invention, optionally in combination with at least one physiologically acceptable medium.
- the dispersions or compositions according to the invention can therefore in particular be used in the cosmetics field.
- They can comprise, in addition to the aforementioned ingredients or compounds, at least one physiologically acceptable medium.
- the physiologically acceptable medium is generally suited to the nature of the support to which the composition is to be applied, as well as to the appearance in which the composition is to be packaged.
- the physiologically acceptable medium is represented directly by the aqueous continuous phase as described above.
- physiologically acceptable medium means a medium suitable for cosmetic applications, and suitable in particular for the application of a composition of the invention to a keratin material, in particular the skin and / or the hair, and more particularly the skin.
- the cosmetic compositions of the invention can be, for example, a cream, a lotion, a serum and a gel for the skin (hands, face, feet, etc.), a foundation (liquid, paste), a preparation for baths and showers (salts, foams, oils, gels, etc.), a hair care product (hair dyes and bleaches), a cleaning product (lotions, powders, shampoos), a hair care product (lotions, creams , oils), a styling product (lotions, lacquers, brilliants), a shaving product (soaps, foams, lotions, etc.), a product intended to be applied to the lips, a sun product, a tanning product sunless, a product to whiten the skin, an anti-wrinkle product.
- the cosmetic compositions of the invention can be an anti-aging serum, a youth serum, a moisturizing serum or a scented water.
- Example 1 Physicochemical study of fatty phases comprising at least one lipophilic gelling agent
- This example consisted in preparing thirteen anhydrous gels capable of representing the dispersed fatty phase of a dispersion according to the invention, and in evaluating their physicochemical properties in terms of hardness. (or firmness) (x), stickiness (or adhesion) (y) and cohesion (z).
- These anhydrous gels differ essentially in the nature of the oily solvent and / or the lipophilic gelling agent (ie Rheopearl D2 (equivalent to Rheopearl KL2), Estogel M or OILKEMIA TM 5S polymer) and their concentrations (ie 5%, 10 % and 15%).
- Rheopearl D2 equivalent to Rheopearl KL2
- Estogel M or OILKEMIA TM 5S polymer ie 5%, 10 % and 15%.
- test 1D differs from test
- EMC30 is a premix of Estogel M (INCI: Castor Oil / IPDI Copolymer (and) Caprylic / Capric Triglyceride) in Caprylic / Capric Triglyceride oil in a 30/70 ratio; the corresponding concentrations of lipophilic gelling agent (ie Estogel M) are therefore respectively 5% / 10% / 15% relative to the total weight of the anhydrous gel.
- the melting points of the anhydrous gels are measured according to the method described above and are presented in Table 2 below.
- the physicochemical criteria x, y and z of the anhydrous gels are then measured using the texturometer protocol described above. Note the impossibility of measuring the hardness of the fatty phases of example 18 of application US 2004/137020 and of example 31 of application EP 2 189 081. In fact, these fatty phases are too hard for the texturometer. EZ-X from shimadzu whose maximum force in terms of hardness is however 50 N.
- Figure 1 is a graph showing the hardness criterion (x) of the anhydrous gels in Table 1.
- Figure 2 is a graph showing the tackiness criterion (y) of the anhydrous gels in Table 1.
- Figure 3 is an enlargement of Figure 2 of the tack (y) values of anhydrous gels 2A, 2B, 2C, 3A, 3B, 3C, 5 and 6.
- Figure 4 is a graph showing the cohesion criterion (z) anhydrous gels
- Figures 5 to 7 are graphs representing the texturometry curves of the anhydrous gels in Table 1. These Figures 5 to 7 provide the strength (in N) of the gels in Table 1 as a function of the time (in seconds) during which the gels are subjected (1) to a first compression step (0 to 5 s) then (2) to a second step relaxation where the mobile rises (5 to 10 s). The previous steps (1) and (2) are repeated. These Figures 5 to 7 therefore provide information on the physicochemical properties of the gels in Table 1, in particular in terms of hardness, tackiness and cohesion.
- Hardness (x) as shown in Figure 1, with the percentage of lipophilic gelling agent and oily solvent identical (for example 1 B vs 2B vs 3B), the differences in terms of hardness profiles of the different anhydrous gels tested are not very significant . Furthermore, from tests 1C and 1D, it is observed that the hardness is impacted by the nature of the solvent.
- Cohesion (z) as can be seen from FIG. 4, gels 2B, 3B, 5 and 6 exhibit similar physicochemical properties in terms of cohesion, clearly lower than those of gels 1 B and 1 D.
- ten dispersions are prepared comprising a continuous aqueous phase and a phase dispersed in the form of drops, each time represented by one of the anhydrous gels of example 1. These dispersions are obtained by means of a microfluidic manufacturing process. as described in WO2015 / 055748.
- the microfluidic device used is broken down into two parts, a first part where is carried out, hot (between 70 and 90 ° C), the contact between the fatty phase (also designated IF or Fl) and the aqueous phase (also designated OF or FE) so as to form the dispersion, and a second part ensuring rapid cooling of the dispersion formed to accelerate the gelation kinetics of the drops and thus prevent the risks of coalescence and fragmentation of the drops post-formation (between 10 and 30 ° C).
- compositions of the phases (fluids) allowing the preparation of the dispersions are described in Table 3 below. Table 3
- the OF solution is then introduced into an SOF syringe connected to a heater to keep the OF hot (80 ° C).
- the IF and OF are injected into the microfluidic device and the BF is injected into the dispersion at the outlet of the microfluidic device, according to the flow rates described in the Table 4 below.
- the dispersions obtained can comprise drops endowed with a satisfactory monodispersity and having an average diameter of between 100 ⁇ m and 1500 ⁇ m, in particular between 700 and 1300 ⁇ m.
- each of the ten dispersions is then packaged in three half-filled 30 ml polypropylene (PP) containers. After 1 day at room temperature, each test undergoes one of the three transport tests below (one receptacle per test), namely: - roller test (i.e. horizontal circular movement): Wheaton reference, for 1 hour;
- D1 A dispersion according to Example 2 using as the dispersed fatty phase the anhydrous gel 1A of Example 1.
- the dispersions D1A and D2A exhibit unsatisfactory stability results.
- the corresponding fatty phases are therefore excluded from the rest of the study.
- the D3A dispersion exhibits average stability results but deemed sufficiently satisfactory to be kept for the rest of the study.
- the other dispersions tested exhibit satisfactory stability results.
- the fatty phase must have a cohesion (z) less than or equal to 40, preferably less than or equal to 35, and better still less than or equal to 30.
- a dispersion comprising a dispersed phase comprising drops and a continuous aqueous phase
- the stability of this dispersion is not ensured by the presence of a shell at the interface " continuous aqueous phase / dispersed fatty phase ”or of surfactant, may despite everything and unexpectedly exhibit satisfactory properties in terms of kinetic stability and sensoriality, in particular in terms of comfort and ease of application, provided that the gelled fatty phase either endowed with:
- a tack (y) greater than or equal to -2 N, and better still greater than or equal to -1 N, and in particular greater than or equal to -0.6 N;
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
- Fodder In General (AREA)
Abstract
La présente invention concerne une dispersion comprenant une phase dispersée comprenant des gouttes et une phase aqueuse continue, de préférence sous forme de gel, dans laquelle les gouttes comprennent une phase grasse comprenant au moins un agent gélifiant lipophile, dans laquelle; la phase grasse a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et, à température ambiante et pression atmosphérique, répond aux critères physicochimiques suivants; une dureté (x) comprise entre 2 et 14 N, de préférence entre 2,5 et 12 N, mieux entre 3 et 9 N, et tout particulièrement entre 4 et 6 N; et un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N; et la dispersion ne comprend pas d'amodiméthicone.
Description
DISPERSION STABLE SANS ÉCORCE
[La présente invention a pour objet des dispersions huile-dans-eau stables comprenant une phase continue aqueuse et des gouttes, notamment macroscopiques, d’une phase grasse dispersée comprenant au moins un agent gélifiant lipophile. Elle a également pour objet des compositions, notamment cosmétiques, contenant lesdites dispersions ainsi que leurs utilisations dans le domaine cosmétique.
Il existe à ce jour des dispersions sous forme d'émulsion directe, telles que par exemple décrites dans US 2004/137020 et EP 2 189 081. Toutefois, les phases dispersées de ces dispersions ne sont pas sous forme de gouttes macroscopiques et sont dotées d’une dureté telle que la sensorialité et/ou le confort à l’application ne sont pas satisfaisants, qui plus est en présence de phases dispersées sous forme de gouttes macroscopiques.
Il existe également à ce jour des dispersions stables de gouttes d’une phase grasse dispersée dans une phase continue aqueuse, notamment décrites dans la demande WO2017046305. Ces dispersions sont obtenues à l’aide d’un procédé microfluidique et leur stabilité cinétique est assurée grâce à la présence d’une écorce dérivant d’une réaction de coacervation complexe interfaciale qui repose notamment sur un polymère cationique lipophile siliconé, l’amodiméthicone. Les gouttes de la phase grasse dispersée de ces dispersions sont macroscopiques, c’est dire visibles à l’œil nu, et confèrent auxdites dispersions un aspect esthétique attrayant recherché par le consommateur. Cette propriété est d’autant plus intéressante que l’écorce des gouttes est très fine et qu’aucune résistance attachée à la rupture de l’écorce n’est ressentie par l’utilisateur au moment de l’application sur une matière kératinique, ni aucun dépôt résiduel de ladite écorce n’est par ailleurs constaté. On parle ainsi d’écorce évanescente.
On constate une demande de plus en plus forte des consommateurs en compositions cosmétiques dénuées de composés siliconés en raison de leur impact environnemental, car non biodégradables, et/ou de leur dangerosité suspectée pour la santé.
Par ailleurs, les inventeurs ont observé que la présence d’amodiméthicone peut parfois conduire à des problèmes de compatibilité avec d’autres matières premières et/ou des phénomènes d’agrégation des gouttes entre elles, d’adhésion des gouttes au packaging et/ou de défauts de sphéricité des gouttes, ce qui pour des raisons évidentes n’est pas souhaitable. En effet, de tels inconvénients peuvent impacter la stabilité de la dispersion et/ou l’homogénéité de délivrance des différentes phases constitutives de la dispersion et/ou le rendu visuel et esthétique de la dispersion, voire sa sensorialité à l’application sur la peau, et ces inconvénients sont exacerbés plus le diamètre des gouttes
augmente. Sans vouloir être lié par une quelconque théorie, la Déposante pense que le défaut de sphéricité des gouttes susmentionné peut être lié à une diminution du caractère élastique de la phase grasse dispersée en raison de la présence d’amodiméthicone.
Il existe donc un besoin pour de nouvelles dispersions comprenant des gouttes d’une phase grasse dispersée, notamment de taille macroscopique, dans une phase continue aqueuse et qui demeurent satisfaisantes en termes de stabilité cinétique, de sensorialité et de confort à l’application et ce, malgré l’absence d’amodimethicone et donc d’écorce.
Ainsi, la présente invention concerne une dispersion huile-dans-eau comprenant, voire contenant, une phase dispersée comprenant des gouttes et une phase aqueuse continue, de préférence sous forme de gel, dans laquelle les gouttes comprennent une phase grasse comprenant au moins un agent gélifiant lipophile et optionnellement au moins une huile, dans laquelle :
- la phase grasse a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et, à température ambiante et pression atmosphérique, répond aux critères physicochimiques suivants :
- une dureté (x) comprise entre 2 et 14 N, de préférence entre 2,5 et 12 N, et mieux entre 3 et 9 N, et tout particulièrement entre 4 et 6 N ; et
- un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N ; et
- la dispersion ne comprend pas d’amodiméthicone.
De préférence, la phase grasse d’une dispersion selon l’invention présente en outre une cohésion (z) inférieure ou égale à 40, de préférence inférieure ou égale à 35, et mieux inférieure ou égale à 30.
Comme il ressort des exemples ci-dessous, et de manière inattendue, la mise en œuvre d’une phase grasse dispersée dotée des propriétés physicochimiques ci-dessus permet d’accéder à des dispersions, notamment macroscopiques, dotées de performances satisfaisantes, voire améliorées, en termes de stabilité cinétique et donc de rendu visuel et esthétique, de facilité et de confort d’application sur la peau et ce, malgré l’absence d’amodiméthicone et donc d’écorce.
En particulier, les inventeurs ont observé qu’une dispersion selon l’invention présente des performances satisfaisantes, voire améliorées, en termes de non-agrégation des gouttes entre elles, de non-adhésion des gouttes au packaging, et en terme de confort et de facilité d’application sur la peau.
Compte-tenu de l’absence d’amodiméthicone, une dispersion selon l’invention autorise également plus de liberté quant aux composés et/ou à leurs teneurs, en particulier en ingrédients actifs, pouvant être encapsulés.
Par « stable » ou « stabilité cinétique », on entend désigner, au sens de la présente invention, à température ambiante et pression atmosphérique, l’absence de crémage ou de sédimentation des gouttes de phase dispersée dans la phase continue, l’absence d’opacification de la phase continue aqueuse, l’absence d’agrégation des gouttes entre elles, et notamment l’absence de coalescence ou de mûrissement d’Oswald des gouttes entre elles, l’absence d’adhésion des gouttes au packaging et l’absence de fuite de matières de la phase dispersée vers la phase continue, ou inversement, pour une dispersion selon l’invention sur une période de temps supérieure ou égale à 1 mois, de préférence supérieure ou égale à 3 mois, et mieux supérieure ou égale à 6 mois.
Par « agent gélifiant », on entend désigner, au sens de la présente invention, un agent permettant d’augmenter la viscosité de la phase dépourvue dudit agent gélifiant, et de préférence d’atteindre une viscosité finale de la phase ainsi gélifiée supérieure à 20 000 mPa.s, de préférence supérieure à 50 000 mPa.s, mieux supérieure à 100 000 mPa.s, et tout particulièrement supérieure à 200 000 mPa.s.
Par « macroscopique », ou « goutte macroscopique », ou « dispersion macroscopique », on entend désigner, au sens de la présente invention, des gouttes de phase grasse dispersée visibles à l’œil nu, par opposition à des gouttes microscopiques non visibles à l’œil nu. Ainsi, de préférence, dans une dispersion selon l’invention :
- les gouttes possédant un diamètre supérieur ou égal à 100 pm, voire supérieur ou égal à 200 pm, mieux supérieur ou égal à 300 pm, en particulier supérieur ou égal à 400 pm, de préférence supérieur ou égal à 500 pm, voire supérieur ou égal à 1 000 pm, voire entre 100 pm et 3 000 pm, mieux entre 200 pm et 2 000 pm, en particulier entre 300 pm et 1 000 pm, mieux entre 500 pm et 3000 pm, de préférence entre 1 000 pm et 2 000 pm, en particulier entre 800 pm et 1 500 pm, représentent un volume supérieur ou égal à 60%, voire supérieur ou égal à 70%, de préférence supérieur ou égal à 80%, et mieux supérieur ou égal à 90 %, du volume total de la phase dispersée, et/ou ;
- au moins 60%, voire au moins 70%, de préférence au moins 80%, et mieux au moins 90%, des gouttes possèdent un diamètre moyen supérieur ou égal à 100 pm, voire supérieur ou égal à 200 pm, mieux supérieur ou égal à 300 pm, en particulier supérieur ou égal à 400 pm, de préférence supérieur ou égal à 500 pm, voire supérieur ou égal à 1 000 pm, voire entre 100 pm et 3 000 pm, mieux entre 200 pm et 2 000 pm, en particulier entre 300 pm et 1 000 pm, mieux entre 500 pm et 3 000 pm, de préférence entre 1 000 pm et 2 000 pm, en particulier entre 800 pm et 1 500 pm.
La détermination du volume de gouttes possédant un diamètre particulier par rapport au volume total de la phase dispersée relève des connaissances générales de l’homme du métier, notamment eu égard à la méthode de mesure du diamètre décrite ci-dessous.
Une dispersion selon l’invention peut être qualifiée de mélange macroscopiquement inhomogène de deux phases non miscibles, en particulier lorsque les gouttes sont macroscopiques. En d’autres termes, dans une dispersion selon l’invention, chacune des phases peut être individualisée, notamment à l’œil nu. Dans le cadre de la présente invention, les dispersions susmentionnées peuvent être désignées indifféremment par le terme "émulsions". Au regard de la nature des phases, une émulsion selon l’invention est une émulsion de type huile-dans-eau (ou émulsion directe), la phase grasse dispersée et la phase continue aqueuse étant non miscibles entre elles à température ambiante et pression atmosphérique. Ainsi, la solubilité de la phase grasse dispersée dans la phase continue aqueuse est avantageusement inférieure à 5 % en masse, et inversement.
Selon un autre mode de réalisation, une dispersion selon l’invention est une émulsion simple c’est à dire contenant uniquement une phase aqueuse continue et une phase grasse dispersée. En d’autres termes, une dispersion selon l’invention n’est pas une émulsion multiple, en particulier une émulsion double, par exemple de type eau-dans-huile-dans-eau.
Selon un autre mode de réalisation, une dispersion selon l’invention ne comprend pas de tensioactif.
Selon un mode de réalisation, une dispersion selon l’invention ne comprend pas de trioctanoate de glycéryl, de tricaprylate/caprate de glycérol, et leur mélange. Selon un mode de réalisation, une dispersion selon l’invention ne comprend pas :
- d’ester de dextrine et d’acide(s) gras, et en particulier de palmitate(s) de dextrine, et/ou de silice éventuellement traitée hydrophobe, par exemple la silice pyrogénée, et/ou
- d’Acrylates/C 10-30 Alkyl Acrylate Crosspolymer, en particulier de Pemulen™ EZ- 4U Polymeric Emulsifier de Lubrizol ; et/ou - de Cetyl Ethylhexanoate.
De préférence, les gouttes présentent avantageusement une monodispersité apparente (i. e. qu’elles sont perçues à l’œil comme des sphères identiques en diamètre).
Les gouttes sont avantageusement sensiblement sphériques.
Les gouttes d’une dispersion selon l’invention sont dénuées d’écorce ou de membrane, en particulier de membrane polymérique ou formée par polymérisation interfaciale. En particulier, les gouttes d’une dispersion selon l’invention ne sont pas stabilisées à l’aide d’une membrane de coacervat (type polymère anionique (carbomère)/polymère cationique (amodiméthicone)). En d’autres termes, le contact entre la phase continue aqueuse et la phase grasse dispersée est direct.
Ainsi, selon un mode de réalisation, une dispersion selon l’invention ne comprend pas d’écorce, en particulier d’écorce formée d’une couche de coacervat interposée entre la phase grasse dispersée et la phase aqueuse continue.
En particulier, une dispersion selon l’invention ne comprend pas (est dénuée) de polymère cationique lipophile répondant à la formule suivante :
dans laquelle :
- Ri, R2 et R3, indépendamment les uns des autres, représentent OH ou CH3 ;
- R4 représente un groupe -CH2- ou un groupe -X-NH- dans lequel X est un radical alkylène divalent en C3 ou C4 ;
- x est un nombre entier compris entre 10 et 5 000, de préférence entre 30 et 1 000, et mieux entre 80 et 300 ;
- y est un nombre entier compris entre 1 et 1000, en particulier entre 2 et 1 000, de préférence entre 4 et 100, et mieux entre 5 et 20 ; et
- z est un nombre entier compris entre 0 et 10, de préférence entre 0 et 1 , et mieux est égal à 1 .
Les gouttes diffèrent de capsules solides, c’est-à-dire des capsules dotées d’une écorce (ou « membrane ») solide, tel que par exemple celles décrites dans WO 2010/063937, et de capsules dotées d’une écorce évanescente, tel que par exemple celles décrites dans WO2012120043.
Selon l’invention, le pH d’une dispersion est typiquement compris entre 4,0 et 8,0, en particulier entre 5,0 et 7,0.
Température et pression
Sauf indication contraire, dans tout ce qui suit, on considère qu’on se trouve à la température ambiante (par exemple T=25°C ± 2°C) et pression atmosphérique (760 mm de Hg, soit 1 ,013.105 Pa ou 1013 mbar).
Viscosité
La viscosité d’une dispersion selon l’invention ou d’au moins une de ses phases peut varier de façon importante ce qui permet d’obtenir des textures variées. La viscosité est
mesurée à température ambiante et à pression ambiante selon la méthode décrite dans WO2017046305.
Selon un mode de réalisation, une dispersion selon l’invention a une viscosité comprise de 1 mPa.s à 500 000 mPa.s, de préférence de 10 mPa.s à 300 000 mPa.s, mieux de 400 mPa.s à 100 000 mPa.s, et plus particulièrement de 1 000 mPa.s à 30 000 mPa.s, telle que mesurée à 25°C selon la méthode décrite ci-dessus.
Phase continue aqueuse
Comme indiqué précédemment, les dispersions selon l’invention comprennent une phase continue aqueuse, de préférence sous forme d’un gel, en particulier d’un gel présentant une viscosité adaptée pour suspendre les gouttes et contribuer ainsi à la stabilité cinétique et au visuel attractif d’une dispersion selon l’invention.
Avantageusement, la phase continue aqueuse n'est pas solide à température ambiante et à pression ambiante, c’est-à-dire qu’elle est apte à s’écouler sous son propre poids.
Selon un mode de réalisation, la phase aqueuse a une viscosité comprise entre 400 mPa.s et 100 000 mPa.s, de préférence entre 800 mPa.s et 30 000 mPa.s, telle que mesurée à 25°C selon la méthode décrite ci-dessus.
La phase continue d’une dispersion selon l’invention comprend de l’eau.
Outre l’eau distillée ou déionisée, une eau convenant à l’invention peut être aussi une eau de source naturelle ou une eau florale.
Selon un mode de réalisation, le pourcentage massique d’eau de la phase continue aqueuse est d’au moins 30%, de préférence d’au moins 40%, en particulier d’au moins 50%, et mieux d’au moins 60%, notamment compris entre 70% et 98%, et préférentiellement compris entre 75% et 95%, par rapport à la masse totale de ladite phase continue.
La phase continue aqueuse d’une dispersion selon l’invention peut en outre comprendre au moins une base. Elle peut comprendre une base unique ou un mélange de plusieurs bases différentes. La présence d’au moins une base dans ladite phase continue aqueuse contribue notamment à rehausser la viscosité de cette dernière.
Selon un mode de réalisation, la base présente dans la phase aqueuse est une base minérale.
Selon un mode de réalisation, la base minérale est choisie dans le groupe constitué des hydroxydes des métaux alcalins et des hydroxydes des métaux alcalino-terreux.
De préférence, la base minérale est un hydroxyde de métaux alcalins, et notamment
NaOH.
Selon un mode de réalisation, la base présente dans la phase aqueuse est une base organique. Parmi les bases organiques, on peut citer par exemple l’ammoniaque, la pyridine, la triéthanolamine, l’aminométhylpropanol, ou encore la triéthylamine.
Une dispersion selon l’invention peut comprendre de 0,01% à 10% en poids, de préférence de 0,01% à 5% en poids, et préférentiellement de 0,02% à 1% en poids de base, de préférence de base minérale, et notamment de NaOH, par rapport au poids total de ladite dispersion.
Phase grasse
La phase grasse dispersée d’une dispersion selon l’invention a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C.
Le point de fusion d’une phase grasse peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination "DSC Q2000" par la société TA Instruments. Les protocoles de préparation des échantillons et de mesure sont les suivants : un échantillon de 5 mg de l’échantillon à tester, préalablement chauffé à 80°C et prélevé sous agitation magnétique à l'aide d'une spatule également chauffée, est placé dans une capsule hermétique en aluminium, ou creuset. Deux essais sont réalisés pour s'assurer de la reproductibilité des résultats. Les mesures sont réalisées sur le calorimètre mentionné ci-dessus. Le four est soumis à un balayage d'azote. Le refroidissement est assuré par l'échangeur thermique RCS 90. L'échantillon est ensuite soumis au protocole suivant en étant tout d'abord mis en température à 20°C, puis soumis à une première montée en température allant de 20°C à 130°C, à la vitesse de chauffe de 5°C/minute, puis est refroidi de 130°C à -80°C à une vitesse de refroidissement de 5°C/minute et enfin soumis à une deuxième montée en température allant de -80°C à 130°C à une vitesse de chauffe de 5°C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon en fonction de la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. La température de fin de fusion correspond à la température à laquelle 95% de l'échantillon a fondu.
La phase grasse dispersée d’une dispersion selon l’invention doit satisfaire au moins aux deux critères physicochimiques de dureté et de collant suivants :
- une dureté (x) comprise entre 2 N et 14 N, de préférence entre 2,5 N et 12 N, en particulier entre 3 et 9 N, et mieux entre 4 et 6 N. La dureté (ou fermeté (hardness, firmness)) correspond à la force de compression maximale mesurée en Newton. Rapporté
à une dispersion selon l’invention, la dureté (x) est un indicateur du rendu sensoriel d’une dispersion à l’application sur une matière kératinique, en particulier la peau. D’une part, la dureté ne doit pas être trop faible pour garantir aux gouttes de phase grasse dispersée une résistance mécanique suffisante, en particulier aux cisaillements et/ou aux contraintes mécaniques liés par exemple à la fabrication et au conditionnement de la dispersion et/ou à son transport, et ainsi garantir à la dispersion une stabilité cinétique satisfaisante, notamment en présence d’un packaging non-airless. D’autre part, la dureté ne doit pas être trop importante pour ne pas dégrader la sensorialité, en particulier le confort et la facilité d’application de la dispersion à l’application sur la peau. Ce qui précède est exacerbé plus le diamètre des gouttes de phase grasse dispersée d’une dispersion est important.
- un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N et en particulier supérieur ou égal à -0,6 N. Le collant (ou adhérence (adhesiveness)) représente le travail nécessaire pour vaincre les forces attractives entre la surface du produit et le matériau avec lequel celui-ci est en contact (par exemple, la force totale nécessaire pour séparer l’outil de mesure de l’échantillon). Rapporté à une dispersion selon l’invention, le critère de collant (y) est un indicateur de la stabilité cinétique de la dispersion au regard des phénomènes d’adhésion des gouttes au paroi du packaging.
La phase grasse dispersée d’une dispersion selon l’invention présente avantageusement en outre une cohésion (z) inférieure ou égale à 40, de préférence inférieure ou égale à 35, et mieux inférieure ou égale à 30. De préférence, la phase grasse dispersée d’une dispersion selon l’invention présente avantageusement une cohésion (z) supérieure ou égale à 15, de préférence supérieure ou égale à 20, et mieux supérieure ou égale à 25. Avantageusement, la phase grasse dispersée d’une dispersion selon l’invention présente une cohésion (z) comprise entre 15 et 40, de préférence entre 20 et 35, et mieux entre 20 et 30. La cohésion (cohesiveness) correspond à la manière dont le produit testé résiste à la seconde déformation, relativement à la façon dont il s’est comporté lors de la première déformation. La cohésion correspond à la surface de la deuxième courbe (Area. 2) sur la surface de la première courbe (Area 1) (ie Area. 2/ Area. 1). En d’autres termes, la cohésion représente les forces au sein de l’échantillon testé. Ainsi, des liaisons fortes au sein du gel permettront une déformation totalement réversible lors de la première compression qui induira une force A2 identique à la force A1 , et donc une cohésion à 100%. En conséquence, plus la cohésion est forte, plus le gel est déformable. Plus la cohésion est faible, plus le gel est cassant (liaisons faibles, pas de résistance à la contrainte). Rapporté à une dispersion selon l’invention, le critère de cohésion (z) est un indicateur de la stabilité cinétique de la dispersion au regard des phénomènes d’agrégation, voire de coalescence, des gouttes de phase dispersée entre elles. La cohésion correspond à la propriété des
gouttes à coller sur elles-mêmes. Ainsi, on a besoin d’un minimum de cohésion pour assurer le caractère « gélifié » des gouttes mais pas trop pour éviter que les gouttes gélifiées ne collent entre elles.
Les mesures de dureté, d’adhérence et de cohésion sont obtenues au moyen du texturomètre EZ-X de shimadzu et du protocole texturomètre décrit ci-après :
- l’échantillon à tester est placé dans un moule de 40 mm de diamètre rempli à 75% de sa hauteur.
- Le mobile utilisé est un mobile cylindrique en acrylique de 12,7 mm de diamètre. Le déplacement du mobile comporte 4 étapes : 1 ) une 1 ère étape après détection automatique de la surface de l'échantillon où le mobile se déplace à la vitesse de mesure de 1 mm/s, et pénètre dans l’échantillon à une profondeur de pénétration de 5 mm, le logiciel note la valeur de la force maximale atteinte ;
2) une 2ème étape dite de retrait, à la vitesse de 1 mm/s, où le mobile revient à sa position initiale et remonte en sus de 5 mm ; et on note l'énergie de retrait de la sonde
(force négative) ;
3) une 3ème étape répétant la même action 1) décrite ci-dessus ; et
4) une 4ème étape répétant la même action 2) décrite ci-dessus.
Cette combinaison de critères physicochimiques constitue un compromis non évident caractérisant un gel anhydre cassant mais peu collant et peu élastique. Comme il ressort des exemples ci-dessous, cette combinaison de critères physicochimiques permet d’accéder à des dispersions, notamment macroscopiques, dotées de performances satisfaisantes, voire améliorées, en termes de stabilité cinétique, et donc de rendu visuel et esthétique, et de sensorialité, en particulier de confort et de facilité d’application sur la peau et ce, malgré l’absence d’amodiméthicone et donc d’écorce.
Concernant la dureté, les valeurs de dureté en N, obtenues par la méthode de mesure susmentionnée, peuvent aisément être converties en Pa, par exemple au regard de la surface du mobile cylindrique en acrylique de 12,7 mm mentionné ci-dessus.
Typiquement, 1 MPa équivaut à 1 N/mm2. Aussi, pour convertir les valeurs de dureté selon l’invention mesurées en N, il suffit de les diviser par la surface de la sonde. Par exemple, en utilisant une sonde comme ci-dessus de diamètre 12,7 mm, la surface de celle- ci est égale à S = p x (12,7/2)2 = 126,68 mm2. Pour obtenir les valeurs de dureté en MPa, il faudrait alors diviser les valeurs mesurées avec cette sonde par 126,68.
Pour les mesures ci-dessus, le texturomètre EZ-X de shimadzu susmentionné fonctionne en association avec le logiciel TRAPEZIUM X.
Les gouttes de phase grasse dispersée d’une dispersion selon l’invention reposent de préférence sur un gel viscoélastique avec un module élastique supérieur au module visqueux. Les gouttes ne s'écoulent pas sous leur propre poids, mais peuvent être aisément déformées par pression, par exemple avec un doigt. Ainsi, leur consistance se rapproche de celle d'un beurre, avec un caractère malléable et préhensible. Les gouttes peuvent être étalées facilement à la main, notamment sur une matière kératinique, en particulier la peau.
La phase grasse dispersée d’une dispersion selon l’invention comprend au moins un agent gélifiant lipophile. C’est essentiellement la combinaison entre au moins un agent gélifiant lipophile et au moins un solvant huileux qui permettent à la phase grasse dispersée d’une dispersion selon l’invention de satisfaire aux critères physicochimiques x et y, voire z, susmentionnés.
Agent gélifiant lipophile
Avantageusement, un agent gélifiant lipophile est un agent gélifiant thermosensible, à savoir qui réagit à la chaleur, et notamment est un agent gélifiant solide à température ambiante et liquide à une température supérieure à 50°C, de préférence supérieure à 60°C, et mieux supérieure à 70°C. De préférence, un agent gélifiant lipophile thermosensible selon l’invention a un point de fusion compris entre 50°C et 130°C, et de préférence entre 60°C et 120 °C. L’agent gélifiant lipophile selon l’invention peut être choisi parmi les agents gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires ; les corps gras solides à température et pression ambiante ; et leurs mélanges.
Agent(s) gélifiant(s) lipophile(s) organiques ou minéraux, polymériques ou moléculaires Comme agent gélifiant lipophile minéral, on peut citer les argiles éventuellement modifiées comme les hectorites modifiées par un chlorure d’ammonium en Cio à C22, comme l’hectorite modifiée par du chlorure de di-stéaryl di-méthyl ammonium telle que, par exemple, celle commercialisée sous la dénomination de Bentone 38VÔ par la société ELEMENTIS. On peut également citer l’hectorite modifiée par du chlorure de distéaryldiméthylammonium, connue également comme bentonite de quaternium-18, telle que les produits commercialisés ou fabriqués sous les dénominations Bentone 34 par la société Rheox, Claytone XL, Claytone 34 et Claytone 40 commercialisés ou fabriqués par la société Southern Clay, les argiles modifiées connues sous la dénomination de bentonites de benzalkonium et de quaternium-18 et commercialisées ou fabriquées sous les dénominations Claytone HT, Claytone GR et Claytone PS par la société Southern Clay, les argiles modifiées par du chlorure de stéaryldiméthylbenzoylammonium, connues comme
bentonites de stéralkonium, telles que les produits commercialisés ou fabriqués sous les dénominations Claytone APA et Claytone AF par la société Southern Clay, et Baragel 24 commercialisé ou fabriqué par la société Rheox.
On peut également citer la silice pyrogénée éventuellement traitée hydrophobe en surface dont la taille des particules est inférieure à 1 pm. Il est en effet possible de modifier chimiquement la surface de la silice, par réaction chimique générant une diminution du nombre de groupes silanol présents à la surface de la silice. On peut notamment substituer des groupes silanol par des groupements hydrophobes : on obtient alors une silice hydrophobe. Les groupements hydrophobes peuvent être :
- des groupements triméthylsiloxyle, qui sont notamment obtenus par traitement de silice pyrogénée en présence de l’hexaméthyldisilazane. Des silices ainsi traitées sont dénommées « Silica silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R812Ô par la société DEGUSSA, CAB-O-SIL TS-530Ô par la société CABOT ; ou
- des groupements diméthylsilyloxyle ou polydiméthylsiloxane, qui sont notamment obtenus par traitement de silice pyrogénée en présence de polydiméthylsiloxane ou du diméthyldichlorosilane. Des silices ainsi traitées sont dénommées « Silica diméthyl silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R972Ô, et Aerosil R974Ô par la société DEGUSSA, CAB-O-SIL TS- 610Ô et CAB-O-SIL TS-720Ô par la société CABOT.
La silice pyrogénée hydrophobe présente en particulier une taille de particules pouvant être nanométrique à micrométrique, par exemple allant d’environ de 5 à 200 nm.
Les agents gélifiants lipophiles organiques polymériques sont par exemple les organopolysiloxanes élastomériques partiellement ou totalement réticulés, de structure tridimensionnelle, comme ceux commercialisés sous les dénominations de KSG6Ô, KSG16Ô et de KSG18Ô par la société SHIN-ETSU, de Trefil E-505CÔ et Trefil E-506CÔ par la société DOW-CORNING, de Gransil SR-CYCÔ, SR DMF10Ô, SR-DC556Ô, SR 5CYC gelÔ, SR DMF 10 gelÔ et de SR DC 556 gelÔ par la société GRANT INDUSTRIES, de SF 1204Ô et de JK 113Ô par la société GENERAL ELECTRIC ; l’éthylcellulose comme celle vendue sous la dénomination EthocelÔ par la société DOW CFIEMICAL ; les galactommananes comportant de un à six, et en particulier de deux à quatre, groupes hydroxyle par ose, substitués par une chaîne alkyle saturée ou non, comme la gomme de guar alkylée par des chaînes alkyle en C1 à C6, et en particulier en C1 à C3 et leurs mélanges. Les copolymères séquencés de type « dibloc », « tribloc » ou « radial » du type polystyrène/polyisoprène, polystyrène/polybutadiène tels que ceux commercialisés sous la
dénomination Luvitol HSB® par la société BASF, du type polystyrène/copoly(éthylène- propylène) tels que ceux commercialisés sous la dénomination de Kraton® par la société SHELL CHEMICAL CO ou encore du type polystyrène/copoly(éthylène-butylène), les mélanges de copolymères tribloc et radial (en étoile) dans l'isododécane tels que ceux commercialisé par la société PENRECO sous la dénomination Versagel® comme par exemple le mélange de copolymère tribloc butylène/éthylène/styrène et de copolymère étoile éthylène/propylène/styrène dans l'isododécane (Versagel M 5960).
Selon un mode de réalisation, les agents gélifiants utilisables selon l’invention peuvent être choisi dans le groupe constitué des polyacrylates ; des esters de sucre/ polysaccharide et d’acide(s) gras, en particulier des esters de dextrine et d'acide(s) gras, des esters de glycérol et d’acide(s) gras ou des esters d’inuline et d'acide(s) gras ; des polyamides, et de leurs mélanges.
Comme agent gélifiant lipophile, on peut encore citer les polymères de masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d’au moins un hétéroatome, et éventuellement b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, telles que décrites dans les demandes WO 02/056847, WO 02/47619, en particulier les résines de polyamides (notamment comprenant des groupes alkyles ayant de 12 à 22 atomes de carbone) telles que celles décrites dans US 5783657.
A titre d’exemple de résine de polyamide pouvant être mise en œuvre selon la présente invention, on peut citer UNICLEAR 100 VG® commercialisé par la société ARIZONA CHEMICAL. On peut également utiliser les polyamides siliconés du type polyorganosiloxane tels que ceux décrits dans US 5 874069, US 5 919441 , US 6051 216 et US 5 981 680.
Ces polymères siliconés peuvent appartenir aux deux familles suivantes :
- des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou - des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications.
Parmi les gélifiants lipophiles pouvant être utilisés dans la présente invention, on peut encore citer les esters de dextrine et d’acide gras, tels que les palmitates de dextrine. Selon un mode de réalisation, l'ester de dextrine et d'acide(s) gras selon l'invention est un mono- ou poly-ester de dextrine et d'au moins un acide gras répondant à la formule (II) suivante :
dans laquelle : n est un nombre entier allant de 2 à 200, de préférence allant de 20 à 150, et en particulier allant de 25 à 50, les radicaux R4, R5 et R6, identiques ou différents, sont choisis parmi l'hydrogène ou un groupement acyle -CORa dans lequel le radical Ra représente un radical hydrocarboné, linéaire ou ramifié, saturé ou insaturé, possédant de 5 à 50, de préférence de 5 à 25 atomes de carbone, sous réserve qu’au moins un desdits radicaux R4, R5 ou R6 est différent de l'hydrogène.
Parmi les esters de dextrine et d’acide(s) gras, on peut par exemple citer les palmitates de dextrine, les myristates de dextrine, les palmitates/éthylhexanoates de dextrine et leurs mélanges. On peut notamment citer les esters de dextrine et d’acide(s) gras commercialisés sous les dénominations Rheopearl® KL2 ou D2 (nom INCI : dextrin palmitate), Rheopearl® TT2 (nom INCI : dextrin palmitate ethylhexanoate), et Rheopearl® MKL2 (nom INCI : dextrin myristate) par la société Miyoshi Europe. Parmi les gélifiants lipophiles pouvant être utilisés dans la présente invention, on peut encore citer les esters d’inuline et d’acide(s) gras commercialisés sous les dénominations Rheopearl® ISK2 ou Rheopearl® ISL2 (nom INCI : Stearoyl Inulin) par la société Miyoshi Europe.
Parmi les gélifiants lipophiles pouvant être utilisés dans la présente invention, on peut encore citer les polyacrylates résultant de la polymérisation d’acrylate(s) d’alkyle en C10- C30, de préférence d’acrylate(s) d’alkyle en C14-C24, et encore plus préférentiellement d’acrylate(s) d’alkyle en C18-C22. Selon un mode de réalisation, les polyacrylates sont des polymères d’acide acrylique estérifié avec un alcool gras dont la chaîne carbonée saturée comprend de 10 à 30 atomes de carbone, de préférence de 14 à 24 atomes de carbone, ou un mélange desdits alcools gras. De préférence, l’alcool gras comprend 18 atomes de carbone ou 22 atomes de carbone. Parmi les polyacrylates, on peut citer plus particulièrement le polyacrylate de stéaryle, le polyacrylate de béhényle. De préférence, l’agent gélifiant est le polyacrylate de stéaryle ou le polyacrylate de béhényle. On peut
notamment citer les polyacrylates commercialisés sous les dénominations Interlimer® (nom INCI : Poly C10-C30 alkyl acrylate), notamment Interlimer® 13.1 et Interlimer® 13.6, par la société Airproducts.
Parmi les gélifiants lipophiles pouvant être utilisés dans la présente invention, on peut encore citer les esters de glycérol et d’acide(s) gras, en particulier un mono-, di- ou triester de glycérol et d’acide(s) gras. Typiquement, ledit ester de glycérol et d’acide(s) gras peut être utilisé seul ou en mélange. Selon l’invention, il peut s’agir d’un ester de glycérol et d’un acide gras ou d’un ester de glycérol et d’un mélange d’acides gras. Selon un mode de réalisation, l’acide gras est choisi dans le groupe constitué de l’acide béhénique, de l’acide isooctadécanoique, de l’acide stéarique, de l’acide eicosanoïque, et de leurs mélanges.
Selon un mode de réalisation, l’ester de glycérol et d’acide(s) gras présente la formule (III) suivante :
dans laquelle : R1 , R2 et R3 sont, indépendamment l’un de l’autre, choisi parmi H et une chaîne alkyle saturée comprenant de 4 à 30 atomes de carbone, au moins un de R1 , R2 et R3 étant différent de H. Selon un mode de réalisation, R1 , R2 et R3 sont différents. On peut notamment citer les esters de glycérol et d’acide(s) gras commercialisés sous les dénominations Nomcort HK-G (nom INCI : Glyceryl behenate/eicosadioate) et Nomcort SG (nom INCI : Glyceryl tribehenate, isostearate, eicosadioate), par la société Nisshin Oillio.
Corps gras solides
Le corps gras solide à température et pression ambiante est notamment choisi dans le groupe constitué des cires, des corps gras pâteux, des beurres et de leurs mélanges.
Cire(s)
Par « cire », on entend au sens de l’invention, un composé lipophile, solide à température ambiante (25°C), à changement d’état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 50 °C pouvant aller jusqu’à 120°C.
Le protocole de mesure de ce point de fusion est décrit précédemment.
Les cires susceptibles d’être utilisées dans une dispersion selon l’invention peuvent être choisies parmi les cires, solides, déformables ou non à température ambiante, d’origine animale, végétale, minérale ou de synthèse et leurs mélanges. On peut notamment utiliser les cires hydrocarbonées comme la cire d’abeilles, la cire de lanoline, et les cires d’insectes de Chine; la cire de riz, la cire de Carnauba, la cire de Candellila, la cire d’Ouricurry, la cire d’Alfa, la cire de fibres de liège, la cire de canne à sucre, la cire du Japon et la cire de sumac; la cire de montan, les cires microcristallines, les paraffines et l’ozokérite; les cires de polyéthylène, les cires obtenues par la synthèse de Fisher-Tropsch et les copolymères cireux ainsi que leurs esters. On peut notamment citer les cires commercialisées sous les dénominations Kahlwax®2039 (nom INCI : Candelilla cera) et Kahlwax®6607 (nom INCI : Helianthus Annuus Seed Wax) par la société Kahl Wachsraffinerie, Casid HSA (nom INCI : Hydroxystearic Acid) par la société SACI CFPA, Performa®260 (nom INCI : Synthetic wax) et Performa®103 (nom INCI : Synthetic wax) par la société New Phase, et AJK-CE2046 (nom INCI : Cetearyl alcohol, dibutyl lauroyl glutamide, dibutyl ethylhaxanoyl glutamide) par la société Kokyu Alcohol Kogyo. On peut aussi citer les cires obtenues par hydrogénation catalytique d’huiles animales ou végétales ayant des chaînes grasses, linéaires ou ramifiées, en C8-C32. Parmi celles-ci, on peut notamment citer l’huile de jojoba hydrogénée, l’huile de tournesol hydrogénée, l’huile de ricin hydrogénée, l’huile de coprah hydrogénée et l’huile de lanoline hydrogénée, le tétrastéarate de di-(triméthylol-1 ,1 ,1 propane) vendu sous la dénomination « HEST 2T-4S » par la société HETERENE, le tétrabéhénate de di- (triméthylol-1 ,1 ,1 propane) vendue sous la dénomination HEST 2T-4B par la société HETERENE.
On peut également utiliser les cires obtenues par transestérification et hydrogénation d’huiles végétales, telles que l’huile de ricin ou d’olive, comme les cires vendues sous les dénominations de Phytowax ricin 16L64® et 22L73® et Phytowax Olive 18L57 par la société SOPHIM. De telles cires sont décrites dans la demande FR2792190.
On peut aussi utiliser des cires siliconées qui peuvent être avantageusement des polysiloxanes substitués, de préférence à bas point de fusion.
Parmi les cires de silicones commerciales de ce type, on peut citer notamment celles vendues sous les dénominations Abilwax 9800, 9801 ou 9810 (GOLDSCHMIDT), KF910 et KF7002 (SHIN ETSU), ou 176-1118-3 et 176-11481 (GENERAL ELECTRIC).
Les cires de silicone utilisables peuvent également être des alkyl ou alcoxydiméthicones tels que les produits commerciaux suivants : Abilwax 2428, 2434 et 2440 (GOLDSCHMIDT), ou VP 1622 et VP 1621 (WACKER), ainsi que les (C20-C60) alkyldiméthicones, en particulier les (C30-C45) alkyldiméthicones comme la cire siliconée vendue sous la dénomination SF-1642 par la société GE-Bayer Silicones.
On peut également utiliser des cires hydrocarbonées modifiées par des groupements siliconés ou fluorés comme par exemple : siliconyl candelilla, siliconyl beeswax et Fluorobeeswax de Koster Keunen.
Les cires peuvent également être choisies parmi les cires fluorées.
Beurre(s) ou corps gras pâteux
Par « beurre » (également appelé « corps gras pâteux ») au sens de la présente invention, on entend un composé gras lipophile à changement d'état solide/liquide réversible et comportant à la température de 25°C une fraction liquide et une fraction solide, et à pression atmosphérique (760 mm Hg). En d'autres termes, la température de fusion commençante du composé pâteux peut être inférieure à 25°C. La fraction liquide du composé pâteux mesurée à 25°C peut représenter de 9% à 97 % en poids du composé. Cette fraction liquide à 25°C représente de préférence entre 15% et 85 %, de préférence encore entre 40 et 85 % en poids. De préférence, le ou les beurres présentent une température de fin de fusion inférieure à 60°C. De préférence, le ou les beurres présentent une dureté inférieure ou égale à 6 MPa.
De préférence, les beurres ou corps gras pâteux présentent à l'état solide une organisation cristalline anisotrope, visible par observations aux rayons X.
Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 11357-3 ; 1999. Le point de fusion d'un pâteux ou d'une cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination "DSC Q2000" par la société TA Instruments.
Concernant la mesure de la température de fusion et la détermination de la température de fin de fusion, les protocoles de préparation des échantillons et de mesure sont tels que décrits dans WO2017046305.
La fraction liquide en poids du beurre (ou corps gras pâteux) à 25°C est égale au rapport de l'enthalpie de fusion consommée à 25°C sur l'enthalpie de fusion du beurre. L'enthalpie de fusion du beurre ou composé pâteux est l’enthalpie consommée par le composé pour passer de l'état solide à l'état liquide.
Le beurre est dit à l’état solide lorsque l'intégralité de sa masse est sous forme solide cristalline. Le beurre est dit à l'état liquide lorsque l'intégralité de sa masse est sous forme liquide. L'enthalpie de fusion du beurre est égale à l'intégrale de l'ensemble de la courbe de fusion obtenue à l'aide du calorimètre suscité, avec une montée en température de 5°C ou 10°C par minute, selon la norme ISO 11357-3:1999. L'enthalpie de fusion du beurre est
la quantité d'énergie nécessaire pour faire passer le composé de l'état solide à l'état liquide. Elle est exprimée en J/g.
L'enthalpie de fusion consommée à 25°C est la quantité d'énergie absorbée par l'échantillon pour passer de l'état solide à l'état qu'il présente à 25°C constitué d'une fraction liquide et d'une fraction solide. La fraction liquide du beurre mesurée à 32°C représente de préférence de 30% à 100 % en poids du composé, de préférence de 50% à 100%, de préférence encore de 60% à 100 % en poids du composé. Lorsque la fraction liquide du beurre mesurée à 32°C est égale à 100%, la température de la fin de la plage de fusion du composé pâteux est inférieure ou égale à 32°C. La fraction liquide du beurre mesurée à 32°C est égale au rapport de l'enthalpie de fusion consommée à 32°C sur l’enthalpie de fusion du beurre. L'enthalpie de fusion consommée à 32 °C est calculée de la même façon que l'enthalpie de fusion consommée à 23 °C.
Concernant la mesure de la dureté, les protocoles de préparation des échantillons et de mesure sont tels que décrits dans WO2017046305.
Le corps gras pâteux ou beurre peut être choisi parmi les composés synthétiques et les composés d’origine végétale. Un corps gras pâteux peut être obtenu par synthèse à partir de produits de départ d’origine végétale.
Le corps gras pâteux est avantageusement choisi parmi :
- la lanoline et ses dérivés tels que l’alcool de lanoline, les lanolines oxyéthylénées, la lanoline acétylée, les esters de lanoline tels que le lanolate d’isopropyle, les lanolines oxypropylénées, les composés siliconés polymères ou non-polymères comme les polydiméthysiloxanes de masses moléculaires élevées, les polydiméthysiloxanes à chaînes latérales du type alkyle ou alcoxy ayant de 8 à 24 atomes de carbone, notamment les stéaryl diméthicones,
- les composés fluorés polymères ou non-polymères,
- les polymères vinyliques, notamment
- les homopolymères d’oléfines,
- les copolymères d’oléfines,
- les homopolymères et copolymères de diènes hydrogénés,
- les oligomères linéaires ou ramifiés, homo ou copolymères de (méth)acrylates d’alkyle ayant de préférence un groupement alkyle en C8-C30,
- les oligomères homo et copolymères d’esters vinyliques ayant des groupements alkyles en C8-C30,
- les oligomères homo et copolymères de vinyléthers ayant des groupements alkyles en C8-C30,
- les polyéthers liposolubles résultant de la polyéthérification entre un ou plusieurs diols en C2-C100, de préférence en C2-C50,
- les esters et les polyesters, et
- leurs mélanges.
Selon un mode préféré de l’invention, le ou les beurres particuliers sont d'origine végétale tels que ceux décrit dans Ullmann's Encyclopedia of Industrial Chemistry (« Fats and Fatty Oils», A. Thomas, publié le 15/06/2000, D01 : 10.1002/14356007.a10_173, point 13.2.2.2. Shea Butter, Bornéo Tallow, and Related Fats (Vegetable Butters)).
On peut citer plus particulièrement les triglycérides en C10-C18 (nom INCI : C10-18 Triglycérides) comportant à la température de 25°C et à pression atmosphérique (760 mm Fig) une fraction liquide et une fraction solide, le beurre de karité, le beurre de Karité Nilotica (Butyrospermum parkii), le beurre de Galam, (Butyrospermum parkii), le beurre ou graisse de Bornéo ou tengkawang tallow) (Shorea stenoptera), beurre de Shorea, beurre d'Illipé , beurre de Madhuca ou Bassia Madhuca longifolia, beurre de mowrah (Madhuca Latifolia), beurre de Katiau (Madhuca mottleyana), le beurre de Phulwara (M. butyracea), le beurre de mangue (Mangifera indica), le beurre de Murumuru (Astrocatyum murumuru), le beurre de Kokum (Garcinia Indica), le beurre d'Ucuuba (Virola sebifera), le beurre de Tucuma, le beurre de Painya (Kpangnan) (Pentadesma butyracea), le beurre de café (Coffea arabica), le beurre d'abricot (Prunus Armeniaca), le beurre de Macadamia (Macadamia Temifolia), le beurre de pépin de raisin (Vitis vinifera), le beurre d'avocat (Persea gratissima), le beurre d'olives (Olea europaea), le beurre d'amande douce (Prunus amygdalus dulcis), le beurre de cacao (Theobroma cacao) et le beurre de tournesol, le beurre sous le nom INCI Astrocaryum Murumuru Seed Butter, le beurre sous le nom INCI Theobroma Grandiflorum Seed Butter, et le beurre sous le nom INCI Irvingia Gabonensis Kernel Butter, les esters de jojoba (mélange de cire et d'huile de jojoba hydrogénée)(nom INCI : Jojoba esters) et les esters éthyliques de beurre de karité (nom INCI : Shea butter ethyl esters), et leurs mélanges.
Selon un mode de réalisation particulièrement préféré, l’agent gélifiant lipophile est choisi parmi le Castor Oil/IPDI Copolymer (and) Caprylic/Capric Triglycéride, notamment commercialisé sous la dénomination Estogel M par PolymerExpert, le Caprylic/Capric Triglycéride (and) Polyurethane-79, notamment commercialisé sous la dénomination OILKEMIA™ 5S polymer par la société Lubrizol, le Trihydroxystearin, notamment commercialisé sous la dénomination THIXCIN® R par la société Elementis Specialties, et leurs mélanges, et mieux le Castor Oil/IPDI Copolymer (and) Caprylic/Capric Triglycéride.
Selon un mode de réalisation particulier, une dispersion selon l’invention, en particulier la phase grasse, ne comprend pas de gel d’élastomère comprenant au moins
une diméthicone, notamment tel que commercialisé par NuSil Technology sous la dénomination CareSil™ CXG-1104 (INCI : Dimethicone (and) Dimethicone/Vinyl Dimethicone Crosspolymer).
De préférence, la viscosité de la phase grasse des gouttes d’une dispersion selon l’invention est comprise entre 20000 et 100 000000 mPa.s, de préférence entre 50 000 et 1 000 000 mPa.s, et mieux entre 100 000 à 500 000 mPa.s, à 25°C.
L’homme du métier veillera à choisir le(s) agent(s) gélifiant(s) lipophile(s) et/ou leur quantité de manière à satisfaire aux points de fusion et propriétés physicochimiques x et y, voire z, de la phase grasse susmentionnés. En particulier, la nature et/ou la quantité en agent(s) gélifiant(s) lipophile(s) doi(ven)t tenir compte du procédé mis en œuvre (notamment de type « non-microfluidique » ou « microfluidique ») pour la fabrication de la dispersion selon l’invention. Ces ajustements relèvent des compétences de l’homme du métier au regard de l’enseignement de la présente description.
En particulier, une dispersion selon l’invention peut comprendre de 0,5% à 30%, de préférence de 1% à 25%, en particulier de 1 ,5% à 20%, mieux de 2% à 15%, et tout particulièrement de 5% à 12%, en poids d’agent(s) gélifiant(s) lipophile(s) par rapport au poids total de la phase grasse.
De préférence, la teneur en agent(s) gélifiant(s) lipophile(s) est supérieure ou égale à 2%, de préférence supérieure ou égale à 5%, et mieux supérieure ou égale à 8 % en poids, par rapport au poids total de la phase grasse.
Ces pourcentages s’entendent des agent(s) gélifiant(s) lipophile(s) uniquement présent(s) dans la phase grasse dispersée.
Huile(s) Selon un mode de réalisation, la phase grasse dispersée peut comprendre au moins une huile.
On entend par « huile » un corps gras liquide à la température ambiante et pression atmosphérique.
Comme huiles selon l’invention, on peut citer par exemple : - les huiles hydrocarbonées d'origine végétale, telles que décrites ci-après ;
- les huiles hydrocarbonées d'origine animale, telles que le perhydrosqualène et le squalane ;
- les esters et les éthers de synthèse, notamment d'acides gras, comme les huiles de formules R1COOR2 et R1OR2 dans laquelle Ri représente le reste d’un acide gras en Cs à C29, et R2 représente une chaîne hydrocarbonée, ramifiée ou non, en C3 à C30, comme par exemple l’huile de Purcellin, l'isononanoate d'isononyle, le néopentanoate d’isodécyle, le
néopentanoate d'isostéaryle, le myristate d’isopropyle, le myristate d'octyldodécyle, le palmitate d’éthyl-2-hexyle, le stéarate d’octyl-2-dodécyle, l’érucate d’octyl-2-dodécyle, l’isostéarate d’isostéaryle ; les esters hydroxylés comme l’isostéaryl lactate, l’octylhydroxystéarate, l’hydroxystéarate d’octyldodécyle, le diisostéaryl-malate, le citrate de triisocétyle, les heptanoates, octanoates, décanoates d'alcools gras ; les esters de polyol, comme le dioctanoate de propylène glycol, le diheptanoate de néopentylglycol et le diisononanoate de diéthylèneglycol ; et les esters du pentaérythritol comme le tétrabéhénate de pentaérythrityle (DUB PTB) ou le tétraisostéarate de pentaérythrityle (Prisorine 3631) ;
- les hydrocarbures linéaires ou ramifiés, d’origine minérale ou synthétique, tels que les huiles de paraffine, volatiles ou non, et leurs dérivés, la vaseline, les polydécènes, le polyisobutène hydrogéné tel que l’huile de Parléam ;
- les huiles de silicone, comme par exemple les polyméthylsiloxanes (PDMS) volatiles ou non à chaîne siliconée linéaire ou cyclique, liquides ou pâteux à température ambiante, notamment les cyclopolydiméthylsiloxanes (cyclométhicones) telles que la cyclohexasiloxane et la cyclopentasiloxane ; les polydiméthylsiloxanes (ou diméthicones) comportant des groupements alkyle, alcoxy ou phényle, pendant ou en bout de chaîne siliconée, groupements ayant de 2 à 24 atomes de carbone ; les silicones phénylées comme les phényltriméthicones, les phényldiméthicones, les phényltriméthylsiloxydiphényl- siloxanes, les diphényl-diméthicones, les diphénylméthyldiphényl trisiloxanes, les 2- phényléthyltriméthyl-siloxysilicates, et les polyméthylphénylsiloxanes ;
- les alcools gras ayant de 8 à 26 atomes de carbone, comme l’alcool cétylique, l’alcool stéarylique et leur mélange (alcool cétylstéarylique), ou encore l’octyldodécanol ;
- les huiles fluorées partiellement hydrocarbonées et/ou siliconées comme celles décrites dans le document JP-A-2-295912 ;
- et leurs mélanges.
De préférence, la phase grasse d’une dispersion selon l’invention comprend au moins une huile végétale.
A titre d’huile(s) hydrocarbonée(s) d'origine végétale, on peut citer les triglycérides d’acides caprylique et caprique, les triglycérides d’acides caprylique, caprique (également connue sous le nom de "huile MCT »), myristique et stéarique (nom INCI : Caprylic/capric/myristic/stearic Triglycéride), le triéthylhexanoine, l’huile de graine de limnanthe Limnanthes Alba (nom INCI : Limnanthes Alba (Meadowfoam) Seed Oil), l’huile de noix de macadamia (nom INCI : Macadamia Ternifolia Seed Oil), l’huile d’églantier Rosa Canina (nom INCI : Rosa Canina Fruit Oil), l’huile de soja (nom INCI : Glycine Soja (Soybean) Oil), l’huile de graines de tournesol (nom INCI : Helianthus Annuus (Sunflower)
Seed Oil), le tribéhénine (nom INCI : tribehenin), le triisostéarine (nom INCI : triisostearin), l’huile de noyau d’abricot (nom INCI : Prunus Armeniaca (Apricot) Kernel Oil), l’huile de son de riz (nom INCI : Oryza Sativa (Rice) Bran Oil), l’huile d’argan (nom INCI : Argania Spinosa Kernel Oil), l’huile d’avocat (nom INCI : Persea Gratissima Oil), l’huile d’onagre (nom INCI : Oenothera Biennis Oil), l’huile de germe de riz (nom INCI : Oryza Sativa Germ Oil), l’huile de noix de coco hydrogénée (nom INCI : Hydrogenated Coconut Oil), l’huile d’amande douce (nom INCI : Prunus Amygdalus Dulcis Oil), l’huile de graine de sésame (nom INCI : Sesamum Indicum Seed Oil), l’huile de colza hydrogénée (nom INCI : Hydrogenated Rapeseed Oil), l’huile de graine de carthame (nom INCI : Carthamus Tinctorius Seed Oil), l’huile de noix du Queensland Macadamia integrifolia (nom INCI : Macadamia Integrifolia Seed Oil), le tricaprylin (ou triacylglycérol), l’huile de germe de blé (nom INCI : Triticum Vulgare Germ Oil), l’huile de graine de bourrache (nom INCI : Borago Officinalis Seed Oil), l’huile de karité (nom INCI : Butyrospermum Parkii Oil), l’huile de ricin hydrogénée (nom INCI : Hydrogenated Castor Oil), l’huile de graine de chou chinois (nom INCI : Brassica Campestris Seed Oil), l’huile de camélia, et notamment de graine de camélia du Japon
(nom INCI : Camellia Japonica Seed Oil), l’huile de graine de thé vert (nom INCI : Camellia
Sinensis Seed Oil), l’huile d’argousier (nom INCI : Hippophae Rhamnoides Oil), l’huile de graine de Camellia Kissi (nom INCI : Camellia Kissi Seed Oil), l’huile de graine de Moringa (nom INCI : Moringa Pterygosperma Seed Oil), l’huile de canola (nom INCI : Canola Oil), l’huile de graine de thé (nom INCI : Camellia Oleifera Seed Oil), l’huile de graine de carotte (nom INCI : Daucus Carota Sativa Seed Oil), le triheptanoine (nom INCI : Triheptanoin), l’huile de vanille (nom INCI : Vanilla Planifolia Fruit Oil), les glycérides d’huile de canola et de phytostérols (nom INCI : Phytosteryl Canola Glycerides), l’huile de graine de cassissier (nom INCI : Ribes Nigrum (Black Currant) Seed Oil), l’huile de graine de karanja (nom INCI : Pongamia Glabra Seed Oil), l’huile de roucou (nom INCI : Roucou (Bixa orellana) Oil), et leurs mélanges.
De préférence, l’huile est choisie parmi les huiles végétales riches en acides gras polyinsaturés. On entend par "acide gras insaturé" au sens de la présente invention, un acide gras comprenant au moins une double liaison. Selon un mode de réalisation préféré, on utilise à titre d’huile des acides gras insaturés comportant de 18 à 22 atomes de carbone, en particulier les acides gras polyinsaturés, notamment les acides gras w-3 et w-6.
Avantageusement, la phase grasse comprend au moins une huile ayant un indice de réfraction proche de celui de la phase continue aqueuse, à savoir une huile ayant un indice de réfraction, à température ambiante et pression atmosphérique, compris de préférence entre 1 ,2 et 1 ,6, de préférence entre 1 ,25 et 1 ,5, en particulier entre 1 ,3 et 1 ,4. Ce mode de réalisation est avantageux en ce qu’il permet d’améliorer la transparence de la phase
grasse, et donc la transparence de la dispersion selon l’invention. La transparence peut être qualifiée selon la méthode décrite dans WO2018/167309. Avantageusement, l’huile ayant un indice de réfraction compris entre 1 ,2 et 1 ,6 est une huile de silicone, en particulier une huile de silicone phénylée. Avantageusement, la phase grasse d’une dispersion selon l’invention comprend au moins une, voire au moins deux, huile(s), de préférence choisie(s) parmi une/des huile(s) hydrocarbonée(s) d'origine végétale, et de préférence choisie(s) parmi l’huile de graine de limnanthe Limnanthes Alba (nom INCI : Limnanthes Alba (Meadowfoam) Seed Oil, les triglycérides d’acides caprylique, caprique, et leur mélange De préférence, l’huile pouvant être présente dans la phase grasse d’une dispersion selon l’invention n’est pas une huile de silicone ou une huile fluorée. De préférence, une dispersion selon l’invention, en particulier la phase grasse disperse, ne comprend pas de polydiméthylsiloxane (PDMS ou diméthicone) ou un de ses dérivés, et de préférence ne comprend pas d’huile de silicone, et en particulier d’octamethylcyclotetrasiloxane (ou Cyclotetrasiloxane ou D4), de decamethylcyclopentasiloxane (ou Cyclopentasiloxane ou D5) et de Cyclohexasiloxane (ou D6).
L’homme du métier veillera à choisir l’huile/les huiles et/ou leur quantité de manière à satisfaire aux points de fusion et aux propriétés physicochimiques x et y, voire z, de la phase grasse susmentionnés. Ces ajustements relèvent des compétences de l’homme du métier au regard de l’enseignement de la présente description.
Une dispersion selon l’invention peut comprendre entre 10% et 99,5 %, de préférence entre 20% et 90%, mieux entre 30% et 85%, et en particulier entre 50% et 80%, en poids d’huile(s) par rapport au poids total de la phase grasse.
Une dispersion selon l’invention peut comprendre de 1 % à 50%, de préférence de 5% à 40%, et mieux de 10% à 25%, en poids d’huile(s) par rapport au poids total de ladite dispersion.
Une dispersion selon l’invention est en outre avantageuse en ce que sa stabilité cinétique autorise des pourcentages élevés en phase grasse dispersée. Ainsi, une dispersion selon l’invention peut comprendre de 1% à 60%, en particulier de 5% à 50%, de préférence de 10% à 40%, et mieux de 15% à 30%, en poids de phase grasse dispersée par rapport au poids total de la dispersion.
Composé(s) additionnel(s)
Une dispersion selon l’invention, en particulier la phase continue aqueuse et/ou la phase grasse dispersée, peut/peuvent en outre comprendre au moins un composé additionnel différent de l’agent gélifiant lipophile et des huiles susmentionnées. A titre de composé additionnel, une dispersion selon l’invention, en particulier la phase continue aqueuse et/ou la phase grasse dispersée, peut/peuvent ainsi en outre comprendre des poudres ; des charges ; des paillettes ; des agents colorants, notamment choisis parmi les agents colorants hydrosolubles ou non, liposolubles ou non, organiques ou inorganiques, les matériaux à effet optique, les cristaux liquides, et leurs mélanges ; des agents particulaires insolubles dans la phase grasse ; des conservateurs ; des humectants ; des agents parfumants, notamment tels que définis dans WO2019002308 ; des stabilisateurs ; des chélateurs ; des émollients ; des agents modificateurs choisis parmi des agents gélifiant/de texture, de viscosité différents de la base et des agents gélifiant lipophiles susmentionnés, de pH, de force osmotique et/ou des modificateurs d’indice de réfraction etc... ou tout additif cosmétique usuel ; et leurs mélanges.
Par « charge », on entend au sens de l’invention des particules incolores ou blanches, solides de toutes formes, qui se présentent sous une forme insoluble et dispersée dans le milieu de la composition. De nature minérale ou organique, elles permettent de conférer du corps ou de la rigidité et/ou de la douceur, et de l'uniformité au dépôt, notamment dans un contexte maquillage, et une stabilité améliorée au regard de l'exsudation et des propriétés de non-migration après application et/ou de matité et/ou de couvrance.
Par « agents particulaires insolubles dans la phase grasse », on entend au sens de l’invention le groupe constitué des pigments, des céramiques, des polymères, notamment des polymères acryliques, et de leurs mélanges. A titre de composé additionnel, une dispersion selon l’invention, en particulier la phase continue aqueuse et/ou la phase grasse dispersée, peut/peuvent en outre comprendre au moins un actif biologique/cosmétique, notamment choisi parmi les agents hydratants, les agents cicatrisants, les agents dépigmentants, les filtres UV, les agents desquamants, les agents antioxydants, les actifs stimulant la synthèse des macromoléculaires dermiques et/ou épidermiques, les agents dermodécontractants, les agents anti-transpirants, les agents apaisants et/ou les agents anti-âge, et leurs mélanges. De tels actifs sont notamment décrits dans FR1558849.
Agent(s) gélifiants hydrophile(s) Avantageusement, la phase aqueuse peut en outre comprendre au moins un agent gélifiant hydrophile, c'est-à-dire soluble ou dispersible dans l’eau. Dans le cadre de la
présente invention, le terme « agent gélifiant hydrophile » peut être désigné indifféremment par le terme « agent de texture hydrophile ». Les agents gélifiant hydrophiles permettent de moduler la fluidité de la dispersion, et donc la sensorialité et/ou galénique, que l'on souhaite obtenir et/ou concourent à améliorer encore la stabilité cinétique de la dispersion.
Comme agents gélifiant hydrophiles, on peut citer :
- les agents gélifiant naturels, notamment choisis parmi les extraits d'algues, les exsudais de plantes, les extraits de graines, les exsudais de microorganismes, tel que l’alcasealan commercialisé par la société Hakuto (INCI : Alcaligenes Polysaccharides), et autres agents naturels, en particulier l’acide hyaluronique,
- les agents gélifiant semi-synthétiques, notamment choisis parmi les dérivés de la cellulose et les amidons modifiés,
- les agents gélifiant synthétiques, notamment choisis parmi les homopolymères d'acide (méth)acrylique ou un de leurs esters, les copolymères d'acide (méth)acrylique ou un de leurs esters, les copolymères d’AMPS (2-acrylamido-2-méthylpropane sulfoniques acide), les polymères associatifs,
- les autres agents gélifiant, notamment choisis parmi les polyéthylèneglycols (commercialisé sous la dénomination Carbowax), les argiles, les silices telles que celles commercialisées sous les dénominations Aérosil® 90/130/150/200/300/380), la glycérine, et
- leurs mélanges.
Par « polymère associatif » au sens de la présente invention, on entend tout polymère amphiphile comportant dans sa structure au moins une chaîne grasse et au moins une portion hydrophile ; les polymères associatifs conformes à la présente invention peuvent être anioniques, cationiques, non-ioniques ou amphotères ; il s’agit notamment de ceux décrits dans FR2999921. De préférence, il s’agit des polymères associatifs amphiphiles et anioniques et des polymères associatifs amphiphiles et non-ioniques tels que décrits ci- après.
Ces agents gélifiant hydrophiles sont décrits plus en détails dans FR3041251.
Selon un mode de réalisation, la dispersion selon l’invention comprend de 0,0001% à 20%, de préférence de 0,001% à 15%, en particulier de 0,01% à 10%, et mieux de 0,1% à 5%, en poids d’agent(s) gélifiant hydrophile(s) par rapport au poids total de la phase continue aqueuse. Ces pourcentages s’entendent des agent(s) gélifiant(s) hydrophile(s) uniquement présent(s) dans la phase aqueuse continue.
Selon un mode de réalisation, la dispersion selon l’invention comprend de 0,0001% à 20%, de préférence de 0,001% à 15%, et préférentiellement de 0,01% à 10%, en poids de composé(s) additionnel(s) par rapport au poids total de ladite dispersion.
Bien entendu, l’homme du métier veillera à choisir les éventuels composé(s) additionnel(s) et/ou leur quantité de telle manière que les propriétés avantageuses de la dispersion selon l’invention, en particulier sa stabilité cinétique et, eu égard à la phase grasse dispersée, son point de fusion et ses propriétés physicochimiques x et y, voire z, susmentionnées, ne soient pas ou substantiellement pas altérées par l’adjonction envisagée. En particulier, la nature et/ou la quantité en composé(s) additionnel(s) dépend(ent) de la nature aqueuse ou grasse de la phase considérée de la dispersion selon l’invention et/ou doit tenir compte du procédé mis en œuvre (notamment de type « non- microfluidique » ou « microfluidique ») pour la fabrication de la dispersion selon l’invention. Ces choix et ajustements relèvent des compétences de l’homme du métier.
Procédé de préparation
Une dispersion selon l’invention peut être préparée par différents procédés.
Ainsi, une dispersion selon l’invention présente l’avantage de pouvoir être préparée selon un procédé simple « non-microfluidique », à savoir par simple émulsification, notamment à l’aide d’un dispositif d’agitation de type Rayneri ou d’un agitateur à pâle.
Comme dans une émulsion classique, une solution aqueuse et une solution grasse sont préparées séparément. C’est l’ajout sous agitation de la phase grasse dans la phase aqueuse qui crée l’émulsion directe.
La viscosité de la phase aqueuse peut être maîtrisée, notamment, en jouant sur la quantité en agent gélifiant hydrophile et/ou le pH de la solution. De manière générale, le pH de la phase aqueuse est inférieur à 4,5, ce qui peut impliquer l’ajout d’une troisième solution de soude (BF) dans un dernier temps pour atteindre un pH compris entre 5,5 et 6,5.
La viscosité de la phase aqueuse et la force de cisaillement appliquée au mélange sont les deux principaux paramètres qui influencent la taille et la monodispersité des gouttes de l’émulsion.
L’homme du métier saura ajuster les paramètres du procédé non-microfluidique pour parvenir à la dispersion selon l’invention, et notamment satisfaire au critère de diamètre des gouttes recherché.
Les dispersions selon l’invention peuvent également être préparées selon un procédé microfluidique, notamment comme décrit dans les demandes WO2012/120043 ou WO2019/145424. Selon ce mode de réalisation, la/les buse(s) microfluidique(s) mises en œuvre peuvent avoir une configuration selon la géométrie en T, en co-flow (ou co-courants), ou flow-focusing.
Selon ce mode de réalisation, les gouttes obtenues par ce procédé microfluidique présentent avantageusement une distribution de taille uniforme.
De préférence, les dispersions de l’invention sont constituées d’une population de gouttes monodispersées, notamment telles qu’elles possèdent un diamètre moyen D compris de 100 pm à 3 000 pm, en particulier de 500 pm à 3 000 pm et un coefficient de variation Cv inférieur à 10%, voire inférieur à 3%.
Dans le cadre de la présente description, on entend par "gouttes monodispersées" le fait que la population de gouttes de la dispersion selon l’invention possède une distribution de taille uniforme. Des gouttes monodispersées présentent une bonne monodispersité. A l’inverse, des gouttes présentant une mauvaise monodispersité sont dites "polydispersées".
Selon un mode, le diamètre moyen D des gouttes est par exemple mesuré par analyse d’une photographie d’un lot constitué de N gouttes, par un logiciel de traitement d’image (Image J). Typiquement, selon cette méthode, le diamètre est mesuré en pixel, puis rapporté en pm, en fonction de la dimension du récipient contenant les gouttes de la dispersion.
De préférence, la valeur de N est choisie supérieure ou égale à 30, de sorte que cette analyse reflète de manière statistiquement significative la distribution de diamètres des gouttes de ladite émulsion. N est avantageusement supérieure ou égale à 100, notamment dans le cas où la dispersion est polydispersée.
On mesure le diamètre Di de chaque goutte, puis on obtient le diamètre moyen D en calculant la moyenne arithmétique de ces valeurs :
A partir de ces valeurs Di, on peut également obtenir l’écart-type s des diamètres des gouttes de la dispersion :
L'écart-type s d’une dispersion reflète la répartition des diamètres Di des gouttes de i dispersion autour du diamètre moyen D .
En connaissant le diamètre moyen D et l'écart-type s d’une dispersion, on peut éterminer que l’on trouve 95,4% de la population de gouttes dans l’intervalle de ïamètres [ό- 2s; 0 + 2s] et que l’on trouve 68,2% de la population dans l’intervalle
Pour caractériser la monodispersité de la dispersion selon ce mode de l’invention, on peut calculer le coefficient de variation :
Ce paramètre reflète la répartition des diamètres des gouttes en fonction du diamètre moyen de celles-ci.
Le coefficient de variation Cv des diamètres des gouttes selon ce mode de l’invention est inférieur à 10%, de préférence inférieur à 5%, voire inférieur à 3%.
Alternativement, la monodispersité peut être mise en évidence en plaçant un échantillon de dispersion dans un flacon à section circulaire constante. Une agitation douce par rotation de un quart de tour sur une demi-seconde autour de l’axe de symétrie traversant le flacon, suivie d’un repos d’une demi-seconde est effectuée, avant de répéter l’opération en sens inverse, et ce quatre fois de suite.
Les gouttes de la phase dispersée s’organisent sous une forme cristalline lorsqu’elles sont monodispersées. Ainsi, elles présentent un empilement suivant un motif se répétant suivant dans les trois dimensions. Il est alors possible d’observer, un empilement régulier qui indique une bonne monodispersité, un empilement irrégulier traduisant la polydispersité de la dispersion.
Pour obtenir des gouttes monodisperses, on peut également mettre en œuvre la technique de la microfluidique (Utada et al. MRS Bulletin 32, 702-708 (2007) ; Cramer et al. Chem. Eng. Sci. 59, 15, 3045-3058 (2004)), et plus particulièrement des dispositifs microfluidiques de type co-flow (les fluides vont dans la même direction) ou flow-focusing (les fluides vont dans des directions différentes, et typiquement dans des sens opposés).
La présence, dans la phase grasse dispersée, d’agent(s) gélifiant(s) lipophile(s), voire dans la phase continue aqueuse, d’agent(s) gélifiant(s) hydrophile(s), peut nécessiter des ajustements au niveau du procédé de préparation d’une dispersion selon l’invention. En particulier, le procédé de préparation d’une telle dispersion selon l’invention comprend une étape de chauffage (entre 50°C et 150°C, notamment entre 60°C et 90°C) au moins de la phase grasse avant mélange/mise en contact de ladite phase grasse avec la phase aqueuse et, le cas échéant, le maintien de ce chauffage (i) lors de l’agitation dans le cas d’un procédé « non-microfluidique » ou (ii) au niveau du dispositif microfluidique dans le cas d’un procédé «microfluidique », jusqu’à l’obtention de la dispersion recherchée.
Le procédé de préparation d’une dispersion de l’invention comprend au moins les étapes suivantes : a) le chauffage d’un fluide huileux Fl à une température comprise de 50°C et 150°C, de préférence de 60°C à 120°C, et mieux de 70°C à 100°C ;
b) optionnellement le chauffage d’un fluide aqueux FE à une température comprise de 50°C et 150°C, de préférence de 60°C à 120°C, et mieux de 70°C à 100°C ; c) la mise en contact du fluide aqueux FE et du fluide huileux Fl ; et d) la formation des gouttes de phase grasse, constituée du fluide huileux Fl, dispersée dans une phase aqueuse continue, constituée de fluide aqueux FE, dans lequel :
- le fluide huileux Fl comprend au moins un agent gélifiant lipophile et optionnellement au moins une huile et a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et, à température ambiante et pression atmosphérique, répond aux critères physicochimiques suivants :
- une dureté (x) comprise entre 2 et 14 N, de préférence entre 2,5 et 12 N, mieux entre 3 et 9 N, et tout particulièrement entre 4 et 6 N ; et
- un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N; le fluide huileux Fl étant en outre dénué d’amodiméthicone et, optionnellement, comprend en outre au moins un composé additionnel tel que susmentionné ; et
- le fluide aqueux FE comprend au moins de l’eau et, optionnellement, au moins un composé additionnel tel que susmentionné, et de préférence au moins un agent gélifiant hydrophile.
Les étapes (c) et (d) sont réalisées à une température supérieure ou égale au point de fusion du/des agent(s) gélifiant mis en œuvre(s). En d’autres termes, les étapes (c) et (d) sont réalisées avec un fluide huileux Fl sous une forme apte à s’émulsifier avec le fluide aqueux FE, et donc apte à assurer la formation des gouttes, et notamment avec un fluide huileux Fl sous une forme liquide.
Selon un mode de réalisation, le fluide Fl est initialement préparé en mélangeant une phase grasse destinée à former le cœur des gouttes, comprenant au moins un agent gélifiant lipophile et optionnellement au moins une huile et en outre, de façon optionnelle, au moins un composé additionnel tels que susmentionnés.
Selon un mode de réalisation, le fluide FE est initialement préparé en mélangeant une phase aqueuse destinée à former la phase continue de la dispersion avec, de façon optionnelle, au moins une base, au moins un composé additionnel, des conservateurs et/ou autres produits solubles dans l’eau tels que la glycérine, et tout particulièrement au moins un agent gélifiant hydrophile.
Selon un mode de réalisation, la phase continue aqueuse de la dispersion formée comprend, voire est figurée par, le fluide aqueux FE.
Selon un mode de réalisation, le procédé de fabrication d’une dispersion selon l’invention peut en outre comprendre une étape e) d’injection d’une solution d’augmentation de la viscosité de la phase aqueuse continue du fluide FE, par exemple comme décrit dans WO2015/055748. De préférence, la solution d’augmentation de la viscosité est aqueuse. Cette solution d’augmentation de la viscosité est typiquement injectée dans le fluide aqueux FE après formation de la dispersion selon l’invention, et donc après formation des gouttes.
Selon un mode de réalisation, la solution d’augmentation de la viscosité comprend une base, notamment un hydroxyde d’alcalin, tel que l’hydroxyde de sodium.
Dans le cas d’un procédé « non-microfluidique » tel que susmentionné, l’étape c) est figurée par une agitation durant laquelle le chauffage peut être maintenu lors de cette agitation permettant l’obtention de la dispersion recherchée.
Dans le cas d’un procédé « microfluidique » tel que susmentionné, le dispositif microfluidique en tant que tel peut être adapté pour être maintenu à une température entre comprise de 50°C et 150°C, de préférence de 80°C à 90°C. Dans le cas d’un procédé « microfluidique », l’étape d) de formation de gouttes peut comprendre la formation de gouttes de fluide huileux Fl à la sortie d’un premier conduit débouchant dans le fluide aqueux FE. De préférence, le fluide aqueux FE est mis en circulation dans un deuxième conduit, la sortie du premier conduit débouchant dans le deuxième conduit, avantageusement coaxialement avec l’axe local du deuxième conduit. Avantageusement, un procédé de l’invention peut comprendre, après l’étape d) mais avant l’étape e), une étape f) de refroidissement pour accélérer la cinétique de refroidissement de la dispersion formée, et ainsi prévenir les risques de coalescence et de fragmentation des gouttes post-formation (entre 10 et 30°C).
La présence invention concerne également une dispersion susceptible d’être obtenue par un procédé tels que ceux décrits ci-dessus.
Utilisations
De manière préférée, une dispersion selon l'invention est directement utilisable, à l'issue des procédés de préparation précités, à titre de composition, notamment cosmétique. La dispersion selon l'invention, lorsque préparée au moyen d’un procédé microfluidique tel que décrit ci-dessus, est également utilisable à titre de composition, notamment cosmétique, après séparation des gouttes et redispersion de celles-ci dans une seconde phase appropriée.
L'invention concerne également l’utilisation d’une dispersion selon l'invention pour la préparation d'une composition, notamment cosmétique, pharmaceutique, en nutrition ou en
agroalimentaire, de préférence d’une composition cosmétique et en particulier d’une composition de soin et/ou de maquillage d’une matière kératinique, en particulier de la peau.
La présente invention concerne ainsi également une composition, notamment cosmétique, en particulier de soin et/ou de maquillage d’une matière kératinique, notamment de la peau et/ou des cheveux, et plus particulièrement de la peau comprenant au moins une dispersion selon l’invention, optionnellement en association avec au moins un milieu physiologiquement acceptable.
Les dispersions ou compositions selon l’invention peuvent donc notamment être utilisées dans le domaine cosmétique.
Elles peuvent comprendre, outre les ingrédients ou composés susmentionnés, au moins un milieu physiologiquement acceptable.
Le milieu physiologiquement acceptable est généralement adapté à la nature du support sur lequel doit être appliquée la composition, ainsi qu’à l’aspect sous lequel la composition doit être conditionnée.
Selon un mode de réalisation, le milieu physiologiquement acceptable est représenté directement par la phase continue aqueuse telle que décrite ci-dessus.
Dans le cadre de l’invention, et sauf mention contraire, on entend par "milieu physiologiquement acceptable", un milieu approprié aux applications cosmétiques, et convenant notamment à l’application d’une composition de l’invention sur une matière kératinique, notamment la peau et/ou les cheveux, et plus particulièrement la peau.
Les compositions cosmétiques de l’invention peuvent être par exemple une crème, une lotion, un sérum et un gel pour la peau (mains, visage, pieds, etc.), un fond de teint (liquide, pâte) une préparation pour bains et douches (sels, mousses, huiles, gels, etc.), un produit de soins capillaires (teintures capillaires et décolorants), un produit de nettoyage (lotions, poudres, shampoings), un produit d'entretien pour la chevelure (lotions, crèmes, huiles), un produit de coiffage (lotions, laques, brillantines), un produit pour le rasage (savons, mousses, lotions, etc.), un produit destiné à être appliqué sur les lèvres , un produit solaire, un produit de bronzage sans soleil, un produit permettant de blanchir la peau, un produit antirides. En particulier, les compositions cosmétiques de l’invention peuvent être un sérum anti-âge, un sérum jeunesse, un sérum hydratant ou une eau parfumée.
Ainsi, au vu de ce qui précède, une dispersion ou composition selon l’invention est orale ou topique, de préférence topique, et mieux topique sur une matière kératinique, en particulier la peau, et mieux la peau du visage.
La présente invention concerne également un procédé non thérapeutique de traitement cosmétique d’une matière kératinique, notamment la peau et/ou les cheveux, et plus particulièrement la peau, comprenant une étape d’application sur ladite matière
kératinique d’au moins une dispersion ou d’au moins une composition cosmétique susmentionnée.
La présente invention concerne également l’utilisation d’une dispersion ou d’une composition selon l’invention, pour améliorer l’aspect de surface de la peau, en particulier pour hydrater la peau et/ou réduire les rides et ridules.
Dans toute la description, l’expression « comprenant un » doit être comprise comme étant synonyme de « comprenant au moins un », sauf si le contraire est spécifié. Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié. Les quantités des ingrédients figurant dans les exemples sont exprimées en pourcentage en poids par rapport au poids total de la composition, sauf indication contraire.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée.
EXEMPLES
Exemple 1 : Etude physicochimique de phases grasses comprenant au moins un agent gélifiant lipophile Cet exemple a consisté à préparer treize gels anhydres susceptibles de figurer la phase grasse dispersée d’une dispersion selon l’invention, et à évaluer leurs propriétés physicochimiques en termes de dureté (ou fermeté) (x), de collant (ou d’adhérence) (y) et de cohésion (z). Ces gels anhydres diffèrent pour l’essentiel par la nature du solvant huileux et/ou l’agent gélifiant lipophile (ie Rheopearl D2 (équivalent au Rheopearl KL2), Estogel M ou OILKEMIA™ 5S polymer) et leurs concentrations (ie 5%, 10% et 15%). Dans le cas du Rheopearl D2, l’essai 1D diffère de l’essai 1C par la nature du solvant. Le tableau 1 ci- dessous présente la composition de ces différents gels anhydres.
Tableau 1
* QSP : quantité suffisante pour
** L’EMC30 est un pré-mélange d’Estogel M (INCI : Castor Oil/IPDI Copolymer (and) Caprylic/Capric Triglycéride) dans l’huile Caprylic/Capric Triglycéride dans un ratio 30/70 ; les concentrations correspondantes en agent gélifiant lipophile (ie Estogel M) sont donc respectivement de 5%/10%/15% par rapport au poids total du gel anhydre.
Le protocole de préparation de ces gels anhydres est le suivant.
- Mélange A : le colorant (lorsque présent) est pré-dispersé dans une partie du Labrafac CC ou du DUB Inin. Le mélange est chauffé à 50°C et mélangé à l’aide d’un agitateur magnétique.
- Mélange B : le reste du solvant (Labrafac CC ou DUB Inin) est mis sous agitation et chauffé à 80°C/90°C selon le gélifiant à disperser ; on y ajoute l’agent gélifiant lipophile
(ie Estogel M, Rheopearl D2 ou OILKEMIA™ 5S polymer) sous agitation magnétique à 80°C/90°C jusqu’à obtenir une solution homogène garantissant une bonne dispersion du polymère.
- Mélange C : sous agitation à chaud (80°C/90°C), on ajoute l’huile de Meadowfoam ou le Lipex 205 ou l’huile de Coco au mélange B.
- Mélange final : sous agitation à chaud (80°C/90°C), on ajoute le mélange A au mélange C.
Les points de fusion des gels anhydres sont mesurés selon la méthode décrite précédemment et sont présentés dans le tableau 2 ci-dessous.
Tableau 2
Les critères physicochimiques x, y et z des gels anhydres sont ensuite mesurés à l’aide du protocole texturomètre décrit précédemment. A noter l’impossibilité de mesurer la dureté des phases grasses de l’exemple 18 de la demande US 2004/137020 et de l’exemple 31 de la demande EP 2 189 081. En effet, ces phases grasses sont trop dures pour le texturomètre EZ-X de shimadzu dont la force maximale en terme de dureté est pourtant de 50 N.
Les mesures correspondantes sont présentées en figures 1 à 7. La Figure 1 est un graphique représentant le critère de dureté (x) des gels anhydres du tableau 1.
La Figure 2 est un graphique représentant le critère de collant (y) des gels anhydres du tableau 1 . La Figure 3 est un agrandissement de la Figure 2 des valeurs de collant (y) des gels anhydres 2A, 2B, 2C, 3A, 3B, 3C, 5 et 6. La Figure 4 est un graphique représentant le critère de cohésion (z) des gels anhydres
1 B, 1 D, 2B, 3B, 5 et 6 du tableau 1.
Enfin, les Figures 5 à 7 sont des graphiques représentant les courbes de texturométrie des gels anhydres du tableau 1. Ces Figures 5 à 7 renseignent la force (en N) des gels du tableau 1 en fonction du temps (en seconde) durant lequel les gels sont soumis (1) à une première étape de compression (0 à 5 s) puis (2) à une deuxième étape
de relaxation où le mobile remonte (5 à 10 s). Les étapes (1 ) et (2) précédentes sont répétées. Ces Figures 5 à 7 renseignent donc sur les propriétés physicochimiques des gels du tableau 1 , notamment en termes de dureté, de collant et de cohésion.
Résultats :
Dureté (x) : comme il ressort de la figure 1 , à pourcentage en agent gélifiant lipophile et solvant huileux identiques (par exemple 1 B vs 2B vs 3B), les différences en termes de profils de dureté des différents gels anhydres testés sont peu significatives. Par ailleurs, des essais 1C et 1 D, on observe que la dureté est impactée par la nature du solvant.
Collant (y) : comme il ressort des figures 2 et 3, à pourcentage en agent gélifiant lipophile et solvant huileux identiques :
- les gels 2 (A, B, C), 3 (A, B, C), 5 et 6 ont des profils de collant similaires, et
- les gels 1 (B, C) et 4 manifestent des propriétés de collant nettement supérieures à celles des gels 2 (A, B, C) et 3 (A, B, C).
Par ailleurs, des essais 1 C et 1 D, on observe que la nature du solvant a un impact sur le collant.
Cohésion (z) : comme il ressort de la figure 4, les gels 2B, 3B, 5 et 6 manifestent des propriétés physicochimiques similaires en termes de cohésion, nettement inférieures à celles des gels 1 B et 1 D.
Exemple 2 : Préparation de dispersions macroscopiques
Dans cet exemple 2, on prépare dix dispersions comprenant une phase aqueuse continue et une phase dispersée sous forme de gouttes figurée à chaque fois par un des gels anhydres de l’exemple 1. Ces dispersions sont obtenues au moyen d’un procédé de fabrication microfluidique tel que décrit dans WO2015/055748. Le dispositif microfluidique mis en œuvre se décompose en deux parties, une première partie où est réalisée, à chaud (entre 70 et 90°C), la mise en contact entre la phase grasse (également désignée IF ou Fl) et la phase aqueuse (également désignée OF ou FE) de manière à former la dispersion, et une deuxième partie assurant un refroidissement rapide de la dispersion formée pour accélérer la cinétique de gélification des gouttes et ainsi prévenir les risques de coalescence et de fragmentation des gouttes post-formation (entre 10 et 30°C).
Les compositions des phases (fluides) permettant la préparation des dispersions sont décrites dans le Tableau 3 ci-dessous.
Tableau 3
* QSP : quantité suffisante pour
Protocole de préparation : Pour l’OF :
- Mélange A : sous agitation sous pâle défloculeuse, le Phénoxyéthanol, le Pentylèneglycol et l’EDTA sont incorporés dans l’eau et le mélange obtenu est agité pendant 5 min.
- Mélange B : le carbomère Carbopol Ultrez 10 polymer est ensuite saupoudrer sur le mélange A jusqu’à hydratation, puis agité pendant 30 minutes à l’aide d’une pâle défloculeuse.
- Mélange C : le carbomère Carbopol ETD 2050 polymer est ensuite dispersé dans le mélange B sous agitation pendant 30 minutes à l’aide d’une pâle défloculeuse.
- Mélange D : sous agitation sous pâle défloculeuse, les humectants (ie glycérine, zemea propanediol et butylène glycol 1 .3) sont ajoutés au mélange C. Le mélangeD obtenu est maintenu sous agitation pendant 10 min.
- Mélange E : la blanose, préalablement prédispersée à 1% dans l’eau sous agitation magnétique à 80°C, après retour à température ambiante, est ajoutée au mélangeD sous agitation sous pâle défloculeuse.
- Mélange F : la soude est ajoutée au mélange E qui est agité pendant 10 minutes de manière à obtenir la solution d’OF.
La solution d’OF est ensuite introduite dans une seringue sOF reliée à un chauffage permettant de maintenir l’OF à chaud (80°C).
Pour les IF : voir protocole décrit en exemple 1. Chacune des dix solutions d’IF chauffées est ensuite introduite dans une seringue si F reliée à un chauffage permettant de maintenir N F à chaud (80°C). Pour réduire les pertes thermiques, le dispositif microfluidique a été installé directement en sortie des seringues sIF et sOF et est lui-même maintenu à 80°C.
Pour la BF : la soude et l’eau sont mélangées à l’aide d’un barreau magnétique pendant 5 min. La solution de BF est ensuite introduite dans une seringue sBF.
A l’aide des seringues sIF, sOF et SBF et de pousses seringues associés, on injecte l’IF et l’OF dans le dispositif microfluidique et la BF est injectée dans la dispersion en sortie du dispositif microfluidique, selon les débits décrits dans le Tableau 4 ci-dessous.
Tableau 4
Selon la configuration du dispositif microfluidique et des débits, les dispersions obtenues peuvent comprendre des gouttes dotées d’une monodispersité satisfaisante et ayant un diamètre moyen compris entre 100 pm et 1500 pm, en particulier entre 700 et 1300 pm.
Résultats sur fabrication des dispersions :
Il a été possible de fabriquer des dispersions à partir des dix gels anhydres selon l’exemple 1.
Test de stabilité
Chacune des dix dispersions est ensuite conditionnée dans trois réceptacles en polypropylène (PP) de 30 ml rempli à la moitié. Après 1 jour à température ambiante, chaque essai subit un des trois tests de transport ci-après (un réceptacle par test), à savoir : - test rouleaux (i.e. mouvement circulaire horizontal) : référence Wheaton, pendant 1 heure ;
- table vibrante (i.e. mouvement circulaire vertical) : référence Heidolph Unimax 1010, pendant 1 heure ; et
- mélangeur 3D (i.e. mouvements aléatoires) : pendant 6 minutes.
A l’issue de ces tests de stabilité, on évalue (i) l’intégrité des gouttes, en particulier leur fragmentation et (ii) la turbidité du gel, généralement liée à un transfert de phase grasse dans la phase continue aqueuse.
Critères de notation : Tableau 5
Résultats : Tableau 6
* D1 A = dispersion selon l’exemple 2 mettant en œuvre comme phase grasse dispersée le gel anhydre 1A de l’exemple 1. Les dispersions D1A et D2A présentent des résultats de stabilité non satisfaisants.
Les phases grasses correspondantes sont donc écartées de la suite de l’étude. La dispersion D3A présente des résultats de stabilité moyens mais jugés suffisamment satisfaisants pour être conservée pour la suite de l’étude. Les autres dispersions testées présentent des résultats de stabilité satisfaisants. Ces résultats démontre qu’une phase grasse doit présenter des propriétés en termes de dureté supérieure à 2 N, de préférence supérieure ou égale à 2,5 N, en particulier supérieure ou égale à 3 N, et mieux supérieure ou égale à 4 N.
Tests sensoriels Ensuite, à partir des huit dispersions ci-dessus dotées d’une stabilité satisfaisante, des tests visuels et sensoriels ont été réalisés sur une cohorte de 24 femmes entre 22 et 45 ans. Chaque femme a testé en aveugle les huit dispersions satisfaisantes en termes de stabilité cinétique. Les critères évalués sont (i) l’adhésion des gouttes de phase grasse dispersée sur la paroi du packaging, (ii) l’agrégation des gouttes de phase dispersée entre elles et la facilité (ou confort) d’application, et en particulier la facilité à écraser et étaler les gouttes de phase dispersée.
Critères de notation : Tableau 7
5 Résultats : Tableau 8
* D1 A = dispersion selon l’exemple 2 mettant en œuvre à titre de phase grasse disperse le gel anhydre 1 A selon l’exemple 1.
**NR : Non Renseigné.
On observe qu’une phase grasse:
- au vu des résultats ci-dessus en termes de “facilité d’application” et de la figure 1, doit présenter une dureté (x) inférieure ou égale 14 N, mieux inférieure ou égale à 12 N, et de préférence inférieure ou égale à 9 N,
- au vu des résultats ci-dessus en termes d’“adhésion” et des figures 2 et 3, que la phase grasse doit présenter un collant (y) supérieur ou égal à -2 N, et mieux supérieur ou égal à -1 N, voire même supérieur ou égal à -0,6 N, et
- au vu des résultats ci-dessus en termes d’“agrégation” et de la figure 4, que la phase grasse doit présenter une cohésion (z) inférieure ou égale à 40, de préférence inférieure ou égale à 35, et mieux inférieure ou égale à 30.
Conclusion
Au vu des résultats ci-dessus, on observe qu’une dispersion comprenant une phase dispersée comprenant des gouttes et une phase aqueuse continue, lorsque la stabilité de cette dispersion n’est pas assurée par la présence d’une écorce à l’interface « phase aqueuse continue/phase grasse dispersée » ou de tensioactif, peut malgré tout et de manière inattendue présenter des propriétés satisfaisantes en termes de stabilité cinétique et de sensorialité, notamment en termes de confort et facilité d’application, sous réserve que la phase grasse gélifiée soit dotées :
(i) d’un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et,
(ii) à température ambiante et pression atmosphérique : - d’une dureté (x) comprise entre 2 et 14 N, en particulier entre 2,5 et 12 N, de préférence entre 3 et 9 N, et mieux entre 4 et 6 N ;
- d’un collant (y) supérieur ou égal à -2 N, et mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N ; et
- optionnellement, d’une cohésion (z) inférieure ou égale à 40, de préférence inférieure ou égale à 35, et mieux inférieure ou égale à 30.
De manière encore plus inattendue, ces résultats sont observés et applicables avec une dispersion dotée de gouttes de phase grasse dispersée de taille macroscopique.
Claims
1. [Dispersion comprenant une phase dispersée comprenant des gouttes et une phase aqueuse continue, de préférence sous forme de gel, dans laquelle les gouttes comprennent une phase grasse comprenant au moins un agent gélifiant lipophile, dans laquelle :
- la phase grasse a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et, à température ambiante et pression atmosphérique, répond aux critères physicochimiques suivants :
- une dureté (x) comprise entre 2 et 14 N, de préférence entre 2,5 et 12 N, mieux entre 3 et 9 N, et tout particulièrement entre 4 et 6 N ; et
- un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N ; et
- la dispersion ne comprend pas d’amodiméthicone.
2. Dispersion selon la revendication 1 , caractérisée en ce que la phase grasse présente une cohésion (z) inférieure ou égale à 40, de préférence inférieure ou égale à 35, et mieux inférieure ou égale à 30.
3. Dispersion selon la revendication 1 ou la revendication 2, caractérisée en ce la dispersion ne comprend pas d’écorce, en particulier d’écorce formée d’une couche de coacervat interposée entre la phase grasse dispersée et la phase continue aqueuse.
4. Dispersion selon l’une quelconque des revendications 1 à 3, dans laquelle les gouttes possédant un diamètre supérieur ou égal à 100 pm représentent un volume supérieur ou égal à 60%, voire supérieur ou égal à 70%, de préférence supérieur ou égal à 80%, et mieux supérieur ou égal à 90 % du volume total de la phase dispersée et/ou au moins 60%, voire au moins 70%, de préférence au moins 80%, et mieux au moins 90%, des gouttes possèdent un diamètre moyen supérieur ou égal à 100 pm.
5. Dispersion selon l’une quelconque des revendications 1 à 4, caractérisée en ce que l’agent gélifiant lipophile est choisi parmi les agents gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires ; les corps gras solides à température et pression ambiante ; et leurs mélanges.
6. Dispersion selon l’une quelconque des revendications 1 à 5, comprenant de 0,5% à 30%, de préférence de 1% à 25%, en particulier de 1 ,5% à 20%, mieux de 2% à 15%, et tout particulièrement de 5% à 12%, en poids d’agent(s) gélifiant(s) lipophile(s) par rapport au poids total de la phase grasse.
7. Dispersion selon l’une quelconque des revendications 1 à 6, caractérisée en ce que la phase continue aqueuse comprend au moins un agent gélifiant hydrophile, de préférence choisi dans le groupe constitué des agents gélifiant naturels ; des agents gélifiant semi-synthétiques ; des agents gélifiants synthétiques ; et de leurs mélanges, et de préférence est choisi parmi le Carbomer, l’alcasealan (INCI : Alcaligenes Polysaccharides), et leur mélange.
8. Dispersion selon la revendication 7, comprenant de 0,0001% à 20%, de préférence de 0,001% à 15%, en particulier de 0,01% à 10%, et mieux de 0,1% à 5%, en poids d’agent(s) gélifiant(s) hydrophile(s) par rapport au poids total de la phase continue aqueuse.
9. Dispersion selon l’une quelconque des revendications 1 à 8, comprenant de 1% à 60%, en particulier de 5% à 50%, de préférence de 10% à 40%, et mieux de 15% à 30%, en poids de phase grasse dispersée par rapport au poids total de la dispersion.
10. Dispersion selon l’une quelconque des revendications 1 à 9, caractérisée en ce la dispersion ne comprend pas de tensioactif.
11. Dispersion selon l’une quelconque des revendications 1 à 10, caractérisée en ce la dispersion ne comprend pas :
- d’ester de dextrine et d’acide(s) gras, et en particulier de palmitate(s) de dextrine, et/ou de silice éventuellement traitée hydrophobe, par exemple la silice pyrogénée, et/ou
- d’Acrylates/C 10-30 Alkyl Acrylate Crosspolymer, et/ou
- de Cetyl Ethylhexanoate.
12. Procédé de préparation d’une dispersion telle que définie selon l’une quelconque des revendications 1 à 11 , comprenant au moins les étapes suivantes : a) le chauffage d’un fluide huileux Fl, à une température comprise de 50°C à 150°C ; b) optionnellement, le chauffage d’un fluide aqueux FE, à une température comprise de 50°C à 150°C ;
c) la mise en contact du fluide aqueux FE et du fluide huileux Fl ; et d) la formation des gouttes de phase grasse, constituée du fluide huileux Fl, dispersée dans une phase aqueuse continue, constituée de fluide aqueux FE, dans lequel :
- le fluide huileux Fl comprend au moins un agent gélifiant lipophile et optionnellement au moins une huile et a un point de fusion compris entre 50°C et 100°C, de préférence entre 60°C et 90°C, et, à température ambiante et pression atmosphérique, répond aux critères physicochimiques suivants :
- une dureté (x) comprise entre 2 et 14 N, de préférence entre 2,5 et 12 N, mieux entre 3 et 9 N, et tout particulièrement entre 4 et 6 N ; et
- un collant (y) supérieur ou égal à -2 N, mieux supérieur ou égal à -1 N, et en particulier supérieur ou égal à -0,6 N; le fluide huileux Fl étant en outre dénué d’amodiméthicone ; et
- le fluide aqueux FE comprend au moins de l’eau et, optionnellement, au moins un agent gélifiant hydrophile.
13. Procédé selon la revendication 12, caractérisé en ce que l’étape de formation de gouttes comprend la formation de gouttes de fluide huileux Fl à la sortie d’un premier conduit débouchant dans le fluide aqueux FE.
14. Procédé selon la revendication 13, caractérisé en ce que le fluide aqueux FE est mis en circulation dans un deuxième conduit, la sortie du premier conduit débouchant dans le deuxième conduit, avantageusement coaxialement avec l’axe local du deuxième conduit.
15. Dispersion obtenue par un procédé selon l’une quelconque des revendications 12 à 14.
16. Composition, notamment cosmétique, en particulier de soin et /ou de maquillage d’une matière kératinique, notamment la peau et/ou les cheveux, et plus particulièrement la peau, comprenant au moins une dispersion selon l’une quelconque des revendications 1 à 11 , optionnellement en association avec au moins un milieu physiologiquement acceptable.
17. Procédé non thérapeutique de traitement cosmétique d’une matière kératinique, notamment la peau et/ou les cheveux, et plus particulièrement la peau,
comprenant une étape d’application sur ladite matière kératinique d’au moins une dispersion selon l’une quelconque des revendications 1 à 11 et 15 ou d’une composition selon la revendication 16.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2005408A FR3110406B1 (fr) | 2020-05-21 | 2020-05-21 | Dispersion stable sans écorce |
PCT/EP2021/063598 WO2021234135A1 (fr) | 2020-05-21 | 2021-05-21 | Dispersion stable sans écorce |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4153120A1 true EP4153120A1 (fr) | 2023-03-29 |
Family
ID=72560728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21726672.5A Pending EP4153120A1 (fr) | 2020-05-21 | 2021-05-21 | Dispersion stable sans écorce |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230233422A1 (fr) |
EP (1) | EP4153120A1 (fr) |
KR (1) | KR20230014728A (fr) |
CN (1) | CN115666493A (fr) |
FR (1) | FR3110406B1 (fr) |
WO (1) | WO2021234135A1 (fr) |
ZA (1) | ZA202212237B (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3070858B1 (fr) | 2017-09-14 | 2020-02-21 | Capsum | Dispersion avec phase grasse dispersee a teneur elevee en pigments |
FR3119317B1 (fr) | 2021-02-04 | 2024-05-03 | Capsum | Composition sous forme d’émulsion macroscopique stable comprenant un pourcentage d’ingrédients d’origine naturelle supérieur ou égale à 95% selon la norme ISO 16128 |
FR3129286A1 (fr) * | 2021-11-24 | 2023-05-26 | Capsum | Dispersion macroscopique |
FR3134716A1 (fr) | 2022-04-26 | 2023-10-27 | Capsum | Composition cosmétique solide de maquillage comprenant au moins une cavité |
FR3134714A1 (fr) | 2022-04-26 | 2023-10-27 | Capsum | Composition cosmétique solide comprenant au moins une cavité |
FR3134717A1 (fr) | 2022-04-26 | 2023-10-27 | Capsum | Composition cosmétique solide de soin comprenant au moins une cavité |
FR3134715A1 (fr) | 2022-04-26 | 2023-10-27 | Capsum | Composition cosmétique solide solaire comprenant au moins une cavité |
FR3134718A1 (fr) | 2022-04-26 | 2023-10-27 | Capsum | Composition cosmétique parfumante solide comprenant au moins une cavité |
FR3135982A1 (fr) * | 2022-05-30 | 2023-12-01 | Capsum | Dispersions de gouttes contenant un polymère anionique et un polymère cationique (di)aminé |
FR3135897A1 (fr) | 2022-05-30 | 2023-12-01 | Capsum | Compositions cosmétiques capillaires comprenant au moins un polymère cationique lipophile non siliconé |
FR3135981A1 (fr) * | 2022-05-30 | 2023-12-01 | Capsum | Dispersions de gouttes contenant un polymère anionique et un polymère cationique aminé |
FR3136963A1 (fr) | 2022-06-28 | 2023-12-29 | Capsum | Composition cosmétique solide de soin capillaire comprenant au moins une cavité |
FR3137107A1 (fr) | 2022-06-28 | 2023-12-29 | Capsum | Composition de nettoyage solide comprenant au moins une cavité |
FR3139481A1 (fr) * | 2022-09-13 | 2024-03-15 | Capsum | Procédé de formation d’une dispersion comprenant des gouttes, et appareil associé |
FR3141854A1 (fr) | 2022-11-14 | 2024-05-17 | Capsum | Composition solide comprenant au moins une cavité et au moins une matière première hydrophile incompatible et/ou instable |
FR3141856A1 (fr) | 2022-11-14 | 2024-05-17 | Capsum | Composition solide comprenant au moins une cavité comprenant au moins une phase gélifiée aqueuse et/ou grasse |
FR3142667A1 (fr) | 2022-12-01 | 2024-06-07 | Capsum | Composition solide non pulvérulente comprenant au moins 8% en poids d’agent(s) désintégrant |
FR3146063A1 (fr) | 2023-02-23 | 2024-08-30 | Capsum | Produit comprenant une composition liquide et une composition solide comprenant au moins une cavité |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1266254B (de) | 1967-09-19 | 1968-04-18 | Spodig Heinrich | Permanentmagnetscheider |
JP2796990B2 (ja) | 1989-05-10 | 1998-09-10 | 株式会社資生堂 | 肌用化粧料 |
US5874069A (en) | 1997-01-24 | 1999-02-23 | Colgate-Palmolive Company | Cosmetic composition containing silicon-modified amides as thickening agents and method of forming same |
US5919441A (en) | 1996-04-01 | 1999-07-06 | Colgate-Palmolive Company | Cosmetic composition containing thickening agent of siloxane polymer with hydrogen-bonding groups |
US5783657A (en) | 1996-10-18 | 1998-07-21 | Union Camp Corporation | Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids |
US6051216A (en) | 1997-08-01 | 2000-04-18 | Colgate-Palmolive Company | Cosmetic composition containing siloxane based polyamides as thickening agents |
US5981680A (en) | 1998-07-13 | 1999-11-09 | Dow Corning Corporation | Method of making siloxane-based polyamides |
FR2792190B1 (fr) | 1999-04-16 | 2001-09-28 | Sophim | Procede de fabrication d'un emollient non gras a base de cires-esters |
JP2004515511A (ja) | 2000-12-12 | 2004-05-27 | ロレアル | ポリマー及び繊維を含む化粧品組成物 |
WO2002056847A1 (fr) | 2001-01-17 | 2002-07-25 | L'oreal | Composition cosmetique contenant un polymer et une huile fluoree |
US7923002B2 (en) * | 2002-09-06 | 2011-04-12 | L'oreal S.A. | Composition for coating keratin fibres comprising a tacky wax |
FR2938764B1 (fr) * | 2008-11-24 | 2012-06-08 | Oreal | Composition cosmetique solide pour application sur les fibres keratiniques |
FR2939012B1 (fr) | 2008-12-01 | 2015-03-27 | Capsum | Procede de fabrication d'une serie de capsules, et serie de capsules associee |
EP3552695B1 (fr) | 2011-03-08 | 2021-04-14 | Capsum | Dispersion de gouttes d'une première phase dispersées dans une deuxième phase sensiblement immiscible avec la première phase |
FR2999921B1 (fr) | 2012-12-20 | 2015-04-03 | Oreal | Composition cosmetique aqueuse comprenant de l'alkylcellulose. |
FR3012050B1 (fr) | 2013-10-17 | 2016-01-01 | Capsum | Procede de formation d'une dispersion comprenant des gouttes, et appareil associe |
FR3041252B1 (fr) | 2015-09-18 | 2019-01-25 | Capsum | Dispersions stables de gouttes comprenant un agent gelifiant |
FR3041251B1 (fr) | 2015-09-18 | 2019-01-25 | Capsum | Compositions sous forme d'emulsions huile-dans-eau dont la phase grasse est sous forme de gouttes |
FR3063899B1 (fr) | 2017-03-17 | 2019-04-19 | Capsum | Compositions comprenant une phase grasse et une phase aqueuse sous forme de spheres solides |
FR3067930B1 (fr) | 2017-06-27 | 2020-01-10 | Capsum | Dispersions comprenant au moins une huile volatile hydrocarbonee |
FR3077011B1 (fr) | 2018-01-24 | 2020-02-14 | Capsum | Dispositif de production d'une dispersion, ensemble et procede associes |
-
2020
- 2020-05-21 FR FR2005408A patent/FR3110406B1/fr active Active
-
2021
- 2021-05-21 EP EP21726672.5A patent/EP4153120A1/fr active Pending
- 2021-05-21 KR KR1020227044703A patent/KR20230014728A/ko active Search and Examination
- 2021-05-21 US US17/998,701 patent/US20230233422A1/en active Pending
- 2021-05-21 CN CN202180036208.7A patent/CN115666493A/zh active Pending
- 2021-05-21 WO PCT/EP2021/063598 patent/WO2021234135A1/fr unknown
-
2022
- 2022-11-09 ZA ZA2022/12237A patent/ZA202212237B/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR3110406A1 (fr) | 2021-11-26 |
CN115666493A (zh) | 2023-01-31 |
US20230233422A1 (en) | 2023-07-27 |
WO2021234135A1 (fr) | 2021-11-25 |
KR20230014728A (ko) | 2023-01-30 |
ZA202212237B (en) | 2023-03-29 |
FR3110406B1 (fr) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4153120A1 (fr) | Dispersion stable sans écorce | |
US11534390B2 (en) | Dispersions comprising at least one non-volatile hydrocarbon oil | |
EP3413979B1 (fr) | Emulsions huile-dans-eau dont la phase grasse est sous forme d'un mélange de gouttes de différentes tailles | |
EP3595619A1 (fr) | Compositions comprenant une phase grasse et une phase aqueuse sous forme de sphères solides | |
WO2018077977A1 (fr) | Émulsions doubles comprenant une phase grasse gélifiée | |
WO2019053236A1 (fr) | Dispersion avec phase grasse dispersee à teneur élevée en pigments | |
EP3349856A1 (fr) | Emulsions stables de gouttes à écorce polymérique | |
WO2022167567A1 (fr) | Composition sous forme d'émulsion macroscopique stable comprenant un pourcentage d'ingrédients d'origine naturelle supérieur ou égale à 95% selon la norme iso 16128 | |
WO2021234134A1 (fr) | Emulsion double stable sans écorce | |
WO2020141274A1 (fr) | Composition cosmétique solide comprenant des sphéroïdes aqueux en dispersion dans une phase continue anhydre solide | |
WO2018077986A1 (fr) | Émulsions doubles avec double coacervat | |
FR3071730A1 (fr) | Composition comprenant une phase aqueuse continue liquide et une phase dispersee sous forme de gouttes | |
EP3906007A1 (fr) | Composition cosmétique solide comprenant des sphéroïdes anhydres en dispersion dans une phase continue aqueuse solide | |
WO2023094468A1 (fr) | Dispersion macroscopique sans écorce avec phase grasse pigmentee | |
FR3136157A1 (fr) | Procédé simplifié de préparation d’une émulsion double | |
FR3129590A1 (fr) | Dispersion macroscopique solaire sans écorce | |
WO2024056706A1 (fr) | Procédé de formation d'une dispersion comprenant des gouttes, et appareil associé | |
FR3135981A1 (fr) | Dispersions de gouttes contenant un polymère anionique et un polymère cationique aminé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |