EP3500617A1 - Verfahren zur herstellung von polyimiden - Google Patents

Verfahren zur herstellung von polyimiden

Info

Publication number
EP3500617A1
EP3500617A1 EP17777150.8A EP17777150A EP3500617A1 EP 3500617 A1 EP3500617 A1 EP 3500617A1 EP 17777150 A EP17777150 A EP 17777150A EP 3500617 A1 EP3500617 A1 EP 3500617A1
Authority
EP
European Patent Office
Prior art keywords
dihydrogen
tetrahydrofuran
water
polycondensation
stoichiometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17777150.8A
Other languages
English (en)
French (fr)
Inventor
Miriam Margarethe UNTERLASS
Sebastian ESPANA-OROZCO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Wien
Original Assignee
Technische Universitaet Wien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Wien filed Critical Technische Universitaet Wien
Publication of EP3500617A1 publication Critical patent/EP3500617A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/24Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms containing more than three carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/32Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups
    • C07C65/34Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings

Definitions

  • the present invention relates to a novel production process for polyimides. STATE OF THE ART
  • Polyimides are valuable materials for various applications. Their synthesis is usually carried out by polycondensation of diamines with dianhydrides in solution, in the melt or even in a solid state. Surprisingly, it was found several years ago that - despite the elimination of water during the condensation reaction - even water can be used as a solvent for the polyimide synthesis, when so-called “hydrothermal conditions” prevail, to understand a reaction under pressure at temperatures above 100 ° C. (see Hodgkin et al., "Water as a Polymerization Solvent-cyclization of Polyimides: Le Chatelier Confounded", Polym. Prep. (American Chemical Society, Division of Polymer Chemistry) 41, 208 (2000), and WO 99 / 06470). When solvents other than water are used, the term “solvothermal conditions” is used at temperatures above their boiling points.
  • Dao et al. (Dao, Groth and Hodgkin, "Microwave-assisted aqueous polyimidization using high-throughput Techniques ", Macromol, Rapid Commun., 28, 604-607 (2007);” Dao 2007 ”) by means of serial experiments with a ternary monomer mixture of a diamine (4,4-oxydi- aniline, ODA) and two dianhydrides (4,4 ').
  • AH salts it is first from previously dehydrated polyamines and polyanhydrides in the presence of a defined proportion of, for example, 5 to 60 mol% of monoanhydrides as terminators prepolymers, ie low molecular weight oligomers, prepared from which in the sequence Suspensions or - after grinding them to obtain smaller particle sizes - colloidal solutions are formed in water, which are used for coating surfaces.
  • monoanhydrides as terminators prepolymers, ie low molecular weight oligomers, prepared from which in the sequence Suspensions or - after grinding them to obtain smaller particle sizes - colloidal solutions are formed in water, which are used for coating surfaces.
  • suspension stabilizers it is also preferable to add suspension stabilizers to the prepolymers obtained, which are characterized as being insoluble in water.
  • the present invention solves this problem by providing a process for the preparation of polyimides by polycondensation of stoichiometric salts of polycarboxylic acids or their polyanhydrides and polyamines previously prepared by heating the salts for dehydration, which is characterized in that
  • This invention is based on the inventors' most surprising finding that some monomer salts of polycarboxylic acid and polyamide are water-soluble, and thus do not precipitate upon mixing of the monomers from an aqueous solution, in contrast to all other known such salts. Due to this unique property, it is possible to subject such an aqueous solution of the monomer salts directly to a processing step and simultaneously or sequentially by heating - preferably to a temperature Tp which is above the solid state polymerization temperature of the salt to complete conversion of the To ensure polycondensation reaction - to undergo a polycondensation.
  • the aqueous solution is applied to a support or a substrate to obtain a coating and the resulting coating is polycondensed by heating.
  • the coating is preferably dried before the polycondensation in step c), whereby a film or a solid film is formed on the substrate, which is easier to handle than the moist coating.
  • the aqueous solution is foamed in processing step b), after which the resulting foam is cured by polycondensation in subsequent step c) to obtain a cured polyimide foam.
  • the aqueous solution is fed to a nozzle heated to a temperature above Tp, where the stoichiometric salt in step c) is simultaneously cured by polycondensation and the resulting polyimide is forced through the nozzle opening (s), to obtain a molded polyimide product.
  • the polyimide thus obtained can be wet-spun, press-molded or extruded into filaments, for example, depending on the particular nozzle used and the associated molding apparatus. Wet-spun filaments are then preferably wound on spools to obtain polyimide fibers.
  • the water-soluble stoichiometric salt is preferably prepared in step a) by mixing stoichiometric amounts of polycarboxylic acid or its polyanhydride and polyamine in water or in an aqueous solvent mixture. Furthermore, the water-soluble stoichiometric salt is preferably precipitated by adding at least one organic solvent for intermediate storage prior to the polycondensation.
  • the organic solvent used therefor is not particularly limited so long as it sufficiently lowers the solubility of the stoichiometric salt in the formed aqueous solvent mixture to cause precipitation thereof, provided that it is itself a nonsolvent for the stoichiometric salt.
  • Both water-miscible and water-immiscible solvents can be used for this purpose, for example alcohols, e.g. such as methanol or other lower alcohols, ethers, e.g. THF, acetone, etc.
  • a film is drawn from the aqueous solution of the water-soluble stoichiometric salt on a substrate so as to optionally follow the subsequent polycondensation of the salt to the corresponding polyimide a composite material or, after peeling the cured polyimide film from the substrate, to obtain a polyimide film.
  • a water-soluble stoichiometric salt of a tetracarboxylic acid and a diamine is prepared and polycondensed, since these are the most common starting materials in polyimide production.
  • polyhydric amines and / or polycarboxylic acids or their anhydrides are also possible, e.g. the preparation of stoichiometric salts of triamine and dianhydride, diamine and trianhydride, triamine and trianhydride, etc. as long as these monomers form water-soluble salts in the corresponding stoichiometric composition.
  • the tetracarboxylic acid is particularly preferably selected from benzophenone tetracarboxylic acid, tetrahydrofurantetracarboxylic acid, butanetetracarboxylic acid and their dianhydrides, since the inventors have already found water-soluble stoichiometric salts of these polycarboxylic acids.
  • the diamine is preferably selected from benzenedimethanamine and ethylenediamine.
  • the present invention also provides these specific compounds, namely 1,3-Benzenedimethanammonium dihydrogen-3,3 ', 4,4'-benzophenone tetracarboxylate (1):
  • the present invention also provides two novel polyimides synthesized and characterized for the first time by the inventors - from the corresponding water-soluble stoichiometric salts (3) and (5), namely:
  • Figs. 1 to 5 are IR spectra of the water-soluble stoichiometric monomer salts obtained in Examples 1, 4, 6, 7 and 8 and Figs Figures 6 and 7 show IR spectra of the polyimides obtained in Examples 12 and 13.
  • Example 1 The batch of Example 1 was repeated, to which 30 ml of THF were added to the resulting aqueous solution of (1) (here: in 5 ml of distilled water), a precipitate forming in the form of a white turbidity. The mixture was allowed to stand overnight, with the initial precipitate turning yellow formed second liquid phase, which was crystallized after a further 24 hours rest to colorless crystals.
  • Example 1 was repeated, using instead of the isolation of the stoichiometric salt (1) by evaporation of the water, the aqueous solution for coating a glass plate. For this purpose, a few drops of the solution were dropped on a glass plate and allowed to air dry. Subsequently, the polycondensation to poly (N, N '- (benzene-1, 3-dimethylene) benzophenone-3,3', 4,4'-tetracarboxylic diimide) was carried out in a vacuum oven maintained at 200 ° C overnight. The IR spectrum of the polyimide thus obtained corresponded to that of the product known from the literature.
  • Example 4 The batch of Example 4 was repeated, to which 30 ml of THF were added to the resulting aqueous solution of (2) (here: in 5 ml of distilled water), a precipitate forming in the form of a white turbidity. The mixture was allowed to stand overnight, with the initial precipitate forming a yellow colored second liquid phase, which crystallized after a further 24 hours rest to colorless crystals.
  • Example 1 The batches of Examples 1, 4, 6, 7 and 8 were repeated, using the aqueous solutions for coating glass plates, similar to Example 3, instead of isolating the stoichiometric salts.
  • 5 to 10 ml of the respective aqueous solution were applied to a glass plate, which was then in an oven at a heating rate of 5 K / min was heated to 250 ° C and then maintained at this temperature for 30 min.
  • Example 10 Poly (N, N '- (benzene-1,3-dimethylene) benzophenone-3,3', 4,4'-tetracarboxylic diimide); in Example 10 (with the stoichiometric salt obtained analogously to Example 4): poly (N, N '- (benzene-1,3-dimethylene) butane-1,2,3,4-tetracarboxylic acid diimide) and in Example 1 ( with the stoichiometric salt obtained analogously to Example 7): poly (N, N '- (1, 2-ethylene) benzophenone-3,3', 4,4'-tetracarboxylic acid diimide);
  • Example 12 (with the stoichiometric salt obtained analogously to Example 6): poly (N, N '- (benzene-1,3-dimethylene) tetrahydrofuran-2,3,4,5-tetracarboxylic diimide) (6); and in Example 13 (with the stoichiometric salt obtained analogously to Example 8): poly (N, N '- (1,2-ethylene) tetrahydrofuran-2,3,4,5-tetracarboxylic diimide) (7).
  • the present invention thus provides a process by which polyimide coatings can be prepared from aqueous solutions of the stoichiometric monomer salts, which is a considerable advantage over the prior art, as it limits the use of expensive and only with enormous energy expense to be removed solvent or even avoided altogether.
  • the invention should not be limited to the five monomer combinations disclosed herein, especially since the person skilled in the art - who now has the knowledge that such water-soluble monomer salts actually exist - is easily able to do so by simple routine experiments, including other combinations of polycarboxylic acid or Polyanhydride and polyamines, which give a water-soluble stoichiometric salt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Polyimiden durch Polykondensation von davor hergestellten stöchiometrischen Salzen aus Polycarbonsäuren oder deren Polyanhydriden und Polyaminen mittels Erhitzung der Salze zur Dehydratisierung mit dem Kennzeichen, dass a) eine wässrige Lösung eines wasserlöslichen stöchiometrischen Salzes aus Polycarbonsäure und Polyamin hergestellt wird; b) die wässrige Lösung einem Verarbeitungsschritt unterzogen wird; und c) gleichzeitig oder anschließend das in der Lösung enthaltene Salz mittels Erhitzen zu einem Polyimid polykondensiert wird.

Description

Verfahren zur Herstellung von Polytmiden
Die vorliegende Erfindung betrifft ein neues Herstellungsverfahren für Polyimide. STAND DER TECHNIK
Polyimide stellen wertvolle Werkstoffe für diverse Anwendungen dar. Ihre Synthese erfolgt in der Regel durch Polykondensation von Diaminen mit Dianhydriden in Lösung, in der Schmelze oder auch in festem Zustand. Überraschenderweise wurde vor einigen Jahren herausgefunden, dass - der Wasserabspaltung während der Kondensationsreaktion zum Trotz - sogar Wasser als Lösungsmittel für die Polyimidsynthese eingesetzt werden kann, wenn so genannte "hydrothermale Bedingungen" herrschen, worunter eine Reaktion unter Druck bei Temperaturen über 100 °C zu verstehen sind (siehe Hodgkin et al., "Water as a Polymerization Solvent-cyclization of Polyimides: Le Chatelier Confounded?", Polym. Prep. (American Chemical Society, Division of Polymer Chemistry) 41 , 208 (2000), und WO 99/06470). Bei Verwendung anderer Lösungsmittel als Wasser wird bei Temperaturen oberhalb ihrer Siedepunkte von "solvotherma- len Bedingungen" gesprochen.
Der Mechanismus dieser Kondensationsreaktion verläuft in zwei Stufen über die Bildung von Amidsäuren, die in der Folge eine Cyclodehydratisierung zu den entsprechenden Imiden erfahren. Dao et al. haben 1999 Faktoren, die die Imidierungsreaktion maßgeblich beeinflussen, untersucht (Dao, Hodgkin und Morton, "Important Factors Controlling Synthesis of Imides in Water", High Perform. Polym. 1 1 , 205-218 (1999), "Dao 1999") und unter anderem festgestellt, dass die Produkte umso reiner anfallen, je höher die Temperatur der Imidierungsreaktion liegt.
Der Grund dafür, dass das Reaktionsgleichgewicht dieser unter Wasserabspaltung erfolgenden Zyklisierung selbst in Wasser als Lösungsmittel auf der Produktseite liegt, sind die veränderten Eigenschaften des Lösungsmittels unter solvothermalen Bedingungen. So verhält sich Wasser unter diesen Bedingungen etwa wie ein pseudo-orga- nisches Lösungsmittel (Hodgkin et al., s.o.). Weiters ist es üblich, vor der Polymerisation ein stöchiometrisches Salz aus Diamid und Dianhydrid zu bilden, was zumeist durch einfaches Vermischen der Monomere in Wasser und Abfiltrieren der in Wasser unlöslichen und daher ausgefallenen Salze erfolgt, wie dies ganz aktuell auch in der WO 2016/032299 A1 beschrieben wird. Dabei erfahren die Anhydride eine Hydrolyse zu den freien Tetracarbonsäuren, von denen je zwei Carboxylgruppen mit jeweils einer Aminogruppe ein Ammoniumsalz bilden (Unterlass et al. , "Mechanistic study of hydrothermal synthesis of aromatic polyimides", Polym. Chem. 201 1 , 2, 1744). In den dabei erhaltenen Monomersalzen, die mitunter (in Analogie zur Polyamid- und insbesondere zur Nylonsynthese) als "AH-Salze" bezeichnet werden, liegen somit die beiden Monomere exakt im Molverhältnis 1 :1 vor, weswegen deren anschließende Polymerisation zu sehr reinen Polyimiden führt. Nachstehend ist ein Beispiel für das Reaktionsschema zweier typischer aromatischer nomere angeführt:
Eine weitere moderne Technologie, die seit einigen Jahren zur Synthese von organischen Verbindungen und neuerdings auch von Polyimiden Anwendung findet, ist Mikrowellenstrahlung, wodurch Reaktionszeiten deutlich verkürzt und die Selektivität von Reaktionen erhöht werden können (Lindstrom et al., "Microwave Assisted Organic Synthesis: a Review", Tetrahedron 57, 9225-9283 (2001 ); Perreux et al., "A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations", Tetrahedron 57, 9199-9223 (2001 )). Auch zur Synthese von Polyimiden wurden Mikrowellen bereits eingesetzt (Lewis et al., "Accelerated Imidization Reactions using Microwave Radiation", J. Polym. Sei., Part A: Polym. Chem. 30, 1647-1653 (1992) und US 5.453.161 ).
Auch eine Kombination aus dem oben beschriebenen Hydrothermalverfahren und Erhitzen mittels Mikrowellenstrahlung ist bekannt. Einerseits haben Dao et al. (Dao, Groth und Hodgkin, "Microwave-assisted Aqueous Polyimidization using High-throughput Techniques", Macromol. Rapid Commun. 28, 604-607 (2007); "Dao 2007") mittels Reihenversuchen mit einem ternären Monomerengemisch aus einem Diamin (4,4 -Oxydi- anilin, ODA) und zwei Dianhydriden (4,4'-(Hexafluorisopropyliden)diphthalsäureanhy- drid, 6-FDA, Pyromellithsäuredianhydrid, PMDA) bei Temperaturen zwischen 120 °C und 200 °C festgestellt, dass die besten Ergebnisse bei 180-200 °C erzielbar sind, wenn das Ziel ein möglichst hohes Molekulargewicht der dabei erhaltenen statistischen (Block- Copolymere der nachstehenden Formel ist:
Und andererseits haben erst vor wenigen Jahren Brunei et al. (Brunei, Marestin, Martin und Mercier, "Water-borne Polyimides via Microwave-assisted Polymerization", High Perform. Polym. 22, 82-94 (2010)) anhand eines binären Polyimids aus ODA und 4,4'- (4,4'-lsopropylidendiphenoxy)bis(phthalsäureanhydrid) (Bisphenol A-Dianhydrid, BPADA)
ein weiteres Mal bestätigt, dass durch Mikrowelleneinsatz die Reaktionszeiten erheblich, d.h. von 4 bis 12 h auf nur 5 bis 10 min verkürzt werden können. Die in dieser kurzen Zeit erzielten Umsätze sind allerdings mit nur etwa 20 % äußerst gering. In beiden Fällen konnten allerdings keine kristallinen Produkte erhalten werden. In US 2008/300360 A1 wird ein alternatives Verfahren unter Verwendung von Wasser als Lösungsmittel zur Herstellung wasserbasierter Beschichtungslösungen offenbart. Dabei wird allerdings nicht von AH-Salzen ausgegangen, sondern es werden zunächst aus zuvor entwässerten Polyaminen und Polyanhydriden in Gegenwart eines definierten Anteils von z.B. 5 bis 60 Mol-% an Monoanhydriden als Terminatoren Präpolymere, d.h. niedermolekulare Oligomere, hergestellt, aus denen in der Folge Suspensionen oder - nach Zermahlen derselben zum Erhalt kleinerer Partikelgrößen - kolloidale Lösungen in Wasser gebildet werden, die zur Beschichtung von Oberflächen einsetzbar sind. Zur Herstellung stabiler Suspensionen und kolloidaler Lösungen werden den erhaltenen Präpolymeren, die als nicht wasserlöslich charakterisiert werden, zudem vorzugsweise Suspensionsstabilisatoren zugesetzt. Diese wässrigen Systeme werden durch Aufbringen auf eine Oberfläche, Abdampfen des Wassers und Erhitzen, um die Polykondensation der Präpolymere zu Makromolekülen mit Molekulargewichten von zumindest 10.000 einzuleiten, zu Beschichtungen verarbeitet, insbesondere zu Laminaten.
In Bezug auf Solvothermalsynthese von Polyimiden haben vor kurzem die Erfinder des vorliegenden Anmeldungsgegenstands herausgefunden, dass unter hydrothermalen Bedingungen durchaus auch kristalline Polyimide erhältlich sind, wenn entweder das Lösungsmittel auf solvothermale Bedingungen erhitzt und erst danach die Monomere zugesetzt werden, um die Reaktion in Gang zu setzen, oder aber die Monomere mit dem Lösungsmittel vermischt werden und das Gemisch innerhalb von 5 min auf solvothermale Bedingungen erhitzt wird, wobei die Reaktionstemperatur während der Polymerisation unter der Polymerisationstemperatur der Monomere in festem Zustand gehalten wird (B. Baumgartner, M. J. Bojdys, P. Skrinjar und M. M. Unterlass, "Design Strategies in Hydrothermal Polymerization of Polyimides", Macromol. Chem. Phys. 217, 485-500 (2016)].
Diesen vorteilhaften jüngsten Entwicklungen zum Trotz stellt der hohe apparative und Energieaufwand zur Erzeugung hydrothermaler Bedingungen, um als Lösungsmittel für die Polykondensationsreaktion Wasser nutzen zu können, weiterhin einen beträchtlichen Nachteil dar. Vor diesem Hintergrund bestand die Aufgabe der vorliegenden Erfindung darin, ein Verfahren bereitzustellen, durch das dieser Nachteil überwunden werden kann.
OFFENBARUNG DER ERFINDUNG
Die vorliegende Erfindung löst diese Aufgabe durch Bereitstellung eines Verfahrens zur Herstellung von Polyimiden durch Polykondensation von davor hergestellten stö- chiometrischen Salzen aus Polycarbonsäuren oder deren Polyanhydriden und Poly- aminen mittels Erhitzung der Salze zur Dehydratisierung, das dadurch gekennzeichnet ist, dass
a) eine wässrige Lösung eines wasserlöslichen stöchiometrischen Salzes aus Poly- carbonsäure und Polyamin hergestellt wird;
b) die wässrige Lösung einem Verarbeitungsschritt unterzogen wird; und
c) gleichzeitig oder anschließend das in der Beschichtung enthaltene Salz mittels Erhitzen zu einem Polyimid polykondensiert wird.
Diese Erfindung beruht auf der höchst überraschenden Entdeckung der Erfinder, dass manche Monomersalze aus Po lycarbon säure und Polyamid - im Gegensatz zu sämtlichen anderen bekannten derartigen Salzen - wasserlöslich sind und daher beim Vermischen der Monomere aus einer wässrigen Lösung nicht ausfallen. Aufgrund dieser einzigartigen Eigenschaft ist es möglich, eine solche wässrige Lösung der Monomersalze direkt einem Verarbeitungsschritt zu unterziehen und gleichzeitig oder in der Folge durch Erhitzen - vorzugsweise auf eine auf eine Temperatur Tp, die oberhalb der Festphasen-Polymerisationstemperatur des Salzes liegt, um vollständigen Umsatz der Polykondensationsreaktion zu gewährleisten - einer Polykondensation zu unterziehen.
In bevorzugten Ausführungsformen wird die wässrige Lösung auf einen Träger oder ein Substrat aufgetragen, um eine Beschichtung zu erhalten, und die so erhaltene Beschichtung durch Erhitzen polykondensiert. Dabei wird die Beschichtung vor der Polykondensation in Schritt c) vorzugsweise getrocknet, wodurch eine Folie oder ein fester Film auf dem Substrat ausgebildet wird, der leichter handhabbar ist als die feuchte Beschichtung. In alternativen bevorzugten Ausführungsformen wird die wässrige Lösung im Verarbeitungsschritt b) aufgeschäumt, wonach der so erhaltene Schaum im anschließenden Schritt c) durch Polykondensation gehärtet wird, um einen gehärteten Polyimidschaum zu erhalten. In wiederum anderen bevorzugten Ausführungsformen wird im Verarbeitungsschritt b) die wässrige Lösung einer auf eine Temperatur oberhalb von Tp erhitzten Düse zugeführt, wo das stöchiometrische Salz in Schritt c) gleichzeitig durch Polykondensation gehärtet und das dabei erhaltene Polyimid durch die Düsenöffnung(en) gedrückt wird, um ein geformtes Polyimidprodukt zu erhalten. Das so erhaltene Polyimid kann dabei in Abhängigkeit von der jeweils verwendeten Düse und der zugehörigen Formvorrichtung beispielsweise zu Filamenten nassgesponnen, pressgeformt oder extrudiert werden. Nassgesponnene Filamente werden in der Folge vorzugsweise auf Spulen aufgewickelt, um Polyimidfasern zu erhalten.
Das wasserlösliche stöchiometrische Salz wird in Schritt a) vorzugsweise durch Vermischen stöchiometrischer Mengen von Polycarbonsäure oder deren Polyanhydrid und Polyamin in Wasser oder in einem wässrigen Lösungsmittelgemisch hergestellt. Weiters wird das wasserlösliche stöchiometrische Salz vorzugsweise durch Zusatz zumindest eines organisches Lösungsmittels zur Zwischenlagerung vor der Polykondensation ausgefällt. Das hierfür verwendete organische Lösungsmittel ist nicht speziell eingeschränkt, solange es die Löslichkeit des stöchiometrischen Salzes in dem gebildeten wässrigen Lösungsmittelgemisch ausreichend herabsetzt, so dass dessen Fällung herbeigeführt wird, und mit der Maßgabe, dass es selbst ein Nichtlösungsmittel für das stöchiometrische Salz darstellt. Sowohl mit Wasser mischbare als auch nicht wassermischbare Lösungsmittel können für diesen Zweck eingesetzt werden, beispielsweise Alkohole, wie z.B. etwa Methanol oder andere niedere Alkohole, Ether, wie z.B. THF, Aceton usw.
In bevorzugten Ausführungsformen der vorliegenden Erfindung wird, wie bereits zuvor erwähnt, im Verarbeitungsschritt b) aus der wässrigen Lösung des wasserlöslichen stöchiometrischen Salzes auf einem Substrat eine Folie gezogen, um so nach der anschließenden Polykondensation des Salzes zum entsprechenden Polyimid wahlweise ein Verbundmaterial oder - nach Abziehen des gehärteten Polyimidfilms vom Substrat - eine Polyimidfolie zu erhalten.
Vorzugsweise wird gemäß vorliegender Erfindung ein wasserlösliches stöchiometri- sches Salz aus einer Tetracarbonsäure und einem Diamin hergestellt und polykondensiert, da dies die gängigsten Edukte bei der Polyimidherstellung darstellen. Allerdings sind natürlich auch Kombinationen anderer mehrwertiger Amine und/oder Polycarbon- säuren bzw. deren Anhydriden möglich, z.B. die Herstellung von stöchiometrischen Salzen aus Triamin und Dianhydrid, Diamin und Trianhydrid, Triamin und Trianhydrid usw., solange diese Monomere wasserlösliche Salze in der entsprechenden stöchiometrischen Zusammensetzung bilden.
Besonders bevorzugt ist dabei die Tetracarbonsäure aus Benzophenontetracarbon- säure, Tetrahydrofurantetracarbonsäure, Butantetracarbonsäure und deren Dianhydriden ausgewählt, da die Erfinder bereits wasserlösliche stöchiometrische Salze dieser Polycarbonsäuren gefunden haben. Aus demselben Grund ist das Diamin vorzugsweise aus Benzoldimethanamin und Ethylendiamin ausgewählt. Insbesondere sind die stöchiometrischen Salze aus 1 ,3-Benzoldimethanammonium-dihydrogen-3,3',4,4'- benzophenontetracarboxylat (1 ), 1 ,3-Benzoldimethanammonium-dihydrogen-1 ,2,3,4- butantetracarboxylat (2), 1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran- 2,3,4,5-tetracarboxylat(3), Ethan-1 ,2-diammonium-dihydrogen-3,3',4,4'-benzophenon- tetracarboxylat (4), Ethan-1 ,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetra- carboxylat (5) und deren Hydraten ausgewählt, mit denen im erfindungsgemäßen Verfahren bereits ausgezeichnete Ergebnisse erzielt wurden, wobei die Hydrate einfacher in kristalliner Form herzustellen sind als die wasserfreien Ammoniumsalze.
Da diese Salze allesamt neu sind, d.h. von den Erfindern erstmalig synthetisiert und charakterisiert wurden, was gleichzeitig den Grund dafür darstellt, dass ihre Wasserlöslichkeit noch nicht entdeckt werden konnte, stellt die vorliegende Erfindung in einem zweiten Aspekt auch diese konkreten Verbindungen bereit, nämlich: 1 ,3-Benzoldimethanammonium-dihydrogen-3,3',4,4'-benzophenontetracarboxylat (1 ):
1 ,3-Benzoldimethanammonium-dihydrogen-1 ,2,3,4-butantetracarboxylat (2):
1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarboxylat Ethan-1 ,2-diammonium-dihydrogen-3,3\4,4'-benzophenontetracarboxylat (4):
Ethan-1 ,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarboxylat (5):
Weiters stellt die vorliegende Erfindung auch zwei neue, von den Erfindern - aus den entsprechenden wasserlöslichen stöchiometrischen Salzen (3) und (5) - erstmalig synthetisierte und charakterisierte Polyimide bereit, nämlich:
Poly(N,N'-(benzol-1 ,3-dimethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (6):
und
Poly(N,N'-(1 ,2-ethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (7):
worin jeweils gilt: n≥ 2.
KURZBESCHREIBUNG DER ZEICHNUNGEN
Die vorliegende Erfindung wird nachstehend anhand von nichteinschränkenden Beispielen und unter Bezugnahme auf die beiliegenden Zeichnungen näher beschrieben, wovon die Fig. 1 bis 5 IR-Spektren der in den Beispielen 1 , 4, 6, 7 und 8 erhaltenen, wasserlöslichen stöchiometrischen Monomersalze und die Fig. 6 und 7 IR-Spektren der in den Beispielen 12 und 13 erhaltenen Polyimide zeigen.
BEISPIELE
Alle in den nachstehenden Experimenten eingesetzten Reagenzien sind kommerziell erhältlich und wurden ohne weitere Reinigung eingesetzt. Die in den beiliegenden Zeichnungen gezeigten IR-Spektren wurden mittels FT-IR-ATR-Spektroskopie auf einem Tensor 27 von Bruker und 1H-NMR-Spektren auf einem Avance 250, ebenfalls von Bruker, mit 250 MHz aufgenommen. Mit "Tp" wird nachstehend die Festphasen- Polymerisationstemperatur der erhaltenen stöchiometrischen Salze bezeichnet. Beispiel 1
Herstellung von 1 ,3-Benzoldimethanammonium-dihydrogen-3,3',4,4'-benzophenon- tetracarboxylat (1 )
150 mg (0,47 mmol) 3,3',4,4'-Benzophenontetracarbonsäuredianhydrid wurden in 10 ml dest. Wasser suspendiert, und 61 ,4 μΙ (0,47 mmol) 1 ,3-Benzoldimethanamin wurden zugesetzt, wobei sich eine klare, gelbliche Lösung bildete. Nach 30-minütigem Rühren wurde das Wasser am Rotationsverdampfer im Wasserbad (50 °C) in einem Vakuum von etwa 60 mbar abgezogen und der Rückstand im Hochvakuum getrocknet. Dabei wurde die Titelverbindung quantitativ als farbloser amorpher Feststoff erhalten, dessen IR-Spektrum in Fig. 1 gezeigt wird. Der Feststoff ist stark hygroskopisch und zerfließt an der Luft allmählich zu einer gelben flüssigen Phase des Tetrahydrats.
Tp.: 151 °C (DSC) bzw. 161 °C (TGA) (Heizrate: 10 K/min)
1H-NMR (250 MHz, DMSO-de) δ: 8,51 (d, 2H, ar), 8,32 (d, 2H, ar), 7,85 (q, 2H, ar), 7,45 (m, 4H, ar), 4,01 (s, 4H, aliph).
IR (cm -1): 2882, 2619, 1694, 1601 , 1540, 1359. Beispiel 2
Ausfällung des Tetra hydrats von (1 ) durch Lösungsmittelzusatz
Der Ansatz von Beispiel 1 wurde wiederholt, wobei zu der erhaltenen wässrigen Lösung von (1 ) (hier: in 5 ml dest. Wasser) 30 ml THF zugesetzt wurden, wobei sich ein Niederschlag in Form einer weißen Trübung bildete. Das Gemisch wurde über Nacht stehen gelassen, wobei sich aus dem anfänglichen Niederschlag eine gelb gefärbte zweite flüssige Phase bildete, die nach weiteren 24 Stunden Ruhe zu farblosen Kristallen kristallisiert war.
Die Daten korrelierten, abgesehen von der Gegenwart von Wasser, mit jenen aus Beispiel 1 .
Beispiel 3
Herstellung von (1 ) als wässrige Lösung und Beschichtung einer Oberfläche
Beispiel 1 wurde wiederholt, wobei anstelle der Isolierung des stöchiometrischen Salzes (1 ) durch Abdampfen des Wassers die wässrige Lösung zur Beschichtung einer Glasplatte verwendet wurde. Dazu wurden einige Tropfen der Lösung auf eine Glasplatte aufgetropft und an der Luft trocknen gelassen. Anschließend erfolgte die Poly- kondensation zu Poly(N,N'-(benzol-1 ,3-dimethylen)benzophenon-3,3',4,4'-tetra- carbonsäurediimid) in einem über Nacht auf 200 °C gehaltenen Vakuumofen. Das IR- Spektrum des so erhaltenen Polyimids entsprach jenem des literaturbekannten Produkts.
Beispiel 4
Herstellung von 1 ,3-Benzoldimethanammonium-dihydrogen-1 ,2,3,4-butantetra- carboxylat (2):
150 mg (0,64 mmol) 1 ,2,3,4-Butantetracarbonsäure wurden in 10 ml dest. Wasser gelöst, und 84,5 μΙ (0,64 mmol) 1 ,3-Benzoldimethanamin wurden auf einmal zugesetzt, wonach das Reaktionsgemisch geschüttelt wurde, bis sich eine klare Lösung gebildet hatte. Aufarbeitung und Trocknung erfolgten analog zu Beispiel 1 , wobei die Titelverbindung in quantitativer Ausbeute als hygroskopischer, farbloser, amorpher Feststoff erhalten wurde, dessen IR-Spektrum in Fig. 2 gezeigt wird.
Tp.: 151 X (TGA)
1 H-NMR (250 MHz, D20) δ: 7,5 (m, 4H, ar), 4,2 (s, 4H. aliph), 2,9 (m, 2H, aliph), 2,6 (m, 2H, aliph), 2,4 (m, 2H, aliph).
lR (cm-1): 3386, 2918, 2626, 1701 , 1620, 1542.
Beispiel 5
Ausfällung des Tetra hydrats von (2) durch Lösungsmittelzusatz
Der Ansatz von Beispiel 4 wurde wiederholt, wobei zu der erhaltenen wässrigen Lösung von (2) (hier: in 5 ml dest. Wasser) 30 ml THF zugesetzt wurden, wobei sich ein Niederschlag in Form einer weißen Trübung bildete. Das Gemisch wurde über Nacht stehen gelassen, wobei sich aus dem anfänglichen Niederschlag eine gelb gefärbte zweite flüssige Phase bildete, die nach weiteren 24 Stunden Ruhe zu farblosen Kristallen kristallisiert war.
Die Daten korrelierten, abgesehen von der Gegenwart von Wasser, mit jenen aus Beispiel 4.
Beispiel 6
Herstellung von 1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran-2, 3,4,5- tetracarboxylat (3):
(3)
150 mg (0,60 mmol) Tetrahydrofuran-2,3,4,5-tetracarbonsäure wurden in 10 ml dest. Wasser gelöst, und 79,8 μΙ (0,60 mmol) 1 ,3-Benzoldimethanamin wurden auf einmal zugesetzt, wonach das Reaktionsgemisch geschüttelt wurde, bis sich eine klare Lösung gebildet hatte. Aufarbeitung und Trocknung erfolgten analog zu Beispiel 1 , wobei ein hygroskopischer, farbloser, amorpher Feststoff in quantitativer Ausbeute erhalten wurde, dessen IR-Spektrum in Fig. 3 gezeigt wird.
Fp.: 62 °C (DSC)
Tp.: 144 °C (DSC) bzw. 151 °C (TGA) (Heizrate: 10 K/min)
1H-NMR (250 MHz, DMSO-de) δ: 7,5 (s, 1 H, ar), 7,4 (m, 3H, ar), 4,4 (m, 2H, aliph), 4,0 (s, 4H, aliph), 3,0 (m, 2H, aliph).
IR (cm 1): 3393, 3052, 2929, 1714, 1600, 1568.
Beispiel 7
Herstellung von Ethan-1 ,2-diammonium-dihydrogen-3,3',4,4'-benzophenontetra- carboxylat (4):
150 mg (0,47 mmol) 3,3',4,4'-Benzophenontetracarbonsäuredianhydrid wurden in 10 ml dest. Wasser gelöst, und 31 ,1 pl (0,47 mmol) 1 ,2-Ethylendiamin wurden auf einmal zugesetzt, wonach das Reaktionsgemisch geschüttelt wurde, bis sich eine klare Lösung gebildet hatte. Aufarbeitung und Trocknung erfolgten analog zu Beispiel 1 , wobei ein hygroskopischer, farbloser, amorpher Feststoff in quantitativer Ausbeute erhalten wurde, dessen IR-Spektrum in Fig. 4 gezeigt wird. Tp.: 128 °C (DSC) bzw. 149 C (TGA) (Heizrate: 10 K/min)
1H-NMR (250 MHz. D20) δ: 8,1 (d, 2H, ar), 7,9 (q, 2H. ar), 7,7 (d, 2H, ar), 3,4 (s, 4H, aliph).
IR (cm 1 ): 3386, 3030, 2929, 1699, 1602, 1541 .
Beispiel 8
Herstellung von Ethan-1 ,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetra- carboxylat (5):
150 mg (0,60 mmol) Tetrahydrofuran-2,3,4,5-tetracarbonsäure wurden in 10 ml dest. Wasser gelöst, und 40,4 μΙ (0,60 mmol) 1 ,2-Ethylendiamin wurden auf einmal zugesetzt, wonach das Reaktionsgemisch geschüttelt wurde, bis sich eine klare Lösung gebildet hatte. Aufarbeitung und Trocknung erfolgten analog zu Beispiel 1 , wobei ein hygroskopischer, farbloser, amorpher Feststoff erhalten wurde, dessen IR-Spektrum in Fig. 5 gezeigt wird.
Tp.: 128 °C (DSC) bzw. 149 °C (TGA) (Heizrate: 10 K/min)
1H-NMR (250 MHz, D20) δ: 4,8 (m, 2H, aliph), 3,5 (m, 2H, aliph), 3,4 (s, 4H, aliph).
IR (cm-1): 3400, 3031 , 2926, 1713, 1600, 1561 .
Beispiele 9 bis 13
Beschichtung und Polykondensation
Die Ansätze der Beispiele 1 , 4, 6, 7 und 8 wurden wiederholt, wobei ähnlich wie in Beispiel 3 anstelle der Isolierung der stöchiometrischen Salze die wässrigen Lösungen zur Beschichtung von Glasplatten verwendet wurden. Dazu wurden 5 bis 10 ml der jeweiligen wässrigen Lösung auf eine Glasplatte aufgebracht, die anschließend in einem Ofen mit einer Heiz rate von 5 K/min auf 250 °C erhitzt und danach 30 min lang auf dieser Temperatur gehalten wurde.
Die so erhaltenen Polyimide waren drei literaturbekannte Produkte, nämlich in Beispiel 9 (mit dem analog zu Beispiel 1 erhaltenen stöchiometrischen Salz):
Poly(N,N'-(benzol-1 ,3-dimethylen)benzophenon-3,3',4,4'-tetracarbonsäurediimid); in Beispiel 10 (mit dem analog zu Beispiel 4 erhaltenen stöchiometrischen Salz): Poly(N,N'-(benzol-1 ,3-dimethylen)butan-1 ,2,3,4-tetracarbonsäurediimid): und in Beispiel 1 1 (mit dem analog zu Beispiel 7 erhaltenen stöchiometrischen Salz): Poly(N,N'-(1 ,2-ethylen)benzophenon-3,3',4,4'-tetracarbonsäurediimid);
sowie zwei bislang unbekannte Polyimide, nämlich:
in Beispiel 12 (mit dem analog zu Beispiel 6 erhaltenen stöchiometrischen Salz): Poly(N,N'-(benzol-1 ,3-dimethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (6); und in Beispiel 13 (mit dem analog zu Beispiel 8 erhaltenen stöchiometrischen Salz): Poly(N,N'-(1 ,2-ethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (7).
Diese Polyimide wurden unter anderem mittels IR-Spektroskopie analysiert. Die IR- Spektren der Produkte der Beispiele 9 bis 1 1 entsprachen dabei jenen der literaturbekannten Polyimide.
Von den neuen Polyimiden (6) und (7) wurden zusätzlich zu den in den Fig. 6 und 7 dargestellten IR-Spektren die Zersetzungspunkte bestimmt, und von Polyimid (6) wurde außerdem ein 1H-NMR-Spektrum aufgenommen (für Polyimid (7) unmöglich, da es in den getesteten Lösungsmitteln unlöslich war), wobei die nachstehenden Daten erhalten wurden.
Poly(N,N'-(benzol-1 ,3-dimethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid)
(6):
Fp.: 456 °C (Zers.) (TGA, Heizrate: 10 K/min)
1H-NMR (250 MHz, DMSO-de) δ: 7,3 (s, 1 H, ar), 7, 1 (d, 3H, ar), 5,2 (t, 1 H, aliph), 4,7 (s, 1 H, aliph), 4,6 (s, 2H, aliph), 4,5 (s, 2H, aliph), 3,9 (s, 2H, aliph).
IR (cm-1 ): 1784, 1695, 1333.
Poly(N,N'-(1 ,2-ethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (7):
Fp.: 438 °C (Zers.) (TGA, Heizrate: 10 K/min)
IR (cm 1): 1785, 1690, 1339.
Die vorliegende Erfindung stellt somit ein Verfahren bereit, durch das Polyimid-Be- schichtungen aus wässrigen Lösungen der stöchiometrischen Monomersalze hergestellt werden können, was gegenüber dem Stand der Technik einen erheblichen Vorteil darstellt, da die Verwendung teurer und nur unter enormem Energieaufwand zu entfernender Lösungsmittel eingeschränkt oder sogar gänzlich vermieden werden kann.
Die Erfindung soll zudem nicht auf die fünf hierin offenbarten Monomerkombinationen beschränkt sein, zumal der einschlägige Fachmann - der nun über das Wissen verfügt, dass solche wasserlöslichen Monomersalze überhaupt existieren - mittels einfacher Routineversuche ohne Weiteres in der Lage ist, auch andere Kombinationen aus Polycarbonsäure bzw. Polyanhydrid und Polyaminen zu ermitteln, die ein wasserlösliches stöchiometrisches Salz ergeben.

Claims

PATENTANSPRÜCHE
1 . Verfahren zur Herstellung von Polyimiden durch Polykondensation von davor hergestellten stöchiometrischen Salzen aus Polycarbonsäuren oder deren Polyanhy- driden und Polyaminen mittels Erhitzung der Salze zur Dehydratisierung,
dadurch gekennzeichnet, dass
a) eine wässrige Lösung eines wasserlöslichen stöchiometrischen Salzes aus Poly- carbonsäure und Polyamin hergestellt wird;
b) die wässrige Lösung einem Verarbeitungsschritt unterzogen wird; und
c) gleichzeitig oder anschließend das in der Beschichtung enthaltene Salz mittels Erhitzen zu einem Polyimid polykondensiert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt c) auf eine Temperatur Tp erhitzt wird, die oberhalb der Festphasen-Polymerisationstemperatur des Salzes liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Verarbeitungsschritt b) mit der wässrigen Lösung ein Substrat beschichtet wird, um eine Beschichtung zu erhalten, die im anschließenden Schritt c) durch Polykondensation gehärtet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die im Verarbeitungsschritt b) erhaltene Beschichtung vor der Polykondensation in Schritt c) getrocknet wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass im Verarbeitungsschritt b) aus der wässrigen Lösung des wasserlöslichen stöchiometrischen Salzes auf dem Substrat eine Folie gezogen wird.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass im Verarbeitungsschritt b) die wässrige Lösung aufgeschäumt wird, um einen Schaum zu erhalten, der im anschließenden Schritt c) durch Polykondensation gehärtet wird, um einen gehärteten Polyimidschaum zu erhalten.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass im Verarbeitungsschritt b) die wässrige Lösung einer auf eine Temperatur oberhalb von Tp erhitzten Düse zugeführt wird, wo das stöchiometrische Salz in Schritt c) gleichzeitig durch Polykondensation gehärtet und das dabei erhaltene Polyimid durch die Düsenöffnung(en) gedrückt wird, um ein geformtes Polyimidprodukt zu erhalten.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das erhaltene Polyimid nassgesponnen, pressgeformt oder extrudiert wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das wasserlösliche stöchiometrische Salz in Schritt a) durch Vermischen stöchiometri- scher Mengen von Polycarbonsäure oder deren Polyanhydrid und Polyamin in Wasser oder in einem wässrigen Lösungsmittelgemisch hergestellt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das wasserlösliche stöchiometrische Salz durch Zusatz eines organischen Lösungsmittels zur Zwischenlagerung vor der Polykondensation ausgefällt wird.
1 1 . Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein wasserlösliches stochiometrisches Salz aus einer Tetracarbonsäure und einem Diamin hergestellt und polykondensiert wird.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass die Tetracarbonsäure aus Benzophenontetracarbonsäure, Tetrahydrofurantetracarbonsäure und Butantetracarbonsäure ausgewählt ist.
13. Verfahren nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass das Diamin aus Benzoldimethanamin und Ethylendiamin ausgewählt ist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das stöchiometri- sche Salz aus 1 ,3-Benzoldimethanammonium-dihydrogen-3,3',4,4'-benzophenontetra- carboxylat (1 ), 1 ,3-Benzoldimethanammonium-dihydrogen-1 ,2,3,4-butantetracarboxy- lat (2), 1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarbo- xylat (3), Ethan-1 ,2-diammonium-dihydrogen-3,3',4,4'-benzophenontetracarboxylat
(4) und Ethan-1 ,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarboxylat
(5) ausgewählt ist.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass als stöchiometri- sches Salz 1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetra- carboxylat (3) eingesetzt wird und bei der Polykondensation das Polyimid Poly(N,N'- (benzol-1 ,3-dimethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (6) hergestellt wird. 16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass als stöchiometri- sches Salz Ethan-1 ,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarboxy- lat (5) eingesetzt wird und bei der Polykondensation das Polyimid Poly(N,N'-(1 ,2-ethy- len)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (7) hergestellt wird.
18. 1 ,3-Benzoldimethanammonium-dihydrogen-1 ,2,3,4-butantetracarboxylat (2):
19. 1 ,3-Benzoldimethanammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetra- carboxylat (3):
20. Ethan-1 ,2-diammonium-dihydrogen-3,3',4,4'-benzophenontetracarboxylat (4):
21. Ethan- 1,2-diammonium-dihydrogen-tetrahydrofuran-2,3,4,5-tetracarboxylat (5)
22. PolyiN.N'^benzol-I .S-dimethylen^etrahydrofuran-2,3,4,5-tetracarbonsäure- diimid) (6):
worin n≥ 2 ist.
23. Poly(N,N'-(1 ,2-ethylen)tetrahydrofuran-2,3,4,5-tetracarbonsäurediimid) (7):
worin n≥ 2 ist.
EP17777150.8A 2016-08-19 2017-08-21 Verfahren zur herstellung von polyimiden Pending EP3500617A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA383/2016A AT519038B1 (de) 2016-08-19 2016-08-19 Herstellungsverfahren für Polyimide
PCT/AT2017/000058 WO2018032023A1 (de) 2016-08-19 2017-08-21 Verfahren zur herstellung von polyimiden

Publications (1)

Publication Number Publication Date
EP3500617A1 true EP3500617A1 (de) 2019-06-26

Family

ID=59982194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17777150.8A Pending EP3500617A1 (de) 2016-08-19 2017-08-21 Verfahren zur herstellung von polyimiden

Country Status (4)

Country Link
US (1) US20190177483A1 (de)
EP (1) EP3500617A1 (de)
AT (1) AT519038B1 (de)
WO (1) WO2018032023A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517146A2 (de) * 2015-05-13 2016-11-15 Technische Universität Wien Verfahren zur Herstellung von kristallinen Polyimiden
AT522304B1 (de) 2019-03-15 2023-11-15 Univ Wien Tech Verfahren zur Herstellung von Polyimiden
AT523968A2 (de) 2020-06-23 2022-01-15 Univ Wien Tech Herstellungsverfahren für Polyimide
WO2023080007A1 (ja) * 2021-11-02 2023-05-11 東レ株式会社 ポリイミドの製造方法、ポリイミド、ポリイミド樹脂組成物およびその硬化物
WO2023165940A1 (en) 2022-03-01 2023-09-07 Basf Se Process for the production of a thermoplastic polyimide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1904396A1 (de) * 1969-01-30 1970-07-16 Veba Chemie Nor Gmbh Verfahren zur Herstellung von Polyimiden ueber Polyamidosaeuren
DE1917274C3 (de) * 1969-04-03 1981-04-30 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von imidgruppenhaltigen Polymeren
KR20000057998A (ko) * 1999-02-15 2000-09-25 엔다 나오또 폴리이미드 수지의 제조방법
JP2000319389A (ja) * 1999-05-07 2000-11-21 Unitika Ltd ポリイミド前駆体水溶液及びその製造方法、それから得られるポリイミド塗膜及びその製造方法
JP4484349B2 (ja) * 2000-10-18 2010-06-16 ユニチカ株式会社 フッ素樹脂水分散液並びにそれから得られる塗膜及びその製造方法
JP5982320B2 (ja) * 2012-05-17 2016-08-31 Jfeケミカル株式会社 コーティング剤組成物及びコーティング膜形成方法
WO2016032299A1 (ko) * 2014-08-29 2016-03-03 연세대학교 원주산학협력단 단량체 염을 이용한 폴리이미드 제조방법

Also Published As

Publication number Publication date
AT519038B1 (de) 2018-11-15
AT519038A1 (de) 2018-03-15
WO2018032023A1 (de) 2018-02-22
US20190177483A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2018032023A1 (de) Verfahren zur herstellung von polyimiden
EP3294794B1 (de) Verfahren zur herstellung von polyimiden
DE1770784C3 (de) Verfahren zur Herstellung von Polyimiden
DE2945139C2 (de) Verfahren zur Herstellung einer homogenen Polyimidlösung
DE112007003428B4 (de) Lösungsmittel-lösliche Polyimid-Copolymere sowie Verfahren zu deren Herstellung
DE2018182A1 (de) Neue heterocyclische Polymeren
EP3684847A1 (de) Verfahren zur herstellung von polybenzimidazolen
DE1913280B2 (de) Aromatische Polyimide
DE2257996A1 (de) Loesliche polyimide
DE3240934C2 (de)
DE2705823A1 (de) Verfahren zur herstellung von amidimidpolymeren
EP0290909B1 (de) Verwendung von speziellen Polyimiden als Giessfolien und Beschichtungsmaterial
DE2159935A1 (de) Verfahren zur herstellung loeslicher polyimide
DE2724913C2 (de)
DE3734475C2 (de)
WO2019057498A1 (de) Verfahren zur herstellung von polybenzimidazolen
DE3713670A1 (de) Verfahren zur herstellung von ueberzuegen mit hydantoin-strukturen durch umsetzung carbodiimidgruppen enthaltender verbindungen mit ungesaettigten carbonsaeuren
DE2066093C2 (de) Polymere Triketoimidazolidine
DE1962845A1 (de) Verfahren zur Herstellung eines hitzehaertbaren Harzes
EP0290910B1 (de) Spezielle Polyimide als Thermoplaste
DE1745130C3 (de) Verfahren zur Herstellung von Polyimiden
DE2143080C3 (de) Mischpolyimide
DE3407201A1 (de) Verfahren zur phenolfreien herstellung von aliphatisch-aromatischen polyamidimiden
DE1720913C3 (de) Verfahren zur Herstellung harzartiger Umsetzungsprodukte auf Basis von Triglycidylisocyanurat
DE2134458A1 (de) Verfahren zum Schlichten oder Vorbeschichten von Fasern aus Kohlenstoff und Graphit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221125