EP3572534B1 - Desulfurization processing method of molten steel, and desulfurization agent - Google Patents
Desulfurization processing method of molten steel, and desulfurization agent Download PDFInfo
- Publication number
- EP3572534B1 EP3572534B1 EP18741544.3A EP18741544A EP3572534B1 EP 3572534 B1 EP3572534 B1 EP 3572534B1 EP 18741544 A EP18741544 A EP 18741544A EP 3572534 B1 EP3572534 B1 EP 3572534B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- molten steel
- desulfurization
- ladle
- quicklime
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006477 desulfuration reaction Methods 0.000 title claims description 156
- 230000023556 desulfurization Effects 0.000 title claims description 156
- 229910000831 Steel Inorganic materials 0.000 title claims description 119
- 239000010959 steel Substances 0.000 title claims description 119
- 238000003672 processing method Methods 0.000 title claims description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 135
- 238000012545 processing Methods 0.000 claims description 102
- 239000000292 calcium oxide Substances 0.000 claims description 65
- 235000012255 calcium oxide Nutrition 0.000 claims description 65
- 239000003795 chemical substances by application Substances 0.000 claims description 43
- 239000011148 porous material Substances 0.000 claims description 39
- 239000007789 gas Substances 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 31
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 29
- 229910052717 sulfur Inorganic materials 0.000 claims description 29
- 239000011593 sulfur Substances 0.000 claims description 29
- 238000003756 stirring Methods 0.000 claims description 28
- 238000010079 rubber tapping Methods 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000002893 slag Substances 0.000 description 71
- 239000000463 material Substances 0.000 description 42
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 30
- 238000000034 method Methods 0.000 description 29
- 230000004907 flux Effects 0.000 description 23
- 229910000805 Pig iron Inorganic materials 0.000 description 21
- 238000012360 testing method Methods 0.000 description 19
- 239000000843 powder Substances 0.000 description 17
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 16
- 229910001634 calcium fluoride Inorganic materials 0.000 description 15
- 239000000395 magnesium oxide Substances 0.000 description 15
- 238000007670 refining Methods 0.000 description 15
- 238000007664 blowing Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000010459 dolomite Substances 0.000 description 10
- 229910000514 dolomite Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000005261 decarburization Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000882 Ca alloy Inorganic materials 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910014458 Ca-Si Inorganic materials 0.000 description 1
- 229910002974 CaO–SiO2 Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VMXUWOKSQNHOCA-UKTHLTGXSA-N ranitidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-UKTHLTGXSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0075—Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/072—Treatment with gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/076—Use of slags or fluxes as treating agents
Definitions
- the present invention relates to a desulfurization processing method of molten steel, a desulfurization agent and the use of said desulfurization agent in desulfurization of molten steel.
- the desulfurization processing at the molten steel stage is typically performed by a ladle refining method such as an ASEA-SKF method, a VAD method, or an LF method.
- the ladle reining method includes an arc heating means to heat molten steel and a stirring means to stir molten steel, and further includes a blowing means to blow powder such as flux or alloy powder to molten steel.
- a desulfurization agent is added into a ladle holding molten steel manufactured by being melted by decarburization refining in a converter, the molten steel and the desulfurization agent are stirred and mixed with each other or subjected to arc heating, thereby causing the desulfurization agent to form slag, and a slag-metal reaction occurs between the slag formed by slag formation of the desulfurization agent and the molten steel to transfer sulfur in the molten steel to the slag.
- the used desulfurization agent contains CaO (quicklime) as a major component and Al 2 O 3 (alumina), CaF 2 (fluorite), and the like, which are added for the purpose of lowering a melting point of the desulfurization agent.
- CaO quicklime
- Al 2 O 3 alumina
- CaF 2 fluorite
- the desulfurization agent is typically added to molten steel in the ladle by being placed on the molten steel. It takes a long time that the desulfurization agent forms slag in any case where the desulfurization agent forms slag by arc heating or by being stirred and mixed with the molten steel after the desulfurization agent is added.
- Patent Literature 1 discloses a method of desulfurizing molten steel in which flux, a mixture of quicklime, alumina, and fluorite, is added and bubbling processing is performed such that a slag composition after the desulfurization processing satisfies that CaO/Al 2 O 3 ⁇ 1.5 mass% and CaF 2 ⁇ 5 mass%.
- Patent Literature 2 discloses a method in which pre-melt flux (preliminarily mixed or uniformly dissolved) of CaO-Al 2 O 3 or pre-melt flux of CaO-Al 2 O 3 -CaF 2 is used for promoting the slag formation of the desulfurization agent.
- Patent Literatures 3, 4, and 5 disclose a method in which stirring gas mixed with flux is blown, as a means to enhance the stirring strength without increasing a stirring gas flow rate.
- JP 2009-108344 discloses a desulfurization agent used when performing desulfurization of molten pig iron or molten steel, wherein the desulfurization agent is a powder containing quicklime having an average particle size of 200 pm or less and an average core diameter of 5 to 40 pm on the surface of the powder.
- WO 2017/018263 A1 discloses a desulfurization processing method of molten pig iron by adding a desulfurization agent containing quicklime into a ladle holding the molten pig iron, wherein the desulfurization agent contains powdery quicklime, where a sum of volumes of pores having a pore diameter ranging from 0.5 pm to 10 pm (inclusive) in the quicklime is equal to or larger than 0.1 mL/g, the quicklime has an average particle size of 210 pm or more and 500 pm or less.
- Patent Literature 1 has a problem in that, when a desulfurization agent containing CaF 2 is used, refractory forming the ladle is heavily melted and eroded by CaF 2 in the produced slag, thereby significantly shortening a life-span of the ladle.
- the method described in Patent Literature 2 has a problem in that the pre-melt flux is very expensive, thereby increasing processing cost.
- the desulfurization agent containing CaF 2 has the same problem as described above.
- Patent Literatures 3, 4, and 5 has a limit for a flux blowing amount with respect to a blowing gas rate (a solid-gas ratio has a limit ranging from 5 to 30 kg/kg).
- the method thus, has a limit for increasing stirring strength.
- a stirring gas flow rate is increased, a surface of molten steel in the ladle is heavily disturbed (waved).
- a problem arises in that splashes occur and metal sticks to a lid of the ladle, or another problem arises in that electrodes and molten steel are shorted, for example, to cause unstable arc, thereby making it difficult to perform arc heating.
- the invention is made in view of above problems, and aims to provide a desulfurization processing method of molten steel and a desulfurization agent that can efficiently perform desulfurization processing without using CaF 2 and pre-melt flux.
- argon gas is blown into the ladle such that an oxygen concentration in the ladle is equal to or smaller than 15%.
- the desulfurization processing method of molten steel and the desulfurization agent according to the invention can efficiently perform desulfurization processing without using CaF 2 and pre-melt flux.
- the inventors of the invention have earnestly studied for solving the problems described above by focusing attention on a particle size and a pore diameter of caustic lime and molten steel components. More specifically, the inventors of the invention have performed various experiments and researches for the purpose of causing flux added as a desulfurization agent to rapidly form slag to achieve efficient desulfurization processing without using CaF 2 as a part of the desulfurization agent when low sulfur steel having a sulfur concentration equal to or smaller than 0.0030 mass% is manufactured by being melted by desulfurization processing by a ladle refining method using a desulfurization agent having a CaO containing material as a major constituent material.
- the inventors of the invention have found that the temperature of molten steel when flux is added, a sol. Al concentration, and the particle size and the pore diameter of caustic lime are important in order to promote flux added as a desulfurization agent to form slag.
- the temperature of molten steel is determined by the temperature of molten steel when the molten steel is tapped from a converter. As the temperature of the molten steel when the molten steel is tapped is increased, the refractory of the converter is increasingly melted and eroded, thereby causing processing cost to be increased. An immoderate increase in tapping temperature is, thus, inadvisable.
- the inventors of the invention have found that the desulfurization processing can be performed highly efficiently using a powder desulfurization agent containing quicklime as a major component and the quicklime satisfies that a sum of volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m in all of the pores included in the quicklime is equal to or larger than 0.1 mL/g.
- the inventors of the invention thus, have conceived the invention.
- the pore diameter distribution of quicklime was measured by the following method.
- quicklime was dried at a constant temperature of 120 °C for 4 hours.
- Micromeritics autopore IV 9520 a pore diameter distribution of dried quicklime having a pore diameter ranging from approximately 0.0036 to 200 ⁇ m was obtained by a mercury intrusion method, and a cumulative pore volume curve was calculated.
- a sum of volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m was obtained from the calculated cumulative pore volume curve.
- the pore diameter was calculated using Washburn's equation represented in the following formula (3).
- P is the pressure
- D is the pore diameter
- P ⁇ D ⁇ 4 ⁇ ⁇ ⁇ cos ⁇
- Molten pig iron tapped from a blast furnace is received by a hot metal transfer vessel such as a hot metal ladle or a torpedo car, and transferred to a converter in which decarburization refining is performed as the next process.
- a hot metal transfer vessel such as a hot metal ladle or a torpedo car
- hot metal pretreatment such as desulfurization processing and dephosphorization processing are performed on molten pig iron.
- the invention is the technique to manufacture low sulfur steel.
- the desulfurization processing is, thus, performed. Even when the dephosphorization processing is not required in accordance with the compositional standard of the low sulfur steel, the dephosphorization processing is performed to prevent rephosphorization from converter slag in desulfurization processing after tapping from the converter.
- the decarburization refining is performed on the molten pig iron on which the desulfurization processing and the dephosphorization processing are performed, and resulting molten steel is tapped to the ladle.
- a little amount of quicklime (CaO) and a little amount of dolomite (MgCO 3 -CaCO 3 ), or calcined dolomite (MgO-CaO) is used as flux, and the flux forms slag in the converter (hereinafter described as the "converter slag"), because the desulfurization processing and the dephosphorization processing are already performed on the molten pig iron.
- the converter slag has a role to promote dephosphorization reaction of the molten pig iron.
- the dephosphorization processing is, however, already performed on the molten pig iron.
- the main role of converter slag is, thus, prevention of occurrence of iron splashes in blowing refining and melting and erosion of the lining refractory of the converter.
- the converter slag is mixed into the molten steel and flows into the ladle.
- Slag flow-out prevention measures which are typically taken, are performed to prevent the flow out of the converter slag. It is, however, difficult to perfectly prevent the converter slag from being flowed out even when the slag flow-out prevention measures are taken.
- Some amount of converter slag is mixed into the molten steel in the ladle and flows out from the converter.
- the converter slag that is mixed into the molten steel and flows into the ladle may be removed from the ladle.
- the converter slag may, however, not be removed because SiO 2 component in the converter slag contributes to the slag formation of a CaO containing material added later as the desulfurization agent.
- CaO-MgO-Al 2 O 3 -SiO 2 desulfurization slag having a certain composition in the ladle
- a CaO containing material, a MgO containing material, an Al 2 O 3 containing material, and a SiO 2 containing material are added into the ladle as flux.
- MgO has a lower desulfurization ability than that of CaO, the MgO containing material may not be added.
- Metallic Al is added into the ladle for deoxidation of the molten steel and reduction of the slag (reduction of Fe oxides and Mn oxides in the slag).
- those materials may be added into a facility in later process that performs desulfurization processing by any of an ASEA-SKF method, a VAD method, and an LF method. From a point of view of promoting the slag formation of CaO, those materials are preferably added into the ladle at tapping from the converter to the ladle or just after the tapping. It is preferable for quicklime added just after the tapping that a sum of volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m in all of the pores included in the quicklime is equal to or larger than 0.1 mL/g, and the quicklime contains particles 90% or more of which have a particle diameter ranging from 1 to 30 mm.
- Respective additive amounts of the CaO containing material, the MgO containing material, metallic Al, the Al 2 O 3 containing material, and the SiO 2 containing material are determined, by considering a mass and a component composition of converter slag flowed into the ladle, such that the composition of the slag produced in the ladle after the slag formation of the added flux, i.e., the slag formed from the flux and the converter slag, satisfies that the SiO 2 content is in a range from 5 to 15 mass% and a value of [(mass% CaO) + (mass% MgO)]/(mass% Al 2 O 3 ) is in a range from 1.5 to 3.0, and, preferably, the value of [(mass% CaO) + (mass% MgO)]/(mass% Al 2 O 3 ) is in a range from 1.8 to 2.5.
- the respective additive amounts are more preferably determined such that a value of (mass% MgO)/(mass% CaO) of the produced slag is equal to or smaller than 0.10.
- Those materials are added into the ladle by the determined additive amounts.
- All of the additive amount of metallic Al does not become Al 2 O 3 .
- Some amount of metallic Al is dissolved and remains in the molten steel.
- a ratio of Al 2 O 3 in slag to Al dissolved in molten steel is obtained preliminarily by an experiment.
- the additive amount of metallic Al is set on the basis of the ratio. No CaF 2 is added.
- the composition of the slag in the ladle after the desulfurization processing is adjusted to the composition that does not substantially contain CaF 2
- the slag composition of after the desulfurization processing is adjusted without using a fluorine compound such as CaF 2 as a slag formation accelerator of CaO, and even when fluorine that is unavoidably mixed into the used CaO containing material and Al 2 O 3 containing material, for example, and brought into the ladle is present in the slag after the desulfurization processing, the slag in the ladle is defined that the slag substantially does not contain CaF 2 .
- CaO containing material to be added quicklime (CaO), limestone (CaCO 3 ), slaked lime (Ca(OH) 2 ), dolomite (MgCO 3 -CaCO 3 ), and calcined dolomite (MgO-CaO) are used, for example.
- MgO containing material to be added magnesia clinker (MgO), dolomite (MgCO 3 -CaCO 3 ), and calcined dolomite (MgO-CaO) are used, for example.
- an average particle diameter of the caustic lime is in a range from 1 to 30 mm from a point of view of a reaction efficiency and an addition yield. From a point of view of reducing an amount sucked in an exhaust system, an amount of fine powder is preferably small. An amount of caustic lime having an average particle diameter equal to or larger than 30 mm is, thus, preferably small.
- the measuring method of the average particle diameter is as follows. One kilogram of a desulfurization agent was collected.
- the collected desulfurization agent was sieved into nine classes, i.e., equal to or smaller than 500 ⁇ m, 500 ⁇ m to 1 mm, 1 to 5 mm, 5 to 10 mm, 10 to 15 mm, 15 to 20 mm, 20 to 25 mm, 25 to 30 mm, and equal to or larger than 30 mm.
- Al 2 O 3 containing material aluminum dross (contains 20 to 70 mass% metallic Al and main component of the balance is Al 2 O 3 ) , bauxite (Al 2 O 3 ⁇ 2H 2 O), and calcined alumina (Al 2 O 3 ) are used, for example.
- Aluminum dross can be used as alternative of metallic Al.
- SiO 2 containing material silica sand (SiO 2 ) and wollastonite (CaO-SiO 2 ) are used, for example. When the mass of the converter slag flowed in the ladle is large, the SiO 2 containing material may not be required to be added.
- the MgO containing material may not be required to be added when the slag composition satisfies that a value of [(mass% CaO) + (mass% MgO)]/(mass% Al 2 O 3 ) is in a range from 1.5 to 3.0, preferably in a range 1.8 to 2.5 without addition of the MgO containing material.
- FIG. 1 is a schematic diagram of a side view of the LF facility used when the invention is implemented.
- FIG. 1 illustrates an LF facility 1, a ladle 2, an elevating lid 3, arc heating electrodes 4, submerged lances 5 and 6, bottom-blowing porous bricks 7 and 8, molten steel 9, slag 10, a row material supply chute 11, and an Ar gas introduction pipe 12.
- the ladle 2 that contains the molten steel 9 and is mounted on a traveling carriage (not illustrated) is disposed at a certain position just under the lid 3.
- the lid 3 is moved downward to be tightly in contact with the upper end of the ladle 2.
- Ar gas is supplied from the Ar gas introduction pipe 12, resulting in a space surrounded by the ladle 2 and the lid 3 becoming Ar gas atmosphere.
- Ar gas is preferably blown from piping provided on the periphery of the furnace lid such that an oxygen concentration in the ladle 2 is equal to or smaller than 15%.
- the reduction of the oxygen concentration in the ladle 2 makes it possible to reduce an amount of Al lost by reaction with oxygen in the air in the LF processing.
- the flow rate of Ar gas blown from the ladle 2 preferably satisfies that a value of ⁇ L 2 /4Q is in a range from 50 to 150 (m/min) and more preferably 70 to 100 (m/min).
- L is the diameter (m) of the ladle and Q is the flow rate of Ar gas (Nm 3 /min).
- the flux containing those materials and metallic Al are supplied into the ladle 2 via the row material supply chute 11.
- Metallic Al is preferably added within 10 minutes after start of the desulfurization processing such that the following formula (5) is satisfied. It is, thus, preferable for promoting the desulfurization processing that metallic Al is added in accordance with the Al concentration after tapping from the converter to increase the Al concentration in molten steel. sol . Al 1 ⁇ sol . Al 2 + 0.05 ⁇ W Al ⁇ sol . Al 1 ⁇ sol . Al 2 + 0.1
- the electrodes 4 are energized to generate arc, if necessary, to heat the molten steel 9 and to cause the added flux to form slag.
- the submerged lance 5 or 6 is immersed into the molten steel 9 and then Ar gas serving as a stirring gas is blown into the molten steel 9 from at least one of the submerged lances 5 and 6, or the bottom-blowing porous bricks 7 and 8 to stir the molten steel 9.
- Ar gas serving as a stirring gas is blown into the molten steel 9 from at least one of the submerged lances 5 and 6, or the bottom-blowing porous bricks 7 and 8 to stir the molten steel 9.
- the flux is mixed with the molten steel 9, thereby causing the flux to form slag.
- slag 10 is produced.
- the produced slag 10 is stirred and mixed with the molten steel 9 as a result of stirring of the molten steel 9.
- a slag-metal reaction occurs between the molten steel 9 and the slag 10 and, thus, a desulfurization reaction occurs in which sulfur in the molten steel 9 transfers into the slag.
- one or more kinds of Ca alloy powder, metallic Mg powder, and Mg alloy powder are preferably blown into the molten steel 9 together with Ar gas from the submerged lances 5 and 6, or, at least one period in the desulfurization processing, blowing of the stirring gas from the submerged lances 5 and 6 and blowing of the stirring gas from the bottom-blowing porous bricks 7 and 8 are preferably performed simultaneously.
- Ca alloy powder Ca-Si alloy powder and Ca-Al alloy powder are used, for example.
- Mg alloy powder Mg-Al-Zn alloy powder and Mg-Si-Fe alloy powder are used, for example.
- the particle diameters of those metallic powder are not limited to specific diameters as long as those metallic powder can be added by being blown. From a point of view of keeping a reaction interfacial area, the maximum particle diameter is preferably equal to or smaller than 1 mm.
- the slag composition after the desulfurization processing is adjusted such that the SiO 2 content is in a range from 5 to 15 mass% in the desulfurization processing of the molten steel 9 by the ladle refining method using the desulfurization agent containing the CaO containing material as the major constituent material.
- SiO 2 thus, functions as the slagging accelerator to promote the slag formation of CaO.
- the slag composition after the desulfurization processing is adjusted such that a value of [(mass% CaO) + (mass% MgO)]/(mass% Al 2 O 3 ) is in a range from 1.5 to 3.0, thereby causing the slag 10 to have high desulfurization ability.
- the desulfurization processing can be efficiently performed on the molten steel 9 without using CaF 2 as a part of the desulfurization agent and pre-melt flux as the desulfurization agent.
- the above description is an example where the invention is implemented using the LF facility.
- the invention can also be applied to an ASEA-SKF facility and a VAD facility according to the manner as described above.
- Molten pig iron tapped from a blast furnace was subjected to the desiliconization processing, the desulfurization processing, and the dephosphorization processing.
- the processed molten pig iron was, then, charged into a converter to be subjected to the decarburization refining.
- obtained was approximately 250 tons of molten steel having a carbon concentration ranging from 0.05 to 0.09 mass%, a sulfur concentration ranging from 0.0041 to 0.0043 mass%, and a phosphorous concentration ranging from 0.004 to 0.010 mass%.
- the converter slag flowed in a ladle was not discharged.
- Table 1 illustrates the sulfur concentrations (chemical analysis values) before and after the desulfurization processing and the desulfurization ratios in respective desulfurization tests.
- the remarks column in Table 1 illustrates "invention examples”, which are the tests according to the invention, and “comparative examples”, which are the tests other than those according to the invention.
- the desulfurization ratio is the value of a ratio of a difference in sulfur concentration in the molten steel before and after the desulfurization processing to a sulfur concentration in the molten steel before the desulfurization processing and the value is expressed by percentage.
- the desulfurization evaluation "Good” means that the sulfur concentration in the molten steel after the desulfurization processing was equal to or smaller than 0.0024% while the desulfurization evaluation "Poor” means that the sulfur concentration in the molten steel after the desulfurization processing exceeded 0.0024%.
- Table 1 also illustrates the test levels and the results.
- test numbers 1 to 3 in which the sum of volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m is inadequate, the desulfurization ratios were lower than those in the invention examples (test numbers 4, 5 and 8 to 13).
- test levels 4, 5 and 8 to 13 In the invention examples having test levels in each of which the average particle diameter of quicklime is in a range from 1 to 30 mm, slag formation was promoted and the desulfurization ratio of molten steel were higher.
- Molten pig iron tapped from a blast furnace was subjected to the desiliconization processing, the desulfurization processing, and the dephosphorization processing.
- the processed molten pig iron was, then, charged into a converter to be subjected to the decarburization refining.
- obtained was approximately 250 tons of molten steel having a carbon concentration ranging from 0.05 to 0.09 mass%, a sulfur concentration ranging from 0.0041 to 0.0043 mass%, and a phosphorous concentration ranging from 0.004 to 0.010 mass%.
- the converter slag flowed in a ladle was not discharged.
- Table 2 illustrates the sulfur concentrations (chemical analysis values) before and after the desulfurization processing and the desulfurization ratios in respective desulfurization tests.
- the desulfurization evaluation "Good” means that the sulfur concentration in the molten steel after the desulfurization processing was equal to or smaller than 0.0024%.
- Table 2 also illustrates the test levels and the results. It was found that with an increase in stirring power, the slagging ratio after 5 minutes from start of the LF processing and the desulfurization ratio were increased. It was found that high slagging ratio and desulfurization ratio were obtained because the stirring power density satisfies the following formula (6).
- ⁇ 6.183 ⁇ Q ⁇ T 1 W ⁇ ln 1 + h 1.02 ⁇ 10 ⁇ 4 ⁇ P + 1 ⁇ T g T l ⁇ 100
- FIG. 2 is a diagram illustrating the slagging ratios of the invention examples and the comparative examples.
- Molten pig iron tapped from a blast furnace was subjected to the desiliconization processing, the desulfurization processing, and the dephosphorization processing.
- the processed molten pig iron was, then, charged into a converter to be subjected to the decarburization refining.
- obtained was approximately 250 tons of molten steel having a carbon concentration ranging from 0.05 to 0.09 mass%, a sulfur concentration ranging from 0.0041 to 0.0044 mass%, and a phosphorous concentration ranging from 0.004 to 0.010 mass%.
- the converter slag flowed in a ladle was not discharged.
- the LF processing used quicklime satisfying that the quicklime has a particle diameter equal to or smaller than 20 mm and the sum of the volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m is 0.2 mL/g.
- Table 3 illustrates the sulfur concentrations (chemical analysis values) before and after the desulfurization processing and the desulfurization ratios in respective desulfurization tests.
- [sol.Al] 1 is the upper limit value (mass%) of an Al concentration standard of a steel grade to be manufactured by being melted and
- [sol.Al] 2 is the Al concentration (mass%) in the molten steel after tapping from the converter.
- the desulfurization evaluation "Good" means that the sulfur concentration in the molten steel after the desulfurization processing was equal to or smaller than 0.0024%.
- Molten pig iron tapped from a blast furnace was subjected to the desiliconization processing, the desulfurization processing, and the dephosphorization processing.
- the processed molten pig iron was, then, charged into a converter to be subjected to the decarburization refining.
- obtained was approximately 250 tons of molten steel having a carbon concentration ranging from 0.05 to 0.09 mass%, a sulfur concentration ranging from 0.0041 to 0.0044 mass%, and a phosphorous concentration ranging from 0.004 to 0.010 mass%.
- the converter slag flowed in a ladle was not discharged.
- the LF processing used quicklime satisfying that the quicklime has a particle diameter equal to or smaller than 20 mm and the sum of the volumes of pores having a pore diameter ranging from 0.5 to 10 ⁇ m is 0.2 mL/g.
- Metallic Al was added so as to satisfy formula (5) within 10 minutes after start of the LF processing.
- Table 4 illustrates the sulfur concentrations (chemical analysis values) before and after the desulfurization processing and the desulfurization ratios in respective desulfurization tests.
- the desulfurization evaluation "Good” means that the sulfur concentration in molten steel after the desulfurization processing was equal to or smaller than 0.0024%.
- the invention can provide the desulfurization processing method of molten steel and the desulfurization agent that can efficiently perform the desulfurization processing without using CaF 2 and pre-melt flux.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007209 | 2017-01-19 | ||
PCT/JP2018/000280 WO2018135344A1 (ja) | 2017-01-19 | 2018-01-10 | 溶鋼の脱硫処理方法及び脱硫剤 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3572534A4 EP3572534A4 (en) | 2019-11-27 |
EP3572534A1 EP3572534A1 (en) | 2019-11-27 |
EP3572534B1 true EP3572534B1 (en) | 2021-04-28 |
Family
ID=62908427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18741544.3A Active EP3572534B1 (en) | 2017-01-19 | 2018-01-10 | Desulfurization processing method of molten steel, and desulfurization agent |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3572534B1 (zh) |
JP (1) | JP6743915B2 (zh) |
KR (1) | KR102290861B1 (zh) |
CN (1) | CN110177889B (zh) |
BR (1) | BR112019013592B1 (zh) |
TW (1) | TWI660049B (zh) |
WO (1) | WO2018135344A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI704232B (zh) * | 2019-04-11 | 2020-09-11 | 日商日本製鐵股份有限公司 | 高效率的熔融鐵合金之精煉方法 |
CN110315064A (zh) * | 2019-06-20 | 2019-10-11 | 同济大学 | 一种金属原料纯化处理剂以及纯化处理方法 |
CN111621620A (zh) * | 2020-06-03 | 2020-09-04 | 马鞍山市兴达冶金新材料有限公司 | 一种提高脱硫效率的脱硫工艺 |
CN112939042A (zh) * | 2021-01-29 | 2021-06-11 | 重庆坤垠环保科技实业发展有限公司 | 铝灰渣与硅灰协同处理利用方法及装置 |
TWI762226B (zh) * | 2021-03-05 | 2022-04-21 | 國立中興大學 | 煉鋼用脫硫劑的製備方法 |
CN113088612A (zh) * | 2021-03-15 | 2021-07-09 | 石家庄钢铁有限责任公司 | 利用lf炉进行铁水预处理脱硫的方法 |
CN113832296B (zh) * | 2021-09-30 | 2022-10-14 | 广东韶钢松山股份有限公司 | 一种板坯钢在lf精炼炉内的快速脱硫方法 |
TWI820759B (zh) * | 2022-06-20 | 2023-11-01 | 興展技術開發股份有限公司 | 鋼液脫硫方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018263A1 (ja) * | 2015-07-24 | 2017-02-02 | Jfeスチール株式会社 | 脱硫剤、溶銑脱硫方法および溶銑の製造方法 |
JP2017071853A (ja) * | 2015-10-05 | 2017-04-13 | Jfeスチール株式会社 | 機械攪拌式溶銑脱硫方法 |
JP2017071854A (ja) * | 2015-10-05 | 2017-04-13 | Jfeスチール株式会社 | 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191318A (ja) | 1984-10-12 | 1986-05-09 | Nippon Kokan Kk <Nkk> | 取鍋精錬炉の操業方法 |
JPS61281809A (ja) | 1985-06-06 | 1986-12-12 | Nippon Steel Corp | 溶鋼の取鍋精錬法 |
JPS6256509A (ja) * | 1985-09-04 | 1987-03-12 | Kawasaki Steel Corp | 生石灰を用いる溶銑脱硫方法 |
JPH0645485B2 (ja) * | 1986-05-29 | 1994-06-15 | 川崎製鉄株式会社 | 反応性に優れた精錬剤用の生石灰の製造方法 |
JPH08260025A (ja) | 1995-03-24 | 1996-10-08 | Sumitomo Metal Ind Ltd | 極低硫極低酸素鋼の製造方法 |
JPH09217110A (ja) | 1996-02-14 | 1997-08-19 | Sumitomo Metal Ind Ltd | 超低硫鋼の溶製方法 |
JPH11221432A (ja) * | 1998-02-04 | 1999-08-17 | Nittetsu Mining Co Ltd | 石灰石系脱硫剤およびその製造方法 |
JP2000234119A (ja) | 1999-02-09 | 2000-08-29 | Kawasaki Steel Corp | 鋼の脱硫方法 |
JP2004225059A (ja) * | 2002-11-28 | 2004-08-12 | Nippon Steel Corp | 溶銑の脱硫方法 |
JP5343308B2 (ja) * | 2006-09-11 | 2013-11-13 | Jfeスチール株式会社 | 溶鋼の脱硫方法 |
JP5101988B2 (ja) * | 2007-10-26 | 2012-12-19 | 新日鐵住金株式会社 | 溶融金属の脱硫剤 |
JP4445564B2 (ja) * | 2008-09-05 | 2010-04-07 | 新日本製鐵株式会社 | 溶銑の脱硫方法 |
KR101366720B1 (ko) * | 2009-06-30 | 2014-02-24 | 제이에프이 스틸 가부시키가이샤 | 용선의 탈황 방법 |
JP5333536B2 (ja) * | 2011-07-22 | 2013-11-06 | 新日鐵住金株式会社 | 高清浄度軸受鋼およびその溶製方法 |
CN102337370B (zh) * | 2011-10-26 | 2013-05-01 | 辽宁博联特冶金科技有限公司 | 一种冶炼工业纯铁的装置及方法 |
CN102517418B (zh) * | 2011-12-12 | 2013-06-05 | 中北大学 | 一种多孔颗粒状低碳石灰及其生产方法 |
JP6451363B2 (ja) * | 2015-02-04 | 2019-01-16 | 新日鐵住金株式会社 | 溶鋼の脱硫方法 |
CN105274272A (zh) * | 2015-11-27 | 2016-01-27 | 马鞍山钢铁股份有限公司 | 一种复合喷吹铁水脱硫材料及其调节装置 |
-
2018
- 2018-01-10 KR KR1020197023942A patent/KR102290861B1/ko active IP Right Grant
- 2018-01-10 EP EP18741544.3A patent/EP3572534B1/en active Active
- 2018-01-10 WO PCT/JP2018/000280 patent/WO2018135344A1/ja unknown
- 2018-01-10 CN CN201880007085.2A patent/CN110177889B/zh active Active
- 2018-01-10 BR BR112019013592-8A patent/BR112019013592B1/pt active IP Right Grant
- 2018-01-10 JP JP2018563279A patent/JP6743915B2/ja active Active
- 2018-01-15 TW TW107101421A patent/TWI660049B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018263A1 (ja) * | 2015-07-24 | 2017-02-02 | Jfeスチール株式会社 | 脱硫剤、溶銑脱硫方法および溶銑の製造方法 |
JP2017071853A (ja) * | 2015-10-05 | 2017-04-13 | Jfeスチール株式会社 | 機械攪拌式溶銑脱硫方法 |
JP2017071854A (ja) * | 2015-10-05 | 2017-04-13 | Jfeスチール株式会社 | 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3572534A4 (en) | 2019-11-27 |
WO2018135344A1 (ja) | 2018-07-26 |
TWI660049B (zh) | 2019-05-21 |
JPWO2018135344A1 (ja) | 2019-06-27 |
JP6743915B2 (ja) | 2020-08-19 |
CN110177889A (zh) | 2019-08-27 |
KR20190108136A (ko) | 2019-09-23 |
CN110177889B (zh) | 2021-06-11 |
BR112019013592B1 (pt) | 2022-08-16 |
BR112019013592A2 (pt) | 2020-01-07 |
KR102290861B1 (ko) | 2021-08-17 |
EP3572534A1 (en) | 2019-11-27 |
TW201829790A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3572534B1 (en) | Desulfurization processing method of molten steel, and desulfurization agent | |
RU2765475C1 (ru) | Способ производства кислотоустойчивой трубопроводной стали высокой чистоты | |
JP5573424B2 (ja) | 溶鋼の脱硫処理方法 | |
JP2013234379A (ja) | 極低燐極低硫鋼の溶製方法 | |
CN113061799A (zh) | 高洁净度弹簧钢及其生产方法 | |
JP6028755B2 (ja) | 低硫鋼の溶製方法 | |
WO2020255917A1 (ja) | 溶鋼へのCa添加方法 | |
JP4464343B2 (ja) | アルミキルド鋼の製造方法 | |
JP5895887B2 (ja) | 溶鋼の脱硫処理方法 | |
JP5891826B2 (ja) | 溶鋼の脱硫方法 | |
JP4163186B2 (ja) | 精錬用フラックス及びその製造方法 | |
CN114457204B (zh) | 铁水的脱磷方法 | |
JP5341849B2 (ja) | リサイクルスラグの製造方法 | |
JP2011184753A (ja) | 溶銑脱珪方法 | |
JP2007270178A (ja) | 極低硫鋼の製造方法 | |
JP6658049B2 (ja) | 溶銑の脱珪処理方法 | |
JP2007092159A (ja) | 清浄性に優れた極低炭素鋼の製造方法 | |
JP4360239B2 (ja) | 真空脱ガス設備における溶鋼の脱硫処理方法 | |
JP2011058046A (ja) | 溶銑の脱燐処理方法 | |
JP2000038614A (ja) | 清浄性に優れた極低炭素鋼の溶製方法 | |
JP2009173994A (ja) | Alレス極低炭素鋼の溶製方法 | |
CN118531181A (zh) | 一种钢包顶渣改质剂、使用方法及汽车板材 | |
JP2011184752A (ja) | 溶銑脱珪方法 | |
JP2005179691A (ja) | 溶銑の脱珪処理方法 | |
JP2016060964A (ja) | 溶銑の脱珪処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190722 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20191021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200608 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602018016293 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C21C0007064000 Ipc: C21C0007000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21C 7/072 20060101ALI20201009BHEP Ipc: C21C 7/04 20060101ALI20201009BHEP Ipc: C21C 7/076 20060101ALI20201009BHEP Ipc: C21C 7/064 20060101ALI20201009BHEP Ipc: C21C 7/00 20060101AFI20201009BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201214 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FUJII, YUSUKE Inventor name: KIKUCHI, NAOKI Inventor name: NAKAI, YOSHIE Inventor name: MASAKI, HIDEYA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1387105 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018016293 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1387105 Country of ref document: AT Kind code of ref document: T Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210728 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210830 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210729 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018016293 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210828 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602018016293 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220110 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220110 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220802 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240109 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 |