WO2020255917A1 - 溶鋼へのCa添加方法 - Google Patents

溶鋼へのCa添加方法 Download PDF

Info

Publication number
WO2020255917A1
WO2020255917A1 PCT/JP2020/023389 JP2020023389W WO2020255917A1 WO 2020255917 A1 WO2020255917 A1 WO 2020255917A1 JP 2020023389 W JP2020023389 W JP 2020023389W WO 2020255917 A1 WO2020255917 A1 WO 2020255917A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
content
mass
containing alloy
added
Prior art date
Application number
PCT/JP2020/023389
Other languages
English (en)
French (fr)
Inventor
一貴 西中
智也 小田垣
孝平 古米
陽一 伊藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020217041096A priority Critical patent/KR102565782B1/ko
Priority to JP2020556827A priority patent/JP7060113B2/ja
Priority to CN202080043949.3A priority patent/CN113994015A/zh
Priority to EP20826607.2A priority patent/EP3971306A4/en
Publication of WO2020255917A1 publication Critical patent/WO2020255917A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method of adding Ca (calcium) to molten steel in a ladle with a high addition yield.
  • Addition of Ca (calcium) to molten steel controls the morphology of non-metal inclusions in steel in line pipe steel, free-cutting steel, stainless steel, electromagnetic steel, etc., and improves corrosion resistance, mechanical properties, electromagnetic properties, etc. It is commonly done for the purpose of improving.
  • steel - non-metallic inclusions such as MnS generated in the steel casting process (manganese sulfide) and Al 2 O 3 (aluminum oxide) is distraction or crushed during the rolling process, in the steel such as steel for a line pipe It is the starting point for hydrogen-induced cracking (HIC).
  • the Ca source is a Ca-containing alloy (calcium-containing alloy) such as a Ca—Si (silicon) alloy, a Ca—Fe (iron) alloy, or a Ca—Al (aluminum) alloy, or CaC 2 (calcium carbide), CaCN 2 (calcium cyanamide), CaCl 2 (calcium chloride) Ca compounds such as (calcium compound) is used.
  • Ca-containing alloy such as a Ca—Si (silicon) alloy, a Ca—Fe (iron) alloy, or a Ca—Al (aluminum) alloy
  • CaC 2 calcium carbide
  • CaCN 2 calcium cyanamide
  • CaCl 2 (calcium chloride) Ca compounds such as (calcium compound) is used.
  • the molten steel contained in a ladle and deoxidized with aluminum (Al) is desulfurized with a flux. Reduce the sulfur content of molten steel.
  • Ca is added to the molten steel by the injection method or the wire feeder method during the vacuum degassing refining in the vacuum degassing equipment such as the RH vacuum degassing equipment or during the period from the vacuum degassing refining to the start of casting in the continuous casting equipment. There are known ways to do this.
  • the "injection method” is a method in which a powdery and granular Ca-containing alloy or Ca compound is blown into the bottom of a ladle together with a carrier gas via an injection lance immersed in molten steel.
  • the “wire feeder method” is a method of supplying iron-coated calcium-wire to the bottom of a ladle at high speed by the driving force of a pinch roll.
  • the "iron-coated calcium-wire” is a molded product obtained by coating a powder-granular Ca-containing alloy with a thin steel plate.
  • an inert gas is blown into the molten steel from a blowing pipe or a porous plug installed in a ladle, and the molten steel is agitated by the inert gas.
  • the injection method and the wire feeder method were developed as a means for increasing the addition yield of Ca by adding Ca to the bottom of the steel bath to which the static pressure of molten steel is applied in consideration of the high vapor pressure of Ca.
  • the method On the premise of these methods, many means for improving the addition conditions have been proposed with the aim of further improving the Ca addition yield.
  • Patent Document 1 proposes a method of appropriately controlling the blowing rate of carrier gas according to the addition rate of the Ca-containing substance in order to add an appropriate amount of the Ca-containing substance. Has been done.
  • Patent Document 1 does not limit the types of Ca-containing substances, and does not consider the effect of yield due to the alloy composition of Ca-containing substances.
  • Patent Document 2 in the addition of Ca for non-oriented electrical steel, the Ca-containing alloy to be added is passivated as a condition of the Ca-containing alloy, and the composition thereof is Ca; 18 to 27% by mass. , Mg (magnesium); 2-6% by mass, Si; 20-35% by mass, Al; 1-9% by mass, Zr (zirconium); 1-5% by mass, and the balance consists of Fe and unavoidable impurities.
  • Patent Document 3 as an addition form of a Ca-containing alloy other than iron-coated calcium-wire or powdery granules, a molten Ca-containing alloy is housed in a closed container, and the molten Ca-containing alloy in the closed container is injected. A method of pressure-injecting into molten steel via a pipe has been proposed.
  • Patent Document 3 requires a heating device for melting the Ca-containing alloy and a closed container for pressurizing, which is more costly than the method of adding the Ca-containing alloy at room temperature by the injection method or the wire feeder method. , Handling is also difficult.
  • Patent Document 4 proposes a method of adding iron-coated calcium-wire during treatment with an RH vacuum degassing device as a study of a place where a Ca-containing alloy is added.
  • the outflow of Ca-containing alloy powder into the molten steel is promoted by supplying the iron-coated calcium-wire to the molten steel discharge portion from the vacuum chamber, which has a weak molten steel flow and a high static pressure of the molten steel. It is said that the addition yield will be improved because the effect will be higher and the evaporation loss will be reduced.
  • Japanese Unexamined Patent Publication No. 8-157934 Special Table 2015-515541A Japanese Unexamined Patent Publication No. 59-159921 Japanese Unexamined Patent Publication No. 10-245621
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to review the composition of the Ca-containing alloy added to the molten steel so that Ca can be added to the molten steel in the ladle with a high addition yield. It is to provide a method for adding Ca to molten steel.
  • the gist of the present invention for solving the above problems is as follows. [1] When Ca (calcium) is added to the molten steel in the ladle, Ca-containing alloy (calcium-containing alloy) containing Mg (magnesium) satisfying the following formula (1) is added to the molten steel. Method. 0.3 ⁇ Mg content (mass%) / Ca content (mass%) ⁇ 1.0 ... (1) [2] The method for adding Ca to the molten steel according to the above [1], wherein the Ca-containing alloy is added to the molten steel in the ladle after refining with the RH vacuum degassing device.
  • the Ca-containing alloy has a Ca content of 15 to 30% by mass, a Mg content of 10 to 20% by mass, a Si (silicon) content of 40 to 60% by mass, and the balance of Fe (iron) and The method for adding Ca to molten steel according to the above [1] or the above [2], which is an unavoidable impurity.
  • the Ca-containing alloy has a Ca content of 15 to 30% by mass, a Mg content of 10 to 20% by mass, an Al (aluminum) content of 40 to 60% by mass, and the balance of Fe and unavoidable impurities. The method for adding Ca to the molten steel according to the above [1] or the above [2].
  • Ca is added to molten steel using an iron-coated calcium-wire obtained by coating the Ca-containing alloy with a thin steel plate, and the rate of addition of the iron-coated calcium-wire to the molten steel is per minute in terms of pure Ca content.
  • the present invention since a Ca-containing alloy containing Ca and Mg as components is added to the molten steel, local reduction in Ca solubility is suppressed by stirring the molten steel with Mg gas, and non-metal interposition by Mg is suppressed.
  • the consumption of Ca due to the reduction reaction between Ca and the lower oxide is suppressed, and as a result, the addition yield of Ca is improved.
  • Mg has a higher vapor pressure than Ca and a lower melting point, so it is an element that evaporates more easily than Ca, and like Ca, it is a deoxidizing element that has a strong affinity for oxygen. Therefore, when a Ca-containing alloy containing Ca and Mg is added to molten steel, Mg evaporates before Ca evaporates. When the Mg content in the Ca-containing alloy is in a ratio within a predetermined range with respect to the Ca content, a part of the Mg gas is dissolved in the molten steel, and it depends on the dissolved Mg (Mg dissolved in the molten steel). Reduction of non-metal inclusions and stirring of molten steel with Mg gas occur at the same time.
  • the Ca concentration in the molten steel does not locally increase at the position where the Ca-containing alloy is added, and the Ca concentration locally increases to melt Ca.
  • the decrease in amount is suppressed.
  • the reduction of non-metal inclusions by the dissolved Mg reduces the lower oxides in the molten steel, so that the consumption of Ca due to the reduction reaction between the dissolved Ca and the lower oxides is suppressed.
  • the yield of Ca added is improved.
  • the Mg content of the Ca-containing alloy containing Ca and Mg satisfies the following equation (1) with respect to the Ca content.
  • the Mg content is preferably 0.4 times or more, more preferably 0.5 times or more the Ca content.
  • the Mg content exceeds 1.0 times the Ca content, Ca is also taken into the Mg gas bubbles as a gas component, and the yield of Ca added is rather lowered.
  • Mg added to molten steel is consumed for stirring molten steel with Mg gas and reducing non-metal inclusions with dissolved Mg, so that it remains as a component in molten steel. It does not have to be.
  • the Ca- and Mg-containing Ca-containing alloy is added to the molten steel in the ladle after being discharged from the converter to the ladle and then continuously cast after the vacuum degassing refining in the RH vacuum degassing device is completed. It is preferable that the period is until the start of continuous casting in the equipment.
  • the cleanliness of the molten steel in the ladle is improved, and the reaction between Ca dissolved in the molten steel and dissolved oxygen and lower oxides in the molten steel is reduced. This is because the Ca content consumed by the reaction is reduced and the Ca dissolved in the molten steel is increased.
  • the Ca-containing alloy used in the method for adding Ca to the molten steel according to the present invention has a Ca content of 15 to 30% by mass, a Mg content of 10 to 20% by mass, and a Si (silicon) content of 40 to 60% by mass. %, Ca-containing alloy with Fe (iron) and unavoidable impurities in the balance, or Ca content of 15 to 30% by mass, Mg content of 10 to 20% by mass, Al (aluminum) content of 40 to A Ca-containing alloy in an amount of 60% by mass, the balance of which is Fe and unavoidable impurities, is suitable.
  • the Ca content of the Ca-containing alloy is preferably 15 to 30% by mass.
  • the content of Mg in the Ca-containing alloy is less than 10% by mass, the driving force for dissolving Mg in the molten steel cannot be sufficiently obtained, and the non-metal inclusions are not sufficiently reduced as a gas. It is discharged into the atmosphere, and the effect of improving the addition yield of Ca cannot be expected.
  • the Mg content of the Ca-containing alloy is preferably 10 to 20% by mass.
  • Si is a component for stabilizing an alloy containing Ca and Mg, and the Si content of the Ca-containing alloy includes the Ca content and Mg content described above, and the content of Fe mixed as an impurity. Determined by. That is, the Si content of the Ca-containing alloy is preferably 40 to 60% by mass.
  • the Al content of the Ca-containing alloy is preferably 40 to 60% by mass, similar to the Si content described above.
  • the Ca-containing alloy can be added to molten steel by either the injection method or the wire feeder method, and it is not necessary to introduce new addition equipment.
  • the gas generated by the evaporation of the added Mg is agitating the molten steel. Therefore, compared to the injection method in which the powder or granular material is blown into the molten steel by the carrier gas and the molten steel is agitated, the wire feeder method can omit the blowing of the inert gas from the injection lance and the Ca addition operation. Can be simplified.
  • the rate of addition of iron-coated calcium-wire to molten steel is 5 to 15 kg per minute in pure Ca content, Mg.
  • the pure content is preferably 4 to 10 kg per minute.
  • the addition rate of the iron-coated calcium-wire itself is preferably 0.15 to 0.20 kg / (molten steel-t ⁇ min). At the above addition rate, it is achieved to maintain a high Ca addition yield.
  • the "iron-coated calcium-wire" is a molded product obtained by coating a powder-granular Ca-containing alloy with a thin steel plate.
  • the Ca-containing alloy containing Ca and Mg as components is added to the molten steel, the local decrease in Ca solubility is suppressed by stirring the molten steel with Mg gas. , The reduction of non-metal inclusions by Mg suppresses the consumption of Ca due to the reduction reaction between Ca and the lower oxide. As a result, it is realized that the addition yield of Ca is improved.
  • hot metal was decarburized and smelted in a converter to melt 250 tons of molten steel, and the molten steel was dispensed into a ladle.
  • the molten steel was housed in the ladle in a ladle smelting furnace.
  • vacuum degassing refining is carried out with the RH vacuum degassing device, and then the composition is composed by the wire feeder method during the period from the completion of refining with the RH vacuum degassing device to the start of continuous casting with the continuous casting facility.
  • Different Ca-containing alloys were added to the molten steel in the pan.
  • vacuum degassing and refining specifically, degassing treatment, adjustment of molten steel components, and floating / separation of non-metal inclusions by stirring molten steel are performed using an RH vacuum degassing device.
  • the total oxygen concentration (total oxygen concentration) was adjusted to 0.0020% by mass or less.
  • the processing time for vacuum degassing refining was 20 minutes, and the same conditions were used for all tests. Table 1 shows the representative components of molten steel after vacuum degassing refining.
  • Ca-containing alloys to be added to the molten steel in the ladle include Ca-containing alloys containing Ca and Mg (Ca-Mg-Si alloy, Ca-Mg-Al alloy), and for comparison, Mg is not contained.
  • Ca-containing alloy Ca—Si alloy
  • the ladle containing the molten steel is discharged from the RH vacuum degassing device, and then the molten steel in the ladle is subjected to a Ca-containing alloy using a wire feeder device.
  • a wire feeder device was added.
  • an iron-coated calcium-wire (iron skin thickness; 0) filled with powders and granules of the above Ca-containing alloy (Ca-Mg-Si alloy, Ca-Mg-Al alloy, Ca-Si alloy) inside. .04 cm) was added at an addition rate of 0.14 to 0.21 kg / (molten steel-t min), and 100 kg was added per charge.
  • the molten steel temperature when the Ca-containing alloy was added was 1580 to 1620 ° C.
  • the composition of the Ca-Mg-Si alloy varies the Ca content in the range of 15 to 30% by mass and the Mg content in the range of 5 to 25% by mass, and the composition of the Ca-Mg-Al alloy has a Ca content of 20.
  • the Mg content was varied in the range of ⁇ 25% by mass and 15 to 20% by mass.
  • the Ca content was set to a constant value of 30 mass.
  • Ca addition yield (%) [Ca concentration in molten steel after Ca addition (mass%) -Ca concentration in molten steel before Ca addition (mass%)] x 1000 / Ca addition amount (kg / molten steel-t) ... (2) )
  • Table 2 shows the composition of the Ca-containing alloy used in each test, the addition rate of the Ca-containing alloy in each test, and the Ca addition yield.
  • the test to which the Ca addition method to the molten steel according to the present invention is applied is indicated as "Example of the present invention", and the other tests are indicated as "Comparative example”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

溶鋼に添加するCa含有合金の組成を見直すことで、取鍋内の溶鋼に高い添加歩留まりでCa(カルシウム)を添加する。 本発明に係る溶鋼へのCa添加方法は、取鍋内の溶鋼にCa(カルシウム)を添加するにあたり、Caを含有するとともに、下記の(1)式を満たすMg(マグネシウム)を含有するCa含有合金(カルシウム含有合金)を添加する。また、RH真空脱ガス装置で精錬した後の取鍋内の溶鋼に、前記Ca含有合金を添加することが好ましい。 0.3≦Mg含有量(質量%)/Ca含有量(質量%)≦1.0 …(1)

Description

溶鋼へのCa添加方法
 本発明は、取鍋内の溶鋼に高い添加歩留まりでCa(カルシウム)を添加する方法に関する。
 溶鋼へのCa(カルシウム)添加は、ラインパイプ用鋼、快削鋼、ステンレス鋼、電磁鋼などにおいて、鋼中の非金属介在物の形態を制御し、耐食性や機械的特性、電磁特性などを向上させる目的で、一般的に行われている。例えば、製鋼-鋳造工程で鋼中に生成したMnS(硫化マンガン)やAl(酸化アルミニウム)などの非金属介在物は、圧延工程時に伸延または破砕され、ラインパイプ用鋼などの鋼材において水素誘起割れ(HIC)の起点となる。そのため、耐HIC特性が要求される鋼材の製造では、溶鋼へのCa添加により、上記の有害非金属介在物をCaS(硫化カルシウム)系非金属介在物及びCaO(酸化カルシウム)-Al系非金属介在物に改質し、非金属介在物を無害化している。
 通常、溶鋼へのCa添加においては、Ca源として、Ca-Si(珪素)合金、Ca-Fe(鉄)合金、Ca-Al(アルミニウム)合金などのCa含有合金(カルシウム含有合金)、または、CaC(炭化カルシウム)、CaCN(カルシウムシアナミド)、CaCl(塩化カルシウム)などのCa化合物(カルシウム化合物)が使用されている。しかし、Caは、蒸気圧が高く、密度も溶鋼に対して小さいので、溶鋼へのCa添加では、溶鋼の熱でCaが蒸発して雰囲気中に排出してしまうので、溶鋼へのCaの添加歩留まりは低い。
 Caの添加歩留まりが低すぎると、有害非金属介在物の改質が不十分となり、非金属介在物の形態制御を正確に行うことができなくなる。また、低い添加歩留まりを考慮して、添加するCa含有物質の量を増やすと、鋼中に歩留まらずに浪費されるCa分が増え、経済的ではなく、鋼材の製造コストが上昇する。したがって、Caの添加歩留まり向上は、溶鋼へのCa添加の際の重要な課題である。
 溶鋼へのCa添加の一般的な方法としては、先ず、転炉出鋼後の二次精錬工程において、取鍋に収容され、アルミニウム(Al)で脱酸された溶鋼をフラックスによって脱硫処理して溶鋼の硫黄含有量を低減する。その後、RH真空脱ガス装置などの真空脱ガス設備における真空脱ガス精錬中または真空脱ガス精錬後から連続鋳造設備での鋳造開始までの期間に、インジェクション法またはワイヤーフィーダー法によって溶鋼へCaを添加する方法が知られている。
 ここで、「インジェクション法」とは、粉粒状のCa含有合金またはCa化合物を、溶鋼へ浸漬したインジェクションランスを介して、キャリアガスとともに取鍋底部へ吹き込む方法である。また、「ワイヤーフィーダー法」とは、鉄被覆カルシウム-ワイヤーを、ピンチロールの駆動力で溶鋼中へ高速度で取鍋底部まで供給する方法である。ここで、「鉄被覆カルシウム-ワイヤー」とは、粉粒状のCa含有合金を薄鋼板で被覆した成形体である。その際、溶鋼中の反応を均一化させる場合には、取鍋に設置した吹き込み管またはポーラスプラグから不活性ガスを溶鋼中に吹き込み、不活性ガスによって溶鋼を撹拌している。
 前記インジェクション法及び前記ワイヤーフィーダー法は、Caの高い蒸気圧を考慮し、溶鋼静圧が付加される鋼浴底部にCaを添加することで、Caの添加歩留まりを増加させる手段として開発された添加方法である。これらの方法を前提とし、Ca添加歩留まりの更なる向上を目指した添加条件改善の手段が数多く提案されている。
 例えば、Ca添加条件の検討の例として、特許文献1には、Ca含有物質を適正量添加するために、Ca含有物質の添加速度に応じてキャリアガスの吹き込み速度を適正に制御する方法が提案されている。しかし、特許文献1は、Ca含有物質の種類は限定しておらず、Ca含有物質の合金組成による歩留まり影響は考慮していない。
 一方、特許文献2には、無方向性電磁鋼のためのCa添加において、Ca含有合金の条件として、添加するCa含有合金を不動態化処理し、その組成を、Ca;18~27質量%、Mg(マグネシウム);2~6質量%、Si;20~35質量%、Al;1~9質量%、Zr(ジルコニウム);1~5質量%、並びに、残部がFe及び不可避的不純物からなる組成に規定することで、Caの反応速度を下げるとともに溶解度を上げ、これにより、Caの添加歩留まりを向上させる添加方法が提案されている。
 しかし、特許文献2のCa含有合金では、歩留まりを向上させるために添加するとしているMg及びZrの含有量がどちらも6質量%以下の濃度であるが、この組成に規定した理由が言及されていない。特に、MgはCaよりも蒸気圧が高く、溶鋼中での蒸発がCaよりも速いので、特許文献2で規定されている組成では、Caの溶解度の向上に効果的ではない。
 また、特許文献3には、鉄被覆カルシウム-ワイヤーまたは粉粒状以外のCa含有合金の添加形態として、溶融したCa含有合金を密閉容器内に収容し、密閉容器内の溶融Ca含有合金を、注入管を介して溶鋼中に加圧注入する方法が提案されている。しかし、特許文献3では、Ca含有合金を溶融させる加熱装置や加圧を行う密閉容器が必要であり、常温のCa含有合金をインジェクション法またはワイヤーフィーダー法で添加する方法よりもコストが高く、且つ、ハンドリングも難しい。
 その他、特許文献4には、Ca含有合金の添加場所の検討として、鉄被覆カルシウム-ワイヤーの添加をRH真空脱ガス装置での処理中に行う方法が提案されている。特許文献4によれば、溶鋼流が弱く、溶鋼の静圧の高い、真空槽からの溶鋼吐出部に鉄被覆カルシウム-ワイヤーを供給することにより、溶鋼中へのCa含有合金粉体の流出促進効果が高くなり、蒸発損失が少なくなるので、添加歩留まりが向上するとしている。
 しかし、RH真空脱ガス装置での処理中にCa添加を行うと、Caを添加された溶鋼が真空槽内を環流するときに、Caの蒸発を促進させる、または、非金属介在物となって浮上分離を促進させてしまうので、特許文献4では、Caの添加歩留まりの向上に限界がある。
特開平8-157934号公報 特表2015-515541号公報 特開昭59-159921号公報 特開平10-245621号公報
 上記のように、溶鋼へのCa添加において、種々の提案がなされているが、高い添加歩留まりで添加する観点からは、従来、有効な手段はない。
 Caの添加歩留まりを向上させたCa添加方法の開発には、Ca含有合金の添加量や添加速度、キャリアガスの吹き込み速度といった添加条件だけでなく、添加するCa含有合金の組成も検討する余地がある。また、経済性及び取扱いの観点から、既存のインジェクション法またはワイヤーフィーダー法を用いて容易に実施可能な添加方法であることが必要である。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶鋼に添加するCa含有合金の組成を見直すことで、取鍋内の溶鋼に高い添加歩留まりでCaを添加することができる、溶鋼へのCa添加方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]取鍋内の溶鋼にCa(カルシウム)を添加するにあたり、下記の(1)式を満たすMg(マグネシウム)を含有するCa含有合金(カルシウム含有合金)を添加する、溶鋼へのCa添加方法。
0.3≦Mg含有量(質量%)/Ca含有量(質量%)≦1.0 …(1)
[2]RH真空脱ガス装置で精錬した後の取鍋内の溶鋼に、前記Ca含有合金を添加する、上記[1]に記載の溶鋼へのCa添加方法。
[3]前記Ca含有合金は、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Si(珪素)含有量が40~60質量%で、残部がFe(鉄)及び不可避的不純物である、上記[1]または上記[2]に記載の溶鋼へのCa添加方法。
[4]前記Ca含有合金は、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Al(アルミニウム)含有量が40~60質量%で、残部がFe及び不可避的不純物である、上記[1]または上記[2]に記載の溶鋼へのCa添加方法。
[5]前記Ca含有合金を薄鋼板で被覆した鉄被覆カルシウム-ワイヤーを使用して溶鋼にCaを添加し、前記鉄被覆カルシウム-ワイヤーの溶鋼への添加速度を、Ca純分で1分間あたり5~15kg、Mg純分で1分間あたり4~10kgとする、上記[1]から上記[4]のいずれかに記載の溶鋼へのCa添加方法。
 本発明によれば、Ca及びMgを成分として含有するCa含有合金を溶鋼に添加するので、Mgガスによる溶鋼の撹拌により、局所的なCa溶解度の低下が抑制されるとともに、Mgによる非金属介在物の還元により、Caと低級酸化物との還元反応によるCaの消費が抑制され、その結果、Caの添加歩留まりを向上させることが実現される。
 以下、本発明に係る溶鋼へのCa(カルシウム)添加方法を具体的に説明する。
 本発明に係る溶鋼へのCa添加方法は、取鍋内の溶鋼にCa(カルシウム)を添加するにあたり、所定量のCaを含有するとともに、所定量のMg(マグネシウム)を成分として同時に含有するCa含有合金(カルシウム含有合金)を添加することを必須とする。
 所定量のCa及びMgを成分として含有するCa含有合金を使用することで、Caの添加歩留まりが向上する理由について説明する。
 Mgは、Caよりも蒸気圧が高く、且つ、融点が低いので、Caよりも蒸発しやすい元素であり、また、Caと同様に酸素との親和力が強い脱酸元素である。したがって、Ca及びMgを含有するCa含有合金を溶鋼に添加すると、Caの蒸発よりも先にMgの蒸発が起こる。Ca含有合金中のMg含有量がCa含有量に対して所定の範囲内の比率の場合、Mgガスの一部が溶鋼中に溶解し、溶存Mg(溶鋼中に溶解して存在するMg)による非金属介在物の還元と、Mgガスによる溶鋼の撹拌とが、同時に起こる。
 その結果、溶鋼が撹拌されることで、Ca含有合金の添加位置において溶鋼中のCa濃度が局所的に高濃度化することがなく、Ca濃度が局所的に高濃度化することによるCaの溶解量の低下が抑制される。同時に、溶存Mgによる非金属介在物の還元によって溶鋼中の低級酸化物が減少するので、溶存Caと低級酸化物との還元反応によるCaの消費が抑制される。これらによってCaの添加歩留まりが向上する。
 上記のMgによる効果を発揮させるためには、Ca及びMgを含有するCa含有合金において、Mg含有量がCa含有量に対して下記の(1)式を満たす必要がある。
 0.3≦Mg含有量(質量%)/Ca含有量(質量%)≦1.0 …(1)
 Mg含有量がCa含有量の0.3倍未満の場合には、上記のMgによる効果が十分ではなく、Caの添加歩留まりの向上は期待できない。Caの添加歩留まりを安定して向上させるためには、Mg含有量がCa含有量の0.4倍以上、より望ましくは0.5倍以上であることが好ましい。一方、Mg含有量がCa含有量の1.0倍を超えると、Mgガス気泡の中にCaもガス成分として取り込まれ、却ってCaの添加歩留まりが低下する。
 尚、Caを含有する合金(Mgは含有しない)と、Mgを含有する合金(Caは含有しない)とを、物理的に混合して溶鋼に添加した場合、または、個別に同時に溶鋼に添加した場合に比較して、CaとMgとを同時に含有するCa含有合金を用いることで、安定的にCaの添加歩留まりを向上させることが可能となる。これは、Ca及びMgを含有するCa含有合金を用いることで、上記のMgによる効果、つまり、Mgガスによる溶鋼の撹拌と、溶存Mgによる非金属介在物の還元とが、取鍋内溶鋼中で均一に起こり、添加位置に起因する溶鋼中Ca濃度と溶鋼中Mg濃度との偏りが生じないためである。
 また、本発明に係る溶鋼へのCa添加方法では、溶鋼に添加するMgは、Mgガスによる溶鋼の撹拌及び溶存Mgによる非金属介在物の還元に消費されるので、溶鋼中に成分として残留しなくてもよい。
 Ca及びMgを含有するCa含有合金の取鍋内溶鋼への添加時期は、転炉から取鍋に出鋼され、その後のRH真空脱ガス装置での真空脱ガス精錬が終了した後から連続鋳造設備での連続鋳造開始までの期間とすることが好ましい。RH真空脱ガス装置での真空脱ガス精錬を経ることで、取鍋内溶鋼の清浄性が高まり、溶鋼中へ溶解したCaと溶鋼中の溶存酸素や低級酸化物との反応が低減し、これらの反応によって消費されるCa分が少なくなり、溶鋼中に溶解したCaが増加するからである。
 本発明に係る溶鋼へのCa添加方法で使用するCa含有合金としては、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Si(珪素)含有量が40~60質量%で、残部がFe(鉄)及び不可避的不純物であるCa含有合金、または、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Al(アルミニウム)含有量が40~60質量%で、残部がFe及び不可避的不純物であるCa含有合金が好適である。
 Ca含有合金として、上記の組成が好適である理由を説明する。
 Caは、Ca含有合金中の含有量を高めるほど、添加に必要なCa含有合金の質量を減らすことができ、経済的に有利であるが、Ca含有量が30質量%を超えると、Ca含有合金として安定化できず、添加時の反応も激しく、取扱いが難しくなる。また、Ca含有量が15質量%未満では、所定量のCaを添加するための使用時間が長くなり、生産性が低下するのみならず、添加に必要なCa含有合金の質量が増大し、経済的に不利である。そのため、Ca含有合金のCa含有量は、15~30質量%とすることが好ましい。
 Mgは、Ca含有合金中の含有量が10質量%未満では、Mgが溶鋼中に溶解するための駆動力が十分に得られず、非金属介在物の還元を十分に行わないまま、ガスとして雰囲気中に排出されてしまい、Caの添加歩留まり向上効果が期待できない。一方、Mg含有量が20質量%を超えると、Caとの安定な合金を形成できない上に、Mgの添加効果も飽和する。そのため、Ca含有合金のMg含有量は、10~20質量%とすることが好ましい。
 Siは、Ca及びMgを含む合金を安定化するための成分であり、Ca含有合金のSi含有量は、上記に説明したCa含有量及びMg含有量、並びに、不純物として混入するFeの含有量によって決められる。つまり、Ca含有合金のSi含有量は、40~60質量%とすることが好ましい。
 また、Ca及びMgは、上記のSi以外にAlとの合金化でも安定化される。したがって、Alとの合金化の場合にも、上記のSi含有量と同様に、Ca含有合金のAl含有量は、40~60質量%とすることが好ましい。
 本発明に係る溶鋼へのCa添加方法において、Ca含有合金は、インジェクション法またはワイヤーフィーダー法のどちらでも、溶鋼に添加することが可能であり、新たな添加設備を導入する必要がない。但し、インジェクション法とワイヤーフィーダー法とを比較すると、Ca及びMgを含有するCa含有合金を使用している本発明においては、添加するMgの蒸発で生じるガスが溶鋼の撹拌を行っている。したがって、キャリアガスによって粉粒体を溶鋼に吹き込むとともに、溶鋼の撹拌を行うインジェクション法に比較して、ワイヤーフィーダー法では、インジェクションランスからの不活性ガスの吹き込みを省略することができ、Ca添加操業をより簡便化できる。
 ワイヤーフィーダー法を採用して、本発明に係る溶鋼へのCa添加方法を実施する際には、鉄被覆カルシウム-ワイヤーの溶鋼への添加速度は、Ca純分で1分間あたり5~15kg、Mg純分で1分間あたり4~10kgとすることが好ましい。また、鉄被覆カルシウム-ワイヤー自体の添加速度としては、0.15~0.20kg/(溶鋼-t・min)とすることが好ましい。上記の添加速度であれば、Caの添加歩留まりを高く維持することが達成される。ここで、「鉄被覆カルシウム-ワイヤー」とは、粉粒状のCa含有合金を薄鋼板で被覆した成形体である。
 以上説明したように、本発明によれば、Ca及びMgを成分として含有するCa含有合金を溶鋼に添加するので、Mgガスによる溶鋼の撹拌により、局所的なCa溶解度の低下が抑制されるとともに、Mgによる非金属介在物の還元により、Caと低級酸化物との還元反応によるCaの消費が抑制される。その結果、Caの添加歩留まりを向上させることが実現される。
 組成の異なるCa含有合金を取鍋内溶鋼に添加し、耐HIC鋼を製造する試験を行った。試験では、転炉で溶銑を脱炭精錬して250トンの溶鋼を溶製し、溶製した溶鋼を取鍋に出鋼し、出鋼後、取鍋精錬炉で取鍋に収容された溶鋼を脱硫処理した。その後、RH真空脱ガス装置で真空脱ガス精錬を実施し、その後、RH真空脱ガス装置での精錬終了後から連続鋳造設備での連続鋳造開始前までの期間に、ワイヤーフィーダー法によって、組成の異なるCa含有合金を取鍋内溶鋼に添加した。
 いずれの試験も、転炉出鋼後に金属Alを取鍋内に添加して250トンの溶鋼を脱酸した。その後の取鍋精錬炉での脱硫処理工程では、CaO-Al-SiO系フラックスを脱硫剤として使用し、黒煙電極からのアーク熱により、溶鋼を昇温し且つ前記脱硫剤を滓化させた。その後、溶鋼に浸漬させたインジェクションランスから、撹拌用ガスとして100~150Nm/hrのアルゴンガスを吹き込み、溶鋼と脱硫剤とを撹拌して混合し、脱硫処理を行った。
 この脱硫処理後に、RH真空脱ガス装置を用いて、真空脱ガス精錬、具体的には、脱ガス処理、溶鋼成分の調整、溶鋼撹拌による非金属介在物の浮上・分離を行い、溶鋼中の総酸素濃度(トータル酸素濃度)を0.0020質量%以下に調整した。真空脱ガス精錬の処理時間は20分とし、いずれの試験も同一条件とした。表1に、真空脱ガス精錬終了後の溶鋼の代表成分を示す。
Figure JPOXMLDOC01-appb-T000001
 取鍋内溶鋼へ添加するCa含有合金としては、Ca及びMgを含有するCa含有合金(Ca-Mg-Si合金、Ca-Mg-Al合金)、及び、比較のために、Mgは含有せずにCaを含有するCa含有合金(Ca-Si合金)を使用した、
 RH真空脱ガス装置での真空脱ガス精錬の終了後、溶鋼を収容した取鍋をRH真空脱ガス装置から払い出し、その後、取鍋内の溶鋼に対して、ワイヤーフィーダー装置を用いてCa含有合金を添加した。ワイヤーフィーダー装置では、上記のCa含有合金(Ca-Mg-Si合金、Ca-Mg-Al合金、Ca-Si合金)の粉粒体を内部に充填した鉄被覆カルシウム-ワイヤー(鉄皮厚み;0.04cm)を0.14~0.21kg/(溶鋼-t・min)の添加速度で、1チャージあたり100kg添加した。Ca含有合金添加時の溶鋼温度は1580~1620℃であった。
 Ca-Mg-Si合金の組成は、Ca含有量を15~30質量%、Mg含有量を5~25質量%の範囲で変化させ、Ca-Mg-Al合金の組成は、Ca含有量を20~25質量%、Mg含有量を15~20質量%の範囲で変化させた。一方、Ca-Si合金の組成は、Ca含有量を30質量の一定値とした。
 Ca含有合金の添加前後で、溶鋼から分析用試料を採取し、溶鋼のCa濃度を分析し、それぞれの試験におけるCaの添加歩留まりを調査した。Caの添加歩留まりは、下記の(2)式によって算出した。
 Ca添加歩留まり(%)=[Ca添加後の溶鋼中Ca濃度(質量%)-Ca添加前の溶鋼中Ca濃度(質量%)]×1000/Ca添加量(kg/溶鋼-t) …(2)
 表2に、各試験において使用したCa含有合金の組成、及び、各試験におけるCa含有合金の添加速度、Ca添加歩留まりを示す。尚、表2の備考欄には、本発明に係る溶鋼へのCa添加方法を適用した試験を「本発明例」と表示し、それ以外の試験を「比較例」と表示している。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、本発明例は、比較例に比べて、高いCaの添加歩留まりを得られることが確認できた。したがって、所定量のCaを含有するとともに、所定量のMgを成分として含有するCa含有合金を使用することで、Caの添加歩留まりを向上させたCa添加が実施できることが確認された。

Claims (5)

  1.  取鍋内の溶鋼にCa(カルシウム)を添加するにあたり、下記の(1)式を満たすMg(マグネシウム)を含有するCa含有合金(カルシウム含有合金)を添加する、溶鋼へのCa添加方法。
     0.3≦Mg含有量(質量%)/Ca含有量(質量%)≦1.0 …(1)
  2.  RH真空脱ガス装置で精錬した後の取鍋内の溶鋼に、前記Ca含有合金を添加する、請求項1に記載の溶鋼へのCa添加方法。
  3.  前記Ca含有合金は、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Si(珪素)含有量が40~60質量%で、残部がFe(鉄)及び不可避的不純物である、請求項1または請求項2に記載の溶鋼へのCa添加方法。
  4.  前記Ca含有合金は、Ca含有量が15~30質量%、Mg含有量が10~20質量%、Al(アルミニウム)含有量が40~60質量%で、残部がFe及び不可避的不純物である、請求項1または請求項2に記載の溶鋼へのCa添加方法。
  5.  前記Ca含有合金を薄鋼板で被覆した鉄被覆カルシウム-ワイヤーを使用して溶鋼にCaを添加し、前記鉄被覆カルシウム-ワイヤーの溶鋼への添加速度を、Ca純分で1分間あたり5~15kg、Mg純分で1分間あたり4~10kgとする、請求項1から請求項4のいずれか1項に記載の溶鋼へのCa添加方法。
PCT/JP2020/023389 2019-06-17 2020-06-15 溶鋼へのCa添加方法 WO2020255917A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217041096A KR102565782B1 (ko) 2019-06-17 2020-06-15 용강으로의 Ca 첨가 방법
JP2020556827A JP7060113B2 (ja) 2019-06-17 2020-06-15 溶鋼へのCa添加方法
CN202080043949.3A CN113994015A (zh) 2019-06-17 2020-06-15 向钢水添加Ca的方法
EP20826607.2A EP3971306A4 (en) 2019-06-17 2020-06-15 METHOD OF ADDING CA TO MOLTEN STEEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-111705 2019-06-17
JP2019111705 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255917A1 true WO2020255917A1 (ja) 2020-12-24

Family

ID=74040488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023389 WO2020255917A1 (ja) 2019-06-17 2020-06-15 溶鋼へのCa添加方法

Country Status (5)

Country Link
EP (1) EP3971306A4 (ja)
JP (1) JP7060113B2 (ja)
KR (1) KR102565782B1 (ja)
CN (1) CN113994015A (ja)
WO (1) WO2020255917A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015834A (zh) * 2021-11-05 2022-02-08 贵州大学 一种新型钙系合金脱砷剂及脱砷方法
CN114574657A (zh) * 2022-02-17 2022-06-03 山西太钢不锈钢股份有限公司 一种防喷溅实芯金属钙包芯线在不锈钢精炼中的喂线工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202219049D0 (en) * 2022-12-16 2023-02-01 Injection Alloys Ltd Wire for refining molten metal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159921A (ja) 1983-02-28 1984-09-10 Kawasaki Steel Corp 溶鋼中へのCa合金添加方法
JPH08157934A (ja) 1994-12-02 1996-06-18 Sumitomo Metal Ind Ltd 溶鋼のCa処理方法
JPH08225822A (ja) * 1995-02-17 1996-09-03 Nippon Steel Corp 溶鋼中アルミナ系介在物の改質方法
JPH09263820A (ja) * 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法
JPH10245621A (ja) 1997-03-07 1998-09-14 Sumitomo Metal Ind Ltd 真空脱ガス処理中の溶鋼へのCa添加方法
CN1831148A (zh) * 2005-10-26 2006-09-13 李兴有 炼钢用的微低碳低硅、低磷、低硫的Al-Mg-Ca-Fe合金
CN102605143A (zh) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 一种铝镁钙合金及其在控制不锈钢夹杂物中的应用
JP2013144843A (ja) * 2011-12-16 2013-07-25 Jfe Steel Corp 溶鋼の成分調整方法
CN106086303A (zh) * 2016-07-28 2016-11-09 上海大学 钢铁冶金用的镁钙合金包芯线及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818567B2 (ja) 2000-09-14 2011-11-16 Jfeスチール株式会社 精錬剤および精錬方法
JP5277556B2 (ja) 2007-03-29 2013-08-28 Jfeスチール株式会社 含Ti極低炭素鋼の溶製方法及び含Ti極低炭素鋼鋳片の製造方法
CN101139643A (zh) * 2007-11-06 2008-03-12 宁夏贺兰山铁合金有限责任公司 用作炼钢脱氧剂的硅-钙-镁-铁合金
CN102719714A (zh) * 2011-03-31 2012-10-10 宝山钢铁股份有限公司 一种钢铁生产过程用于细化析出物的合金及其使用方法
CN103305659B (zh) * 2012-03-08 2016-03-30 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159921A (ja) 1983-02-28 1984-09-10 Kawasaki Steel Corp 溶鋼中へのCa合金添加方法
JPH08157934A (ja) 1994-12-02 1996-06-18 Sumitomo Metal Ind Ltd 溶鋼のCa処理方法
JPH08225822A (ja) * 1995-02-17 1996-09-03 Nippon Steel Corp 溶鋼中アルミナ系介在物の改質方法
JPH09263820A (ja) * 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法
JPH10245621A (ja) 1997-03-07 1998-09-14 Sumitomo Metal Ind Ltd 真空脱ガス処理中の溶鋼へのCa添加方法
CN1831148A (zh) * 2005-10-26 2006-09-13 李兴有 炼钢用的微低碳低硅、低磷、低硫的Al-Mg-Ca-Fe合金
CN102605143A (zh) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 一种铝镁钙合金及其在控制不锈钢夹杂物中的应用
JP2013144843A (ja) * 2011-12-16 2013-07-25 Jfe Steel Corp 溶鋼の成分調整方法
CN106086303A (zh) * 2016-07-28 2016-11-09 上海大学 钢铁冶金用的镁钙合金包芯线及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015834A (zh) * 2021-11-05 2022-02-08 贵州大学 一种新型钙系合金脱砷剂及脱砷方法
CN114574657A (zh) * 2022-02-17 2022-06-03 山西太钢不锈钢股份有限公司 一种防喷溅实芯金属钙包芯线在不锈钢精炼中的喂线工艺

Also Published As

Publication number Publication date
KR20220008897A (ko) 2022-01-21
EP3971306A1 (en) 2022-03-23
JP7060113B2 (ja) 2022-04-26
KR102565782B1 (ko) 2023-08-09
CN113994015A (zh) 2022-01-28
JPWO2020255917A1 (ja) 2021-09-13
EP3971306A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
RU2765475C1 (ru) Способ производства кислотоустойчивой трубопроводной стали высокой чистоты
JP7060113B2 (ja) 溶鋼へのCa添加方法
JP5092245B2 (ja) 溶鋼の脱窒方法
EP1386011B1 (en) Ladle refining of steel
EP3572534B1 (en) Desulfurization processing method of molten steel, and desulfurization agent
AU2002244528A1 (en) Ladle refining of steel
CN106148821A (zh) 加磷高强无间隙原子钢的生产工艺
JP2015030868A (ja) 極低窒素純鉄の溶製方法
US3169058A (en) Decarburization, deoxidation, and alloy addition
RU2566230C2 (ru) Способ переработки в кислородном конвертере низкокремнистого ванадийсодержащего металлического расплава
US5037609A (en) Material for refining steel of multi-purpose application
JPH09235611A (ja) 清浄性の高い極低硫純鉄の製造方法
JP7255639B2 (ja) 溶鋼の脱硫方法および脱硫フラックス
KR20200053870A (ko) 탈산제 및 용강 처리 방법
JP3097506B2 (ja) 溶鋼のCa処理方法
KR100999197B1 (ko) 강의 정련 방법
JP2012158789A (ja) 真空脱ガス装置を用いた溶鋼の脱硫方法
KR100900650B1 (ko) 용강중 칼슘 성분 조정용 와이어 및 이를 이용한 용강중칼슘 성분 조정방법
RU2569621C1 (ru) Способ производства ниобийсодержащей стали
JPH09209025A (ja) 溶接部の低温靱性に優れた耐hic鋼の製造方法
JP2023017650A (ja) 亜鉛含有物質の処理方法
JP2000239729A (ja) 清浄性に優れた極低炭素鋼の製造方法
RU2103381C1 (ru) Способ производства низколегированной стали с ванадием
JP5712945B2 (ja) 低硫鋼の溶製方法
JP2004238707A (ja) 低Al溶鋼のCa処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556827

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217041096

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020826607

Country of ref document: EP

Effective date: 20211216